説明

自動分析装置

【課題】出力変動の大きい光源を使用した場合であっても、液体試料の光学的特性を高い信頼性の下に測定することが可能な自動分析装置を提供すること。
【解決手段】容器に保持された液体の光学的特性を測定する自動分析装置。光源11aから出射された光束を測光する測光センサ11cと、光源と測光センサとの間に配置され、容器5を保持する保持部4a及び保持部とは異なる部分に形成されて光束を測光センサへ導く光路4bを有するキュベットホイール4とを備え、測光センサが測光した光路を通過する光束の測定値を用い、補正回路15bによって測光センサが測光した液体を保持した容器を透過した光束の測定値を補正する。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、自動分析装置に関するものである。
【背景技術】
【0002】
従来、自動分析装置は、容器に保持された液体試料の光学的特性を測定することによって成分濃度等を求めている。このため、自動分析装置は、測定精度を維持する目的からいわゆるセルブランクと呼ばれる測定を行っている(例えば、特許文献1参照)。この測定に際し、特許文献1の自動分析装置は、所定の液体、例えば、精製水を保持した容器を透過する光量を測定し、この測定値を容器個々の原点吸光度としている。
【0003】
【特許文献1】特開2000−65744号公報
【発明の開示】
【発明が解決しようとする課題】
【0004】
しかしながら、測定ごとに出力が変動してしまう出力変動の大きい光源を使用する場合、自動分析装置は、容器ごとに前記原点吸光度が変化してしまうことから、光学的特性の測定値の信頼性が低くなるという問題があった。また、一部の容器を補正のために使用するので、容器に対する制御が複雑になると共に、自動分析装置の処理能力を低下させるという問題があった。
【0005】
本発明は、上記に鑑みてなされたものであって、出力変動の大きい光源を使用した場合であっても、液体試料の光学的特性を高い信頼性の下に測定することが可能な自動分析装置を提供することを目的とする。
【課題を解決するための手段】
【0006】
上述した課題を解決し、目的を達成するために、請求項1に係る自動分析装置は、容器に保持された液体の光学的特性を測定する自動分析装置であって、光源から出射された光束を測光する測光手段と、前記光源と前記測光手段との間に配置され、前記容器を保持する保持部及び前記保持部とは異なる部分に形成されて前記光束を前記測光手段へ導く光路を有する容器保持部材と、を備えたことを特徴とする。
【0007】
また、請求項2に係る自動分析装置は、上記の発明において、さらに、前記測光手段が測光した前記光路を通過する光束の測定値を用い、前記測光手段が測光した液体を保持した前記容器を透過した光束の測定値を補正する補正回路を備えることを特徴とする。
【0008】
また、請求項3に係る自動分析装置は、上記の発明において、前記容器保持部材は、前記容器を個別に保持して配列させる複数の保持部を有し、前記保持部の間に前記光路が設けられていることを特徴とする。
【0009】
また、請求項4に係る自動分析装置は、上記の発明において、前記容器保持部材は、前記複数の保持部の配列方向に沿って前記光路が配列されることを特徴とする。
【0010】
また、請求項5に係る自動分析装置は、上記の発明において、前記容器保持部材は、前記光源に対して相対移動することを特徴とする。
【0011】
また、請求項6に係る自動分析装置は、上記の発明において、前記測光手段は、液体を保持した前記容器を透過した光束を測光する直前又は直後に前記光路を通過する光束を測光することを特徴とする。
【0012】
また、請求項7に係る自動分析装置は、上記の発明において、前記光路を通過した光束の透過率は100%であることを特徴とする。
【0013】
また、上述した課題を解決し、目的を達成するために、請求項8に係る自動分析装置は、容器に保持された液体の光学的特性を測定する自動分析装置であって、光源から出射された光束を測光する測光手段と、前記光源と前記測光手段との間に配置され、前記容器を保持する保持部と、前記保持部に保持された容器の前又は後に存在する光路を通過する光束の測定値を用い、液体を保持した前記容器を透過した光束の測定値を補正する補正回路と、を備えたことを特徴とする。
【発明の効果】
【0014】
本発明の自動分析装置は、光源から出射された光束を測光する測光手段と、前記光源と前記測光手段との間に配置され、容器を保持する保持部及び前記保持部とは異なる部分に形成されて前記光束を前記測光手段へ導く光路を有する容器保持部材とを備え、前記測光手段が測光した前記光路を通過する光束の測定値を用い、補正回路によって前記測光手段が測光した液体を保持した前記容器を透過した光束の測定値を補正するので、出力変動の大きい光源を使用した場合であっても、液体試料の光学的特性を高い信頼性の下に測定することができるという効果を奏する。
