説明

自動化微生物学的試験に係る光源装置、光源及び光学系

【課題】多重ウェル試験パネル上での比色定量型試験と蛍光比色型試験の両方を同時に実行する。
【解決手段】微生物同定(ID)および抗菌感受性定量(AST)を行う診断微生物学的試験システム。このシステムは、同じ試験パネル上でID試験およびAST試験を行うことのできる多重ウェル試験パネルを含む。各試験パネルに試薬、すなわち、ブイヨン中に懸濁された有機体を接種し、試験パネルを計器システム内に配置する。この計器システムは、インキュベーションおよび位置合わせ用の回転カルーセルと、各光源が様々な波長の光を放出する複数の光源と、精密比色定量および蛍光比色検出、バーコード試験パネル追跡と、測定された試験データに基づいて判定を下す制御プロセッサとを含む。1つの光源は、線形アレイ状に配置された複数のLEDを含む。各LEDの接合電流は、所定の照度プロファイルを生成するように制御することができる。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、微生物学的試験の分野に関する。
【背景技術】
【0002】
患者の診察および治療に関する微生物サンプルを試験する多数の従来型システムが存在する。微生物サンプルは、感染した創傷、性器感染、脳脊髄液、血液、膿瘍を含む様々なサンプル源から得ることができる。これらの微生物サンプルから所定の濃度の細菌懸濁液または細胞懸濁液を生成する従来型の手順に従って、接種物が調製される。懸濁液のさらなる処理は、使用される試験方法に依存することがある。このようなシステムは、たとえば患者のサンプルにどの微生物が存在するかの同定に使用される。通常、このようなシステムでは、活発に発育する微生物の培地が存在するときに色が変化する試薬が同定トレイのコップまたは試験ウェルに配置される。微生物は、色が変化すること、あるいは変化がないことに基づいて、基準表を使用することによって同定することができる。
【0003】
微生物の感受性試験に関する他のシステムが開発されている。このようなシステムは、サンプル中の微生物の、抗生物質など様々な治療薬剤に対する感受性を判定するために使用される。このような試験結果に基づいて、医師は、たとえば首尾良く微生物を死滅させるか、あるいは阻止する抗菌生成物を処方することができる。具体的には、定性的感受性試験は、ある微生物が特定の抗生物質に対する耐性を有するかどうか、それともそのような物質に対する感受性が高いかどうかを示すが、この微生物の感受性または耐性の程度は示さない。一方、定量的感受性試験は、微生物の発育を阻止するのに必要な抗菌薬剤の濃度を示す。最小発育阻止濃度(MIC)の用語は、微生物の発育を阻止するのに必要な抗菌薬剤の最小濃度を指すために使用される。
【0004】
このようなシステムはある欠点を有する。たとえば、同定感受性試験を実施する際、試験トレイは、長期間にわたって、制御された温度でインキュベートされる。試験トレイのウェルは、色の変化を示すかどうか、あるいは他の試験基準について所定の時間間隔で個別に試験される。これは、技師によって手動で行われる場合、時間のかかる面倒なプロセスである。また、同定感受性試験トレイのインキュベーション時間は様々であり、あるいは試験トレイから得られる試験結果を読み取るのに最適な時間を事前に知ることはできない。したがって、技師は、場合によってはかなり離れたいくつかの異なる時間に標本の結果を読み取り記録する必要があり、そのため、割当てエラーまたは相関エラーが起こる恐れがある。
【0005】
このような試験を実施する際、技師の処理時間を最小限に抑えると共に、人間のエラーの可能性を最小限に抑えるには、自動化システムが望ましい。また、結果を高速にかつ正確に得る自動化システムが好ましい。
【0006】
このような自動化システムについては、微生物試験トレイの自動インキュベーションおよび読取りを行う微生物学的試験装置が知られている。この装置の試験トレイは、試験すべきサンプルまたは薬剤を含む複数のウェルを有する。まず、トレイを所定の時間にわたってインキュベータ内に配置する。次いで、試験トレイを検査システムに移動させる。トレイの上方に光源を配設し、トレイの下方の検査ステーションに一対のビデオカメラを配設する。各ビデオカメラは、トレイ全体のビデオ画像を撮影する。トレイ全体のビデオ画像信号は、画像プロセッサに送られ分析される。
【0007】
画像プロセッサは、検査ステーションの上方の一様な照明を必要とする。したがって、プロセッサは、光源の変動を考慮するためにトレイの各ウェルに対応する当該領域内の各画素の背景光レベルを記録する。画像プロセッサは、トレイのビデオ画像を処理し、特定のウェルについて、強度がこの当該領域に関する所定のしきい値を超えた画素の数を求める。画素の数が所定の数を超えた場合、そのウェルに陽性結果が割り当てられる。画像プロセッサは、ウェルから得られたバイナリ部分結果を分析し、微生物を同定する。微生物を同定するバイナリ部分結果は、各試験トレイタイプごとに、事前に記録された結果パターンと比較され、当該サンプルが同定される。
【0008】
反応薬剤と、検出、感受性、および同定試験用のサンプルとの相互作用の結果として得られる蛍光放出反応の存在を検出する微生物学的試験装置が知られている。この装置では、複数の試験チャンバを有する複数のトレイがカルーセル内に含まれる。このカルーセルが回転され、検出領域の近傍にある1つのトレイが移動される。次いで、位置決め機構がこのトレイを半径方向にカルーセルから検出領域内に移動させる。このように位置決めされたトレイの近傍に高エネルギー光源が配設される。この光源は、試験チャンバ内の反応によって放出蛍光を生じさせるのに十分な狭帯域光を生成し、この蛍光が、光源に対向する、位置決めされたトレイの後方の位置に配設されたビデオ機構によって検出される。ビデオ機構は、放出波長に基づいて画像を生成する。
【0009】
複数のセルを有する平板培地内に配置された標本から反射した単色光の強度に基づく信号を使用して細菌を同定する他の試験システムが知られている。6つの干渉フィルタを含む回転ディスクが、ランプと一群の光ファイバとの間に挿入される。ランプからの光は、特定の干渉フィルタを通過し、ある波長の単色光を生成する。フィルタを通過した単色光は、平板培地のそれぞれのセルに入射するように光ファイバによって案内される。ディスクは、6つの異なる波長の単色光が順次セルに入射するように回転される。標本から反射した光は、他の光ファイバによって、対応するフォトトランジスタに案内される。反射した単色光の強度に基づいて、各標本について信号が得られる。次いで、このような信号が分析され、信号同士の間の差または比を算出し、この結果を基準値と比較することによって、標本が同定される。
【発明の開示】
【発明が解決しようとする課題】
【0010】
しかし、前述の装置は、完全自動化微生物学的試験システムのすべての基準に対処することはできない。特に、このような装置は、より正確な試験結果を得るのに必要な多重ウェル試験パネル上での比色定量型試験と蛍光比色型試験の両方を同時に実行することはできない。さらに、このような装置は一般に、複数の多重ウェル試験パネルから試験データを高速にかつ信頼できる方法で連続的に収集するようには設計されていない。さらに、このようなシステムの自動化処理は制限されている。
【課題を解決するための手段】
【0011】
本発明は、前述の問題を解消するシステムを提供する。特に、本発明は、試験プロセス中の人間の介入を最小限に抑えながら、複数の多重ウェル試験パネルを同定および感受性について試験する自動化微生物学的試験システムを提供する。
【0012】
また、このシステムは比色定量型試験と蛍光比色型試験の両方を実施する。さらに、このシステムは、収集された試験データを高速に分析し、正確な同定試験結果および/または感受性試験結果を生成する。
【0013】
具体的には、本発明の一態様は、複数の試験パネルが取り付けられたカルーセルアセンブリを有する診断微生物学的試験装置に関する。各試験パネルは複数のウェルを有し、各ウェルに、反応を起こす試験接種物流体が接種される。複数の光源は、所定範囲の波長の光を試験パネルのウェルの方へ送り、試験接種物流体の反応に基づいて、ウェルに光を放出または吸収させる。線形CCDを含むことのできる光検出ユニットが光源の反対側に配設され、光源と光検出ユニットとの間に少なくとも1つの試験パネルが位置決めされる。カルーセルアセンブリがこの試験パネルを光源と光検出ユニットとの間で連続的に回転させ、各試験パネルのウェルから放出されるか、あるいはウェルによって吸収された光を光検出ユニットによって検出することを可能にすると、光検出ユニットは、試験パネルのウェルから放出されるか、あるいはウェルによって吸収された光を検出する。コントローラは、光検出ユニットによって生成された複数の信号を受け取り、これらの信号はそれぞれ、各ウェルから検出された蛍光または非蛍光に対応する。次いで、コントローラは、受け取った信号に基づいて各ウェルについての試験結果を判定する。
