説明

航空勾配ジャイロスコープ

【課題】回転を検出するための装置及びこの装置を組立てるための方法を提供する。
【解決手段】内部に中空の通路を備える光ファイバー、中空の通路内にあり、中空の通路の第1及び第2の端部を相互接続するレーザー媒体、及びレーザー媒体に接触する第1及び第2の電極を有する。電圧が第1及び第2の電極間に印加されると、レーザー媒体が励起され、レーザー媒体は中空の通路を通じてレーザー光を放射する。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は概ねジャイロスコープシステムに関し、より詳細には、光ファイバージャイロスコープ及びリングレーザージャイロスコープなどの光ジャイロスコープに関する。
【背景技術】
【0002】
リングレーザージャイロスコープ(RLGs)及び光ファイバージャイロスコープ(FOGs)は、航空機のような様々な目的物の回転及び角度向きを検出するために、多くのシステムで広く用いられている技術である。RLGs及びFOGsの両方は、回転軸に沿った法線を持つ領域を囲む、閉じた光路の周りを互いに反対方向に進む光によって動作する。この装置が回転軸を中心に回転すると、ある方向に進む光の光路長は減少し、反対方向に進む光の光路長は増加する。この光路長の変化は、2つの光の波の間に位相差を生じさせる。この位相差は回線速度に比例する。
【発明の開示】
【発明が解決しようとする課題】
【0003】
一般的に、このようなジャイロスコープの信号対ノイズの感度は、光路長及び閉じた路の直径が大きいほど増大する。このような観点において、RLGs及びFOGsの両方は、光は回転軸の周りを複数回進むという利点を有している。RLGsにおいて、高性能な共振器を形成するために、回転軸の周りで光を繰返し反射させる一連のミラーが用いられる。FOGsにおいて、光は回転軸の周りを光ファイバーのコイル(多数巻かれている)を通じて伝播する。この光ファイバーはしばしば数キロメートルの長さにもなる。
【0004】
近年、共振器光ファイバージャイロスコープ(RFOGs)が開発されており、上述のRLGs及びFOGsの光路長の利点を、ミラー又はファイバー連結装置と複数巻光ファイバーコイルとの両方を光共振器を形成するために用いる単一の装置に組み合わせている。RLGs及びFOGsの利点を組み合わせることで、RFOGsは短い光ファイバーを用いることができ、装置が小さくなる。RFOGsに関する一つの問題点は、位相差がしばしば回転以外の要因で発生し、単色の光が従来の光ファイバーにより提供されるガラス媒体の中を通ることを原因とする誤差により位相差が生じるということである。さらに、ミラー及び/又は連結装置及びファイバーコイル以外にも、RFOGsは、典型的には、外部のレーザーから共振器内に導かれるレーザー光を処理及び調節するため、及び共振器から出てくる光信号を処理するために、複雑な光学システム及び電子システムに依拠している。外部レーザーを含むこれらの電子システムは、RFOGsの総寸法及びコストを増大させる。
【0005】
従って、単純な電子信号処理システムを備えるジャイロスコープシステムを提供することが望まれる。加えて、分離された外部レーザー源及び複数のレーザー源を必要としないジャイロスコープシステムを提供することが望ましい。更に、本発明の好ましい特徴及び特性は、添付図面及び既述の背景技術及び背景技術を考慮しながら、後述の詳細な説明及び添付した特許請求の範囲を参照することで明らかになるであろう。
【課題を解決するための手段】
【0006】
回転を検出するための装置が提供される。この装置は、内部に中空の通路を有する光ファイバと、中空の通路内のレーザー媒体と、レーザー媒体に接触する第1及び第2の電極とを有し、第1及び第2の電極間に電圧が印加されると、レーザー媒体が中空の通路を通るレーザー光を放射するようにレーザー媒体が励起される。
【0007】