【発明を実施するための最良の形態】
【0015】
(実施の形態1)
以下に、本発明の自動分析装置にかかる実施の形態1を図面に基づいて詳細に説明する。図1は、実施の形態1の自動分析装置の概略構成図である。図2は、キュベットホイールの保持部と光路との関係を、測光センサと制御部とのブロックダイグラムと共に示す模式図である。
【0016】
自動分析装置1は、図1に示すように、試薬テーブル2,3、キュベットホイール4、検体容器移送機構8、分析光学系11、洗浄機構12、第一攪拌装置13と第二攪拌装置14及び制御部15を備えている。
【0017】
試薬テーブル2,3は、図1に示すように、それぞれ第一試薬の試薬容器2aと第二試薬の試薬容器3aが周方向に複数配置され、駆動手段に回転されて試薬容器2a,3aを周方向に搬送する。複数の試薬容器2a,3aは、それぞれ検査項目に応じた所定の試薬が満たされ、外面には収容した試薬の種類,ロット及び有効期限等の情報を表示する識別コードラベル(図示せず)が貼付されている。ここで、試薬テーブル2,3の外周には、試薬容器2a,3aに貼付した識別コードラベルに記録された試薬情報を読み取り、制御部15へ出力する読取装置が設置されている。
【0018】
キュベットホイール4は、図1に示すように、複数の反応容器5が周方向に沿って配列され、試薬テーブル2,3を駆動する駆動手段とは異なる駆動手段によって矢印で示す方向に回転されて反応容器5を周方向に移動させる移動手段である。キュベットホイール4は、光源11aと測光センサ11cとの間に配置され、反応容器5を保持する保持部4aと光源11aが出射した光束を測光センサ11cへ導く円形の開口からなる光路4bとを有している。保持部4aは、キュベットホイール4の外周に周方向に沿って所定間隔で配置され、隣接する保持部4a間に半径方向に延びる光路4bが形成されている。従って、キュベットホイール4は、複数の保持部4a間に、複数の保持部4aの配列方向に沿って配列される複数の光路4bが交互に形成されている。
【0019】
反応容器5は、分析光学系11から出射された分析光(340〜800nm)に含まれる光の80%以上を透過する光学的に透明な素材、例えば、耐熱ガラスを含むガラス,環状オレフィンやポリスチレン等によって四角筒状に成形されたキュベットと呼ばれる容器である。反応容器5は、近傍に設けた試薬分注機構6,7によって試薬テーブル2,3の試薬容器2a,3aから試薬が分注される。ここで、試薬分注機構6,7は、それぞれ水平面内を矢印方向に回動するアーム6a,7aに試薬を分注するプローブ6b,7bが設けられ、洗浄水によってプローブ6b,7bを洗浄する洗浄手段を有している。
【0020】
検体容器移送機構8は、図1に示すように、配列された複数のラック9を矢印方向に沿って1つずつ歩進させながら移送する。ラック9は、検体を収容した複数の検体容器9aを保持している。ここで、検体容器9aは、検体容器移送機構8によって移送されるラック9の歩進が停止するごとに、水平方向に回動するアーム10aとプローブ10bとを有する検体分注機構10によって検体が各反応容器5へ分注される。このため、検体分注機構10は、洗浄水によってプローブ10bを洗浄する洗浄手段を有している。
【0021】
分析光学系11は、試薬と検体とが反応した反応容器5内の液体試料に分析光(340〜800nm)を透過させて分析するための光学系であり、図1に示すように、光源11a、光フィルタ11b及び測光センサ11cを有している。光源11aは、所定波長の光を出射するが、反応容器5ごとに出射光量が変動する場合がある。光フィルタ11bは、所定波長にピークを有する光束を選択的に透過させる光学フィルタである。測光センサ11cは、光源から出射された光束を測定する測光手段であり、測光量に対応した光信号を制御部15へ出力する。ここで、光路4bは、キュベットホイール4に形成された孔であり、内部には何も存在していない。このため、光路4bを通過し、測光センサ11cにおいて測定される光束は透過率100%の光束である。
【0022】
洗浄機構12は、ノズル12aによって反応容器5内の液体試料を吸引して排出した後、ノズル12aによって洗剤や洗浄水等の洗浄液等を繰り返し注入し、吸引することにより、分析光学系11による分析が終了した反応容器5を洗浄する。
【0023】
第一攪拌装置13及び第二攪拌装置14は、分注された検体と試薬とを攪拌棒13a,14aによって攪拌し、反応させる。
【0024】
