説明

自動化微小体積アッセイシステム

【課題】貴重な試薬及び高価な使い捨て品を最小量しか消費せずに、複数の試料を同時に又は高速に連続して容易かつ堅調に分析できるように自動化する。
【解決手段】材料の測定に使用する材料を毛管の内部に配置するステーション及び毛管を操作する自動化把持器を有する自動化アッセイシステムについて説明する。システムは、毛管の内部で反応が起きる分離及び固定化ステーションと、毛管の反応からの光電子放出を検出する検出器ステーションと、を含む。毛管からの光電子放出は、線グラフとして又は周知のウェスタンゲルブロット法に似た疑似ゲル画像のカラムで表示できる。自動化制御システムはユーザインタフェースを有し、これによりオペレータはランプロトコルを選択し、プロトコルランで使用される試料及び試薬の位置を画定できる。設定後、制御システムは自動化システムにプロトコルを実行させ、次に選択された表示フォーマットで結果を表示させる。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、概して、マイクロリットルサイズ以下の生体物質の体積を測定するアッセイ(assay)システムに関し、特に、自動化された微小体積アッセイシステムに関する。
【背景技術】
【0002】
<関連出願への相互参照>
本出願は、2005年4月9日に出願され、参照によりその全開示が本明細書に組み込まれる米国仮特許出願第60/669,694号に対する利益及び優先権を主張する。
【0003】
生体物質の様々な処理及び/又は分析を実行するために、多くの方法及びシステムが開発されている。これは例えば温度サイクル処理に関しては米国特許第6,423,536号に、分離アッセイ方法については米国特許第5,843,680号、第5,784,154号、第5,395,502号、及び第5,137,609号に、毛管輸送システムについては米国特許第5,785,926号に、等電点電気泳動分離アッセイシステムについては国際公報第WO94/13829号に、及びクロマトグラフィ蛍光分離及び表示システムについては米国特許第6,430,512号に記載されている。
【0004】
2004年7月19日出願の「化学ルミネセンスによる細胞内容物の連続的測定」(CONTINUOUS DETERMINATION OF CELLULAR CONTENTS BY CHEMILUMINESCENCE)と題した米国特許出願第60/589,139号、2004年10月8日出願の「捕捉された細胞内容物の測定」(DETERMINATION OF CAPTURED CELLULAR CONTENTS)と題した米国特許出願第60/617,362号、2005年7月19日出願の「分析物検出の方法及び装置」(METHODS AND DEVICES FOR ANALYTE DETECTION)と題した米国特許出願第11/185,247号、及び「核酸及び/又はタンパク質を分析するミクロな液体装置、その準備及び使用方法」(MICROFLUIDIC DEVICE FOR ANALYZING NUCLEIC ACIDS AND/OR PROTEINS, METHODS OF PREPARATION AND USES THEREOF)と題した米国特許出願第10/139,100号は、その全ての開示が参照により本明細書に組み込まれ、全てが、毛管等の流体室内で材料の成分物質を分離し、分離した物質を所定の位置で結合し、次に蛍光又は化学ルミネセンス等で結合物質から光学反応を誘発することによって、細胞材料のマイクロリットル体積を測定する装置及び方法について記載している。その結果の情報は、ウェスタンゲルブロット法のそれと同様の内容を有するが、再現性に悪影響を及ぼし自動化を困難にする複雑で大規模な時間のかかる取り扱い及び処理ステップがない。この技術は、細胞レベル等の材料の非常に小さい体積を測定する能力、及び望ましい出力信号レベルを入手するのに必要なだけの長さだけ化学ルミネセンスから光学データを受信できるという能力による良好な感度のような利点も有する。
【発明の開示】
【発明が解決しようとする課題】
【0005】
しかし、貴重な試薬及び高価な使い捨て品を最小量しか消費せずに、複数の試料を同時に、又は高速に連続して、容易かつ堅調に分析できるように、この技術を自動化することが望ましい。
【課題を解決するための手段】
【0006】
本発明の原理によるアッセイシステムを提示する。いくつかの実施形態では、本発明のシステムは、1つのシステムで分析のためのピペットと流体通路の両方の機能を提供するように構成される。例えば、いくつかの実施形態では、本発明は分析用ピペット及び流体通路の両方として、毛管、又は微小流路等の小さい内部寸法を有する他の器具を使用する。これにより、非常に小さい体積の試料の分析が可能になり、他の利点もあるが特に全体的な流体消費量を改善し、さらに自動化を容易にし、ロバスト性を改善する。いくつかの実施形態では、システムは、生体物質の小さい体積の試料をサンプリングして、分析し、電気泳動又は等電点電気泳動分離、固定化、及び蛍光及び化学ルミネセンス検出のうちの1つ又は複数の自動制御下で実行する。システムを通して複数本の毛管を平行して処理するか、又は試薬及び/又は貴重な試料を保存するために、自動制御下で複数本の毛管を平行移動するが、異なる流体毎に1つのウェルから順番に充填することができる。いくつかの実施形態では、真空、圧力又は電気泳動作用によって流体が複数本の毛管を通って同時に流れるようにできるマニホールドが提供される。生成される検出データは、複数の空間位置で同時に受信し、ウェスタンゲルブロット法の標準的な「ラダー型」表示装置に比較して提示することができる。
【0007】
1つの態様では、本発明の実施形態は、処理ステーションと、1本又は複数本の毛管に1つ又は複数の試薬又は試料を装填し、装填した毛管を処理ステーションに配置するように動作可能である自動化毛管把持器と、を備える自動化アッセイシステムを提供する。別の実施形態では、検出ステーションも提供され、自動化毛管把持器は、試薬又は試料を含む1本又は複数本の毛管を、処理ステーション又は検出ステーションのうち選択されたステーションに配置するように動作可能である。
【0008】
他の態様では、毛管ホルダが提供され、毛管ホルダは、第1及び第2の流体リザーバと、複数本の毛管を、毛管の端部が第1及び第2のリザーバに位置する状態で、ホルダ内の所定の位置に保持する複数の凹部と、第1及び第2の流体リザーバそれぞれと接触している電極と、を備え、リザーバ内の流体が表面張力によって毛管の個々の端部に保持される。
【0009】
さらに別の態様では、1本又は複数本の毛管を流体で充填するように動作可能な装置が提供され、装置は、垂直姿勢の複数本の毛管を支持するように構成された器具と、真空源を含み、流体が毛管内に引き込まれる間に1本又は複数本の毛管の端部と係合する複数のアパーチャを有するマニホールドと、を備える。
【0010】
さらに、いくつかの実施形態では、1本又は複数本の毛管を自動化毛管把持器で把持するステップと、毛管の端部を操作して、自動化毛管把持器の動作によって試料と接触させることによって、1つ又は複数の試料を1本又は複数本の毛管に装填するステップと、装填した毛管を処理ステーション内に配置するステップと、を含む実験を実行するための方法が提供される。
【0011】
別の態様では、本発明の態様は、自動化アッセイシステムのオペレーティングシステムを提供する。アッセイシステムは、オペレーティングシステムに応答して毛管を操作する自動化毛管把持器及び処理ステーションを含む。オペレーティングシステムは、プロトコルを選択するためのオペレータ入力手段と、毛管の位置を識別するためのオペレータ入力手段と、試料/試薬の位置を識別するためのオペレータ入力手段と、を含み、自動化毛管把持器は、オペレータ入力手段によって入力された情報に応答して動作する。いくつかの実施形態では、試料/試薬ステーションは、さらに、第1の試料ステーション及び第2の試薬ステーションを備え、試料/試薬の位置を識別するためのオペレータ入力手段が構成される。プロトコルの実行中に使用される試料ステーションで試料の位置を識別するためのオペレータ入力手段及びプロトコルの実行中に使用される試薬ステーションで試薬の位置を識別するためのオペレータ入力手段も提供される。
【0012】
本発明の実施形態は、さらに、自動化アッセイシステムを操作するための方法が提供され、アッセイシステムは、1本又は複数本の毛管からの放出に応答して、分析結果の表示を生成するコンピュータプログラムを含む。いくつかの実施形態では、本発明の方法は、1本又は複数本の毛管放出を示す隣接する帯の表示を生成するステップを含む。いくつかの実施形態では、放出は、毛管の内部の材料からの光電子放出を含み、選択するステップは、さらに、個々の毛管の内部の材料を識別するステップを含む。また、生成するステップは、さらに、毛管の内部の材料の源位置の表示を同時に生成するステップを含むことができ、選択するステップは、さらに、源位置表示により個々の毛管の内部の材料の源を識別するステップを含む。いくつかの実施形態では、源位置表示は、マイクロウェルを含むマイクロタイタープレートの画像の表示を含み、隣接する帯の表示は、疑似ゲルの表示を含み、選択するステップは、さらに、疑似ゲル表示の個々の帯に表示するために、毛管光電子放出を選択するマイクロタイタープレート画像のマイクロウェルを選択するステップを含む。
【0013】
本発明の別の実施形態では、本明細書で説明するアッセイシステムを備えるとともに、複数本の毛管、1つ又は複数の試薬、或いは1つ又は複数の試料のうちの何れか1つ又は複数を備えるキットが提供される。
【0014】
追加の実施形態は、分析試料、毛管、及び試薬のうちの1つ又は複数を配置することができるステーションと、これらの材料を操作するための自動化機構とを有する自動化アッセイシステムで実験を実行するための方法で、実験で使用する材料を規定する設定情報を入力するステップと、ステーションでの材料の位置を規定する設定情報を入力するステップと、規定された材料を使用して実行するランを規定するステップと、規定された位置にある規定された材料についてランをシミュレートするステップと、規定された位置にある規定された材料を使用してランを実行するステップと、を含む方法を提供する。
【0015】
本発明の他の目的及び利点は、本発明の詳細な説明及び請求の範囲を読み、図面を参照することによって明白になる。
【発明を実施するための最良の形態】
【0016】
本発明の原理によるアッセイシステムを提示する。いくつかの実施形態では、本発明のシステムは、1つのシステムで分析するために、ピペット及び流体通路の両方の機能を提供するように構成される。これによって、非常に小さい体積の試料を分析することができ、他の利点の中でも、全体的な流体消費量を改善し、さらに自動化を簡易にし、ロバスト性を改善する。
【0017】