光ファイバージャイロスコープを組立てるための方法が提供される。本方法は、外部表面と、対向する第1及び第2の端部と、中心軸と、内部の中空の通路とを有する光ファイバーを提供する。中空の通路は第1及び第2の部分を備え且つ中心軸線について対称である。光ファイバーの外部表面に第1及び第2の穴を中空の通路に向かって形成する。第1の穴は、中空の通路の第1の部分に隣接し、第2の穴は、中空の通路の第2の部分に隣接する。中空の通路内にレーザー媒体を提供する。レーザー媒体は、中空の通路の第1及び第2の部分を相互接続する。第1及び第2の電極をそれぞれ第1及び第2の穴に配置する。第1の電極は中空の通路の第1の部分でレーザー媒体と接触し、第2の電極は中空の通路の第2の部分でレーザー媒体と接触する。第1及び第2の電極間に電圧が印加されると、レーザー媒体が中空の通理を通るレーザー光を放射するようにレーザー媒体が励起される。
【0008】
本発明を、添付図面を参照しながら以下に説明する。図面には同様の要素には同様の符号が付されている。
【発明を実施するための最良の形態】
【0009】
以下の詳細な説明は、性質上単なる例示であって、本発明を限定することを意図するものではなく、また本発明の応用及び用途を限定することを意図するものではない。さらに、上述の技術分野、背景技術、発明の概要及び後述の詳細な説明に示される明示又は示唆する理論に拘束されることを意図するものではない。図1乃至6は単なる図解であって、寸法を図示したものではなことに注意されたい。
【0010】
図1乃至6はジャイロスコープシステムを示す。このジャイロスコープシステムは、中空コアを有する光ファイバーを含む。中空コアは、気体合成物又は混合物のようなレーザー媒体を含む。光ファイバーには穴が形成されおり、穴は中空コアまで延び内部のレーザー媒体を露出させる。電極がこの穴に挿入され、中空コアをシールし、レーザー媒体に接触する。電源は電極間に電圧を供給するために電極に接続され、レーザー増幅媒体を励起する放電を生じさせ、光ファイバー内にレーザー光を発生させる。
【0011】
図1は、本発明の実施形態によるジャイロスコープシステム10を示す。ジャイロスコープシステム10は、光ファイバアセンブリ12、光学サブシステム14、光検出器16、処理装置/制御装置18及び電源20を含む。以下に詳細に説明するように、システム10は、リングレーザージャイロ(RLG)の形式、共振器光ファイバージャイロ(RFOG)の形式、及びRLGとRFOGとの両方の組合せあるいは混成形式のいずれの形式としても実現することができる。このことは本技術分野における当業者に理解されるであろう。
【0012】
光ファイバーアセンブリ12は、光ファイバー22及び3つの電極24、26及び28を含む。図1に示されているように、光ファイバー22は、第1の端部30及び第2の端部32を有しており、各端部は光学サブシステム14の方向を向いている。以下に詳細に説明するように、光学サブシステム中の高反射性ミラー66は、ファイバー端部30からの光を受けて、ファイバー端部30から照射される光の大部分を反射して光がファイバー端部32に入るように位置決めされ、光が時計周り(CW)方向に伝播するための共振キャビティを形成する。同様に、ミラー66は、ファイバー端部32から出てくる光の大部分を反射して光がファイバー30に入るように位置決めされ、光が反時計回り(CCW)方向に伝播するための共振キャビティを形成する。光を平行にするため又は空間的に調整するために、レンズ64を用いることができ、ファイバー端部間の光損失を最小化する。ファイバー22、ミラー66及びレンズは光リング共振器を構成し、この共振器は、CW及びCCW方向に、それぞれ、各方向の共振器内部の周回光路長により決定される共振周波数を備える。共振器の通路の平面に垂直な軸を中心とする回転が存在する場合、光路長は等しくならず、CW及びCCW方向の共振周波数は変化する。この差分は回転速度の大きさに比例する。増幅媒体が励起されレーザー発振が生じているとき、CW及びCCW方向のレーザー周波数は互いに変化する。
【0013】