【0014】
本発明の他の態様では、診断生物学的試験装置用のインキュベーションチャンバが提供される。このチャンバは、複数の試験パネルが取り付けられたカルーセルアセンブリを含み、各試験パネルは、反応を起こす試験接種物流体を受容する複数のウェルを有する。カルーセルアセンブリを囲むエンクロージャは、周囲光がインキュベーションチャンバに侵入するのを防止する。エンクロージャは、カルーセルアセンブリにアクセスできるようにするドアを有する。駆動システムはカルーセルアセンブリを連続的に回転させ、診断微生物学的試験装置による試験向けに試験パネルを直接位置決めする。加熱ユニットはインキュベーションチャンバを加熱し、温度コントローラは、温度を所定の温度範囲内に維持するように加熱ユニットを制御する。
【0015】
本発明の他の態様では、診断微生物学的試験装置を操作する方法と、診断微生物学的試験装置を制御するための命令を含むコンピュータ媒体が提供される。たとえば、ある方法は、(a)試験装置のカルーセルを回転させ、カルーセル上に取り付けられた試験パネルを光源と光検出ユニットとの間に位置決めするステップと、(b)光源からの光を試験パネルの方へ送るステップと、(c)試験反応のために試験パネルの各ウェルを透過するか、あるいは各ウェルから放出されるか、あるいは各ウェルによって吸収された光を光検出ユニットを用いて検出するステップと、(d)各ウェルから検出された光に対応する信号を光検出ユニットを用いて生成するステップと、(e)生成された信号に基づいて各ウェルについての試験結果を判定するステップとを含む。
【0016】
本発明の他の態様では、可変強度の光要素を有する複合光信号を生成することのできる光源と、照度プロファイルを使用して光源を制御するように構成されたコントローラとを含む装置が提供される。この装置は、光検出ユニットと、複合光信号を光検出ユニットの方へ送ることのできる光学系とを含むこともできる。
【0017】
照度プロファイルを使用して、光学系の光学的非効率または光源の照明出力の変化を補正することができる。
【0018】
本発明の他の態様では、線形アレイとして配置された複数のLEDを含む光源が提供される。各LEDの接合電流は所定の照度プロファイルを生成するように制御することができる。
【0019】
本発明の他の態様では、2つの端部を有し各端部が一群の複数のLEDを有し、線形アレイ状に配置された複数のLEDを含む光源が提供される。一群のLEDは、より大きな光強度を生成するように幾何学的に圧縮される。LEDは、所定の順序で線形アレイ状に配置された赤LED、緑LED、および青LEDを含むことができる。
【0020】
本発明の他の一態様では、微生物学的試験装置用の光学系が提供される。
【0021】
本発明のこれらおよびその他の態様、特徴、および利点は、以下に記載された好ましい実施形態の詳細な説明を図面と共に参照することによって最もよく理解することができる。
【発明を実施するための最良の形態】
【0022】
本発明は、高度に信頼できる微生物同定(ID)および抗菌感受性定量(AST)を実行するシステムおよび方法を提供する。本発明は、ID/ASTパネル30に含まれるウェル31から得られる読取り値に基づいて同定を行い感受性を判定する(図3Aおよび図3B参照)。たとえば、一実施形態では、ウェル31は、微生物を接種された後しばらくして光学特性を変化させる様々な試薬基板および/または様々な抗菌希釈液を含む。後述の検出方法では、吸収、散乱、および/または蛍光の変化が測定される。この方法は照度を測定することもできる。
【0023】
これらの変化が処理され、微生物が同定され、その感受性が判定される。
【0024】
本発明は、技師が、たとえばID/ASTパネル30のウェル31に未知の微生物を接種した後で、このパネルを(図1に示す)計器20内に配置し、計器20内で微生物を設定温度でインキュベートし、微生物が変化したかどうかを定期的に調べ、微生物の同定および抗菌感受性について分析することを可能にする。
【0025】
装置20は、後述のように、複数のID/ASTパネル30を保持し、技師にポジティビティ分析結果を与える。
【0026】
図3A〜図3Cに示すように、ID/ASTパネル30は使い捨て装置であり、ID試験とAST試験の両方に必要な試薬が接種される。試験は、各ID/ASTパネル30上の個々のウェル31内に配置されたサンプルおよび試薬によって起こる反応に関して行われる。ウェル31は、行および列を有する2次元配列としてID/ASTパネル30上に配置される。
【0027】
計器20は自給式であり、十分に自律的にID/ASTパネル30を試験し、適切な試験結果を供給する。計器20は、ID/ASTパネル30の格納、インキュベーション、および読取りを行う。計器20は、その内部にアクセスすることを可能にするドア21を有する。ドア21は、図1では閉じた状態で、図2では開いた状態で示されている。
【0028】
一実施形態では、図1にも示すように、計器20にパーソナルコンピュータ(PC)ワークステーション40が通信可能に接続される。PCワークステーションは、計器20の微生物学的情報システム報告機能およびデータ管理機能を補足する。これらの機能については後述する。PCワークステーション40は、経験による治療上の決定を向上させ治療介入例を識別するツールを形成する。PCワークステーション40は、感染抑制および疫学的研究を助ける報告ツールも組み込んでいる。
【0029】
PCワークステーション40は、ハードドライブ上にリレーショナルデータベース(図示せず)も組み込んでいる。最終的なAST試験結果およびID試験結果は、最短の52週間にわたってデータベースに保持される。統計的に要約されたデータは、これよりも長い期間にわたって保持される。患者および標本に関する情報は、計器20(図示せず)との電子インタフェースを介して収集することも、あるいは手動でPCワークステーション40に入力することもできる。
【0030】
計器20は、図2に示すようにカルーセル50を含む。カルーセル50は、図5に示すように円筒形ケージを形成するように駆動リング52にボルト止めされたリングおよびリブで構成されたアセンブリ51を含む。カルーセル50は、(図1に示す)計器エンクロージャ60内に垂直に取り付けられる。計器エンクロージャ60は(図4に示す)カルーセル区画61および電子機器区画62を画定する。カルーセル区画61は、ほぼ一様な温度のインキュベーション環境を形成するように絶縁され、周囲光が進入するのを防止するように通常動作の下で耐光性を有する。
【0031】
(図6に示す)パネル担体53は、アセンブリ51内に取り付けられ、4つの水平ティア(段)を形成し、各ティアは26個のパネル位置を有する。合計で104個のパネル位置が形成される。もちろん、ティアおよびパネル位置のこれらの数は、一例に過ぎず、当業者には理解されるように、指定された応用例の要件に適するように変更することができる。パネル担体53は、ID/ASTパネル30と、後述の他の種類のパネルとを取り付けるために使用される。パネル担体53は、不適切に配置されたパネルを保持しないように設計される。ID/ASTパネル30は、アセンブリ51の4つのティアに取り付けられる際、ウェル31のほぼ円形の行および垂直列を形成するように配置される。各ティア内で、パネル位置には0から25までの番号が付けられる。パネル位置ゼロは、正規化パネル用に予約され、計器20の通常の動作中にオペレータによってアクセスすることはできない。
【0032】
図15に示すように、インディケータLED54は、どのID/ASTパネル30を取り外すべきか(すなわち、いつ試験が完了したか)と、新しい未試験のID/ASTパネル30にどのパネル位置を利用できるかを示すために使用される。インディケータLED54は、各パネル担体53の前方に位置することも、あるいは後方に位置することもできる。たとえば、図15に示すように、インディケータLED54は、カルーセルリブ58に対向する位置に位置決めされたパネル担体53の後方でプリント回路盤57に取り付けられる。インディケータLED54からの光を凸状インディケータ表面を通るように合焦させるために光ガイド59を使用することもできる。