最初に図1及び図2を参照すると、本発明の原理に従って構築されたイムノアッセイシステム(immunoassay system)10が斜視図で示されている。図示の実施形態では、システム10は、システムを通して生体有害物質を処理する場合に、拭き取るのに適した表面(例えば、ステンレス鋼又はプラスチック)を有するベースプレート12に装着される。ベースプレート12上には、大量の流体を含む1対のビン14が図示されている。使用するために清浄な洗浄流体が一方のビンからポンピングされ、システムの廃棄流体は全て他方のビンにポンピングされる。ベースプレート12の後方に検出モジュール16がある。検出モジュール16は、毛管ホルダ20’(図3aに示す)及び中間ホルダ20”(図3eに示す)のための空間20aを有する可動トレイ17を収容する。可動トレイ17は、コンピュータの光ディスクドライブのディスクトレイのように検出モジュール内へ、又は検出モジュールから外へ滑動し、毛管ホルダをモジュール16に出し入れするように自動化されている。検出モジュールは、毛管内から放出される光を検出するための結像光検出器(imaging optical detector)を収容する。この実施形態では、光検出器は、冷却された電荷結合素子(CCD)アレイ検出器である。毛管からの光は、レンズアセンブリによってCCD上に結像される。検出モジュールは、トレイ17をモジュールの内部へと後退させた場合に、光を通さず、それによりCCDアレイ検出器は、化学ルミネセンス又は蛍光によって毛管から放出した光を検出することができる。蛍光を励起するために、検出モジュール内の発光ダイオードのアレイを、毛管を均一に照明するように配置構成する。代替的に、励起のためにレーザ又は他の光源を使用することができる。波長選択フィルタを使用して、発光ダイオードから放出された励起光が、蛍光放出の検出と干渉するのを防止する。化学ルミネセンス検出の場合は、ルミノール等の材料を、以下で説明するような流体力学的な流れによって毛管を通して流れ、放出された光子をCCDアレイ検出器で検出する。代替実施形態では、等電点電気泳動について以下のセクションで説明するものと同程度のハードウェアで毛管に電圧を加えることにより、毛管を通してルミノールを電気的にポンピングすることができる。検出中、毛管をトレイ17上の毛管ホルダ20’内に保持し、これを検出モジュール内に後退させ、光検出終了後に再び出す。検出プロセスは、所望の感度レベルに応じて数秒から数時間かかることがある。
【0018】
本明細書で言及する場合、毛管という用語は、微小寸法の1つ又は複数の内管又は内部空洞を有する任意の器具を含むものとする。内管は任意の適切な形状を有することができ、例えば円形、四角形、三角形等であってもよい。毛管という用語は、複数の内管を含み、例えば管として内部流路を含む超微細加工した器具を含む。一般的に、内管は任意の適切な寸法を有する。いくつかの実施形態では、内管の寸法は1ミクロンから2000ミクロンの範囲である。他の実施形態では、内管の寸法は25ミクロンから250ミクロンの範囲である。いくつかの実施形態では、内管の長さは30mmから100mmの範囲である。毛管の外形寸法及び形状は限定されない。
【0019】
毛管ホルダについては、図3aから図3eでさらに詳細に説明する。毛管ホルダは、CCDアレイが複数本の毛管からの光電子放出を同時に検出するように、複数本の毛管を保持することができる。代替実施形態では、走査型蛍光検出器を使用してよい。その実施形態では、レンズによって集束した励起光が、各毛管内の蛍光性分子を照射する。この同じ(又は別の)レンズが、光電子倍増管等の感光性デバイスによって検出するために、結果として生じる蛍光発光を集光する。この集束した励起/集光は、各毛管の長さに沿って個別に、又はグループで走査することができる。励起光は、レーザ等のコヒーレント光源、又はアーク灯又は発光ダイオードアレイ等のインコヒーレント光源である。
【0020】
検出モジュール16の隣には、処理ステーション18がある。1つの実施形態では、処理ステーション18は、分離及び/又は捕捉を実行する。別の実施形態では、処理ステーション18は分離、捕捉及び検出を実行することができる。分離及び捕捉の両方を実行する図に示された例示的実施形態を参照すると、処理ステーション18は、分離及び固定化モジュールを含む。いくつかの実施形態では、このモジュールは毛管ホルダ20’及び中間ホルダ20”のための空間20’がある可動トレイ19、及び毛管が毛管ホルダ20’内に位置している場合に、毛管内の物質の電気泳動及び等電点電気泳動を実行する電子機器を備える。例示的実施形態において以下で説明するように、毛管ホルダ20’は、毛管ホルダの対向する側で個々の流体リザーバに電気的に接続する2つの一体型電極を有する。毛管ホルダ内の毛管(図3c参照)の端部は、これら2つのリザーバ内の流体と流体接触している。従って、分離及び固定化モジュール18が電極に電圧を加えると、この電圧は、毛管ホルダ20’内の毛管内の流体通路に加えられる。毛管に加えられた電圧は、モジュール18内に配置されるか、又はそれと結合したコンピュータ制御の電源(図示せず)によって調整される。この電圧は、等電点電気泳動によって生体分子を分離させる。代替実施形態では、分子はサイズ又は他の技術によって分離することができる。
【0021】
等電点電気泳動によるイオン電荷に従って毛管の流体通路内で生体分子が分離されると、分離された分子は、それぞれが毛管内でその集束位置で固定化される。図示の実施形態では、これは、分離及び固定化モジュール内にあるUV光源からの紫外線光で毛管を照射し、分離された材料を管腔内の材料又は毛管の壁に光活性化化学で結合することによって遂行される。典型的なUV光は、1〜1000mW/cm2の範囲の強度で、1〜200秒の範囲の期間にわたって使用される。その後、等電点電気泳動が行われた材料を検出モジュール16内で検出する。状況によっては、毛管ホルダ20’を水平姿勢で保持し、集束及び固定化中に毛管を通る流体力学的流れを最小限に抑えることが望ましい。代替的に、流体の粘度を上昇させて、流体の流れを減少させる。さらに別の方法は、毛管ホルダの2つのリザーバ間に小さい接続流体通路(例えば、流路)を組み込むことである。この路は、通常、差し渡しが約1mmであり、従って2つのリザーバ間の流体の高さが即座に等しくなる。
【0022】
この実施形態のベースプレート12上には、いくつかのマイクロウェル(microwell)プレートステーション22a〜22dが配置される。図1及び図2の図では、各ステーション22a〜22d内に配置されたマイクロウェルプレート24が図示されている。これらのステーション内にある間、試料を含むマイクロウェルプレートは冷却することが好ましい。これは、熱電冷却によって、又は冷蔵、低温流体の再循環、又は試料プレートに結合された氷浴等の他の手段によって遂行することが好ましい。ステーションは、ステーション内に配置された場合に、標準的なマイクロウェルプレートの位置を正確に画定するガイド又は凹部を有する。この実施形態の各マイクロウェルプレートステーションは、半透明なマイクロウェルプレートを通して見ることができる目立つ色又は図形によってベースプレート12上でマークされ、それにより各ステーションを以下で検討するように明確に識別することができる。標準的マイクロウェルプレートは、中心間距離9mmで96のマイクロウェルを、又は中心間距離4.5mmで384のマイクロウェルを含むことができる。他の距離及びウェル数が異なるプレートを使用することができ、本発明は任意の1つの特定構成に制限されるものではない。
【0023】
いくつかの実施形態では、本明細書で説明するようなロボットのコンピュータ制御毛管マニピュレータが、マイクロウェルプレート24内の予め選択されたウェルにアクセスし、プレート及びその各ウェルは、ステーション22a〜22d上の特定の予め画定された位置にある。コンピュータ制御によって、毛管マニピュレータがプログラムされているいくつかの所定の基準から、マイクロウェルプレートの仕様を選択することができる。また、この実施形態のベースプレート12上には、1対の大量毛管ラックステーション26が配置される。マイクロウェルプレートステーションの場合のように、毛管ラックステーションは、標準化した毛管ラック28を所定の位置に配置し、従ってラック28内の毛管を、ロボットのコンピュータ制御毛管マニピュレータで自動的にアクセスし、ラック28から毛管を取り上げることができる。毛管ラック28は、中心間距離9mmで96本の毛管、又は中心間距離4.5mmで384本の毛管を含むことができる。毛管が、固定化のために内壁コーティングを使用する場合、これはラック内で予めコーティングして供給することができる。
【0024】
毛管は、剛性で直線でもあるガラス等の透明で蛍光が少ない材料から作成することが好ましい。様々な内径(通常は10μmから1mm)及び長さ(通常は30mmから100mm)が一般的に使用されている。1つの実施形態では、毛管は長さ40mm、内径100μmで、毛管の容積は314マイクロリットルになる。内外両方で様々な断面形状も可能である。プラスチック等の異なる材料を使用することもできる。本発明は、任意の1タイプの毛管のタイプ又は構成に制限されず、任意の適切な毛管を使用することができる。
【0025】
代替実施形態では、個々の毛管又はその組合せの代わりに、超微細加工した器具を使用することができる。いくつかの実施形態では、毛管について前述したのと同様の寸法を有する内部毛管流路を、超微細加工器具に作製することができる。超微細加工器具は、シリコン、ガラス又はプラスチック等の様々な材料から作製することができ、一体型電極、電子機器及び弁を含むことができる。これは使い捨て又は再使用可能な器具であってもよい。超微細加工器具は、個々に、又は平行して、又はいくつかの組合せで制御可能にすることができる1つから数百の流路を含むことができる。典型的な超微細加工器具は、試料又は他の試薬を加えるためのウェルを含む。外部電極をこのウェルに挿入してもよい。毛管と同様に、毛管流路の断面は、任意の特定の形状に限定されない。
【0026】
図示の実施形態では、毛管は、例えば96本の毛管がある保存ラック28からロボットのコンピュータ制御毛管マニピュレータによって取り出され、使用前に毛管ステージングラック30内に配置される。この実施形態では、ステージングラック30は、1列に24本の個々の毛管のための位置を有する。ステージングラックは、各毛管の下端を所定の高さに配置する。これによって、システムを通して処理される各毛管が、特定レベルまで充填されたマイクロウェルプレート内の流体と接触することが保証される。ステージングラックは、コンピュータ制御された毛管マニピュレータが処理のために1本から12本の毛管を引き出すことも可能にする。少なくとも12本の毛管がラックから引き出されている場合、毛管マニピュレータは次に、12本の毛管の列を毛管ラック28から移送し、ステージングラック30内に残っている毛管があれば、そのすぐ隣にこれを配置する。ステージングラックは、コンピュータ制御下で前後の2つの位置の間で動作可能であり、従って毛管は常にステージングラック30の一方端から連続的に引き出される。これは、ステージングラック内に残っている毛管が12以内の場合、毛管ラック28から12本の毛管の列を移送できる位置が連続して少なくとも12あることを保証する。
【0027】
ステージングラック30の隣には、毛管光検出器32がある。光検出器は、検出器32の頂部にあるスロットの対向する側に光源と光電池とを含む。十分に大きい毛管の場合、この器具は、電子機器の分野で、通常、光遮断器と言われるものであってもよい。毛管が毛管マニピュレータによって特定の位置に保持されているか検証することが望ましい場合は常に、毛管マニピュレータを動かし、検出器32のスロットに毛管を通過させる。マニピュレータの特定の位置に毛管がある場合は、これが光源と光電池の間の光ビームを中断させる。この中断は、毛管マニピュレータを制御しているコンピュータに感知され、次に、毛管が毛管マニピュレータの試験した位置にあることが確認される。
【0028】
本発明の原理によると、イムノアッセイシステム10は、ロボットアクチュエータ42、44及び46に装着された毛管把持器40を備える毛管マニピュレータを含む。1つの実施形態では、ロボットアクチュエータ42、44、46は、電動式直線並進ステージであり、x、y、z運動制御を提供するように配置構成されるが、コンピュータで制御可能である限り、他のアクチュエータ機構を使用することもできる。把持器40は、上下アクチュエータ42を操作することによって上下に動作することができる。アクチュエータ42は、アクチュエータ44によって前後に動作する。アクチュエータ44は、アクチュエータ46によって、それと関連してシステム10の左右側の間で動作する。図1及び図2では、把持器40が垂直姿勢の12本の毛管を保持する様子が見られ、通常はその姿勢で毛管が移送され、充填される。しかし、把持器は、アクチュエータ42との接続部で蝶番48によって接続され、従って制御可能な状態で90°旋回し、それによって毛管を水平姿勢に動作させることができる。把持器及び毛管がこの姿勢になっている場合、毛管を毛管ホルダ20’及び20”に出し入れすることができる。従って、組み合わせたアクチュエータ機構が、検出及び分離及び固定化モジュールの前方でシステムの全要素を横断することができる。