再び図1を参照すると、光ファイバー22の中心部分は巻かれており、例えば外径36が3cm未満で20乃至40回巻きつけられたコイル34状に配置されている。ある実施形態では、外径36は約1cmである。図示していなが、コイル34は一般的に理解されているように、回転軸の周りに形成されている。
【0014】
図2は、巻かれていない状態で詳細に示される光ファイバー22と、光ファイバーアセンブリ12を概略的に示している。光ファイバー22は1mより長い長さ38を備えることができ、中心点について対称とすることができる。ある実施形態においては、光ファイバー22の長さ38は約1.25mである。好ましい実施形態は、光ファイバー22は、ガラス系であり、中空コアであり、バンドギャップを備え、曲げ損失がとても小さな光ファイバーである。図3及び4を参照すると、光ファイバー22は周期的なフォトニック結晶セルの領域40を備えており、該領域40は、中心の通路44(即ち中空コア)の周りに例えば30乃至40ミクロンの厚さ42を有する。中心の通路44は例えば2.5乃至10ミクロンの半径46を有し、光ファイバー22の中心軸48に平行且つ対称に延びている。また、光ファイバー22は、光ファイバー22の外部表面52を形成する外部ガラス層50を備えている。ある実施例においては、光ファイバー22は、100乃至125ミクロンの総直径54を備えている。
【0015】
図2を図3及び4と組み合わせて参照すると、電極24、26及び28が、光ファイバー22の第1の端部30付近、中心領域(例えば中間点)及び第2の端部32に位置する穴56にそれぞれ挿入されている。図3及び4は特に電極26を示しているが、電極24及び28も同様の手法で光ファイバー22に接続できることを理解されたい。図示された実施形態において、光ファイバー22に沿って測定される隣接する電極間の距離は、約0.6125m(即ち光ファイバー22の半分の長さ)とすることができる。穴56は、ガラス層50及び周期的なフォトニック結晶セル領域40を貫通して延び、中心通路44に達している。穴56は例えば5乃至20ミクロン又はそれ以上の幅58を備えることができ、一般に知られているように、二酸化炭素レーザーを用いて形成することができる。図示された実施形態において。電極24、26及び28は穴の幅58と同様の幅を備えるピンであり、中心通路44上のシールを形成する。特に図3を参照すると、電極24、26及び28の下部表面60は、光ファイバー22の中心軸48から、中心通路44の半径46よりも大きな半径を備えるように配置されており、電極24、26及び28が中心通路44に突き出さないようになっている。図4に示されているように、穴56及び電極24、26及び28は、中心軸48に対して実質的に垂直な方向に、光ファイバー22内に延びている。
【0016】
特に図示しないが、レーザー(又は増幅)媒体を中心通路44の中に形成することができ、あるいは中心通路44内に注入することができる。レーザー媒体は、光がほぼ自由空間中を伝播するような屈折率を備えることができる。それゆえ、環境の変化は、増幅媒体を通る光の伝播に事実上影響を与えない。レーザー媒体はヘリウムネオン(HeNe)のような低圧ガス混合物、又はガス混合物とすることができる。再び図2及び3を参照すると、電極24、26及び28は中間通路の異なる部分でレーザー媒体と接触しており、レーザー媒体が穴56を通じて光ファイバー22から漏れるのを防止する。更に、図2を参照すると、端部キャップ62が、光ファイバー22の第1の端部30と第2の端部32に追加されており、レーザー媒体が端部30及び32から漏れるのを防いでいる。特に図示しないが、損失及び反射を防止するために、端部キャップは一般に知られているようにブリュースター角で配置することができ、あるいはフレネル反射損失を防止するために端部キャップにテーパー領域を設けてもよい。
【0017】