【0033】
インディケータLED54は、状況/試験情報を示すためにそれぞれの異なる色が使用される3色LEDでよい。たとえば、赤は、試験が進行中であることを示し、緑は、試験が完了したことを示し、黄色は、新しい未試験のID/ASTパネル30用に利用できるパネル位置があることを示すことができる。
【0034】
カルーセル50は、駆動システム56も含む。駆動システム56は、図4に示すように、計器エンクロージャ60内の、アセンブリ51で形成された円筒形ケージの外部に取り付けられる。駆動システム56は、アセンブリ51を駆動リング52を介して所定の制御可能な角速度で駆動する。アセンブリ内に取り付けられた各ID/ASTパネル30からの光周波数のみから試験データを得て累積するために、カルーセル50の1回の完全な回転が使用される(すなわち、1データ蓄積サイクル)。
【0035】
アセンブリ51の正確な回転制御を行うために精密ステップモータを使用することが好ましい。もちろん、たとえば、サーボモータや、同期モータや、DCモータを含む他の種類のモータを使用することができる。
【0036】
駆動リング52が適切に潤滑されるように、駆動リング52に対向する位置にオイル処理フェルトパッドが配設される。ポリアルファオレフィンオイルまたは同様なオイルを使用してオイルの噴霧および移動を最小限に抑えることができる。好ましい実施形態では、潤滑不要軸受システムを使用することができる。
【0037】
アセンブリ51の位置ゼロに対応する駆動リング52の内面にホーム位置フラグ磁石が張り付けられる。アセンブリ51が回転すると、ホーム位置フラグ磁石が通過するたびに、カルーセル50内に取り付けられたホール効果センサ55によって信号が生成される。この信号は、アセンブリ51が回転するときにパネル位置を追跡するために計器20によって使用される。もちろん、この目的で他の種類のセンサを使用することができる。たとえば、赤外線センサおよび光学センサを使用することができる。
【0038】
カルーセル区画61内の温度は、インキュベーション空気を分散させ再循環させるインキュベーションヒータ、ブロア、および関連するダクト(これらのうちのどれも図示せず)によって厳密に制御される。インキュベーションヒータは、カルーセル区画61内の温度を監視する(図11に示す)1つまたは複数のセンサ63を含む。
【0039】
インキュベーションヒータは、3リード線構成(図示せず)に配線された2つの加熱素子を含む。ヒータの過温度上昇状態を防止するために、第3の共通のリード線に自動リセット熱サーキットブレ一力が設けられる。カルーセル区画61の温度が第1の設定値よりも高くなった場合、ヒータへの電力は遮断される。温度が第2の所定の設定値よりも低くなると、電力が再印加される。ヒータに供給される電力は、制御プロセッサ70によって制御される。
【0040】
好ましくは、カルーセル区画61は連続的に35℃の温度に維持され、第1および第2の所定の設定値はそれぞれ、39℃および33℃に設定される。しかし、当業者には理解されるように、他の温度設定値を使用して特定の試験要件を満たすことができる。
【0041】
一実施形態では、カルーセル区画61内の、アセンブリ51の円周の内部または外部に位置するスキャナタワー(図示せず)上に4つのバーコードスキャナ(図示せず)が取り付けられる。アセンブリ51の各ティアごとに1つのバーコードスキャナが設けられる。バーコードスキャナは、パネルがアセンブリ51を介して回転するときに、各ID/ASTパネル30に張り付けられたバーコードラベル(図示せず)を読み取ることができる。バーコードスキャナは、アセンブリ51上に取り付けられたID/ASTパネル30に、このパネルと適切な位置関係で支持され、スキャナタワーによって適切な走査距離に保持される。
【0042】
バーコードスキャナによって読み取られた情報は、特定のパネル通し番号を、パネルから収集された試験データと相関付けるために計器20によって使用される。好ましくは、バーコードスキャナは、コード128の数値情報を読み取ることができる。しかし、他の既知の従来型のバーコードフォーマットを使用してID/ASTパネル30にラベル付けすることができる。
【0043】
他の実施形態では、計器のフロントパネル71の後方にバーコードリーダ(図示せず)が設置される。カルーセル区画61にID/ASTパネル30を取りつける前に、ID/ASTパネル30のどちらかの側に張り付けられたバーコードラベルを走査するために、このバーコードリーダが使用される。これによって、たとえば、オペレータは各ID/ASTパネル30上に補助バーコード情報を添付することができる。補助バーコード情報はたとえば、病院で与えられる受入れラベルでよい。この実施形態では、バーコードラベルを走査することができ、次いで、特定のID/ASTパネル30を裏返して補助バーコード情報を走査することができ、これによって、ID/ASTパネル30が補助バーコード情報とリンクされる。このバーコードリーダでは従来型のバーコードフォーマットがサポートされる。
【0044】
他の実施形態では、図1に示す手持ち走査バーコードワンド72が、計器20に動作可能に接続される。バーコードワンド72はバーコードリーダと同様に使用することができる(たとえば、オペレータが生成した受入れリンケージを走査するか、あるいは大きすぎてID/ASTパネル30に張り付けられないバーコードを走査する)。このバーコードワンドでは従来型のバーコードフォーマットがサポートされる。
【0045】
スキャナタワー上には各ティアについてのパネル位置センサも取り付けられる。パネル担体53と一体化されたパネル位置フラグがパネル位置センサによって読み取られる。パネル位置センサは、パネルフラグ位置フラグの立上りを走査すると、各ID/ASTパネル30についての試験データ収集タイミングを与えるために使用される信号を生成する。
【0046】
図4に示すように、カルーセル区画61内の、アセンブリ51の円周の外部に複数の光源アセンブリが取り付けられる。本発明の好ましい実施形態では、光源アセンブリは可視光源アセンブリ80および(図11に示す)紫外線(UV)光源アセンブリ81を備える。
【0047】
可視光源アセンブリ80は、4つの可視光源モジュールおよび支持タワーを含む。支持タワーは、1つの可視光源モジュールをアセンブリ51の各ティアと位置合わせする。任意の所与の時間に、可視光源モジュールによってID/ASTパネル30の1つのウェル列を照明することができる。
【0048】
一実施形態では、各可視光源モジュールは、各列が16個の発光ダイオード(LED)からなる3つの平行な垂直列を含む。第1の列は赤LEDからなり、第2の列は緑LEDからなり、第3の列は青LEDからなる。アセンブリ51内に取り付けられたID/ASTパネル30の近傍にホログラフィックディフューザプレート82が位置する。ホログラフィックディフューザプレート82は、(LEDが活動化されたときに)各LED列からの照明エネルギーを拡散させる。各LED列は、ディフューザプレート82から一定の距離を維持するように可視光源モジュールに取り付けられる。円筒形レンズを使用して、各LED列からの照明エネルギーをID/ASTパネル30の垂直ウェル列に合焦させることができる。各LED列ごとの照明軸は、赤照明、緑照明、および青照明について一致させる。したがって、どのLED列が活動化されたかに応じて、一様な縞状の赤照明、緑照明、または青照明が各ウェル列に当てられる。
【0049】
各可視光源モジュールは、部分反射ビームスプリッタを備えることもできる。
【0050】
ビームスプリッタは、LEDからの照明エネルギーの一部を光源モニタフォトダイオード84に入射させる。次いで、光源モニタフォトダイオード84からの信号を使用して、必要に応じて各LED列の光強度が補正される。たとえば、光源モニタフォトダイオードからの信号を使用し、後述の照度プロファイルを介して、開始時のLEDウォームアップ中の照明出力の変動が補償される。これによって、LEDが起動する(すなわち、定常照明出力に到達する)のを待たずに試験を行うことができるので、計器20は試験をより高速に開始することができる。
【0051】