【0029】
図示の実施形態では、ロボットアクチュエータ42、44、46が4つのツールを操縦する。把持器40に加えて、ロボットアクチュエータは蓋除去装置54、シリンジポンプ50に接続したピペット52、及び図9に示された再フォーマット用把持器40aを操縦する。3つのツール54、52、40aのうち1つを使用する場合は、これを個々の垂直アクチュエータ(図示せず)によって把持器40のレベルより下の位置まで下降させ、次にアクチュエータ42、44、46によって動作位置にする。これは、使用中に1つのツールが他のツールと干渉することを防止する。蓋除去装置は、マイクロウェル内の流体の蒸発を防止するためにマイクロウェルプレートを覆う蓋を除去する等の作業を実行する。蓋除去装置は、最初に除去すべき蓋の上の位置まで下降し、蓋を保持するために、真空源によって生成された吸引力を加え、次に蓋をマイクロウェルプレートから取り外すために上昇することによって、これを実行する。(使用されている場合は)小型ビン58の蓋も同様の方法で蓋除去装置54によって除去し、交換することができる。代替実施形態では、マイクロウェルプレート24のウェルは、システム10内に配置する前に箔で密封してよい。流体のアクセスが必要である場合は、アクチュエータ42、44、46が担持するツールでシールを穿孔し、アクセスすべきウェルを露出させることができる。ピペット52は、ベースプレート12の前方付近の小型ビン58に含まれる電気泳動緩衝剤又はルミノール等の流体で、毛管ホルダリザーバ124を充填する等の、正確な流体輸送を実行する。
【0030】
図8a〜図8bでさらに十分に説明する毛管再フォーマット用把持器40aは、毛管の間隔を9mmから2.25mmの間で変化させる作業を実行する。CCD検出器のそれと位置合わせされるオブジェクト区域を生成することによって、採集効率を改善するために検出モジュール内で毛管をさらに近づけて隔置することが望ましい。図示の実施形態では、再フォーマット用把持器40aは、把持器40のそれに対応する9mmの中心間距離で3本の毛管を保持するように構成されるが、異なる間隔で異なる数の毛管を保持することができる把持器を使用することもできる。前述したように、把持器40は、最大12本の毛管を保持器20’及び20”内に9mmの中心間距離で配置することができる。次に、把持器40aを使用して、ホルダ20”から毛管のうち3本(例えば、毛管1、2、3)を取り上げ、これを毛管ホルダ20’の他の毛管位置(例えば、毛管位置1、4、7)のすぐ隣に配置し、そこから2.25mmの中心間距離で隔置する。このプロセスをさらに3回繰り返し、従って全ての毛管が、図3eで示すように2.25mmの最終的中心間距離で交錯する。他の間隔及び構成も可能である。
【0031】
以下でさらに詳細に説明される把持器40は、コンピュータ制御下で毛管へと動作し、これは取り上げて処理(例えば、試料を装填)するか、システムの別の操作へと移動する。把持器40は、1回に1本の毛管を、又は同時にいくつかの毛管、例えば1列の毛管を毛管ステージングラック30から取り上げるようにプログラムすることができる。この実施形態では、把持器は次に、毛管の下端を対応するマイクロウェルの列に同時に浸漬するか又は各毛管を連続して1つのマイクロウェルに浸漬して、把持器の各毛管を毛管作用によって、又は毛管の上端に加えた真空によって完全に充填することができる。従って、各毛管は、メスピペットとして機能しており、含まれる体積は毛管管腔の容積に対応する。1つのマイクロウェルからいくつかの毛管を充填することにより、流体を最大限に使用することができ、高価な試薬が節約される。
【0032】
いくつかの実施形態では、システム10は、ビン58からピペット52で、又はシリンジポンプ50によって直接充填され、毛管又はピペットの先端を洗浄するために使用される洗い桶56を含む。図示の実施形態では、把持器によって保持された12本の毛管全部の下端を、同時に洗い桶に挿入することができる。洗い桶56の遠端には、桶の主要流体区画から分離された小さいウェルがある。この小さいウェルは、システムの使用中に流体消費量を最小限に抑えるために、少量の流体の混合に使用することができる。前述したように、毛管は、毛管ホルダ20’内に水平に配置されたまま、ホルダのリザーバ124内に含まれる流体を電気的にポンピングすることによって洗浄することもできる。
【0033】
図3a〜図3eは、本発明の毛管ホルダの様々な実施形態を示す。図3aの毛管ホルダ20’は、流体の表面張力を利用するためにテフロン(登録商標)又はゴム様材料等の非湿潤性材料で作成することが好ましい。毛管ホルダの対向する端部には、流体リザーバ124がある。図示の実施形態では、流体リザーバはホルダの長さだけ連続的に延びている。しかし、構築された実施形態では、代替的にリザーバ124を別個の区画に分割することが可能であり、従ってホルダ内の異なる毛管を相互から隔離することができる。これによって、各毛管を個々に制御又は監視し、さらに異なる流体を使用することもできる。毛管を把持し、ホルダに配置し、そこから除去できるように、ホルダ20’の中心区域122を窪ませる。リザーバ124の内壁は、毛管を保持するV字溝126の列として、一方側に形成される。V字溝126の列は、毛管をV字溝内に配置すると、これが必ずV字溝126によって画定された位置に自動的に落ち込むほど十分に深い。毛管ホルダ20’の背面(この図では見えない)は、ホルダの後側から延びる2つの電極134を有し、これはそれぞれホルダの壁を通ってリザーバ124内に突出する。これらの電極は、電気泳動及び等電点電気泳動のために流体を通して毛管内に電位を加えるために使用される。毛管ホルダは、必要に応じて洗浄のためにシステムから外すことができる。
【0034】
図3bは、毛管ホルダ20の1つの実施形態を示す。この実施形態では、窪んだ中心区域の代わりに、ホルダ20の中心区域132が開放している。この開口部132によって、ホルダをCCD検出器上に配置し、毛管内の物質から放出される光子を取得することができる。図3aの実施形態20’では、毛管を、毛管の上に配置されたCCD検出器に対向させる。図3bの実施形態では、CCD検出器が上又は下から毛管に近づくことができる。CCDを毛管の上に配置することは、毛管のほぼ全長を見えるようにし、液体がCCD又は結像光学系上にこぼれる可能性をなくすという利点を有する。図3bの図では、各リザーバ124から延びる電極134が、毛管ホルダの前側に見える。
【0035】
図3cは、V字溝に8本の毛管60が配置された毛管ホルダ20’を示す。V字溝の数、従ってホルダ内で保持できる毛管の数は、設計の選択肢の問題である。
【0036】
図3dは、先出の実施形態の毛管ホルダの断面図である。この実施形態では、電極136がリザーバ124の外側面へと延び、それを通過する。流体130で充填されたリザーバ124が図示されている。各リザーバの流体130が、毛管60を支持しているV字溝126の最下点より高くなっていることが分かる。毛管をV字溝126に配置すると、これは各リザーバ内の流体130の表面張力を破壊し、毛管60の各端にあるアパーチャを流体内に浸漬する。しかし、ホルダ及び毛管60の非湿潤性材料のせいで、流体130の表面張力は、流体が毛管ホルダの中心区域122内に漏れるほど乱されない。毛管60の流体通路は、流体130の表面張力のおかげで物理的シールを一切必要とせずに、各リザーバ内の流体130(従って電極136)と流体接触したままである。これは、磨耗する可動部品がなく、複数の小さい毛管に一時的なシールを作成することは、複雑で、実現に費用がかかるので、特に有利である。また、この方法のほうが、はるかに適応性がある。上述のような連続的化学ルミネセンス検出では、一方のリザーバ内のルミノール流体の高さが、他方のリザーバの流体レベルより高く、これによってルミノールが流体力学的流れにより、毛管60を通って一方のリザーバから他方へと流れることができる。
【0037】
図3eは、1つの実施形態による毛管ホルダ20’とともに、毛管60が12本という容量の中間毛管ホルダ20”を示す。中間ホルダ20”内に配置された9本の毛管は、再フォーマット用把持器40aによって、前述したように、ホルダ20”から1回に3本の毛管を取り上げ、ホルダ20’が満杯になるまで交錯する順序でホルダ20’内に配置することによって毛管ホルダ20’内に再配置することができる。
【0038】
上述した実施形態では、毛管は重力によって毛管ホルダのV字溝内に保持される。別の実施形態では、毛管を毛管ホルダ内に(例えば、機械的に、又は真空によって)固定することができる。これは、毛管又は任意の他の表面上で、毛管が毛管ホルダのV字溝内に適切に載らないようにする静電荷を防止する手段として望ましい。代替的に、毛管を帯電防止材料でコーティングするか、又は電離源をシステムに組み込んで、静電荷を防止することができる。
【0039】
毛管把持器40の実施形態が、図4〜図7に示されている。図4の把持器は、9mmの中心間距離で12本の毛管を保持するように構成されているが、異なる数の毛管を異なる間隔で保持することができる把持器も構成することができる。図4の把持器は本体80を備え、そこから12本のフィンガ82が延びる。各フィンガ82の遠位端付近には、毛管を捕捉することができる溝86がある。溝は、通常、L字形ばねクランプ84によって覆われる。図4に示す曲がっていない状態では、ばねクランプ84は溝86を覆い、それによって毛管をフィンガの溝86内で保持する。毛管を取り上げるか、解放するために把持器を開放すると、以下で述べる本体80内のクランプアクチュエータが起動し、ばねクランプ84の遠位端を曲げて、フィンガ82から離し、従って溝86を露出させ、溝内に保持されている毛管を解放する。図示の実施形態では、ばねクランプのクランプアクチュエータが起動して、全てのばねクランプを開放位置へと同時に曲げる。代替的に、クランプアクチュエータは、把持器の選択されたばねクランプのみを個々に開放するように配置構成することができる。クランプアクチュエータの力が解除された後、ばねクランプのばね力がばねクランプを閉状態に復帰させる。図5は、12本の毛管60を保持している場合の、図4の把持器を示す。図6は、フィンガ82の拡大図であり、ここでは1本のフィンガ82’が毛管60を保持し、端部フィンガ82”は、ばねクランプが除去され、クランプアクチュエータのピン92を含むフィンガのスロット88が表れた状態で図示されている。クランプアクチュエータを起動して、ばねクランプを開放すると、ピン92がスロット88から外れて、フィンガのばねクランプへ向かい、それによってばねクランプを押して、溝86が覆われているフィンガの遠位端から離す。
【0040】
図7は、クランプアクチュエータ90を示す把持器本体80の背面図である。フィンガ82が図面の底部で本体の反対側から延びているのが見える。各フィンガのピン92は、クランプアクチュエータ90に接続される。クランプアクチュエータ90は空気シリンダ94に結合される。空気圧を空気シリンダに加えると、空気シリンダのピストンがクランプアクチュエータを左側へと押し、これはピン92をばねクランプ84に押し当てて、把持器のフィンガを開放する。空気圧が除去されると、ばねクランプが閉じる。別の実施形態では、真空を使用して、空気シリンダ及び取り付けられたクランプアクチュエータを開位置へと引っ張ることができる。真空又は空気の負圧を使用することの利点は、同じ真空源が蓋除去装置に、さらにシステム内の他の空気圧アクチュエータに真空を提供できることである。適切な空気圧機構を選択することによって、ロボットアクチュエータ上の4つのツール全部、つまり毛管把持器40、毛管再フォーマット用把持器40a、ピペット50及び蓋除去装置54を、共通の圧力又は真空源から自動的に操作することができる。
【0041】
空気シリンダの代替品として、電磁弁を使用して、クランプアクチュエータ90を動作させることができる。1つの電磁弁を使用して、把持器の全てのピン92に接続した一体クランプアクチュエータを動作させるか、又はピン毎に個々の電磁弁を使用して、各毛管把持器フィンガを別個に操作かつ制御できるようにすることができる。