制御部15は、試薬テーブル2,3、キュベットホイール4、試薬分注機構6,7、検体容器移送機構8、検体分注機構10、分析光学系11、洗浄機構12、攪拌装置13,14、入力部16及び表示部17等と接続され、演算機能,記憶機能,制御機能及び計時機能等を備えたマイクロコンピュータ等が使用される。制御部15は、上記各部の作動を制御すると共に、試薬容器2a,3aに貼付した識別コードラベルの記録から読み取った情報に基づき、試薬のロットが異なる場合や有効期限外等の場合に分析作業を停止するように自動分析装置1を制御し、或いはオペレータに警報を発する。
【0025】
制御部15は、図1及び図2に示すように、測光回路15aと補正回路15bを備えている。測光回路15aは、測光センサ11cから出力される光信号をもとに光路4bを通過した光束や液体を保持した反応容器5を透過した光束の光量を測定し、測定結果を補正回路15bへ出力する。補正回路15bは、記憶回路15cと演算回路15dとを有している。記憶回路15cは、測光回路15aが測定した光路4bを通過した光量や反応容器5を透過した光量を記憶する。演算回路15dは、記憶回路15cが記憶した光量から反応容器5に保持された液体試料の吸光度を計算する。また、演算回路15dは、計算した吸光度から反応容器5に保持された液体試料の成分濃度等を分析する。
【0026】
入力部16は、制御部15へ検査項目等を入力する操作を行う部分であり、例えば、キーボードやマウス等が使用される。表示部17は、分析内容,分析結果或いは警報等を表示するもので、ディスプレイパネル等が使用される。
【0027】
以上のように構成される自動分析装置1は、回転するキュベットホイール4によって周方向に沿って搬送されてくる複数の反応容器5に試薬分注機構6が試薬容器2aから第一試薬を順次分注する。第一試薬が分注された反応容器5は、検体分注機構10によってラック9に保持された複数の検体容器9aから検体が順次分注される。検体が分注された反応容器5は、キュベットホイール4が停止する都度、第一攪拌装置13によって攪拌されて第一試薬と検体が反応する。第一試薬と検体が攪拌された反応容器5は、試薬分注機構7によって試薬容器3aから第二試薬が順次分注された後、キュベットホイール4の停止時に第二攪拌装置14によって攪拌され、更なる反応が促進される。
【0028】
キュベットホイール4は、光源11aに対して相対移動し、反応容器5や光路4bが分析光学系11を通過する。これにより、測光センサ11cが出力した光信号から測光回路15aが反応容器5を透過した光量や光路4bを通過した光量を測定する。このとき、演算回路15dは、測光回路15aが測定した光量をもとに液体試料の成分濃度等を分析する。このとき、記憶回路15cには、演算回路15dが計算した成分濃度等の分析結果が記憶される。このようにして、分析が終了した反応容器5は、洗浄機構12によって洗浄された後、再度検体の分析に使用される。
【0029】
このとき、自動分析装置1は、キュベットホイール4の保持部4aの間に光路4bが形成されている。このため、自動分析装置1は、測光回路15aに反応容器5を透過した光束や光路4bを通過した光束に関する光信号が測光センサ11cから交互に入力される。この自動分析装置1の分析手順を説明する。先ず、キュベットホイール4の1つの保持部4aに吸光度測定上の基準となる洗浄水を保持した反応容器5を置き、図2に示すように、反応容器5を透過した光束の光量を測定する。測定した光量を基準光量(I0)とする。さらに、基準光量(I0)測定の前、又は後に、図3に示すように、光路4bを通過した光量を測定し、これを基準光源光量(S0)とする。
【0030】
次に、液体試料を保持した反応容器5を透過した光量を測定し、実測光量(Ix)とする。但し、光源11aは、出射光量が変動し易い場合には、測定した実測光量(Ix)を補正する必要がある。このため、実測光量(Ix)測定の前、又は後に光路4bを通過した光量を測定し、これを実測光源光量(Sx)とする。すると、基準光量測定時の光源光量を基準とする光源光量の変化率は、Sx/S0であるので、光源光量の変化分を補正した補正実測光量(I)はIx/(Sx/S0)となる。
【0031】
従って、液体試料の吸光度Eは、E=log(I0/Ix)であり、光源光量の変化分を補正したときの吸光度Eは、E=log(I0/I)となる。補正実測光量(I)は、この場合Ix/(Sx/S0)となるため、吸光度は、E=log(I0/Ix)×(Sx/S0)によって求められる。即ち、自動分析装置1は、測定したこれら基準光量(I0)、基準光源光量(S0)、実測光量(Ix)及び実測光源光量(Sx)を記憶回路15cに記憶すると共に、演算回路15dによって反応容器5に保持された液体試料の吸光度を計算し、成分濃度等を分析する。このようにして成分濃度等の分析結果を求めた後、補正回路15bは、分析結果を表示部17に出力してディスプレイパネル等に表示する。このように、自動分析装置1は、記憶回路15cと演算回路15dとを有する補正回路15bを備えているので、光源11aの出力変動が大きくても、出力変動の影響を回避して液体試料の光学的特性を高い信頼性の下に測定することができる。