可視光源モジュールは、垂直方向に間隔を置いて配置され、支持タワーによってアセンブリ51の各ティアに取り付けられたID/ASTパネル30に対して適切に位置決めされる。支持タワーは、ビームスプリッタ、ホログラフィックディフューザプレート82、および円筒形レンズ用の取付け装置を含むこともできる。
【0052】
図9に示す他の実施形態では、本発明で使用される可視光源用の他の構成が可能である。図9は、3つのLED(215、216、217)を使用する3スペクトル構成(たとえば、赤、緑、および青)の平面図である。3つよりも多いか、あるいは少ないLEDのバンクを任意の単一のZ軸位置で使用することができる。ID/ASTパネル30の全長を覆うように、いくつかのLEDバンク群をZ軸方向に必要な深さだけ積み重ねることができる。
【0053】
LED216からの光は、第1の面鏡218によって照明軸に沿って90度反射される。この光のうちのいくらかは、2色フィルタ220および219を通過し、X方向のホログラフィックディフューザ221に発散する。この光のうちのいくらかは、各フィルタによって除外され、Y方向に進む。ホログラフィックディフューザ221は、定義済みの方式で光を均一化する働きをする。フィルタを通過し均一化された光は円筒形レンズ222を通過し、レンズ222は、この光を、規定された幅の均一光ストライプとしてID/ASTパネル30に集束させる。
【0054】
ID/ASTパネル30に合焦された光の一部は、平面ガラスオプチカルフラット223によって方向を90度変更され、光導体224に入る。光導体224はこの光を光源モニタ225に集束させる。光源モニタ225によって生成された信号を使用して、必要に応じて各LEDバンク群からの光強度が補正される。
【0055】
同様に、LED217からの光のうちのいくらかは、2色フィルタ218によって90度反射され、フィルタを通過したこのエネルギーは、前述のように光学的に処理される。この場合も、LED215からのいくらかの光は、2色フィルタ220によって90度反射され、フィルタを通過したこのエネルギーは、前述のように光学列内の残りの構成要素によって光学的に処理される。
【0056】
他の実施形態では、図10Aに半導体可視光源アセンブリが示されている。複数の表面取付けLED300(SMLED)が、ID/ASTパネル30のウェル31列と一致するアレイに配置される。SMLEDは、アレイ内の繰返しパターンとして配置される。たとえば、第1のSMLEDは赤でよく、第2のSMLEDは緑SMLEDでよく、第3のSMLEDは青SMLEDでよい。この場合、このパターンはアレイの長さにわたって繰り返される。所望の領域を適切に照明するのに必要な数のSMLEDバンクを配置することができる。
【0057】
この実施形態では、SMLEDのアレイの照明軸は、ウェル31に整列するように配置される。したがって、SMLED300はそれぞれのスペクトル内容(すなわち、赤照明、緑照明、または青照明)に基づいて活動化される。前述のように、この光はさらに、図10Bに示すように、ホログラフィックディフューザ301および合焦レンズ302を使用して均一化され目標上に集束するように条件付けられる。前述のように、この実施形態ではビームスプリッタおよび光源モニタも使用される。
【0058】
照明強度は端部で低下する傾向があるので、各LED列、ホログラフィックディフューザプレート82、および円筒形レンズをID/ASTパネル30のアクティブ領域よりも物理的に長くすることができる。光学的非効率によって起こるID/ASTパネル30の端部での光低下を補償するために、各LED列の端部近傍の照明の強度が増大され、一様性が高められる。これを行う1つの方法は、各列の端部の近傍にあるLEDをより高い電流で駆動し、それによって、これらの端部での光強度を増大させることである。
【0059】
前述のLEDまたはSMLEDを駆動するために使用される接合部電流は、図13に示すように、制御プロセッサ70に記憶されているコンピュータプログラムを使用して制御することができる。光学的非効率を補償するように、照度プロファイルを使用してLEDを動的に駆動することができる。図12Aに示すように、ある列のLEDをすべて同じ駆動電流を用いて駆動すると、光学検出システム100によって測定される列の端部(すなわち、頂部および底部)でのLEDからの照明出力は、列の中央近傍でのLEDからの照明出力よりも低くなる。図12Bは、列の端部にあるLEDがより高い電流を用いて駆動される照度プロファイルを示す。この場合、列の端部にあるLEDからは、列の中央近傍にあるLEDよりも高い照明出力が生成される。図12Cは、LED列が図12Bの照度プロファイルによって駆動されたときに光学検出器システム100によって測定された結果として得られるLED列の照明出力を示す。
【0060】
図12Bの照度プロファイルは一様な照明出力を生成するために使用される相補プロファイルを示すが、様々な照度プロファイルを使用することができる。これらのプロファイルは、使用する試験パネルの種類、実行すべき試験の種類、フィードバック信号など様々な基準に基づいて選択することができる。たとえば、光源モニタフォトダイオード84からの信号を使用する比例フィードバック制御ループは、試験中またはLEDウォームアップ中の光強度変化、あるいはLED接合部電流の長期的な劣化について補正することができる。他の種類のフィードバック補正システムは、計器20内の温度変化、または後述のノーマライザパネルからの信号に基づくシステムでよい。
【0061】
列の端部での強度低下を補償する他の方法は、各列の端部にあるLEDまたはSMLEDの間隔を幾何学的に圧縮すること、すなわち、端部での積重ねLED構成である。図14に示すように、線形アレイの端部にあるLED90は幾何学的に圧縮される。この種の構成は、列の端部での光学的効率の低下を補償する。
【0062】
LED同士を互いの近傍に配置すると、照明の強度が増大する。好ましくは、LEDを圧縮して低下の逆数の強度を生成すべきである。たとえば、列端部でのLED中心間距離を係数10だけ短くすることによって、(列中央に対する)列端部での90%の光学結合ロールオフを補償することができる。
【0063】
図11に戻るに、UV光源アセンブリ81は2つの管状UV冷陰極放電ランプを含む。熱陰極放電ランプを使用することもできる。Voltarc社(VTI、Waterbury、コネチカット州 06705)から適切なランプを得ることができる。この放射は励起フィルタ85を通過する。励起フィルタ85は、ランプの出力に存在する不要なスペクトル成分をなくす。
【0064】
図11に示すように、ランプは、一列の垂直に整列したID/ASTパネル30が同時に照明されるように主照明軸のどちらかの側に配設される。主照明軸に沿ってUV光源を整列させる必要はない。照明強度の調整は、ランプに印加される高周波数電力およびランプの直列インダクタンスを変化させることによって行われる。これは制御プロセッサ70によって制御される。一度に照明されるのは一方のランプだけである。他方のランプは予備として保持される。
【0065】
この実施形態では、ウェル31を通した光の直接透過モードを介して蛍光反応が刺激される。しかし、UV光源の位置変更を必要とする反射モードを使用することもできる。
【0066】
各ランプのUV光源モニタフォトダイオード86は、ランプから出た放射の小さな部分を遮断するように位置決めされる。結果として得られる信号を使用してランプの強度が監視される。この信号は、必要に応じて他方の予備ランプを活動化できるように制御プロセッサ70がランプの強度の低下を検出することを可能にする。
【0067】
アクティブランプは、UV励起測定値が得られているときにのみフルパワーで作動される。そうでない場合、ランプの電力が低減されてランプ寿命が節約されるか、あるいはランプがオフにされ、前述の可視励起光源を使用した読取りに対する光学的干渉が防止される。また、ランプによって導入される恐れのある不要なスペクトル成分をなくすために(図11に示す)放出フィルタ83が使用される。たとえば、放出フィルタ83はランプのUV光波長を除去する。ランプ電流は、制御プロセッサ70によって制御される信号線によって試験データ収集用の動作レベルに増大される(すなわち、ランプを低強度動作から高強度動作に切り換える)。
【0068】