【0042】
図8a及び図8bは、3本の薄いフィンガ104が延びている本体102で構成された再フォーマット用把持器40aを示す。各フィンガの遠位端には、毛管を捕捉できる溝106がある。各溝の底部には、弁を通して真空源に接続された小さい穴108がある。毛管がフィンガ104の端部で溝106内に係合し、真空が供給されるように、把持器40aが位置決めされると、毛管が図8bに示すように溝に捕捉され、従って真空の除去によって解放される前に、新しい位置へと動作可能である。把持器40aは、端部捕捉形体のおかげで、把持器40の設計で可能な距離より近くに毛管を隔置することができるが、毛管はしっかり保持されない。図9は、アクチュエータ42上に配置された再フォーマット用把持器40aを示すシステム10の図である。
【0043】
図10a、図10b及び図10cは、把持器40との組合せで使用できる真空マニホールド110を示す。マニホールドは、ポート112を通して各毛管の上端と係合し、従って各毛管の上端に真空を加え、流体が各毛管を通して上方向に流れるようにすることができる。マニホールド110は、必要な制御の程度に応じて、全ポートに共通の真空室114、又は個々の毛管用に隔離された真空ポートを含むことができる。毛管は、緩やかに真空ポートと係合し、従って真空が加えられると、一部の空気が毛管の外側に流れて、毛管の端部に流体の小滴が形成された場合、全てを掃き飛ばすのに十分な速度でポートに入る。真空源の総流量は、毛管の周囲の流れが毛管の端部で真空レベルに悪影響を及ぼさないように選択される。流量は、真空のレベルを調節することによって変化させることができる。最低レベルの真空では、連続流を引き起こさずに毛管の充填を補助するだけの圧力である。小滴を形成して、掃き飛ばすように上昇した真空レベルでは、流量を変化させるように、加える真空を調節することができる。真空は、オンとオフ又は高低のように断続的な流れの状態を引き起こすように、パルス状でもよく、これは特定のプロセスでは、又は流体消費量が少ない場合に重要になることがある。
【0044】
流体の電気的ポンピング(例えば、電気泳動)を使用する代替実施形態では、毛管がマニホールドのポートと(例えば、膜の穴を通した軽い摩擦嵌めによって)物理的に係合し、低圧流体シールを達成することができる。毛管からマニホールドに統合された電極へと電気接続するように、毛管の上の領域に緩衝剤を追加する。毛管の遠端に隣接するマイクロウェル又は他の流体容器内の電極のアレイが、流体をマイクロウェルプレート24のウェル又は桶56から毛管を通る流体をポンピングするための電気路を完成させる。コンピュータ制御の電源が必要な制御を提供する。
【0045】
別の実施形態では、圧力によって流体を毛管に通してポンピングすることができる。
【0046】
さらに別の実施形態では、他方の端部が液体又は気体と接触している間に、毛管の一方端から流体を逃がすか、吸い取るか、蒸発させることによって、流れを引き起こすことができる。さらに別の実施形態では、毛管ホルダ20’(以下で説明)内に配置されている間に、電極136に電圧を加えることによってリザーバ124から毛管を通して流体をポンピングすることができる。
【0047】
好適には、システム10は、システム10の機構、特にロボットアクチュエータ42、44、46、毛管把持器40、毛管再フォーマット装置40a、ピペット50、蓋除去装置54、分離及び固定化モジュール18内のコンピュータ制御の電源及びUV光、及び検出モジュール内のCCDアレイ検出器及び発光ダイオードを制御し、操作するプログラム及びインタフェースを有するプログラムで、別個のコンピュータによって制御し、操作するコンピュータである。また、毛管ホルダ20’、20”の可動トレイ、及び毛管ステージングラック30も、コンピュータ制御下で動作してもよい。
【0048】
使用時には、例示的実施形態に従ってシステムオペレータが、最初に全ての試薬及び毛管を計器に入れ、次に実行すべき処理ステップを含む操作プロトコルを選択する。オペレータは、アクセスすべき流体の位置、流体を混合する位置、電気泳動及び等電点電気泳動の電圧等特定の特徴を規定するパラメータも入力する。プロトコルを操作するステップは、正確に画定することができる。何故なら、毛管が、毛管の内部容積によってプロセス用に必要とされる流体及び物質の量を正確に画定するからである。典型的なプロトコルは、最初に大型ビン14から桶56へと洗浄流体をポンピングすることで開始する。ロボットアクチュエータ42、44、46は、溶液ビン58の上の位置へとピペット52を移動し、ピペットを下降させて、先端を溶液に浸漬する。シリンジポンプは、所定の量の溶液をビンから引き出すように、コンピュータで起動される。次に、ピペットをロボットアクチュエータで持ち上げ、分離及び固定化モジュールの毛管ホルダ20’の上で移動して、次に溶液が毛管ホルダのリザーバ124の1つに配量されるポイントで下降し、V字溝126の底部レベルより上でリザーバを充填する。次に、ピペットを別のビン58へと移動させ、ここでシリンジポンプによって所定量の溶液を引き出し、毛管ホルダ20’の他のリザーバ124へと配量する。典型的な処理溶液は、電気泳動緩衝剤である場合もある。次に、ピペットを洗い桶まで移動させ、先端を洗浄する。
【0049】
毛管は、毛管把持器40によって保存ラック28から取り出され、毛管ステージングラック30内に配置される。これで、毛管は、把持器がさらに取り扱うために、既知の均一の高さになる。
【0050】
次に、システムは分析用試料を取得する。このプロセスは、最初にロボットアクチュエータ42、44、46が覆われたマイクロウェルプレート上に蓋除去装置54を移動させ、カバーを除去する。次にロボットアクチュエータは、毛管把持器40をステージングラック30へと移動させ、ここで把持器がいくつかの毛管60を取り上げる。毛管は、覆われていないマイクロウェルプレート24上の位置へと移動し、ロボットアクチュエータが把持器を下降させ、従って毛管の端部がいくつかのマイクロウェル内の流体に浸漬される。各マイクロウェルは、分析される試料を含んでいる。試料は、通常、タンパク質を含む細胞溶解物である。毛管の端部が試料溶液と接触すると、流体が毛管の管腔に吸い上げられ、試料溶液でこれを充填する。次に、毛管を持ち上げて、蓋をマイクロウェルプレート上に戻す。次に、充填した毛管を有する把持器を上昇させ、毛管ホルダ20’及び20”上を移動させて、毛管60が水平姿勢になるように旋回する。次に、把持器を下降させて、毛管を毛管ホルダのV字溝内に配置する。最後に、把持器40aによって毛管を、2.25mmの中心間距離に再フォーマットして、毛管ホルダ20’に入れ、次にこれをモジュールの可動トレイ19によって分離及び固定化モジュール18内に後退させる。
【0051】
毛管ホルダが分離及び固定化モジュール18内に移動すると、コンピュータが選択した電圧が毛管の流体通路に加えられ、等電点電気泳動によって毛管内の標的分子を分離し、分配するpH勾配を毛管内に確立する。標的分子が分離されると、これをUV光での光活性化によって、毛管内のその位置に結合する。可視光、熱、化学的活性化、又はタンパク質(又は他の分子、物質等)を固定化する他の手段も使用することができ、その場合、分離及び固定化モジュール内で、UV光以外の活性化機構を使用することができる。結合は、疎水性相互作用又はイオン相互作用等の共有結合又は非共有結合であってもよい。標的分子が毛管内の所定の位置に結合した後、可動トレイが毛管ホルダを分離及び固定化モジュールから出して、再フォーマット用把持器40aが、把持器40で取り上げるために毛管を毛管ホルダ20’及び20”の9mmの中心に配置する。
【0052】
代替実施形態では、標的分子は、ポリマ基質で充填された毛管を使用して、サイズ毎に分離される。
【0053】
次に、毛管把持器40は、毛管を毛管ホルダから取り出し、最初に毛管の下端を洗い桶56に浸漬し、次にマニホールドの上端に真空を加えて、流体を流すことによって、結合していない材料を洗い流す。前述したように、流体は電気ポンプ又は他の手段で移動させることもできる。次に、遮断溶液を含むマイクロウェルプレート24から蓋を外し、毛管の端部をウェル内の液体に浸漬して、毛管に遮断溶液を流す。遮断後、毛管の端部を、一次抗体溶液を含むウェルに浸漬し、流れると、結合が生じる。一次抗体は、遮断溶液と同じマイクロウェルプレート内にあってもよいし、又は別のマイクロウェルプレート内にあってもよい。洗浄プロセスを繰り返して、結合していない抗体を除去する。毛管を洗浄溶液に浸漬した結果、抗体は外側からも除去される。二次抗体をさらに別のセットのウェルから毛管を通してポンピングすると、結合が生じ、次に毛管を洗浄して、結合していない材料を除去する。
【0054】
上述した洗浄、遮断及び結合ステップの後、マイクロウェル又は洗い桶56の別個のウェル内でルミノール溶液を混合する。ルミノール及び活性化剤は、ビン58に含まれている。ピペット52を使用して、溶液をビン58から混合ウェルへと移送する。溶液は、混合ウェル内で流体を繰り返し吸引し、配量することによって混合される。使用するルミノールの量を最小限に抑えるには、ピペット52で流体を慎重に計量することによって、選択されたウェル内で少量しか準備しない。各毛管をルミノール溶液に浸漬し、従ってそれで充填する。次に、準備した残りのルミノールを、毛管ホルダ20’の2つのリザーバ124のうち一方へ移送し、水を他方のリザーバ124内に配量する。結合した抗体と標的の複合体からの化学ルミネセンスを連続的に刺激するために、ルミノールが毛管を通して流体力学的に流れるように意図されているので、所望の流れを促進するように、水よりわずかに多い量のルミノールを注入する。次に、毛管把持器40及び再フォーマット用把持器40aによって、ルミノールを含む毛管を毛管ホルダ20’に配置する。毛管ホルダ20’を検出モジュール16内に移動する。検出モジュール内で、毛管ホルダは、毛管が、この実施形態では毛管の上にあるCCDアレイ検出器に対向する状態で配置される。ルミノールが毛管を通して流れると、化学ルミネセンスが誘発され、生成された光子が、光子の放出された位置に関連してCCDアレイ検出器で検出される。検出されたデータは、コンピュータが受信し、処理して、所望の表示にし、これは、例えば、毛管内の位置に対する光強度のグラフ、又は毛管内の位置の関数として列状に配置されて、サイズ決定された棒でもよく、周知のウェスタンブロット法のパターンとほぼ同様である。毛管内で蛍光によってラベリングされた分子を検出するために、毛管を光源で照射し、その結果の蛍光を同じCCDアレイで検出する。この方法で、蛍光データを化学ルミネセンスデータで空間的に正確に上書きすることができる。CCDアレイの代替品として、このような実施形態では蛍光スキャナを使用することができる。
【0055】
検出が終了すると、毛管を検出モジュール16の毛管ホルダから取り出し、ベースプレート12上の毛管廃棄物容器(図示せず)内に廃棄する。
【0056】
以上の手順は、本発明のアッセイシステムによって実行できる1つの実験プロトコルを表すだけであることが、当業者には認識される。以下でさらに詳細に説明するように、システムオペレータは、任意の実験で使用する処理ステップを追加、省略、順序変更、及び変更することができる。
【0057】