【0032】
さらに、保持部4aと光路4bとを交互に配置しているので、キュベットホイール4の回転に伴い、実測光源光量(Sx)を自動的に取得することができる。このため、実測光源光量(Sx)を取得するための新たな構成(切り換えスイッチ等)を設ける必要はなく、簡単な装置構成で実測光源光量(Sx)の取得が可能である。また、制御、測定シーケンスをキュベットホイール4の位置に関係なく同一にできるので、自動分析装置1の制御が簡単になる。さらに、利用可能な反応容器5の数を減らすことなく参照光を取得できるので、自動分析装置1の処理能力の低下を防ぐことができる。
【0033】
尚、光路4bを形成せず、反応容器5を保持する保持部4aと反応容器5を保持しない保持部4aとを交互に配置することによって、反応容器5を保持しない保持部4aを光路4bの代わりに用いても良い。この場合、キュベットホイール4に光路4bを設ける必要がないので、自動分析装置1を簡単に構成することができる。
【0034】
但し、実施の形態1では保持部4aと光路4bとを交互に配置していたが、実測光量(Ix)を測定する近くで実測光源光量(Sx)を測定することができれば、交互に配置する必要はない。このため、自動分析装置1は、例えば、保持部4a2つ置きに光路4bが配置されている構成であっても、光源11aの出力変動の影響を回避して液体試料の光学的特性を高い信頼性の下に測定することができるという効果を発揮することができる。
【0035】
また、実施の形態1では、実測光量(Ix)を測定する前又は後のどちらかで測定した実測光源光量(Sx)を使って吸光度を補正した。これに対し、演算回路15dを実測光量(Ix)の測定前後両方の実測光源光量(Sx)の平均値を計算する構成とし、平均値を使って吸光度の補正を行っても良い。
【0036】
(実施の形態2)
次に、本発明の自動分析装置にかかる実施の形態2について、図面を参照しつつ詳細に説明する。実施の形態1の自動分析装置は、反応容器を保持する保持部と光束を測光センサへ導く光路がキュベットホイールに設けられていたが、実施の形態2の自動分析装置は、反応容器を保持する保持部がキュベットホイールに設けられ、光束を測光センサへ導く光路は、複数の反応容器を一体化した集合容器に設けられている。図4は、実施の形態2の自動分析装置における集合容器とキュベットホイールの一部を示す斜視図である。ここで、実施の形態2の自動分析装置は、キュベットホイールの構造を除いて実施の形態1と同一であるので、同一の構成部分には同一の符号を用いて説明している。
【0037】
実施の形態2の自動分析装置は、キュベットホイール4に代えて、図4に示すキュベットホイール21を使用している。キュベットホイール21は、試薬テーブル2,3を駆動する駆動手段とは異なる駆動手段によって矢印で示す方向に回転されるリング状の容器保持部材であり、本体21aの周方向に沿って集合容器25を保持する保持部21bが所定間隔をおいて設けられている。
【0038】
集合容器25は、図4に示すように、複数の反応容器の上部を連結した一体化したもので、反応容器5と同様に構成される複数の容器25aの上部が、複数の容器25a間に所定間隔をおいてフランジ25bによって一体に連結されている。それぞれの容器25aは、試薬分注機構6,7や検体分注機構10によって試薬や検体が分注される。
【0039】
従って、集合容器25は、各容器25aを対応する保持部21bに上方から挿着してキュベットホイール21にセットすると、図5に示すように、隣り合う容器25a間に光源11aが出射した光束が通過する光路PLが形成される。この場合、保持部21bに容器25aを挿着しなければ、容器25aを挿着しない保持部21bの下部に形成される空間も光束が通過する光路PLとして利用することができる。
【0040】
実施の形態2の自動分析装置は、測光センサ11cが出力した光信号から容器25aを透過した光量や光路PLを通過した光量を測光回路15aが測定する。そして、演算回路15dは、測光回路15aが測定した光量をもとに液体試料の成分濃度等を分析する。
【0041】