UV光源電源92はアクティブランプに電力を供給する。前述のように、ランプの強度の調整は、ランプに印加される高電圧励起の周波数およびランプの直列インダクタンスを変化させることによって行われる。周波数を高くすると、誘導リアクタンスが高くなり、ランプ強度が低下するので、ランプ電流が低下する。
【0069】
UV光源電源92は、制御プロセッサ70からの命令に応じて電力をアクティブランプから予備ランプへ変更する高電圧リードリレー(図示せず)も含む。前述のように、ランプの変更が行われるのは、光源モニタフォトダイオードがアクティブランプの強度の顕著な低下を検出したときである。
【0070】
動作時に、可視光源アセンブリ80およびUV光源アセンブリ81は順次、活動化される。カルーセル50が完全に1回転した後(すなわち、1データ蓄積サイクル)、他の種類の波長照明が活動化される。たとえば、ある構成では、可視光源モジュールに含まれる各LED列(すなわち、赤、緑、および青)が順次、活動化され、次いでUV光源モジュールがフルパワーに切り換えられ、各光源は、カルーセル50が完全に1回転する間アクティブになる。これによって、計器20は、様々な種類の波長光に基づいて各ID/ASTパネル30から試験データを収集することができる。好ましい実施形態のシーケンスでは、UVウォームアップ、UV読取りが行われ、その後で赤、緑、および青の読取りが行われる。
【0071】
図4に示すように、光学測定システム100は、可視光源モジュールからの赤照明、緑照明、または青照明による励起中にID/ASTパネル30の各ウェル31を透過する可視光に整列するように、ほぼアセンブリ51の中央に配設される。同様に、UV光によって励起されたウェル31から可視蛍光放射が検出される。前述のように、放出フィルタ83は、光学測定システム100による検出の前に出力信号に存在する恐れのある不要なスペクトル成分をなくす。他の実施形態では、近赤外線(IR)光を使用して光学試験走査を行うことができる。
【0072】
当業者には理解されるように、様々な手段を使用して光学特性の変化を測定することができる。たとえば、フォトダイオードや光センサアレイを使用することができる。
【0073】
好ましい実施形態では、各アセンブリ51ティアごとに1つずつ、(図7および図8に示す)複数のCCD検出器モジュール101およびレンズアセンブリ105が設けられる。CCD検出器モジュール101およびレンズアセンブリ105は測定システムタワー103上に支持される。測定タワー103は、レンズアセンブリ105およびCCD検出器モジュール101を、ID/ASTパネル30の1つのウェル列の光軸に整列して配向されるように支持する。
【0074】
レンズアセンブリ105は対物レンズ102を含む。各パネルウェル列からの光は、対物レンズ102によってCCDアレイ104上に合焦される。
【0075】
各CCD検出器モジュール101はCCDアレイ104を含む。たとえば、2048画素の線形CCDアレイを使用することができる。CCDアレイ104は、各ウェル31が赤LED、緑LED、および青LEDによって照明されたときにウェル31を透過する光の強度を検出し測定する。同様に、UV光励起の下でCCDアレイ104によって可視蛍光が検出される。別法として、CCDアレイ104が、反射または吸収されたウェル31からの可視蛍光を検出するように、UV光励起を位置決めすることができる。
【0076】
CCDアレイ104は、ID/ASTパネル30の列内のウェルのすべての位置のサンプル照明オーバスキャンを行うように各ティアに対して位置決めされる。CCDアレイ104によって検出できるのは、ウェル31を通過した単色光、またはウェル31からの可視蛍光放射だけである。したがって、CCDアレイ104は、ウェルの光強度を検出し測定するが、光源アセンブリによって照明された他の物体の光強度の検出および測定は行わない。Y軸列情報は、1つの垂直情報スライスを表わし、CCDアレイ104によって電子的に走査される。1つのウェル列からの光強度を検出し測定するには複数の情報スライスが必要である。アセンブリ51が回転すると共にX軸情報が蓄積される(すなわち、ID/ASTパネル30は、次の垂直情報スライスを走査できるように回転される)。
【0077】
CCD検出モジュール101の感度は、各CCDアレイ104について選択される積分時間に依存する。当業者には理解されるように、光は個々の光子で構成される。各光子は、それに関連付けられた極めて少量のエネルギーを有する。画素を充電するのに必要な時間を積分時間と呼ぶ。個々のウェル31から放射されるか、あるいは個々のウェル31によって吸収された様々な量の光子が、各CCDアレイ104内の個々の画素上に入射し、画素を入射光に比例するそれぞれの異なるレベルに充電する。
【0078】
本発明のCCDアレイ104の積分時間は可変である。このため、本発明は、様々な光学特性を有する(すなわち、透過性であるか、あるいは光学濃度が高い)基板を含むID/ASTパネル30を有するという融通性を備える。バーコードレベルから収集された情報から、積分時間が各ID/ASTパネル30についての利得を制御するように設定される。次のID/ASTパネル30の積分時間は、このパネルが光源によって照明される前に設定される。一実施形態では、デフォルト積分時間として約4.0ミリ秒が選択される。ID/ASTパネル30を試験する間に必要に応じて制御プロセッサ70によって他の積分時間を選択することができる。
【0079】
蓄積された画素情報のデータ処理は、各CCD検出器モジュール101ごとに1つの、4つの検出器マイクロコントローラ(およびサポート回路)106によって行われる。各検出器マイクロコントローラ106は、関連するCCDアレイ104からデータを受け取り処理する。このデータは、ID/ASTパネル30がアセンブリ51を介して回転する間に各ウェル31が赤LED、緑LED、および青LEDによって照明されたときと、UV光によって励起されたときに、ウェル31から収集される。
【0080】
動作時に、検出器マイクロコントローラ106は、パネル位置センサによって生成されたパネルフラグ信号を使用して、CCDアレイ104を介してパネルデータ収集を開始する。前述のように、パネルフラグ信号は、アセンブリ51が回転する間にパネル位置フラグがパネル位置センサを通過したときに生成される。
【0081】
この信号は試験データ収集用のタイミング開始点として使用される。
【0082】
検出器マイクロコントローラ106が、CCDアレイ104によって収集された試験データを受け取る間、カルーセル50は連続的に回転する。この実施形態では、CCDアレイ104は、ほぼ同じ空間位置から複数の変数(吸収率、濁度、および/または蛍光)を並行して測定する。ID/ASTパネル30が「通過する」際にCCD線形アレイによって測定値が得られる。ID/ASTパネル30のウェル列が可視光源アセンブリ80からの光によって照明されるか、あるいはUV光源アセンブリ81によって励起されると、すべての検出器マイクロコントローラ106が同時に、CCDアレイ104から試験データを受け取る。
【0083】
一連の線形アレイデータスキャンに対してアルゴリズミック探索を実行することによって、各ID/ASTパネル30上の位置合わせマーク(図示せず)が見つけられる。位置合わせマークが始まる第1のCCDアレイ104画素に加えて、タイミング開始点と位置合わせマークとの間に駆動システム56のステップモータが何ステップ回転したかを知ることによって、走査中のID/ASTパネル30上のウェル31を正確に見つけるのに必要な情報が与えられる。
【0084】
試験データ収集プロセス中に行われる2つの光源正規化プロセスがある。第1のプロセスは、各ウェルの間の空間非均一性を低減する。第2の正規化プロセスでは、CCDアレイ104が試験データを得るのと同時に瞬間光源強度が監視される。
【0085】
ノーマライザパネルは、光学測定システム100の計器補正用の基準パネルとして働く。アセンブリ51の各ティアは、各ティア上の位置ゼロに存在する1つのノーマライザパネルを含む。ノーマライザパネルはID/ASTパネルウェルフォーマットのアブソーバの行列を含む。ノーマライザパネルは、ID/ASTパネル30と等しい名目幾何形状を有するように構成される。ノーマライザパネルから得られる読取り値は、時間の経過と共に変化することがなく、一様に照明されたときと同じ光強度を示す。各ノーマライザパネルウェルの出力を測定することにより、各ウェルの間の光源強度の非一様性をなくし、光学系で起こる損失について個々のウェル信号を補正し、経時的なLED出力の低下を補償する補正係数が、各ウェルごとに作成される。アセンブリ51のティア内の各ID/ASTパネル30から収集された試験データは、そのティア用のノーマライザパネルが最後に読み取られてからの光学系の変化について補正(正規化)される。