本発明のイムノアッセイシステムのアクチュエータ、ツール、電源、UV光源、及びCCDアレイを制御するコンピュータシステムは、また、グラフィカルユーザインタフェースも有することが好ましく、これによってシステムオペレータは、信頼性の高い、便利で、かつ容易な操作方法で、オペレーティングランのプロトコルを選択し、システムを初期化し、プロトコルランを実行し、結果を記憶して、分析することができる。グラフィカルインタフェースの例示的実施形態について、以下で説明する。グラフィカルユーザインタフェースは、メニュー、ディレクトリ又はリスト等の手段を有し、これによってシステムオペレータは、デフォルトのランプロトコル、以前に実行したランから記憶したプロトコルを選択するか、カスタムプロトコルを準備することができる。プロトコルは、所望の結果を出すために、試薬を操作する方法に関して、コンピュータ化したシステムに命令のシーケンスを提供する。選択されたランプロトコルは、ステップのシーケンスとして、フローチャートとして、又はプロトコルシーケンスの他の提示として、グラフィカルユーザインタフェース上に提示することができる。例えば、図11は、プロトコルステップのテキストアウトラインで提示された「aktプロトコルラン」と呼ばれるプロトコルのステップを示す。当業者には明白であるように、この例は、典型的なランの非常に一般的なステップのシーケンスを示し、ここでランは、マイクロウェルプレート内の試薬で開始して、分析データの出力で終了する分析プロセスの全ステップを実行することである。予めプログラムされたプロトコルは、ラン中に使用者が実行できる、及び実行できない規則又は制約のリストを含む。例えば、1つのこのような制約は、一次抗体ステップの前にオペレータが二次抗体結合ステップを選択することを禁止する。これらの規則は、プロトコルランの実行時に、基本的誤りの発生を防止する。以下の例では、ランは、1本から12本の毛管内で実行される1セットの同時実験と定義される。
【0058】
プロトコルは、オペレータが設定可能なパラメータを有するいくつかの動作条件を有する。これらの動作条件を見るには、オペレータはコンピュータのポインティングデバイスでステップをクリックすると、ポップアップメニュー又はプルダウンメニューが、そのステップの動作条件とともに表示される。デフォルトのプロトコル及び以前に記憶したプロトコルは、これらのパラメータを最初に規定しているが、オペレータはこれを変更する機会を有する。例えば、オペレータが表示画面180上で「試料固定化」ステップをクリックすると、固定化光源の選択肢があるメニューが表示される。オペレータは、例えば「UV光」を選択することができる。オペレータが入力できる別のパラメータは、「露光時間」であってもよい。オペレータは、電気泳動又は等電点電気泳動の電圧を規定又は再規定する必要があることもある。同様に、「レポータ検出」をクリックすると表示されるメニューは、オペレータにCCD検出器アレイで光子を採集する期間を画定するよう求める。プロトコル規則は、オペレータが所与のプロトコルに関して入力又は選択できる選択肢又は選択肢の範囲を限定することができる。
【0059】
プロトコルランに使用する試薬を画定する必要もある。これを実行する画面が、図12に示されている。可能であり、以前に使用された試薬のリストは、試薬タイプをクリックして表示することができる。例えば、オペレータが「両性電解質」をクリックすると、以前に使用されたか、又はシステム上に画定された両性電解質のリストが表示される。選択肢は、選択したランプロトコルの規則によって限定されることがある。オペレータは、リストから試薬を選択するか、キーボードで情報を入力することができる。試薬情報は、計器製造業者のウェブサイトから、又は試薬供給業者のウェブサイトからダウンロードしてもよい。この例では、オペレータは実行すべきランのために、一次抗体として抗AKTを、二次抗体として抗マウスを選択している。
【0060】
使用すべき試薬を画定することに加えて、計器上のその位置も画定する必要がある。プロトコルを実行する前に、既知のシステム位置で試料、試薬及び毛管を設定する必要がある。図13は、マイクロウェルプレート24を設定するためのグラフィカルユーザインタフェースの画面180を示す。典型的な計器の設定は、細胞溶解物又はタンパク質等の試料のマイクロウェルプレート1枚を有する。第2のマイクロウェルプレートには一次抗体を、第3のマイクロウェルプレートには二次抗体を装填する。第4のプレートには、遮断及び洗浄溶液を装填することができる。前述したように、各ステーション22a〜22dは視覚的にマークする。例えば、ステーション22bは、マイクロウェルプレート24を配置するベースプレート上の位置に、赤い色でマークを付けることができる。これによって、システムオペレータは透明又は半透明なプレート材料を通して赤い色を見ることができる。他のステーションは、異なる図形又は色でマークする。グラフィカルユーザインタフェースは、このマイクロウェルプレートの図形200を、図13に示すように表示する。ウェルの各列は、列の左側の文字で描写される。文字をクリックすると、特定の列のウェル全部が選択される。異なる試薬又は試料を同じ列に配置すべき場合は、特定の列にある個々のウェルを選択することが望ましい。この場合、スプレッドシートのセルをアドレス指定するのと非常によく似た方法で、各カラムのウェルを数字で描写し、プレート内の特定のウェルを一意の文字及び数字で識別できるようにする。プレート図形200内の円形のマイクロウェル202は、ステーション22bのマイクロウェルプレートの下の色と同じ色に着色された背景204に対して提示される。従って、システムオペレータが図13の表示を見ると、赤いステーションの色に重なった実際のマイクロウェルプレートに対応して、赤い背景に対して96個のマイクロウェル202を見ることになる。従って、オペレータには、「試料プレートB」の赤い表示が、ステーション22bでマイクロウェルプレートを通して見える赤い色に対応することが即座に分かり、これによって見ているプレートを混同することが少なくなる。
【0061】
オペレータは、図12の試薬画面で選択した試薬を強調表示し、これによって選択された試薬は、プレート図形200の下に選択肢として表示される。選択された試薬は、ステーション22bで「試料プレートB」に位置する試薬である。代替的に、オペレータはメニューから、又はキーボードで試薬を入力することによって、このプレートのマイクロウェル内で見られるべき試薬を選択することができる。「試料プレートB」の試薬を選択すると、これが図で示すようにグラフィカルユーザインタフェース上でプレート図形200の下に表示される。各試薬の名称の次に、コンピュータによって割り当てられるか、オペレータが選択できる図形又は色がある。この例では、抗AKT抗体が図形「K」で識別され、抗マウス抗体が黄色で識別されて、図面では斜線パターンで提示されている。オペレータが抗AKT抗体の「K」図形206をクリックし、次にプレート図形の列のその文字をクリックすると、列全体が「K」図形で満たされ、その列にある全マイクロウェルが抗AKT抗体を含むことを示す。代替的に、オペレータが各マイクロウェルの図形202を個々にクリックして、試薬を含むマイクロウェルを1つずつマークすることができる。列が複数のタイプの試薬を含むか、列のマイクロウェルの一部が充填されていない場合は、この後者の方法をとる。オペレータがマイクロウェル図形の「K」を誤ってクリックした場合は、そのマイクロウェル図形を2回目にクリックすることによって、それを除去する。この例では、オペレータが次に抗マウス抗体の黄色い図形208と文字「E」をクリックして、この第2の抗体を含むものとして列Eの全マイクロウェルをマークする。図12の完成した図形は、ステーションBのマイクロウェルプレートでは列Cの全マイクロウェル内に抗AKT抗体があり、列Eの全マイクロウェル内に抗マウス抗体があることを制御コンピュータに示す。次に、オペレータは「終了」をクリックして、「試料プレートB」の設定が完了したことを示す。プロトコルのステップがこれらの抗体の1つを要求した場合、コンピュータには、これで、必要な試薬を見つけるためにアクチュエータを送るべき場所が分かる。
【0062】
試薬図形206又は208の1つを右クリックすると、「全マイクロウェルを選択」の選択肢があるポップアップメッセージ又はメニューが表示される。オペレータは、このメニュー又はメッセージでOKをクリックすると、プレートの全マイクロウェルが、特定の試薬を含むものとしてマークされる。次に、オペレータは「終了」をクリックして、そのマイクロウェルプレートの設定を終了する。
【0063】
システムは、実験中にアクセスしたマイクロウェルを視覚的にマークするように設定することができる。特定のマイクロウェル中の試薬をアッセイで使用した後、その色は図形上でグレーになる。従って、プロセスの完了時に、オペレータは図形に戻り、グレーになったマイクロウェルによってプロセス中にどのマイクロウェルにアクセスしたかが分かる。
【0064】
オペレータは、この同じ図形で直感的に各ラック及びトレイを設定することができる。
【0065】
例えば、オペレータは、洗い桶56に予め装填した緩衝溶液でプロトコルを開始したいと考えることがある。オペレータは、洗い桶の図形を呼び出し、図形表示で青で示された緩衝溶液を選択する。オペレータは緩衝溶液の図形をクリックして、洗い桶をクリックする。これで、洗い桶の図形は緩衝溶液を表す青色で満たされて表示され、これでコンピュータは、桶がランの開始時に緩衝溶液を含んでいることを知る。同様の方法で、オペレータは、ランに必要な毛管を含んでいる毛管ラック28内の位置を示すことができる。例えば、1つのラックがコーティングした毛管を含み、別のラックがコーティングしていない毛管を含むことがある。オペレータは、この方法で、グラフィカルユーザインタフェースを通してこの特定のプロトコルに必要な毛管が見られる位置をコンピュータに示す。
【0066】
オペレータが、プロトコルによって要求された使い捨て品の位置を全て設定したら、「設定見直し」を選択することができる。これによって、グラフィカルユーザインタフェースは、ボタンにタッチしてシステムステーションの各図形を循環する。使用者が各図形を見ると、画面に見られ、ベースプレート12上で視覚的に識別される「試料プレートB」の赤色等の図形及び/又はその色によって、物理的なプレート又はラック又は容器との関係が即座に分かる。オペレータは、この方法で、コンピュータに与えた設定がシステム上の試薬及び毛管の正確な位置設定に対応しているかチェックすることができる。コンピュータは、選択されたプロトコルに必要な材料の背景でチェックを実行し、プロトコルによって要求された試薬又は器具が設定から失われている場合、それをオペレータに知らせる。
【0067】
オペレータは、プロトコルが使用すべき試料及び試薬の位置を、図14に見られる試料追跡画面180で見ることができる。オペレータが材料の位置を画定した後、コンピュータは以前に入力した情報を自動的にこの画面に取り込む。例えば、一次及び二次抗体の識別及び位置が、「試料プレートB」に関して以前に入力した情報からこの画面に書き込まれている。コンピュータは、デフォルトのシーケンスで、必要な各材料を含む最小番号のマイクロウェルからの材料を使用する。オペレータは、所望に応じて、自動的に入力した選択肢をこの画面で変更する機会を有する。
【0068】
この例のランプロトコルは、毛管ホルダ20’の12本の毛管内にある試料の分析を実行する。図15のラン設定画面は、各毛管1〜12で使用される試料及び試薬をオペレータに示す。オペレータが、特定の毛管について試料又は試薬を変更したい場合は、毛管番号の下の名称をクリックし、以前に設定中に入力した材料から別の試料又は試薬を選択することができる。コンピュータは、変更された試料又は試薬の位置を自動的に識別し、試料又は試薬が存在しない場合(つまり、試料又は試薬が、以前に設定手順で識別されなかった場合)は、それをオペレータに通知する。これで、オペレータはこのプロトコルランの各毛管の各試料の実験条件を選択したことになる。
【0069】
設定が完了した後、オペレータは、「プロトコル検証」を選択することにより、プロトコルの動作状況を検証することができる。この行為を選択した場合、オペレータは図11の各プロトコルステップをクリックして、そのステップで使用されたオペレーティングパラメータを見ることができる(例えば、「試料固定化」ステップの分離プロセス中に、300ボルトの等電点電気泳動電圧を90秒間加える)。オペレータには、ステップ中に使用される各ステーション器具の図形を見て、ステップ中にその器具を変更する機会もある。例えば、オペレータが表示の「一次抗体結合」をクリックして、「ステーション表示」を選択すると、例えば高輝度又は点滅等でプレート列Cが強調表示された状態で、図13のマイクロウェルプレートの図形表示が見られ、これは、プロトコルのこのステップ中にプレートBの一次抗体の抗AKTが使用されたことを示す。アクセスしたマイクロウェルをマークするという選択肢を呼び出すと、この表示のその列のマイクロウェルがグレーになり、そのマイクロウェルの抗体が、ラン中にこの時点で使用されていることを示す。