これらの測光に際し、実施の形態2の自動分析装置は、試薬と検体を含む液体試料を保持した各容器25aや光路PLに関し、実施の形態1の自動分析装置1と同様にして、基準光量(I0)、基準光源光量(S0)、実測光量(Ix)及び実測光源光量(Sx)を測光回路15aが測定する。そして、実施の形態2の自動分析装置は、これらの値をもとに補正回路15bによって光源光量の変化分を補正した液体試料の吸光度を計算し、成分濃度等を分析する。このようにして成分濃度等の分析結果を求めた後、補正回路15bは、分析結果を表示部17に出力してディスプレイパネル等に表示する。このように、実施の形態2の自動分析装置は、記憶回路15cと演算回路15dとを有する補正回路15bを備えているので、光源11aの出力変動が大きくても、出力変動の影響を回避して集合容器25の各容器25aが保持している液体試料の光学的特性を高い信頼性の下に測定することができる。
【0042】
尚、実施の形態2では、複数の容器25aが一体化した集合容器25を用いたが、必ずしも一体化している必要はなく、集合容器25に代えて保持部21bに挿着した容器を支えるフランジを有する一つの容器を用いてもよい。
【0043】
なお、本発明の自動分析装置は、試薬分注機構6と試薬分注機構7を備えた場合について説明したが、試薬分注機構は1つであってもよい。また、本発明の自動分析装置は、自動分析装置1を1ユニットとして複数のユニットが組み合わされて構成されていてもよい。
【図面の簡単な説明】
【0044】
【図1】実施の形態1の自動分析装置の概略構成図である。
【図2】キュベットホイールの保持部と光路との関係を、測光センサと制御部とのブロックダイグラムと共に示す模式図である。
【図3】図2において、光源が出射した光束がキュベットホイールの光路を通過する様子を示す模式図である。
【図4】実施の形態2の自動分析装置における集合容器とキュベットホイールの一部を示す斜視図である。
【図5】図4の集合容器をキュベットホイールにセットした状態を示す正面図である。
【符号の説明】
【0045】
1 自動分析装置
2,3 試薬テーブル
4 キュベットホイール
5 反応容器
6,7 試薬分注機構
8 検体容器移送機構
9 ラック
10 検体分注機構
11 分析光学系
11a 光源
11c 測光センサ
12 洗浄機構
13 第一攪拌装置
14 第二攪拌装置
15 制御部
15a 測光回路
15b 補正回路
16 入力部
17 表示部
21 キュベットホイール
25 集合容器

【特許請求の範囲】
【請求項1】
容器に保持された液体の光学的特性を測定する自動分析装置であって、
光源から出射された光束を測光する測光手段と、
前記光源と前記測光手段との間に配置され、前記容器を保持する保持部及び前記保持部とは異なる部分に形成されて前記光束を前記測光手段へ導く光路を有する容器保持部材と、
を備えたことを特徴とする自動分析装置。
【請求項2】
さらに、前記測光手段が測光した前記光路を通過する光束の測定値を用い、前記測光手段が測光した液体を保持した前記容器を透過した光束の測定値を補正する補正回路を備えることを特徴とする請求項1に記載の自動分析装置。
【請求項3】
前記容器保持部材は、前記容器を個別に保持して配列させる複数の保持部を有し、前記保持部の間に前記光路が設けられていることを特徴とする請求項1に記載の自動分析装置。
【請求項4】
前記容器保持部材は、前記複数の保持部の配列方向に沿って前記光路が配列されることを特徴とする請求項3に記載の自動分析装置。
【請求項5】
前記容器保持部材は、前記光源に対して相対移動することを特徴とする請求項1に記載の自動分析装置。
【請求項6】
前記測光手段は、液体を保持した前記容器を透過した光束を測光する直前又は直後に前記光路を通過する光束を測光することを特徴とする請求項1に記載の自動分析装置。
【請求項7】
前記光路を通過した光束の透過率は100%であることを特徴とする請求項6に記載の自動分析装置。
【請求項8】
容器に保持された液体の光学的特性を測定する自動分析装置であって、
光源から出射された光束を測光する測光手段と、
前記光源と前記測光手段との間に配置され、前記容器を保持する保持部と、
前記保持部に保持された容器の前又は後に存在する光路を通過する光束の測定値を用い、液体を保持した前記容器を透過した光束の測定値を補正する補正回路と、
を備えたことを特徴とする自動分析装置。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate


【公開番号】特開2007−322246(P2007−322246A)
【公開日】平成19年12月13日(2007.12.13)
【国際特許分類】
【出願番号】特願2006−152589(P2006−152589)
【出願日】平成18年5月31日(2006.5.31)
【出願人】(000000376)オリンパス株式会社 (11,466)
【Fターム(参考)】