【0086】
一実施形態では、選択的に活動化された単色光源が、ノーマライザパネルの一様なウェルの列に対する線形照明を生成する。この列に沿った照明強度のプロファイルは、ノーマライザパネルの列内のすべてのウェルに対して一様な検出器応答を生成するように各部分ごとに調整される。次いで、すべてのID/ASTパネル30の列がこのプロファイルを用いて照明される。それによって、ID/ASTパネル30の各ウェルのノーマライザ光学応答が、各列内のすべてのウェル位置について一様な感度で測定される。
【0087】
前述のように、カルーセルアセンブリ51が回転するときの可視光源アセンブリ81の光強度の変化を判定するために、光源モニタフォトダイオード84からの信号が使用される。強度の相対空間変動を監視するためにノーマライザパネルが使用されるが、光源モニタフォトダイオード84によって、本発明は、準絶対強度がカルーセルアセンブリ51の1回転全体にわたって変動するか、あるいは長期間にわたって変動するのを監視することができる。光源モニタフォトダイオード84は、各CCDアレイのデータを得るのと同時に監視される。試験データスキャン同士の間の差がウェル31内の試薬の光学特性のみによる差になるように、検出器マイクロコントローラ106は、収集された試験データの各組に適用される2つの補正係数を有する。
【0088】
各検出器マイクロコントローラ106は、CCD暗電流スキャンからもデータを受け取る。データには画素ごとに暗電流補正が加えられる。
【0089】
代替実施形態では、前述の可視光源ではなく、蛍光可視光源およびフィルタホイール(図示せず)を使用することができる。フィルタホイールは複数のスペクトルホイールを含む。この実施形態では、たとえば、アセンブリ51が連続的に3回回転する間に吸収率および濁度の測定値が得られ、それに対して4回目の回転中に蛍光測定値が得られる。正規化および位置合わせマーク位置に関する第1の回転が完了すると(これは、ティア当たりパネルのそれぞれについて行われる)、フィルタホイールはその第1のスペクトルフィルタに位置合わせされる。ノーマライザパネルに達すると、フィルタホイールは第2のスペクトルフィルタに位置合わせされる。フィルタホイール内の各スペクトルフィルタごとに前述の試験データ収集、正規化、および計算プロセスが繰り返される。比色測定が行われた後、可視系光源がオフにされる。フィルタホイールが放出フィルタに位置合わせされ、蛍光測定値が上記と同様に得られる。
【0090】
後処理の負担を低減するために、ID/ASTパネルウェルと関連のないすべての画素情報が除外される。たとえば、CCDアレイ104からのアナログ信号をデジタル化することができ、この場合、検出器マイクロコントローラ106は、これに応じてデジタル化信号を処理することができる。次いで、各ウェルごとの試験データ(すなわち、光強度情報)が平均される。この平均は、CCDアレイ104から各ウェル31ごとに受け取る画素当たり値に基づいて行われる。この平均では、各ウェル31ごとに単一の整数値が生成される。各データ蓄積サイクル(すなわち、赤照明、緑照明、および青照明、ならびにUV光励起)について1つの数値が生成される。次いで、この情報はマルチドロップシリアルデータ伝送プロトコルを介して制御プロセッサ70へ送られる。
【0091】
一実施形態では、サンプル列データからの不要な光学アーチファクトおよび電気アーチファクトをなくすように、検出マイクロコントローラ106によってCCDアレイ104からのアナログ信号の空間平均が実行される。この空間平均は、アナログ信号の画素強度の部分アナログデコミュテーションを使用して行われる。
【0092】
図4に示すように、制御プロセッサ70は、計器エンクロージャ60の電子機器区画62に取り付けられる。制御プロセッサ70は、計器フロントパネル71、キーボード72、コンピュータ可読媒体ドライブ73(たとえば、フロッピィディスクやCD−ROMドライブ)、および拡声器/可聴アラームを含む。制御プロセッサ70は、入出力インタフェースボード、CPU、メモリ、イーサネットインタフェース回路、ディスプレイドライバ回路(これらのうちのどれも図示せず)も含む。制御プロセッサ70はマウスを備えることもできる。
【0093】
動作時に、制御プロセッサ70は、コンピュータ可読媒体に記憶されている命令を実行することによって、以下の機能を実行する。制御プロセッサ70は、ホール効果センサ55を介して駆動リング52上のホームフラグ磁石を検知する。
【0094】
これは、アセンブリ51上に取り付けられたID/ASTパネル30が回転されている間、パネル30を適切に位置合わせするために行われる。ID/ASTパネル30の試験を開始または停止するためのハイレベルコマンドが検出器マイクロコントローラ106へ送られる。UV光源アセンブリ81の強度は、UV光源モニタフォトダイオード86からの信号に基づいて制御される。制御プロセッサ70は、パネル担体53上の状況インディケータLED54を照明する。インディケータLED54は、前述のように、どのID/ASTパネル30が、試験済みでありアセンブリ51から取り出すことができるかを識別する。インキュベーション温度も、インキュベーションヒータに動作可能に接続された信号/制御線を介して制御プロセッサ70によって制御される。
【0095】
制御プロセッサ70は、バーコードスキャナ、バーコードリーダ、およびバーコードワンド72から生成されたデータも受け取る。前述のように、バーコードスキャナからのデータは、収集された試験データを特定のID/ASTパネル30と相関付けるために使用される。各データ蓄積サイクル(すなわち、アセンブリ51の1回転)において、制御プロセッサ70は、アセンブリ51内の各ID/ASTパネル30のバーコードラベルに関するデータ、および各ID/ASTパネル30についての試験データを受け取ることを予期する。どちらかのデータを受信した場合、制御プロセッサ70は、このパネル位置にID/ASTパネル30が論理的に存在すると判定する。しかし、両方の種類のデータを共に受け取ったわけではない場合、制御プロセッサ70はこの蓄積サイクルに関するデータを破棄する。
【0096】
1データ蓄積サイクルが完了すると、制御プロセッサ70は検出器マイクロコントローラ106から順次、データを受け取る。このデータはメモリに記憶される。次いで、制御プロセッサ70はIDウェル31から(すなわち、後述のID/ASTパネル30のID部に関連するウェルから)のデータを解釈し、有機体を同定する。制御プロセッサ70は、ASTウェル31からのデータも解釈してMIC結果を生成するか、あるいはNational Committee for Laboratory Standard(NCCLS)ガイドラインを介して、AST範疇に関するブレークポイントを指すSusceptible,Intermediate,or Resistant(SIR)結果を生成する。ID/ASTパネル30の最終結果は、メモリに記憶され、かつメモリ内の記憶空間を節約するために、たとえばフロッピィディスクにダウンロードすることができる。
【0097】
制御プロセッサ70によって実行される他の機能には、外部に接続されたネットワーク装置(たとえば、ローカルエリアネットワーク(LAN)など)と通信すること、プリンタポートを形成すること、立上げ試験および自己診断試験を実行し、計器20が適切に動作していることを確認すること、および適切なアラーム信号を生成することが含まれる。制御プロセッサ70はまた、計器フロントパネル71を介してオペレータにグラフィックユーザインタフェースを与え、キーボード72を介してユーザコマンドおよび入力を受け付ける。
【0098】
図3A〜図3Cに戻るに、ID/ASTパネル30は組合せフォーマットで供給される。各ID/ASTパネル30は、同じパネルに対してID試験およびAST試験を実行することのできる試薬ウェル位置を有する。前述のように、ID/ASTパネル30は、ウェル31およびバーコードラベルを含む。ウェル31は、ID部33とAST部34に分離される。ID/ASTパネル30のID部33は51個のウェル31からなる。ID/ASTパネル30のAST部34は85個のウェル31からなる。たとえば、AST部34のウェル31は、乾燥させた抗生物質を含むことができる。