【0070】
プロトコル検証行為によって、オペレータはランを実際に開始する前に、プロトコル全体を辿ることができ、従って各ステップの実行が成功するか、ランに先立ってチェックすることができる。オペレータは、所望に応じて戻り、設定のいずれかを変更して、事前に所望のランを十分にチェックするまで、プロトコル検証行為を再実行することができる。これは、新しいオペレータを訓練するために非常に有用であり、新しいオペレータは、実際のランで希少又は高価な試料及び試薬に実際に取り組む前に、プロトコルを設定し、これを図形で辿る手段を有する。従って、操作に不慣れなオペレータが、システムの操作で非常に早く楽になることができる。
【0071】
プロトコルランを実行した後、コンピュータは、ランのオペレーティングデータを全てセーブする。これで、オペレータは図11のプロトコル画面に戻り、「見直し実行」をクリックすることができる。この行為によって、コンピュータ及びグラフィカルユーザインタフェースは、「プロトコル検証」行為と同じ方法でプロトコルを再び巡るが、今回はラン中に記録した実際のステップ及び行為で巡る。例えば、分析結果が不正確又は異常であるように見える場合は、「見直し実行」を実行して、プロトコルのステップを再現し、プロトコルラン中に使用して、記録した各パラメータ、試薬、試料、及び位置を見ることができる。この方法で、オペレータは設定の間違い、又は誤った結果によって引き起こされた試薬取得の間違いを探すことができる。将来に要求された場合に、ランを再生できるように、ランデータは結果と一緒に記憶することができ、オペレータがコンピュータに記憶して、後日、同じプロトコルを実行するために呼び出すことができる。従って、一般的なランプロトコル及び位置設定のために、設定手順全体を巡る必要はなく、単にプロトコルデータを記憶装置から呼び出して、設定表示に即座に取り込み、プロトコルを実行することができる。
【0072】
「レポータ検出」ステップ中に、各毛管の二次元画像を取得する。この画像は、毛管の内容物から放射された化学ルミネセンス光又は蛍光を表す。標的タンパク質分子が多い位置ほど、その毛管位置から放射される光子が多くなる。放射された光の強度及び位置は、その後のデータ分析にとって重要である。この放射光を表すには、2つの方法がある。つまり線グラフ及びブロット画像である。1つの線グラフの例が図16aに見られる。X軸は光子が検出された毛管位置の関数であり、Y軸は各位置で検出された光子の数の関数である。この線グラフは、クロマトグラフィ計器によって表示された実験結果に類似している。放射光から生成された全グラフについて、正方向のピークは対象となるタンパク質分子の集まりを表す。この例では、線グラフの横軸の目盛りは、カメラ感知デバイス(CCDアレイ)内の画素を表すピクセルで表示される。線グラフの情報は図16bにも表示されているが、横軸の目盛りはpHである。pHの目盛りは、グラフのピークに対応する特定タンパク質を識別するために、さらに有意義である。pH情報は、以下でさらに詳細に説明するように、pI標準較正をデータに適用した後に表示することができる。1回のランで複数本の毛管から放射された光を表す複数のグラフを、同時に表示することが可能である。複数のグラフを、1つの表示画面上で様々な構成にて傾斜させ、見て、比較できるようにすることができる。「ウォータフォール」技術を使用して、1つのグリッド区域に複数の軌跡を表示することも可能である。一次元毛管画像又は感光性検出器によって生成された画像等、他の実施形態も可能であることが、当業者には認識される。
【0073】
分子量(電荷/質量比)によって分離する別の実施形態では、横軸の目盛りが分子量を表示することができる。複数本の毛管から放射された光を表示するのにさらに便利で直感的な方法は、疑似ブロット又は疑似ゲル画像である。この画像は、ウェスタンブロット又は電気泳動ゲルの最終結果に類似している。このデータ表示は、タンパク質研究の分野の科学者にはよく知られている。1本の毛管の疑似ゲル画像の例が、図17aに示されている。複数の疑似ゲル画像の表示例が、図17bに示されている。図17bの表示は、例えば8本の毛管を使用してランを実行し、8本の毛管からの試料結果を比較する場合に有用である。図17a及び図17bでは、線グラフタイプの表示で対象となるタンパク質を表す正方向のピークは、黒い背景に白い帯で表示され、線のピークが高いほど、白い帯が明るく示される。正方向のピークを、白い背景に黒い帯として表示することも可能である。帯に白又は黒を選択することは、ソフトウェアインタフェースの2元状態ボタンの形で、使用者に任される。疑似ゲル画像では、基礎となる化学的性質の違いを表すために、異なる色を使用することができる。オペレータが、調査中の未知の試料の画像に対して、帯の位置が量の値を意味する化学的標準値の画像を上書きしたい場合は、比較を容易にするために、未知数に対する標準値に異なる色を使用することができる。複数の色を使用する別の実施形態は、1本の毛管内にある複数の未知の化学種の色を指定する。1つの実施形態では、これは、複数の一次抗体を毛管に通し、これが様々な一意のタンパク質に付着できるようにして達成される。次に、選択した一次抗体に付着した複数の二次抗体を、毛管に通す。二次抗体も、外部刺激に曝されると一意の波長の光を放射するレポータ分子を有する。一意の各二次抗体が一意の波長の光を放射すると、これを光学フィルタで一意に検出し、一意の色でコンピュータ表示装置に表示することができる。
【0074】
本発明の自動化アッセイシステムの疑似ゲル表示技術の利点は、あるランの異なる毛管から、又は異なるランの異なる毛管から選択した結果の複数の帯表示を提示できることである。記憶されている実験結果は、各実験試料のソースである各マイクロウェルの位置を識別するので、マイクロウェルプレートの図形を使用して、所望の試料の実験結果を、周知の横並びの帯のフォーマットで選択的に表示することができる。例えば、図18は、8カラムの疑似ゲル表示300と同じ表示画面に、超微量定量試料プレートB200の表示画面写真を示す。最初に、疑似ゲル表示300のカラムは、位置5〜8の空のカラム302で示すように空である。この例では、プレートBのマイクロウェルが、システムで分析した試料を含み、その結果が記憶されている。システムオペレータが図形ポインティングデバイスをプレートのマイクロウェルへと操作すると、画面のカーソルの次に表示される小さいツールチップボックス等によって、画面上にマイクロウェルに含まれている試料の識別が表示される。オペレータが、疑似ゲル表示で表示したい試料のマイクロウェルを指示する場合、オペレータは、マイクロウェルから疑似ゲル表示の特定の空のカラムへと試料を「ドラッグ」する。オペレータがドラッグ行為を解除すると、その試料の分析結果が指示されたカラムに表示され、試料のソースであるプレート画像200のマイクロウェル上に疑似ゲル表示300のカラム番号が表示される。例えば図18では、疑似ゲル表示300のカラム1の結果は、プレート200の第2列第2カラムにあるマイクロウェル202からの試料の結果から来ていることが分かる。疑似ゲル表示300の第2、第3及び第4カラムの結果は、プレート200の他の指示マイクロウェルから来ていることが分かる。所望に応じて、試料の名称及び位置を疑似ゲル画像カラムに関連させる表形式の説明文を表示することができる。任意のグループの結果の疑似ゲル画像を生成するこの能力によって、任意のセットの試料分析の結果を示す周知のカスタム化されたブロット画像を、任意のシーケンスで疑似ゲル表示300内に生成することができることを理解されたい。
【0075】
このシステムの使用者は、最終的に量の情報を表示されている画像に関連させたいと考える。図17a及び図17bに示された帯の2つの最も重要な属性は、タンパク質の識別及びタンパク質の量である。タンパク質の識別は、一次抗体の選択と、既知のpH/pI標準との位置合わせを組み合わせることによって達成される。使用される一次抗体は、対象となるタンパク質に対して比較的高い親和性を有していなければならない。しかし、この選択は、他のタンパク質に付着する傾向があるせいで、タンパク質を一意に識別するには十分でないことがある。さらに正確に識別するには、タンパク質の等電点(pI)に関する知識が必要である。これを遂行するには、一連のpI標準を各毛管に配置する。これらの標準は、等電点電気泳動ステップ中に種々のpI点へと移動する。次に、標準は蛍光手段又は化学ルミネセンス手段を介して発光する。pI標準の画像を、タンパク質の帯の画像と比較する。タンパク質の帯に最も近い位置にある標準に基づいて、コンピュータの分析ソフトウェアが、未知の帯のpI値を推論することができる。このpI値を、次に対象となるタンパク質の既知の履歴pI情報に照らし合わせて比較する。pIが多少の小さい変動内で履歴データと一致する場合は、そのタンパク質を明確に識別することができる。pI値が一致しない場合は、一次抗体が付着した異なるタンパク質分子で、帯を生成する。タンパク質分子を分離し、識別する別の方法は、サイズとしても知られる分子量を使用することである。未知のタンパク質をサイズ標準と混合し、サイズに基づいて分離すると、未知のタンパク質を標準と比較して、明確な識別を実行することができる。当業者には、分子量、疎水性、陰イオン/陽イオンの特徴、親和性等のように、必要な標準を分離する手段が異なる実施形態を考えつくことができるだろう。
【0076】
タンパク質の量は、未知のタンパク質帯の振幅を、既知の量のタンパク質の振幅と比較することによって、求めることができる。振幅測定は、所与のタンパク質帯内で放射された光を表す全ピクセルの振幅を合計することによって実行する。一連の既知のタンパク質量を、複数本の毛管内に配置し、帯の振幅を求めて、将来の振幅比較のためにセーブすることができる。
【0077】
分析ソフトウェアがタンパク質の識別及び量を求めたら、システムは、そのデータを、線グラフ表示、疑似ゲル画像と並べて、又は表で表示することができる。注釈を付けた疑似ゲル画像の例は、識別されたAKTリン酸−12ng/mLの帯の画像で、図17bの右側にある。
【0078】
大部分の分析システムは、計器の検出方式に固有のフォーマットで出力データを提示する。例えば、HPLC及び毛管電気泳動検出システムは、ある期間にわたってデータを生成する。従って、これらの計器のデータは、時間に対する信号のプロットとして提示される。重要なことが期間終了時の材料の分離であるスラブゲル又はTLCプレート等の分離システムでは、プロット時の分離データを、距離の関数としてプロットする。しかし、時間及び距離の変数は、実験者にとって主な関心事ではない。むしろ、実験者は、ヌクレオチドのDNA断片のpI長さ、又はpHユニット内のタンパク質の等電点等、未知の化学物質の1つ又は複数の特性に関心がある。これには、通常、実験者が同じ分離システム内にある既知の特性の化合物を分離し、次に対象となる特性に対して移動度又は移動時間又は滞留時間の曲線を構築する必要がある。この変換テーブルによって、実験者は未知の分析物のために計器で生成した時間又は距離の値を使用して、関心がある化学的パラメータを検索することができる。
【0079】
この2段階の方法の問題は、実験者に、分析したいデータから1ステップ除去されたクロマトグラム又は電気泳動図が残されることである。本発明のさらなる態様によると、アッセイシステムは、分離基準からの較正データをクロマトグラム又は電気泳動図に適用し、所望の座標系に対する信号として分析データを表示する。これは、信号対時間又は距離のプロットを、実験者にとってそのまま有用なプロットへと効果的に変形する。何故なら、実験にとって意味がある座標値に定量化されるからである。この技術は、滞留時間、移動時間、移動度、又は移動距離が、DNA鎖の長さ又はpI等の分析物の物理変数の関数である分離システムにおいて、分離システムの較正のために化学的標準を使用可能である場合に使用することができる。