再び図1を参照すると、光学サブシステム14は、レンズ64、循環装置66、ミラー68及びビームスプリッタ70を含む。特に図示しないが、各レンズ64は、光ファイバー22のそれぞれの端部付近に配置され、レンズ64の中心軸は図3及び4に示される光ファイバー22の中心軸48と一致している。循環装置66は反射率がとても高く(例えば95%以上)且つ透過率がゼロでないミラーである。一般に理解されているように、循環装置66は、光の所望の偏光状態のための反射率を備え、この反射率は所望の偏光状態に直交する偏光状態における反射率よりも有意に高い。循環装置66は両レンズ64の片側に位置決めされており、光ファイバー22の端部30及び32に直接に面しており、両端部30及び32に対して所定の角度がつけられている。この角度は、一方の偏光に対して大きな損失を提供し、他方の偏光に対して小さな損失を提供するように、ミラーの設計との組合せにより選択される。これは各方向における単一の周波数のレーザー放射の能力を増強する。一般に理解されているように、光ファイバー22及び循環装置66は共同して光共振器を構成している。
【0018】
ミラー68は、それぞれの方向に共振器を透過した光を受けるように位置決めされている。リングレーザー共振器からの光は、回転信号情報を読み出すために循環装置66を透過する。ミラー68は、共振器からそれぞれ2方向に出力される光を受けるように配置され、ビームスプリッタ70を介して2つの光線を再結合又は干渉させる。この場合、ビームスプリッタ70はビーム結合器として機能する。
【0019】
さらに、図1を参照すると、光検出器16は、ビームスプリッタ70で合成された光の波を受けるためにビームスプリッタ70の片側に位置決めされており、光検出器16は、一般に知られているようにフォトダイオードを備える。処理装置/制御装置18は光検出器16及び電源20と操作可能に接続されており、電子部品を備えることができる。処理装置/制御装置18、様々な回路、エーシック(ASIC、Application Specific Integration Circuit)のような集積回路及び/又はコンピュータシステムにより実行されるコンピュータで読み取り可能な媒体に格納された命令を含み、以下に説明する方法及び手順を実行する。図示されているように、電源20は分離した部品として図示されているが、電極24、26及び28に電気的に接続されており、処理装置/制御装置18の一部として実装されている。また、図1には明示的には示されていないが、電源20は光検出器18に、直接又は処理装置/制御装置18を介してエネルギーを供給する。
【0020】
図1及び2に関して、作動中、電源20は電極26と電極24、28との間に電圧を供給し、プラズマ放電電流が、電極26(即ち陽極)から中心通路44内のレーザー媒体を通って電極24及び28(即ち陰極)に流れる。本技術分野にける当業者に理解されるように、レーザー増幅媒体中のプラズマ放電はレーザー増幅媒体中の原子及び分子の遷移を励起しフォトンを誘導放出させる。このように、レーザー光は中心通路44内で発生し、光ファイバー22を通じて両方向に伝播する。即ち、光の第1の部分は、コイル34を通じてCW方向に光ファイバー22の第1の端部30に向かって伝播し、光の第2の部分は、コイルを通じてCCW方向に光ファイバー22の第2の端部32に向かって伝播する。電極は、電極26から電極28へのプラズマ放電による粒子の流れが、電極24から電極28へのプラズマ放電による粒子の流れと、等しく且つ反対方向になるように配列され、本技術分野において周知のようにフレネル−ドラッグ効果を低減又は除去する。
【0021】
図5は、光が光ファイバー22から出る端部30及び32を示している。光の第1の部分は、光ファイバー22の第1の端部30から出るので、ファイバーから自由空間への移動において光の波は空間的に発散し、「ファンアウト」が観測される。しかし、光はレンズを通過するので平行になる。平行化された光は循環装置66に衝突し、循環装置66の高い反射率のために、光の大部分は光ファイバー22の第2の端部32に向かって反射される。平行化された光はレンズ64を通過し、光ファイバー22の第2の端部32に入るまえに再び集光される。同様に、光の第2の部分は光ファイバー22の第2の端部32から出て、光が通る第1のレンズ64を通過して平行化される。光の第1の部分と同様に、光の第2の部分の大部分は第1の端部30に向かって循環装置66により反射され、光ファイバー22の第1の端部30に入る前に、光が通過する第2のレンズ64で再び集光される。光ファイバー22を通じて循環する光が共振器通路内で共振するので、この工程は継続的に繰り返される。共振器通路は、光ファイバー22の内部及びファイバー端部30から循環装置66及びファイバー端部32までの光学通路からなる。