【0099】
ID/ASTパネル30は、基部35、シャシ36、蓋37、およびセルロースアセテートパッド38も含む。各ID/ASTパネル30は、特定のID/ASTパネル30の完全な製造履歴を識別する情報を含むパネルラベル(図示せず)も含む。
【0100】
バーコードラベルは、ID/ASTパネルタイプに関する情報も示し、識別のための固有の通し番号も有する。バーコードラベルは、コード128の数値フォーマットまたは他の適切なバーコードフォーマットで作成することができる。
【0101】
各ID/ASTパネル30には、計器20内に配置される前に、ブイヨンに懸濁させた有機体が接種される。実際には、この微生物は、ID接種物流体またはAST接種物流体に溶かした主培地から微生物を発育させる処理済みの再懸濁希釈液であり、この液体を試験パネルに注入する。接種物を充填するために接種ポート39を上にしてID/ASTパネル30を傾斜させる。IDポートおよびASTポート39に手動で別々の接種物を付加する。接種物がパネルに沿ってパッド38の方へ流れるにつれて、ID部33の各ウェル31にID接種物流体が接種される。AST部34の各ウェル31にはAST接種物流体が接種される。接種物はID/ASTパネル30に沿ってへび状に流れ、液体前部がパッド38の方へ進むにつれてウェル31を充填する。各ウェル31を通気し、ウェル31に液体を充填することを可能にする。各ウェル31は、余分の液体を充填しないように一貫した量の液体を分離し、各ウェル31を隣接するウェル31内の液体から絶縁する鋭い円形リムを有する。パッド38は余分の液体を吸収する。
【0102】
ID/ASTパネル30のパネル接種ステーション(図示せず)に接種物流体が接種される。各ステーションは、2本の接種物流体チューブ(すなわち、ID接種物流体およびAST接種物流体)を保持し、1つのID/ASTパネル30を支持する。重力によって、接種物流体は各ID/ASTパネル30間を移動する。
【0103】
ID接種物流体およびAST接種物流体は試薬サブシステムを含み、試薬サブシステムは、分離された細菌集落を処理して、ID/ASTパネル30のID部33およびAST部34に添加すべき調製された接種物を得るのに必要なすべての試薬を含む。
【0104】
ID接種物流体は、有機体を同定するために使用される。様々なID接種物流体を使用することができる。ただし、生理的食塩水が好ましい。界面活性剤を添加して、パネル接種ステーションでのID/ASTパネル30充填を促進することができる。好ましくは、IDパネル接種用の接種物濃度は少なくとも1×105cfu/mlである。フェノールレッドおよびイオドニトロテトラゾリウム(INT)を含む様々な同定試薬を使用することができる。4−メチルウンベリフェロン(4−MU)誘導体、メチルアミノクマリン(4−AMC)誘導体、パラニトロフェノル誘導体、およびエスキュリンを含む様々な基板を使用することもできる。
【0105】
AST定量に使用されるAST接種物流体は、ミューラーヒントンブイヨンの修正された組成である。好ましくは、ASTパネル接種用の接種物濃度は少なくとも1×105cfu/mlである。「高速」AST試験結果など本発明の他の実施形態には異なる接種物濃度を使用することができる。これは、ID/ASTパネル30接種から16時間以内に得られるAST試験結果である。
【0106】
様々なAST指示薬を使用することができる。本発明のAST定量用の好ましい指示薬は、alamarBlue(商標)、すなわちレドックス緩衝化酸化還元指示薬である。この指示薬は、AST接種物流体に添加され、計器20によって試験すべき微生物サンプルを添加する直前に混合される。
【0107】
前述のように、制御プロセッサ70は、検出、同定、および感受性試験のために、ウェル31から得られるデータを解釈する。制御プロセッサは、このデータを解釈するために絶対しきい値、動的しきい値、および相対しきい値の3つの可変しきい値レベルを使用する。絶対しきい値を使用する際は、正規化されたウェル31の読取り値が所与の所定値よりも高い(陽性)か、それとも低い(陰性)かを判定することによって、ポジティビティが評価される。動的しきい値を使用する際は、時間の関数としての信号増大の変化率に関する検出データの第1および第2の差ならびにその他の数学的処理を使用し、算出された第1および/または第2の差のあるパラメータをいつ超えたかを判定することによって、試薬の反応が定量される。相対しきい値を使用する際は、しきい値を、当該のウェル31の開始信号レベルよりも高い所定の割合に設定することによって、試薬の反応が定量される。
【0108】
動作時には、計器20のカルーセル50にID/ASTパネル30を取り付けインキュベートする。可視光源アセンブリ80とUV光源アセンブリ81を順次活動化すると、光の赤波長、緑波長、青波長、および蛍光波長に対応する1つの読取り値が得られる。カルーセル50の回転速度に基づいて、光学測定システム100によって所定の間隔で光強度読取り値が得られる。
【0109】
たとえば、カルーセル50が駆動システム56によって角速度毎分2.0回転(RPM)で駆動されると、カルーセル50が1回転するには30秒かかる。したがって、赤波長、緑波長、青波長、およびUV波長に関するデータを蓄積するには2分かかる。したがって、この例では、本発明によって2分おきに完全な1組のデータを得ることができる。角速度を変動することが可能なので、様々な試験に様々な角速度を使用することができる。たとえば、1.0RPMでUVデータを蓄積することが望ましいことがある(これに対して、他の試験データは2.0RPMで蓄積される)。この場合、完全なデータセットを完成するには2分30秒かかる。
【0110】
本発明では、インキュベーションを開始してから18時間〜24時間後にウェル31の読取り値に基づくAST端点結果を得ることができる。代替実施形態では、パネルインキュベーションを開始してから16時間以内にAST結果を得ることができる。
【0111】
同定の精度に関して、制御プロセッサ70は、126種よりも多くのグラム陰性有機体および103種のグラム陽性有機体を含むID分類群データベースを含む。制御プロセッサ70は、グラム陽性とグラム陰性の両方に関してID分類群データベースに相当するAST分類群データベースも含む。AST試験の場合、本発明は、現在知られているすべてのヒト抗菌物質および獣医抗菌物質に関するデータベースも含む。
【0112】
上記に本発明を特定の実施形態に関して説明したが、本発明が、本明細書で開示した実施形態に限るものではないことを理解されたい。逆に、本発明は、添付の請求の範囲の趣旨および範囲内に含まれる様々な方法、構造、およびそれらの修正形態をカバーするものである。
【図面の簡単な説明】
【0113】
【図1】エンクロージャドアを閉じた本発明の試験装置の正面斜視図である。
【図2】エンクロージャドアを開いた本発明の試験装置の正面斜視図である。
【図3A】本発明のID/AST試験パネルの斜視図である。
【図3B】本発明のID/AST試験パネルの平面図である。
【図3C】本発明のID/AST試験パネルの底面図である。
【図4】図1の装置の内部構成要素の概略平面図である。
【図5】本発明のカルーセルアセンブリの概略斜視図である。
【図6】本発明のパネル担体の斜視図である。
【図7】本発明の測定システムタワーの概略斜視図である。
【図8】本発明のCCD検出モジュールの概略斜視図である。
【図9】半導体LEDおよび二色分離フィルタを使用する一実施形態を示す図である。
【図10A】表面取付けLEDおよび色分離フィルタを使用する他の実施形態の正面図である。
【図10B】表面取付けLEDおよび色分離フィルタを使用する他の実施形態の側面図である。
【図11】本発明の光源アセンブリの構成の概略図である。
【図12A】光源モジュールから出力された照明のグラフである。
【図12B】本発明の光源モジュールを駆動するために使用される照度プロファイルのグラフである。
【図12C】図12Bの照度プロファイルの結果として得られる本発明の光源モジュールから出力された照明のグラフである。
【図13】本発明の光源モジュールを制御する回路を示す図である。
【図14】本発明の光源モジュールの一実施形態を示す図である。
【図15】本発明のパネル担体および試験装置の一部の概略斜視図である。