【0080】
以下の2つの例は、この技術の用途を示す。等電分離の第1の例では、組み換えAKT(ヒトタンパク質)を5から8pHの勾配の等電点電気泳動によって分離する。分離には、5.5及び6.4という既知のpI値を有するペプチドが含まれる。図19は、このような実験の生データを示す。この例では、生データを信号対距離としてプロットする。何故なら、化学ルミネセンスから信号を生成するために、分離器具全体を結像するからである。軌跡402は、rAKTから生成された化学ルミネセンス信号である。軌跡404は、既知のpHに集束するペプチド標準からの蛍光信号である。x軸の単位は、光子信号を捕捉するために使用したCCDカメラからのピクセル位置であり、分離器具内の距離と正比例する。次に、ペプチド標準の軌跡404に表れたピークを使用して、x軸を距離から図20に示すようにpHへと変換するために、x(距離)軸の各点に与えられる既知の関数を生成する。既知の移動度の標準を使用して、一方の座標軸に位置があり、別の座標軸に特性(pI、時間、長さ等)がある簡易線グラフを生成するプロセスが、当業者にはよく知られている。これで、未知の物質の位置を線グラフ上で位置決めして、未知の物質の望ましい特性を求めることができる。代替的に、既知の物質から外挿したデータを使用して表を作成し、表で標的の分子特性を検索することができる。図20では、標準の関数に関連するpHの関数として同じデータ402をプロットして、x(pH)軸のAKTピークの位置が、そのまま調査中のAKTタンパク質の変形のpIを示し、これは生物物理学的に有意義な量である。
【0081】
DNAサイジングの第2の例では、2つのDNA断片を毛管電気泳動(CE)計器上で分離する。分離には、既知のサイズのDNA断片が含まれる。図21には、生データが示され、ここではCE検出器が分離全体で一定の速度でデータを生成するので、受信信号が分単位の時間に対してプロットされている。ピーク502は、未知の長さのDNA断片から生成したものである。ピーク504は、ピーク毎に上述したように既知の長さのDNAで生成したものである。既知のサイズのDNA断片の定量化したピーク504を使用して、図22に示す結果のデータを生成するために、x軸の各点に適用される関数を生成する。この図では、結果のデータが、ヌクレオチド中のDNAのサイズに対する信号の単位で定量化され、これは生物物理学的に有意義な量である。
【0082】
以下の例は、例示的目的にのみ提供されたもので、本発明をいかなる意味でも制限するものではない。
【0083】
<アッセイシステムの実施例1>
毛管60を、把持器40にとって許容可能なフォーマットで計器に提示する。毛管は、洗浄するか、コーティングするか、又はコーティングなしでもよい。分析される試料を、標準的な96個ウェルのマイクロタイタープレート22内に提示する。試料は、通常、両性電解質、pI標準、及び光子捕捉試薬等の緩衝剤と混合した細胞溶解物(又は種々のタイプのタンパク質試料)である。pI標準は、蛍光でラベルを貼ることが好ましい。把持器40が毛管を毛管ステージングラック30から取り出し、マイクロウェル内の試料と接触した状態で搬送する。試料は、毛管作用又は真空吸引によって毛管内に引き上げることができる。次に、把持器40は、充填した毛管をトレイ20”上に配置する。次に、再フォーマット用把持器40aが、毛管ホルダ20上の毛管を再配置する。IEF(等電点電気泳動)にとって適切な緩衝剤を、毛管ホルダ20の緩衝剤室124内に配置し、毛管ホルダを分離及び固定化モジュール18内に移動させる。緩衝剤室124間に、及び毛管に電位を与えて、両性電解質、タンパク質及びpI標準の等電点電気泳動を誘発する。集束後に、電位をオフに切り換えて、UV光源をオンに切り換え、光子捕捉化学を活性化させる。代替的に、電位を加えている間に、光源をオンに切り換えることができる。これによって、タンパク質が固定化される。この固定化は、毛管の壁コーティングに対して、又はゲルの形成を通して(コーティング有り又はコーティングなしの)毛管に間接的に実行することができる。次に、毛管ホルダをモジュール18から出す。
【0084】
把持器40は、毛管をホルダ20から取り出し、洗浄及び遮断のためにこれを操作する。この時点で、緩衝剤を交換する。最善の方法は、溶液を交換するために真空圧を使用することであるが、電気泳動(EP)、電気浸透(EO)流、流体力学的に駆動された流れも使用することができる。分離緩衝剤は、一次抗体を対象となるタンパク質と接触させるために準備するのに適切な緩衝剤と交換する。また、所望に応じて、変性緩衝剤(例えば、洗剤、カオトロピック剤等を含む緩衝剤)を使用して、このステップでタンパク質を変性させることができる。牛乳、カゼイン、又はウシ血清アルブミン等のウェスタン法で使用されている遮断試薬を含めても、含めなくてもよい。次に、一次抗体を毛管に導入する。一次抗体は、真空圧を使用して流入させるか、電気泳動で導入することができる。抗体は、本来の状態では負の電荷を有し、電気泳動を行うことができる。一次抗体には、蛍光体等の検出試薬、又はホースラディッシュペルオキシダーゼ等の化学ルミネセンスに適した酵素でラベリングすることが可能である。一次抗体は、対象となるタンパク質と接触し、それに結合する。余分な抗体は、真空圧、EP又はEOで洗い流す。
【0085】
必要に応じて、二次抗体で提示するための試料を準備するために、追加の洗浄を実行することもできる。ウェスタンブロット法で二次抗体を使用することが、当業者には周知である。これは、一次抗体で規定したのと同じ方法で適用される。
【0086】
次に、把持器40が毛管を、検出モジュール16にある毛管ホルダ20へと移送する。このモジュールは、化学ルミネセンスの検出に適したCCDカメラを使用する。試薬を、毛管ホルダの緩衝剤リザーバの1つに提示する。試薬は、流体力学的流れで毛管に導入する。圧力、EP、EO等の試薬を導入する他の手段を使用することができることが、当業者には理解することができるだろう。試薬は、ルミノール等の化学ルミネセンスに通常使用される試薬であるが、アルカリ性ホスファターゼ等の他の化学ルミネセンスシステムも使用することができる。別の実施形態では、複数の化学ルミネセンス及び/又は蛍光検出手段を使用して、複合的方法で複数の異なる分析物を検出することができる。ルミノールが毛管内でラベリングされた試料と接触すると、光が生成され、カメラによって測定される。消費された試薬は、流れによって新鮮な基質と連続的に交換することができるので、長時間の曝露が可能である。この実施例では、蛍光でラベリングしたpI標準を検出するために、蛍光励起源及び適切なレンズ及びフィルタがある。
【0087】
対象となるタンパク質がある毛管の長さに沿って、信号を検出する。この信号は、ソフトウェアによって解釈され、毛管の一方端から別の端への信号のヒストグラムを生成する。タンパク質特有の信号を調査し、pI及び他の標準と比較して、研究者にとって関心がある特性を求めることができる。1本の毛管内で複数のタンパク質を調査できることが、当業者には認識される。
【0088】
<アッセイシステムの実施例2>
この実施例では、実施例1のプロセスを使用するが、対象となるタンパク質を蛍光性分子でラベリングする。この実施例では、蛍光励起源及び光学システムが、pI標準と対象となるタンパク質の両方を検出する。この実施例では、CCDカメラの代わりに光電子増倍管等の適切な光測定器具がある走査光センサを使用する。異なる励起及び発光波長を有する複数タイプの蛍光体を検出できる光学系を使用する。
【0089】
上述した方法及び装置の変形及び拡張は、すべて本発明の範囲に入る。自動化アッセイシステムのロボットシステムは、洗浄、遮断及びプローブ機能をその作業専用のモジュールに実行させ、それにより、把持器を含むロボットを自由にし、実験の進行中に次のセットの毛管を処理できるようにするために、分割し、モジュール化することができる。これは、現在の実験を実行中にその後の実験の準備を実行できるようにすることで、システムのスループットを改善する。これらの分割した機能のモジュールは、毛管マニピュレータ、ピペット類及びプレートの取り扱い等の自身の内部機構を組み込むか、システムロボットが、システムスケジューラで機能を多重タスク処理することができる。毛管は、垂直に配向し、流体に浸漬するか、水平に配置することができる。電気、真空、圧力又は重力流等、様々な技術を使用して、毛管に流体を通すことができる。毛管をプレート内に確実に保持することによって、プレート全体を傾斜させ、1回の動作で流体を毛管の列全体又はトレイ全体と接触させることができる。処理時間を短縮するために、毛管を予熱してもよい。システムが複数のピペットを使用し、ロボット機構が休止している期間中にピペットを洗浄可能にすることができる。上述した毛管のグループより多数の毛管を、一度に操作することができる。システムの任意の機能を複製して、容量及び/又はスループットを増大させることができる。
【図面の簡単な説明】
【0090】
【図1】本発明の原理に従って構築されたイムノアッセイシステムの前斜視図である。
【図2】本発明の原理に従って構築されたイムノアッセイシステムの前斜視図である。
【図3a】本発明の原理に従って構築された毛管ホルダを示す。
【図3b】本発明の原理に従って構築された毛管ホルダを示す。
【図3c】本発明の原理に従って構築された毛管ホルダを示す。
【図3d】本発明の原理に従って構築された毛管ホルダを示す。
【図3e】再フォーマット用把持器と一緒に使用する中間ホルダを示す。
【図4】図1及び図2のイムノアッセイシステムで使用するのに適切な毛管把持器を示す。
【図5】12本の毛管を保持している場合の図4の毛管把持器を示す。
【図6】図4の毛管把持器の拡大切り取り図である。
【図7】図4の毛管把持器のアクチュエータ機構の図である。
【図8a】再フォーマット用把持器の図である。
【図8b】毛管を保持している図8aの再フォーマット用把持器の図である。
【図9】システムアクチュエータ上の再フォーマット用把持器を示す図1のイムノアッセイシステムの側面図である。
【図10a】真空マニホールドの下からの図である。
【図10b】毛管と係合した図10aの真空マニホールドの下からの図である。
【図10c】毛管と係合した図10aの真空マニホールドの側面図である。
【図11】実験プロトコル設定画面を示すグラフィカルユーザインタフェースの画面写真である。
【図12】試薬のリストを示すグラフィカルユーザインタフェースの画面写真である。
【図13】マイクロウェルプレートの設定画面を示すグラフィカルユーザインタフェースの図である。
【図14】本発明の実施形態による、ランの試料、抗体及び流体の位置及び識別を示すグラフィカルユーザインタフェースの画面写真である。
【図15】管状形態の毛管ホルダの毛管について試料及び試薬をリストアップするグラフィカルユーザインタフェースの画面写真を示す。
【図16a】毛管分析の分析結果のグラフィック形態による提示を示す。
【図16b】毛管分析の分析結果のグラフィック形態による提示を示す。
【図17a】疑似ゲル画像の形態での毛管分析の分析結果の提示を示す。
【図17b】疑似ゲル画像の形態での毛管分析の分析結果の提示を示す。
【図18】選択された試料分析セットの疑似ゲル画像を図形で構築する能力を示すグラフィカルユーザインタフェースの画面写真である。
【図19】3本の毛管から抽出した蛍光及び化学ルミネセンス信号のグラフである。
【図20】pHで位置合わせした図19の化学ルミネセンスデータのグラフである。
【図21】1本の毛管から抽出した既知のサイズ及び未知のサイズのヌクレオチドのデータのグラフである。
【図22】未知の試料のサイズを求めるために分析した図21のデータのグラフである。