【0022】
図5を参照すると、前述したように、光の第1及び第2の部分の全てが循環装置66で反射されるわけではなく、各々の相対的に小さな部分が循環装置66を通過(即ち透過)する。図1に示されているように、循環装置66を通過した光は、ミラー68及びビームスプリッタ70により光検出器16上に導かれる。本技術分野における当業者に理解されるように、光検出器16は、コイル34の回転軸を中心とするシステム10の回転を原因とする、2つの光ビームの相対的な位相変化又は周波数差を検出することができる。光検出器16は電気信号を処理装置/制御装置18に送り、処理装置/制御装置18はこの信号を処理し、システム10の回転速度を決定する。さらに、図1には図示しないが、回転速度測定の誤差は、共振器内の一方のビームから他方に入る、及びその反対方向の後方散乱光から生じることに注意されたい。従来のリングレーザージャイロ(中空コアファイバーを用いていない)で一般に用いられている解決策の1つは、回転軸を中心としてジャイロに機械的にディザを付加して、ディザの振幅の乱数の程度を加えるということである。このように誤差は顕著に減少しあるいは実質的に取り除かれ、しばしばロックインとして知られている。この技術は本発明の実施形態においても同様に採用できる。
【0023】
上述のジャイロスコープの利点の一つは、光が光ファイバーの中で発生するので、共振器外部の光学システム及び電子システムを単純にすることができるということである。他の利点は、レーザー光を共振器内で発生させない場合、例えば受動的な共振器の場合、回転信号を取り出すために使用される信号処理工程で生じる回転速度の誤差を取り除くことができるということである。
【0024】
図6は本発明の他の実施形態によるジャイロスコープシステム72を示す。ジャイロスコープシステム72は、光ファイバーアセンブリ74、光学サブシステム76、光検出器78、処理装置/制御装置80及び電源82を含む。システム72は、多くの点で図1に示されるシステム10と類似している。しかし、図6に示される実施形態においては、光ファイバーアセンブリ74は、光ファイバー86に接続される2つの電極84しか含んでいない。更に、電極84間の距離(光ファイバー86に沿って測定される)は、光ファイバー86内でレーザー媒体によるレーザー発振を容易にするために短くなっている。本技術分野における当業者に理解されるように、この電極84間に印加される電圧に沿う距離は、光ファイバー86内のレーザー媒体の量(即ち濃度又は密度)及び種類に応じて可変である。更に、図1のように、等しい距離の中間点に第3の電極を追加してもよく、これにより、図1に示されるように、プラズマ放電により導入される流れは釣り合う。
【0025】
追加的に、図6に示す実施形態において、図1に示される循環装置66及びレンズ64は、凹面の循環装置88に置き換えられている。凹面の循環装置88は、図1に示す循環装置66と同様に反射率が高い。しかし、凹面の循環装置88の形状により、循環装置88で反射される光は、再び光ファイバー86に入る前に集光される。このように、図6に示される実施形態の更なる利点は、レンズを設けずに光を循環させることができ、更なる簡略化を可能にし、システム72のコストを削減できる。また、環境の影響及びレンズの非線形性による誤差を低減することができる。
【0026】