【特許請求の範囲】
【請求項1】
可変強度の光要素を有する複合光信号を生成することのできる光源と、
照度プロファイルに従って出力光信号プロファイルを生成するように前記光源を制御するように構成されたコントローラとを備えることを特徴とする装置。
【請求項2】
さらに、
光検出ユニットと、複合光信号を前記光検出ユニットの方へ送ることのできる光学系とを備えることを特徴とする請求項1に記載の装置。
【請求項3】
照度プロファイルが、前記光学系の光学的非効率を補正することを特徴とする請求項2に記載の装置。
【請求項4】
前記光源が、線形アレイとして配置された複数のLEDを備えることを特徴とする請求項1に記載の装置。
【請求項5】
さらに、前記コントローラに電気的に接続されたセンサを備え、前記センサが複合光信号を監視し、前記コントローラが、前記センサからの信号に応答して前記光源を制御することを特徴とする請求項1に記載の装置。
【請求項6】
さらに、前記コントローラにフィードバックを与えるフィードバック手段を備え、前記コントローラが、複数の照度プロファイルのうちの1つを選択することによって複合光信号の望ましくない変化を補償することを特徴とする請求項1に記載の装置。
【請求項7】
線形アレイ状に配置された複数のLEDを備え、各LEDの接合電流を所定の照度プロファイルを生成するように制御することができることを特徴とする光源。
【請求項8】
2つの端部を有する線形アレイ状に配置された複数のLEDを備え、各端部が、前記複数のLEDからなる一群のLEDを有し、前記各LED群が幾何学的に圧縮されることを特徴とする光源。
【請求項9】
LEDが、線形アレイ状に所定の順序で配置された赤LED、緑LED、および青LEDを備えることを特徴とする請求項8に記載の光源。
【請求項10】
各ウェルが、試験接種物流体を受容する、複数のウェルを有する試験パネルを含む光学系であって、
様々な波長の光を生成することのできる可視光源と、
前記可視光源と試験パネルとの間に位置決めされたディヒューザと、
UV光源と、
前記UV光源と試験パネルとの間に位置決めされた励起フィルタとを備え、
前記光およびUV光によって、ウェルに試験接種物流体の試験反応に基づいて光を放出または吸収させ、前記光学系がさらに、
ウェルから放出されるか、あるいはウェルによって吸収された光からUV光を除外するために試験パネルと対物レンズとの間に位置決めされた放出フィルタとを備え、
前記対物レンズが、前記放出フィルタと検出器との間に位置決めされ、フィルタを通過するか、あるいは放出または吸収された光を前記検出器上に合焦させることを特徴とする光学系。

【図1】
image rotate

【図2】
image rotate

【図3A】
image rotate

【図3B】
image rotate

【図3C】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10A】
image rotate

【図10B】
image rotate

【図11】
image rotate

【図12A】
image rotate

【図12B】
image rotate

【図12C】
image rotate

【図13】
image rotate

【図14】
image rotate

【図15】
image rotate


【公開番号】特開2008−116450(P2008−116450A)
【公開日】平成20年5月22日(2008.5.22)
【国際特許分類】
【出願番号】特願2007−276898(P2007−276898)
【出願日】平成19年10月24日(2007.10.24)
【分割の表示】特願平10−550681の分割
【原出願日】平成10年5月22日(1998.5.22)
【公序良俗違反の表示】
(特許庁注:以下のものは登録商標)
1.イーサネット
【出願人】(595117091)ベクトン・ディキンソン・アンド・カンパニー (539)
【氏名又は名称原語表記】BECTON, DICKINSON AND COMPANY
【住所又は居所原語表記】1 BECTON DRIVE, FRANKLIN LAKES, NEW JERSEY 07417−1880, UNITED STATES OF AMERICA
【Fターム(参考)】