【特許請求の範囲】
【請求項1】
1つ又は複数の処理ステーションと、
1本又は複数本の毛管に1つ又は複数の試薬又は試料を装填し、前記1本又は複数本の装填した毛管を前記処理ステーションに配置するように動作可能である自動化毛管把持器と、を備える、
自動化アッセイシステム。
【請求項2】
前記自動化毛管把持器は、前記1本又は複数本の毛管を機械的に保持するものである、
請求項1に記載の自動化アッセイシステム。
【請求項3】
前記自動化毛管把持器は、前記1本又は複数本の毛管を真空によって保持するものである、
請求項1に記載の自動化アッセイシステム。
【請求項4】
検出ステーションをさらに備え、
前記自動化毛管把持器は、前記1つ又は複数の試料を含む前記1本又は複数本の毛管を、前記処理ステーション又は前記検出ステーションのうち選択された一方に配置するように動作可能である、
請求項1に記載の自動化アッセイシステム。
【請求項5】
毛管ホルダであって、
第1及び第2の流体リザーバと、
複数本の毛管を、前記毛管の端部が前記第1及び第2のリザーバに位置する状態で、前記ホルダ内の所定の位置で保持する複数の凹部と、
前記第1及び第2の流体リザーバのそれぞれと接触している電極と、を備え、
前記リザーバ内の流体が、表面張力によって前記毛管の個々の端部に保持される、
毛管ホルダ。
【請求項6】
1本又は複数本の毛管を流体で充填するように動作可能な装置であって、
前記毛管を支持するように動作可能な器具と、
真空源を含み、流体が複数本の毛管に引き込まれる間に、前記複数本の毛管の端部と係合する1つ又は複数のアパーチャを有するマニホールドと、を備える、
装置。
【請求項7】
自動化毛管把持器で1本又は複数本の毛管を把持するステップと、
前記自動化毛管把持器の動作により、前記毛管の端部を操作して試料と接触させることにより、1つ又は複数の試料を前記毛管に装填するステップと、
前記装填した毛管を処理ステーション内に配置するステップと、を含む実験を実行するための方法。
【請求項8】
前記処理ステーションで前記1つ又は複数の試料との反応を引き起こすステップと、
検出を実行するステップと、をさらに含む、
請求項7に記載の方法。
【請求項9】
前記処理及び検出を分離ステーションで実行するステップをさらに含む、
請求項7に記載の方法。
【請求項10】
前記処理及び検出を同じステーションで実行するステップをさらに含む、
請求項7に記載の方法。
【請求項11】
毛管を操作するオペレーティングシステムに応答する自動化毛管把持器と、処理ステーションと、を含む自動化アッセイシステムのオペレーティングシステムであって、
前記オペレーティングシステムは、
プロトコルを選択するためのオペレータ入力手段と、
毛管の位置を識別するためのオペレータ入力手段と、
試料/試薬の位置を識別するためのオペレータ入力手段と、を備え、
前記自動化毛管把持器は、前記オペレータによる入力に応答して動作するものである、
オペレーティングシステム。
【請求項12】
前記オペレータ入力手段は、グラフィカルユーザインタフェースと、図形ポインティングデバイスと、を有するものである、
請求項11に記載のオペレーティングシステム。
【請求項13】
第1の試料ステーションと、第2の試薬ステーションと、を有する試料/試薬ステーションをさらに備え、
試料/試薬の位置を識別する前記オペレータ入力手段は、
前記プロトコルの実行中に使用される前記試料ステーションで、試料の位置を識別するためのオペレータ入力手段と、
前記プロトコルの実行中に使用される前記試薬ステーションで、試薬の位置を識別するためのオペレータ入力手段と、を有するものである、
請求項11に記載のオペレーティングシステム。
【請求項14】
1本又は複数本の毛管からの放出に応答して、分析結果の表示を生成するコンピュータプログラムを含む自動化アッセイシステムを動作するための方法であって、
1つ又は複数本の毛管放出を示す隣接した帯の表示を生成するステップを含む、
方法。
【請求項15】
前記放出は、前記毛管の内部の材料からの光電子放出を含むものである、
請求項14に記載の方法。
【請求項16】
前記生成ステップは、前記毛管内部の材料の源位置表示を同時に生成するステップをさらに含むものである、
請求項15に記載の方法。
【請求項17】
前記源位置表示は、マイクロウェルを含むマイクロタイタープレート画像の表示を含み、
隣接する帯の表示は、疑似ゲル表示を含み、
前記疑似ゲル表示の個々の帯で表示する毛管光電子放出を選択するために、マイクロタイタープレート画像のマイクロウェルを選択するステップをさらに含む、
請求項16に記載の方法。
【請求項18】
分析試料、毛管及び試薬のうちの1つ又は複数を配置することができるステーションと、これらの材料を操作する自動化機構と、を備える自動化アッセイシステムで実験を実行するための方法であって、
前記実験で使用される前記材料を画定する設定情報を入力するステップと、
前記ステーションにおける前記材料の前記位置を画定する設定情報を入力するステップと、
前記画定された材料を使用して実行するランを画定するステップと、
前記画定された材料を使用して、前記画定された位置で前記ランを実行するステップと、を含む、
方法。
【請求項19】
前記ランを画定するステップは、ランプロトコルを画定するステップをさらに含むものであり、
前記ランを実行するステップは、前記自動化機構で前記画定された材料を操作するために前記ランプロトコルを実行するステップを含むものである、
請求項18に記載の方法。
【請求項20】
分析試料、毛管及び試薬のうちの1つ又は複数を配置することができるステーションと、グラフィカルユーザインタフェースと、これらの材料を操作する自動化機構と、を備える自動化アッセイシステムで実験を実行するための方法であって、
前記実験で使用される前記材料を画定する設定情報を入力するステップと、
前記ステーションにおける前記材料の位置を画定する設定情報を入力するステップと、
前記画定された材料を使用して実行するランを画定するステップと、
前記画定された材料を使用して、前記画定された位置で前記ランを実行するステップと、
前記ランの結果である前記設定情報及び結果情報をセーブするステップと、を含む、
方法。
【請求項21】
前記第1及び第2の流体リザーバは、異なるレベルの流体を保持することができるものであり、
前記複数の凹部は、前記リザーバ内に異なる流体レベルの流体が存在する場合に、複数本の毛管の端部が前記流体リザーバの流体に浸漬された状態で、前記複数本の毛管を前記ホルダ内の所定の位置に保持するものである、
請求項5に記載の毛管ホルダ。
【請求項22】
毛管流体と電気的に接触する前記真空マニホールド内の電極をさらに備え、
流体が電気運動的に前記毛管を通して引っ張られる、
請求項6に記載の装置。
【請求項23】
請求項1に記載の前記アッセイシステムを備えるとともに、複数本の毛管、1つ又は複数の試薬、或いは1つ又は複数の試料のうちの何れか1つ又は複数を備える、
キット。

【図1】
image rotate

【図2】
image rotate

【図3a】
image rotate

【図3b】
image rotate

【図3c】
image rotate

【図3d】
image rotate

【図3e】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8a】
image rotate

【図8b】
image rotate

【図9】
image rotate

【図10a】
image rotate

【図10b】
image rotate

【図10c】
image rotate

【図11】
image rotate

【図12】
image rotate

【図13】
image rotate

【図14】
image rotate

【図15】
image rotate

【図16a】
image rotate

【図16b】
image rotate

【図17a】
image rotate

【図17b】
image rotate

【図18】
image rotate

【図19】
image rotate

【図20】
image rotate

【図21】
image rotate

【図22】
image rotate


【公表番号】特表2008−536128(P2008−536128A)
【公表日】平成20年9月4日(2008.9.4)
【国際特許分類】
【出願番号】特願2008−505638(P2008−505638)
【出願日】平成18年4月10日(2006.4.10)
【国際出願番号】PCT/US2006/013447
【国際公開番号】WO2006/110725
【国際公開日】平成18年10月19日(2006.10.19)
【出願人】(507018768)セル バイオサイエンシズ,インコーポレイテッド (4)
【Fターム(参考)】