上記の詳細な説明に、少なくとも1つの例示的な実施形態が示されているが、多くの数の変形例が存在することを理解されたい。また、1つ又は複数の実施形態は例示にすぎず、本発明の範囲、応用範囲あるいは構成をいかなる意味でも限定するものではない。むしろ、前述の詳細な説明は、本技術分野における当業者に、1つ又は複数の例示の実施形態を実行する便宜のためのロードマップを提供するものである。添付した特許請求の範囲及びその法的均等物における発明の範囲から逸脱することなく、構成要素の機能及び設計に関して多くの変更が可能であることを理解されたい。
【図面の簡単な説明】
【0027】
【図1】光ファイバーアセンブリ及び光サブシステムを含む本発明の実施形態に係る光ファイバージャイロスコープシステムを示す概略図である。
【図2】図1に示される光ファイバーアセンブリの断面を示す概略図である。
【図3】図2に示される光ファイバーアセンブリの一部の断面を示す概略図である。
【図4】図3に示される光ファイバーアセンブリの一部を線4−4に沿って切断した断面を示す概略図である。
【図5】図1に示される光ファイバーアセンブリの一部及び光サブシステムを示す上面図である。
【図6】本発明の他の実施形態による光ファイバージャイロスコープを示す概略図である。

【特許請求の範囲】
【請求項1】
中空の通路(44)を内部に有する光ファイバー(22)と、
前記中空の通路(44)内のレーザー媒体と、
前記レーザー媒体に接触する第1及び第2の電極(24、26)とを有し、前記第1及び第2の電極(24、26)間に電圧が印加されたときに、前記レーザー媒体が前記中空の通路(44)を通るレーザー光を放射するように、前記レーザー媒体が励起されることを特徴とする装置。
【請求項2】
前記中空の通路(44)は中空コアであり、前記レーザー媒体は気体合成物を含むことを特徴とする請求項1に記載の装置。
【請求項3】
光ファイバージャイロスコープであって、
コイル(34)状に配置された光ファイバー(22)であって、対向する第1及び第2の端部(30、32)と、中心軸(48)と、光ファイバーの内部を通る中空の通路(44)とを有し、前記通路(44)は、第1の部分及び第2の部分を有し且つ前記中心軸(48)について対称である光ファイバー(22)と、
前記中空の通路(44)内にあり、前記中空の通路(44)の前記第1及び第2の部分を相互連結するレーザー媒体と、
前記中空の通路(44)の前記第1及び第2の部分で前記レーザー媒体にそれぞれ接触する第1及び第2の電極(24、26)と、
前記第1及び第2の電極(24、26)に電気的に接続される電源(20)とを有し、前記第1及び第2の電極(24、26)間に電圧が印加されたときに、前記レーザー媒体が、前記中空の通路(44)を通るレーザー光を放射するように前記レーザー媒体を励起し、
第1の光の部分は前記コイル(34)中を時計回り方向に伝播し、第2の光の部分は前記コイル(34)中を反時計回り方向に伝播し、
前記光ファイバージャイロスコープは、更に、循環装置(66)を有し、前記第1の光の部分の少なくと一部は、前記光ファイバー(22)の前記第1の端部(30)から伝播し、前記循環装置(66)の表面で反射されて前記光ファイバー(22)の前記第2の端部(32)内に入り、前記第2の光の部分の少なくとも一部は、前記光ファイバー(22)の前記第2の端部(32)から伝播し、前記循環装置(66)の表面で反射されて前記光ファイバー(22)の前記第1の端部(30)内に入ることを特徴とする光ファイバージャイロスコープ。
前記光ファイバージャイロスコープは、更に、表面を備える循環装置(66)を有し、前記第1の光の部分の少なくと一部が前記光ファイバー(22)の前記第1の端部(30)から伝播して、前記循環装置(66)の前記表面で反射されて前記光ファイバー(22)の前記第2の端部(32)内に入り、前記第2の光の部分の少なくとも一部が前記光ファイバー(22)の前記第2の端部(32)から伝播して、前記循環装置(66)の前記表面で反射されて前記光ファイバー(22)の前記第1の端部(30)内に入るように前記表面が位置決めされることを特徴とする光ファイバージャイロスコープ。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate