説明

荷電粒子ビーム照射装置

【課題】不使用ビーム量を低減し、ビーム利用効率を向上できる荷電粒子ビーム照射装置を提供することである。
【解決手段】照射野形成装置500は、シンクロトロン200から出射された荷電粒子ビームをビーム進行方向と垂直な方向に走査する走査電磁石を有する。制御装置600の照射順番決定システム63は、あるエネルギーに周回ビームが加速された状態から他のエネルギーへ再加速または再減速した場合に損失される周回ビーム量を予測し、周回ビーム電荷量モニタ25により測定された周回ビーム電荷量と、照射線量モニタ52により測定された照射線量を用いて、照射全体を通して損失する周回ビーム量が最小になるようにシンクロトロンの運転パターンを変更して、照射するエネルギーの順番を決定する。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、荷電粒子ビーム照射装置に係り、特に、陽子及び炭素イオン等のイオンビームを患部に照射して治療する粒子線治療装置に適用するのに好適な荷電粒子ビーム照射装置に関する。
【背景技術】
【0002】
近年の高齢化社会を反映し、がん治療法の一つとして、低侵襲で体に負担が少なく、治療後の生活の質が高く維持できる放射線治療が注目されている。その中でも、加速器で加速した陽子や炭素イオンなどの荷電粒子ビームを用いた粒子線治療システムが、患部への優れた線量集中性のため特に有望視されている。粒子線治療システムは、イオン源で発生した荷電粒子ビームを光速近くまで加速するシンクロトロンなどの加速器と、加速器から出射した荷電粒子ビームを輸送するビーム輸送系と、患部の位置や形状に合わせて荷電粒子ビームを患者に照射する照射装置から構成される。
従来、粒子線治療システムの照射装置では、患部の形状に合わせて荷電粒子ビームを照射する際、散乱体でビーム径を拡大したのちコリメータで周辺部を削って荷電粒子ビームを整形していた。ところが、散乱体を用いた照射方法では、中性子の発生を低減できないこと、患部形状と照射領域との一致度を向上できないこと等の課題がある。そこで近年、より高精度な照射方法として、加速器から細い径の荷電粒子ビームを取り出して電磁石で偏向し患部形状に合わせて走査するスキャニング照射法の市場ニーズが高まっている。
【0003】
スキャニング照射法では、3次元的な患部形状を深さ方向の複数の層に分割し、各層を更に2次元的に分割する。深さ方向には荷電粒子ビームのエネルギーを変更して各層を選択的に照射し、各層内では電磁石で照射する荷電粒子ビームを2次元的に走査して各照射スポットに所定の線量を与える。照射スポット間の移動中に連続的に照射し続ける方法をラスタースキャニング、一方、移動中に照射ビームを停止する方法をディスクリートスポットスキャニングという。
【0004】
従来、スキャニング照射法を用いる際、シンクロトロンの運転1周期(シンクロトロンへの荷電粒子ビームの入射から、照射対象への照射を経て、次の入射の準備に入るまでの期間)で照射する層は1層のみであり、その層への照射が完了した段階で、シンクロトロン内に残っている周回ビームは照射に用いられないものであった。従来のスキャニング照射法においては、必要線量が少ない層では多くの周回ビームが照射に用いられず、ビーム利用効率(シンクロトロンで加速された周回ビームの内、照射に用いられる割合)の向上が困難であった。
【0005】
それに対して、シンクロトロン運転の一周期の周回ビームのエネルギーを変更する方法(例えば、特許文献1参照)や、周期内で周回ビームのエネルギーを変更する方法(例えば、特許文献2参照)が知られている。
【先行技術文献】
【特許文献】
【0006】
【特許文献1】特許第3307059号公報
【特許文献2】特開2008−226740号公報
【発明の概要】
【発明が解決しようとする課題】
【0007】
シンクロトロン運転の一周期の間に、あるエネルギーから別のエネルギーへ再加速または減速する場合、シンクロトロンの運転パラメータ(例えば偏向電磁石磁場強度や加速空洞電圧など)を変更する必要があり、シンクロトロン内の一部のビームを損失する。照射全体で損失するビーム量はエネルギー変更の回数とその順番により決まるが、特許文献1及び特許文献2に記載の従来の運転方法では一周期の間に照射する層の順番決定方針が明確でなく、ビーム損失量が増大する順番になる恐れがあった。また、次照射層決定の際にシンクロトロン内に残っている周回ビーム量に応じた決定ができず、照射全体でのエネルギー変更回数が増加する事により、ビーム損失量が増大する恐れがあった。さらに、このエネルギー変更によるビーム損失の為に、シンクロトロン内に残っている周回ビームを照射できない場合がある。以上が原因となり、加速されたが患部への照射に用いられないビーム(以下、不使用ビームとする)の増加によるビーム利用効率低下の為に、治療時間が長大化する恐れがあった。
【0008】
本発明の目的は、不使用ビーム量を低減し、ビーム利用効率を向上できる荷電粒子ビーム照射装置を提供することである。
【課題を解決するための手段】
【0009】
(1)上記目的を達成するために、本発明は、荷電粒子ビームを加速して出射するシンクロトロンと、該シンクロトロンから出射された前記荷電粒子ビームをビーム進行方向と垂直な方向に走査する走査電磁石を有する照射野形成装置と、前記シンクロトロンの周回ビーム電荷量を測定する周回ビーム電荷量モニタと、照射線量を測定する照射線量モニタと、あるエネルギーに周回ビームが加速された状態から他のエネルギーへ再加速または再減速した場合に損失される周回ビーム量を予測し、前記周回ビーム電荷量モニタにより測定された周回ビーム電荷量と、前記照射線量モニタにより測定された照射線量を用いて、照射全体を通して損失する周回ビーム量が最小になるように前記シンクロトロンの運転パターンを変更して、照射するエネルギーの順番を決定する照射順番決定部を有する制御装置を備えるようにしたものである。
かかる構成により、荷電粒子ビーム照射装置における、不使用ビーム量を低減し、ビーム利用効率を向上できるものとなる。
【0010】
(2)上記(1)において、好ましくは、前記照射順番決定部は、あるエネルギーでの照射が完了した時点において、次周期以降の照射を完了するまでに損失すると予測される周回ビーム量が最小となるように、運転パターンを変更するようにしたものである。
【0011】
(3)上記(2)において、好ましくは、前記照射順番決定部は、あるエネルギーでの照射が完了した時点において、その時点での前記シンクロトロンの運転周期内で照射に用いられない周回ビーム量が最小になるように、運転パターンを変更するようにしたものである。
【0012】
(4)上記(1)において、好ましくは、前記照射順番決定部は、あるエネルギーでの照射が完了した時点で同周期内に照射が可能な層が有ると判断された場合、次照射層を照射した後に残存すると予測される周回ビーム電荷量がエネルギー変更時のビーム損失量以下になる第1の条件を満たす層が1つだけ存在する場合は、その層を次照射層に決定するようにしたものである。
【0013】
(5)上記(1)において、好ましくは、前記照射順番決定部は、あるエネルギーでの照射が完了した時点で同周期内に照射が可能な層が有ると判断された場合、次照射層を照射した後に残存すると予測される周回ビーム電荷量がエネルギー変更時のビーム損失量以下になる第1の条件を満たす層が複数ある場合、最も未照射線量が多い層を次照射層に決定するようにしたものである。
【0014】
(6)上記(1)において、好ましくは、前記照射順番決定部は、あるエネルギーでの照射が完了した時点で同周期内に照射が可能な層が有ると判断された場合、次照射層を照射した後に残存すると予測される周回ビーム電荷量がエネルギー変更時のビーム損失量以下になる第1の条件を満たす層がない場合、その時点での周回ビーム量を基に、照射後に残存すると予測される周回ビーム電荷量がエネルギー変更時のビーム損失量以下になる第2の条件を満たす層の組み合わせがある場合、前記第2の条件を満たす組合せ内の1層を次照射層に決定するようにしたものである。
【0015】
(7)上記(1)において、好ましくは、前記照射順番決定部は、あるエネルギーでの照射が完了した時点で同周期内に照射が可能な層が有ると判断された場合、次照射層を照射した後に残存すると予測される周回ビーム電荷量がエネルギー変更時のビーム損失量以下になる第1の条件を満たす層がない場合、その時点での周回ビーム量を基に、照射後に残存すると予測される周回ビーム電荷量がエネルギー変更時のビーム損失量以下になる第2の条件を満たす層の組み合わせが複数存在する場合、照射に用いられないビームが最小になると予測される組合せを選ぶようにしたものである。
【発明の効果】
【0016】
本発明によれば、不使用ビーム量を低減し、ビーム利用効率を向上できるものとなる。

【図面の簡単な説明】
【0017】
【図1】本発明の一実施形態による荷電粒子ビーム照射装置の全体構成を示す概念図である。
【図2】本発明の一実施形態による荷電粒子ビーム照射装置に用いる照射野形成装置の構成を示す概念図である。
【図3】本発明の一実施形態による荷電粒子ビーム照射装置に用いる照射野形成装置の動作説明図である。
【図4】本発明の一実施形態による荷電粒子ビーム照射装置に用いる制御装置の構成を示すブロックである。
【図5】本発明の一実施形態による荷電粒子ビーム照射装置におけるシンクロトロンの一周期の運転手順を示すタイミングチャートである。
【図6】本発明の一実施形態による荷電粒子ビーム照射装置におけるシンクロトロンの一周期の運転手順を示すフローチャートである。
【図7】本発明の一実施形態による荷電粒子ビーム照射装置におけるシンクロトロンの一周期の運転手順を示すタイミングチャートである。
【図8】本発明の一実施形態による荷電粒子ビーム照射装置におけるあるエネルギーから他のエネルギーに再加速または減速する場合に、周回ビーム量の減少量を予測する方法の説明図である。
【図9】本発明の一実施形態による荷電粒子ビーム照射装置において、ある層に対して照射が完了した時点における周回ビーム量に基づいて、次照射層を決定する方法を示すフローチャートである。
【図10】本発明の一実施形態による荷電粒子ビーム照射装置において、ある層に対して照射が完了した時点における周回ビーム量に基づいて、次照射層を決定する方法の具体例の説明図である。
【図11】本発明の一実施形態による荷電粒子ビーム照射装置において、ある層に対して照射が完了した時点における周回ビーム量に基づいて、次照射層を決定する方法の具体例の説明図である。
【図12】本発明の一実施形態による荷電粒子ビーム照射装置において、図10及び図11の次照射層の決定方法を用いた場合の全照射期間に渡る偏向電磁石励磁量の変化についての説明図である。
【発明を実施するための形態】
【0018】
以下、図1〜図12を用いて、本発明の一実施形態による荷電粒子ビーム照射装置の構成及び動作について説明する。
最初に、図1を用いて、本実施形態による荷電粒子ビーム照射装置の全体構成について説明する。
図1は、本発明の一実施形態による荷電粒子ビーム照射装置の全体構成を示す概念図である。
【0019】
本実施形態の荷電粒子ビーム照射装置100は、治療ベッド42に固定された患者41の患部に対して荷電粒子ビーム(例えば、陽子線)を照射するものである。荷電粒子ビーム照射装置100は、ライナックのような前段加速器11で予備加速した荷電粒子ビームを所定のエネルギーまで加速した後出射するシンクロトロン200と、シンクロトロン200から出射された荷電粒子ビームを治療室400まで導くビーム輸送系300と、治療室400で患者41の患部形状(照射対象)に合わせて荷電粒子ビームを照射する照射野形成装置500と、制御装置600とから構成される。
【0020】
シンクロトロン200は、前段加速器11で予備加速した荷電粒子ビームを入射する入射装置21と、シンクロトロン200中を周回する荷電粒子ビーム(周回ビーム)を偏向し一定の軌道上を周回させる複数の偏向電磁石22と、周回ビームが広がらないように水平・垂直に収束力を与える複数の四極電磁石23と、高周波加速電圧で周回ビームを所定のエネルギーまで加速する複数の加速空洞24と、周回ビームの電荷量を測定する周回ビーム量モニタ25と、周回ビームの振動振幅に対して安定限界を形成する複数の六極電磁石26と、高周波電磁場で周回ビームの振動振幅を増大して安定限界を超えさせる出射装置27と、安定限界を越えた周回ビームを静電場や静磁場で偏向してシンクロトロン200の外部にとりだす出射偏向装置と28から構成される。
【0021】
次に、図2及び図3を用いて、本実施形態による荷電粒子ビーム照射装置に用いる照射野形成装置500の構成及び動作について説明する。
図2は、本発明の一実施形態による荷電粒子ビーム照射装置に用いる照射野形成装置の構成を示す概念図である。なお、図1と同一符号は、同一部分を示している。図3は、本発明の一実施形態による荷電粒子ビーム照射装置に用いる照射野形成装置の動作説明図である。
【0022】
図2に示すように、照射野形成装置500は、図1に示したビーム輸送系300によって導かれた荷電粒子ビームを水平及び垂直方向に偏向し、患部41aの断面形状に合わせて2次元的に走査する走査電磁石51a,51bと、通過した荷電粒子ビームの量を計測する照射線量モニタ52と、通過した荷電粒子ビームの位置を計測するビーム位置モニタ53とから構成される。
【0023】
次に、図3を用いて、本実施形態の粒子線治療装置100が照射法として用いるスキャニング照射法について説明する。図3は、深さ方向(図2のz方向)に分割した患部41aのある一つの層を照射する荷電粒子ビームの上流側から見た図である。
【0024】
3次元的な患部形状を深さ方向の複数の層に分割し、シンクロトロン200の出射ビームのエネルギーを変更することで各層を選択的に照射する。各層内では、図3に示すように、走査電磁石51で照射ビームを2次元的(x方向,y方向)に走査して、層内の各部に所定の線量を与える。
【0025】
次に、図4を用いて、本実施形態による荷電粒子ビーム照射装置に用いる制御装置600の構成及び動作について説明する。
図4は、本発明の一実施形態による荷電粒子ビーム照射装置に用いる制御装置の構成を示すブロックである。なお、図1と同一符号は、同一部分を示している。
【0026】
制御装置600は、治療計画装置61と、中央制御装置62と、加速器制御装置64と、照射制御装置65と、表示装置66から構成される。治療計画装置61は、患部41aに適切な照射野を形成するための照射条件を決定する。中央制御装置62は、前段加速器11とシンクロトロン200とビーム輸送系300と照射野形成装置500の各種設定値を有する。加速器制御装置64は、前段加速器11とシンクロトロン200とビーム輸送系300を制御する。照射制御装置65は、照射野形成装置500を制御する。表示装置66には、深さ方向の照射線量を逐次表示される。制御装置600は、それぞれ前段加速器11、シンクロトロン200、ビーム輸送系300、ならびに照射野形成装置500に接続され、各機器の電源(図示せず)を制御する事によって各機器の運転を制御する。
【0027】
加速器制御装置64は周回ビーム量モニタ25で測定された周回ビーム量を、照射制御装置64は照射線量モニタ52で測定された照射線量を中央制御装置62に入力する。中央制御装置62は、周回ビーム量ならびに照射電荷量をもとに運転パターンを決定する照射順番決定システム63を有する。治療計画装置61は、あらかじめ照射層毎の目標照射線量の設定値を患部41aの種類と形状に基づいて作成し、中央制御装置62は、治療計画装置61が作成したこれらの情報を読み込んでメモリ62aに読み込んでいる。
【0028】
次に、図5を用いて、本実施形態による荷電粒子ビーム照射装置におけるシンクロトロン200の一周期の運転手順について説明する。
図5は、本発明の一実施形態による荷電粒子ビーム照射装置におけるシンクロトロンの一周期の運転手順を示すタイミングチャートである。
【0029】
図5(A)の縦軸は周回ビームエネルギーを示し、図5(B)は偏向電磁石励磁量を示し、図5(C)は周回ビーム量を示し、図5(D)は出射ビーム電流量を示す。図5の横軸は時間である。
【0030】
図5では、二つの層に対して荷電粒子ビームを照射する際の運転パターンを表している。偏向電磁石22の運転パターン(シンクロトロン200の運転パターン)は、図5(D)の下に示すように、入射期間、加速期間、出射期間、再加減速期間、減速期間により構成され、ビーム入射期間開始から減速期間終了までを一周期とした周期運転を行っている。
【0031】
前段加速器11からの荷電粒子ビームを、入射期間にシンクロトロン200の周回軌道へ入射し、図5(A)に示すように、加速期間に目標のエネルギーE1まで加速する。出射期間において、図5(B)に示すように、偏向電磁石22の励磁量は一定であるが、四極電磁石23や六極電磁石26の励磁量を変更し、周回ビームのベータトロン振動の不安定領域(セパラトリクス)を形成する。出射装置27が作る高周波電磁場で周回ビームの振動振幅を増大して安定限界を超えさせ、出射偏向装置28を用いてシンクロトロンから取り出し、エネルギーE1に相当する層におけるビーム走査を行う。これにより、図5(D)に示すように、出射期間中に出射ビーム電流が流れ、図5(C)に示すように、周回ビーム量が漸次減少する。出射期間中は照射線量モニタ52により照射線量を逐次測定し、メモリ62aに保存されているエネルギーE1に相当する層の予定線量の照射が完了すると、ビームの出射を停止する。なお、周回ビーム量モニタ25は周回ビーム量(蓄積ビーム量)を運転中逐次測定し、加速制御装置64に出力する。加速制御装置64は、周回ビーム量を中央制御装置62に出力する。
【0032】
エネルギーE1に相当する層の予定線量の照射が完了すると、照射順番決定システム63はその時点の周回ビーム量を基に現在のエネルギー(E1)から他のエネルギーに再加速または減速したときの周回ビーム量の減少量を予測し、照射未完了層の未照射線量と比較して、次に照射する層(エネルギー)を決定する。
【0033】
照射順番決定システム63による次照射層の決定に基づき、中央制御装置62は各設定値を加速器制御装置64ならびに照射制御装置65に出力する。再加減速期間において周回ビームは、図5(A)に示すように、次に照射するエネルギーE2まで再加速または減速され、出射期間でエネルギーE2に相当する層におけるビーム走査を行う。エネルギーE2に相当する層に予定されている線量の照射が終了すると再度、照射順番決定システム63は次に照射する層を決定するが、次に照射できる層がない場合、図のように入射ビームのエネルギーまで偏向電磁石励磁量を下げ、次周期に移る。
【0034】
次に、図6及び図7を用いて、本実施形態による荷電粒子ビーム照射装置におけるシンクロトロン200の一周期の運転手順について説明する。
図6は、本発明の一実施形態による荷電粒子ビーム照射装置におけるシンクロトロンの一周期の運転手順を示すフローチャートである。図7は、本発明の一実施形態による荷電粒子ビーム照射装置におけるシンクロトロンの一周期の運転手順を示すタイミングチャートである。
【0035】
ステップS10において、シンクロトロンにビームを入射したのち、ステップS20において、予め照射順番決定システム63が設定した照射層に対応するエネルギーまで周回ビームを加速(若しくは減速)する。
【0036】
加速終了後、ステップS30において、治療計画装置が設定した目標照射線量を照射する。なお、治療開始後第一番目に照射する層は予め照射順番決定システム63が不使用ビームを最小とするような、最も予定照射線量の多いレイヤ(層)を第一照射層とする。
【0037】
ステップS40にて照射完了すると、ステップS50において、周回ビーム量モニタ25により周回ビーム量(蓄積ビーム量:蓄積電荷量)を測定する。
【0038】
そして、ステップS60において、照射順番決定システム63は、その時点で残っている周回ビーム量(蓄積電荷量)で次の照射に移行できる層があるかどうか判定する。
【0039】
照射未完了層のどのエネルギーを考慮しても、エネルギー変更によるビーム損失で残っている周回ビームがなくなると予測され、次の照射に移れない場合は、ステップS80において、照射順番決定システム63により次周期の第一照射層を決定し、ステップS90において、次周期へ移る。なお、あるエネルギーから他のエネルギーに再加速または減速する場合に、周回ビーム量の減少量を予測する方法については、図8を用いて後述する。
【0040】
周回ビームが十分残っていて次の照射に移行できる場合は、ステップS70において、照射順番決定システム63により次照射層を決定する。なお、次照射層の決定の仕方の具体例ついては、図9以降を用いて詳述する。この決定に従い、ステップS20に戻り、再び加速または減速を行い、設定された線量を照射する。
【0041】
照射完了時にステップS50にて周回ビーム量を測定し、前記手順と同様に、ステップS60にて照射可能層の有無を判定する。照射可能層が無い場合、その時点以降の照射おいて不使用ビーム量が最小となるように第一照射層を決定し、次周期に移る。その際、エネルギー変更による周回ビームの損失を考慮し、不使用ビームが最小となるような照射順番から第一照射層を決定する。なお、シンクロトロン200に入射されたビームが想定より少なく、第一照射層への照射が完了できない事象を避けるために、周回ビーム量が第一照射層の照射に足らない場合は、再度第一照射層を決定してもよい。
【0042】
図7は、図6に示したフローに従い、周期運転を繰り返した場合の運転パターンを示している。
【0043】
次に、図8を用いて、本実施形態による荷電粒子ビーム照射装置におけるあるエネルギーから他のエネルギーに再加速または減速する場合に、周回ビーム量の減少量を予測する方法について説明する。
図8は、本発明の一実施形態による荷電粒子ビーム照射装置におけるあるエネルギーから他のエネルギーに再加速または減速する場合に、周回ビーム量の減少量を予測する方法の説明図である。
【0044】
中央制御装置62は、あるエネルギーから他のエネルギーに再加速または減速した場合の周回ビーム量の損失率を、データテーブルとして、メモリ62aに有している。
【0045】
図8は、周回ビーム損失量を予測する際に用いるデータテーブルの一例を示している。表の第一列はエネルギー変更前のエネルギーを表し、第一行はエネルギー変更後のエネルギーを表す。それ以外の項は、エネルギー変更時に予測される周回ビーム損失率を意味する。具体的に説明すると、シンクロトロン運転一周期の間にエネルギーEmからエネルギーEnに再加速または減速した場合、周回ビームの内Lmnのビームが損失すると予測できる。このデータテーブルは、実測値を基に作成してもよいし、模擬計算、実測点の間隔の模擬計算による補完、または、過去の実績からの学習を用いて求めてもよいものである。
【0046】
なお、図8では、周回ビーム損失率Lmnを用いてデータテーブルを表したが、周回ビーム損失率Lmnの代わりに、周回ビーム損失量のデータテーブルを周回ビーム量ごとに作成してもよいものである。
【0047】
次に、図9を用いて、本実施形態による荷電粒子ビーム照射装置において、ある層に対して照射が完了した時点における周回ビーム量に基づいて、次照射層を決定する方法(図6のステップS70の詳細方法)について説明する。なお、この方法を用いた具体例については、図10及び図11を用いて後述する。
図9は、本発明の一実施形態による荷電粒子ビーム照射装置において、ある層に対して照射が完了した時点における周回ビーム量に基づいて、次照射層を決定する方法を示すフローチャートである。
【0048】
図6のステップS60において、あるエネルギーでの照射が完了した時点で同周期内に照射が可能な層が有ると判断された場合、まず、ステップS71において、次照射層を照射した後に残存すると予測される周回ビーム電荷量がエネルギー変更時のビーム損失量以下になる(以下、「条件A」とする)ような層を探す。
【0049】
そして、ステップS72において、条件Aを満たす層が1つだけ存在する場合は、その層を次照射層に決定する。
【0050】
また、ステップS73において、条件Aを満たす層が複数ある場合、最も未照射線量が多い層を次照射層に決定する。
【0051】
条件Aを満たす層がない場合、ステップS74において、その時点での周回ビーム量を基に、照射後に残存すると予測される周回ビーム電荷量がエネルギー変更時のビーム損失量以下になる(以下、「条件B」とする)ような層の組み合わせを探す。
【0052】
条件Bを満たす層がある場合、ステップS75において、条件Bを満たす組合せ内の1層を次照射層に決定する。また、条件Bを満たす組合せが複数存在する場合、ステップS75において、照射に用いられないビームが最小になると予測される組合せを選ぶ。尚、条件Bを満たす組合せ内から次照射層を決定する際、最も照射に時間のかからない順番の第1番目の層を次照射層に決定する事で、照射時間の短縮化が図られる。
【0053】
条件Bを満たす組合せがない場合、ステップS76において、照射未完了層の中で最大の未照射線量を有する層を次照射層に決定する。このとき、周回ビーム量内でその層の照射が完了しなくてもよい。その場合、この周期で照射が完了しなかった層は、それ以降、次照射層候補として他の層と等価に扱われる。
【0054】
以上のような決定プロセスを繰り返すことにより、照射に用いられないビームの総和が最小になるように各周期内の照射順番が最適化され、ビーム利用効率が向上する。
【0055】
なお、ビーム損失量が予測から多少ずれたことによって、予定線量をその周期内で照射しきれないという事象を避けるために、「条件A」を、{(次照射層を照射した後に残存すると予測される周回ビーム電荷量)≦(エネルギー変更時のビーム損失量)+(安全幅)}となる層を次照射層に決定してもよいものである。同様に、「条件B」を、{(組合せの照射後に残存すると予測される周回ビーム電荷量)≦(エネルギー変更時のビーム損失量)+(安全幅)}としてもよい。
【0056】
次に、図10及び図11を用いて、本実施形態による荷電粒子ビーム照射装置において、ある層に対して照射が完了した時点における周回ビーム量に基づいて、次照射層を決定する方法の具体例について説明する。
図10及び図11は、本発明の一実施形態による荷電粒子ビーム照射装置において、ある層に対して照射が完了した時点における周回ビーム量に基づいて、次照射層を決定する方法の具体例の説明図である。
【0057】
治療計画装置61が作成した各層ごとの目標照射線量が、図10及び図11のような場合の運転方法を説明する。図10のグラフの横軸は層(レイヤ)の番号、縦軸は目標照射線量であり、各層ごとの目標照射線量は図11の表の値に対応している。また、図10のグラフ中の太線はシンクロトロン200に最大蓄積する事が可能な周回ビーム量を意味し、図11の表中の最大周回ビーム量に対応している。エネルギー変更に伴う周回ビームの損失量は「1」(図9中のビーム量単位と同一)として運転方法を説明する。なお、本例においては、不使用ビームを最小とする次照射層の選択肢が複数ある場合、その選択肢の中で最もエネルギーの高い層、つまりレイヤ番号が大きい層を次照射層に選択する。
【0058】
最初に、最大の未照射線量を有する層であるレイヤ11を照射する。レイヤ11の照射が完了した時点で、周回ビーム量は「2」となる。エネルギー変更による周回ビーム損失量は「1」であるので、次照射層を照射した後に残存すると予測される周回ビーム電荷量が1以下になるのは、レイヤ1,2,3,及び4を照射する場合である。ビーム利用効率としてはどの層を選んでも変わりがないが、レイヤ4を次照射層に決定する。レイヤ4の照射後に残る周回ビーム量は0となり、更なる照射が不可能であるので、次周期に移る。
【0059】
続いて、この時点で最大の未照射線量を有する層であるレイヤ10を照射する。レイヤ10の照射が完了した時点で、周回ビーム量は「4」となる。エネルギー変更による周回ビーム損失量は「1」であるので、次照射層を照射した後に残存すると予測される周回ビーム電荷量が1以下になるのは、レイヤ5,6,7及び8を照射する場合である。レイヤ8が最も未照射線量が多いので、次照射層をレイヤ8に決定する。レイヤ8照射後に残る周回ビーム量は0となり、更なる照射が不可能であるので、次周期に移る。
【0060】
続いて、この時点で最大の未照射線量を有する層であるレイヤ9を照射する。レイヤ9の照射が完了した時点で周回ビーム量は「5」となるが、条件Aを満たす層はない。条件Bを満たす組合せは、(レイヤ1,レイヤ2)、(レイヤ1,レイヤ3)、(レイヤ1,レイヤ5)、(レイヤ1,レイヤ6)、(レイヤ1,レイヤ7)、(レイヤ2,レイヤ3)、(レイヤ2,レイヤ5)、(レイヤ2,レイヤ6)、(レイヤ2,レイヤ7)、(レイヤ3,レイヤ5)、(レイヤ3,レイヤ6)、及び(レイヤ3,レイヤ7)の12組である。照射後に残存すると予測される周回ビーム電荷量が最小になる組は、(レイヤ1,レイヤ5)、(レイヤ1,レイヤ6)、(レイヤ1,レイヤ7)、(レイヤ2,レイヤ5)、(レイヤ2,レイヤ6)、(レイヤ2,レイヤ7)、(レイヤ3,レイヤ5)、(レイヤ3,レイヤ6)及び(レイヤ3,レイヤ7)の9組であるが、エネルギー変更時間短縮の為に、レイヤ7を次照射層に決定する。レイヤ7の照射が完了した時点で周回ビーム量は「2」となり、条件Aよりレイヤ3を次照射層に決定する。レイヤ3照射後に残る周回ビーム量は0となり、更なる照射が不可能であるので、次周期に移る。
【0061】
続いて、この時点で最大の未照射線量を有する層であるレイヤ6を照射する。レイヤ6の照射が完了した時点で、周回ビーム量は「8」となるが、条件Aを満たす照射未完了層は存在しない。条件Bを満たす組合せは、残りすべての層を照射する組合せであり、エネルギー変更時間短縮の為に、レイヤ5を次照射層に決定する。以下同様に、レイヤ3,レイヤ2,レイヤ1の順に照射する。レイヤ1の照射が完了した時点で、予定された線量の照射が全て完了したので、治療を終了する。
【0062】
次に、図12を用いて、本実施形態による荷電粒子ビーム照射装置において、図10及び図11の次照射層の決定方法を用いた場合の全照射期間に渡る偏向電磁石励磁量の変化について説明する。
図12は、本発明の一実施形態による荷電粒子ビーム照射装置において、図10及び図11の次照射層の決定方法を用いた場合の全照射期間に渡る偏向電磁石励磁量の変化についての説明図である。
【0063】
図12において、実線は、図10及び図11にて説明した方法による、全照射期間に渡る偏向電磁石励磁量の変化を示している。破線は、比較のため、エネルギーの高い層から順、つまりレイヤ番号が大きい層から順に照射した場合の偏向電磁石励磁量の変化を示している。
【0064】
なお、図12において、偏向電磁石励磁量は、図11のビームエネルギーに対応している。なお、加速(励磁量増加)にかかる時間をエネルギー1あたり時間1とし、照射にかかる時間を線量1あたり時間1とし、減速(励磁量減少)にかかる時間をエネルギー1あたり時間1として、計算している。
【0065】
最初に、実線で示した図10及び図11にて説明した方法による、全照射期間に渡る偏向電磁石励磁量の変化について説明する。
【0066】
最初に、偏向電磁石励磁量を「11」まで加速する。これは、図11におけるレイヤ11のビームエネルギー量「11」に相当する。その状態で、励磁量は時間8の間保持される。これは、レイヤ11の予定照射線量が「8」であるので、それに要する時間である。図12において、「L11」,「8」の数値符号が上記の照射状況を示している。なお、括弧書きの数値符号は、比較例の場合の照射状況を示している。
【0067】
次に、偏向電磁石励磁量を「4」まで減速する。これは、図11におけるレイヤ4のビームエネルギー量「4」に相当する。その状態で、励磁量は時間1の間保持される。これは、レイヤ4の予定照射線量が「1」であるので、それに要する時間である。
【0068】
以上で第一周期の照射を終了し、偏向電磁石励磁量は一旦「0」まで減速する。
【0069】
次に、第二周期の照射を開始し、偏向電磁石励磁量を「10」まで加速する。これは、図11におけるレイヤ10のビームエネルギー量「10」に相当する。その状態で、励磁量は時間6の間保持される。これは、レイヤ10の予定照射線量が「6」であるので、それに要する時間である。
【0070】
次に、偏向電磁石励磁量を「8」まで減速する。これは、図11におけるレイヤ8のビームエネルギー量「8」に相当する。その状態で、励磁量は時間3の間保持される。これは、レイヤ8の予定照射線量が「3」であるので、それに要する時間である。
【0071】
以上で第二周期の照射を終了し、偏向電磁石励磁量は一旦「0」まで減速する。
【0072】
次に、第三周期の照射を開始し、偏向電磁石励磁量を「9」まで加速する。これは、図11におけるレイヤ9のビームエネルギー量「9」に相当する。その状態で、励磁量は時間5の間保持される。これは、レイヤ9の予定照射線量が「5」であるので、それに要する時間である。
【0073】
次に、偏向電磁石励磁量を「7」まで減速する。これは、図11におけるレイヤ7のビームエネルギー量「7」に相当する。その状態で、励磁量は時間2の間保持される。これは、レイヤ7の予定照射線量が「2」であるので、それに要する時間である。さらに、偏向電磁石励磁量を「3」まで減速する。これは、図11におけるレイヤ3のビームエネルギー量「3」に相当する。その状態で、励磁量は時間1の間保持される。これは、レイヤ3の予定照射線量が「1」であるので、それに要する時間である。
【0074】
以上で第三周期の照射を終了し、偏向電磁石励磁量は一旦「0」まで減速する。
【0075】
次に、第四周期の照射を開始し、偏向電磁石励磁量を「6」まで加速する。これは、図11におけるレイヤ6のビームエネルギー量「6」に相当する。その状態で、励磁量は時間2の間保持される。これは、レイヤ6の予定照射線量が「2」であるので、それに要する時間である。
【0076】
次に、偏向電磁石励磁量を「5」まで減速する。これは、図11におけるレイヤ5のビームエネルギー量「5」に相当する。その状態で、励磁量は時間2の間保持される。これは、レイヤ5の予定照射線量が「2」であるので、それに要する時間である。さらに、偏向電磁石励磁量を「2」まで減速する。これは、図11におけるレイヤ2のビームエネルギー量「1」に相当する。その状態で、励磁量は時間1の間保持される。これは、レイヤ2の予定照射線量が「1」であるので、それに要する時間である。さらに、偏向電磁石励磁量を「1」まで減速する。これは、図11におけるレイヤ1のビームエネルギー量「1」に相当する。その状態で、励磁量は時間1の間保持される。これは、レイヤ1の予定照射線量が「1」であるので、それに要する時間である。
【0077】
以上で第四周期の照射を終了し、偏向電磁石励磁量は一旦「0」まで減速する。これにより、レイヤ11〜レイヤ1までの全ての照射を終了する。
【0078】
次に、破線で示す比較例の場合について説明する。比較例では、レイヤ11,レイヤ10,レイヤ9の順で照射する。
【0079】
最初に、偏向電磁石励磁量を「11」まで加速する。これは、図11におけるレイヤ11のビームエネルギー量「11」に相当する。その状態で、励磁量は時間8の間保持される。これは、レイヤ11の予定照射線量が「8」であるので、それに要する時間である。
【0080】
次に、偏向電磁石励磁量を「10」まで減速する。これは、図11におけるレイヤ10のビームエネルギー量「10」に相当する。その状態で、励磁量は時間1の間保持される。これは、レイヤ10の予定照射線量が「6」であるが、照射に使える周回ビーム量の残りが「1」であるので、その照射に要する時間である。
【0081】
以上で第一周期の照射を終了し、偏向電磁石励磁量は一旦「0」まで減速する。
【0082】
次に、第二周期の照射を開始し、偏向電磁石励磁量を「10」まで加速する。これは、図11におけるレイヤ10のビームエネルギー量「10」に相当する。その状態で、励磁量は時間5の間保持される。これは、前回の照射ですでに照射線量「1」だけ照射されており、一方、レイヤ10の予定照射線量が「6」であるので、残りの「5」照射するのに要する時間である。
【0083】
次に、偏向電磁石励磁量を「9」まで減速する。これは、図11におけるレイヤ9のビームエネルギー量「9」に相当する。その状態で、励磁量は時間4の間保持される。これは、レイヤ9の予定照射線量が「5」であるが、照射に使える周回ビーム量の残りが「4」であるので、その照射に要する時間である。
【0084】
以上で第二周期の照射を終了し、偏向電磁石励磁量は一旦「0」まで減速する。
【0085】
次に、第三周期の照射を開始し、偏向電磁石励磁量を「9」まで加速する。これは、図11におけるレイヤ9のビームエネルギー量「9」に相当する。その状態で、励磁量は時間1の間保持される。これは、前回の照射ですでに照射線量「4」だけ照射されており、一方、レイヤ10の予定照射線量が「5」であるので、残りの「1」照射するのに要する時間である。
【0086】
次に、偏向電磁石励磁量を「8」まで減速する。これは、図11におけるレイヤ8のビームエネルギー量「8」に相当する。その状態で、励磁量は時間3の間保持される。これは、レイヤ8の予定照射線量が「3」であるので、それに要する時間である。さらに、偏向電磁石励磁量を「7」まで減速する。これは、図11におけるレイヤ7のビームエネルギー量「7」に相当する。その状態で、励磁量は時間2の間保持される。これは、レイヤ7の予定照射線量が「2」であるので、それに要する時間である。さらに、偏向電磁石励磁量を「6」まで減速する。これは、図11におけるレイヤ6のビームエネルギー量「6」に相当する。その状態で、励磁量は時間1の間保持される。これは、レイヤ6の予定照射線量が「2」であるが、照射に使える周回ビーム量の残りが「1」であるので、その照射に要する時間である。
【0087】
以上で第三周期の照射を終了し、偏向電磁石励磁量は一旦「0」まで減速する。
【0088】
次に、第四周期の照射を開始し、偏向電磁石励磁量を「6」まで加速する。これは、図11におけるレイヤ6のビームエネルギー量「6」に相当する。その状態で、励磁量は時間1の間保持される。これは、前回の照射ですでに照射線量「1」だけ照射されており、一方、レイヤ6の予定照射線量が「1」であるので、残りの「1」照射するのに要する時間である。
【0089】
次に、偏向電磁石励磁量を「5」まで減速する。これは、図11におけるレイヤ5のビームエネルギー量「5」に相当する。その状態で、励磁量は時間2の間保持される。これは、レイヤ5の予定照射線量が「2」であるので、それに要する時間である。さらに、偏向電磁石励磁量を「4」まで減速する。これは、図11におけるレイヤ4のビームエネルギー量「4」に相当する。その状態で、励磁量は時間1の間保持される。これは、レイヤ4の予定照射線量が「1」であるので、それに要する時間である。さらに、偏向電磁石励磁量を「3」まで減速する。これは、図11におけるレイヤ3のビームエネルギー量「3」に相当する。その状態で、励磁量は時間1の間保持される。これは、レイヤ3の予定照射線量が「1」であるので、それに要する時間である。さらに、偏向電磁石励磁量を「2」まで減速する。これは、図11におけるレイヤ2のビームエネルギー量「2」に相当する。その状態で、励磁量は時間1の間保持される。これは、レイヤ2の予定照射線量が「1」であるので、それに要する時間である。
【0090】
以上で第四周期の照射を終了し、偏向電磁石励磁量は一旦「0」まで減速する。
【0091】
次に、第五周期の照射を開始し、偏向電磁石励磁量を「1」まで加速する。これは、図11におけるレイヤ1のビームエネルギー量「1」に相当する。その状態で、励磁量は時間1の間保持される。これは、レイヤ1の予定照射線量が「1」であるので、それに要する時間である。
【0092】
以上で第四周期の照射を終了し、偏向電磁石励磁量は一旦「0」まで減速する。
【0093】
図12において、本実施形態の実線と比較例の破線を比べると理解されるように、本実施形態では、全照射にかかる時間が短縮される。
【0094】
また、本実施形態の方が、ビーム利用効率が向上するので、これについて説明する。ビームの利用効率を悪化する原因は、照射するレイヤを変更するために、あるエネルギーから他のエネルギーに再減速(あるいは再加速)することによる損失である。従って、照射レイヤの変更のための再減速の回数が少なければ、ビームの利用効率が向上する。
【0095】
本実施形態の場合、図12に示した符号G1,G2,…,G7が照射レイヤの変更のための再減速の箇所であり、合計7回である。
【0096】
一方、比較例の場合、図12に示した符号g1,g2,…,g9が照射レイヤの変更のための再減速の箇所であり、合計9回である。
【0097】
従って、本実施形態の方が、照射レイヤの変更のための再減速の回数が少くでき、ビーム利用効率を向上できる。
【0098】
以上説明したように、本実施形態によれば、不使用ビーム量が治療全体として最小となるため、ビーム利用効率が向上することできる。また、全照射に要する時間を短くでき、治療時間短縮が図れ、患者の負担を軽減できる。
【符号の説明】
【0099】
100…粒子線治療装置
11…前段加速器
200…シンクロトロン
21…入射装置
22…偏向電磁石
23…四極電磁石
24…加速空洞
25…周回ビーム量モニタ
26…六極電磁石
27…出射装置
28…出射偏向装置
300…ビーム輸送系
400…治療室
41…患者
41a…患部
42…治療ベッド
500…照射野形成装置
51a,b…走査電磁石
52…照射線量モニタ
53…ビーム位置モニタ
600…制御装置
61…治療計画装置
62…中央制御装置
62a…メモリ
63…照射順番決定システム
64…加速器制御装置
65…照射制御装置
66…表示装置

【特許請求の範囲】
【請求項1】
荷電粒子ビームを加速して出射するシンクロトロンと、
該シンクロトロンから出射された前記荷電粒子ビームをビーム進行方向と垂直な方向に走査する走査電磁石を有する照射野形成装置と、
前記シンクロトロンの周回ビーム電荷量を測定する周回ビーム電荷量モニタと、
照射線量を測定する照射線量モニタと、
あるエネルギーに周回ビームが加速された状態から他のエネルギーへ再加速または再減速した場合に損失される周回ビーム量を予測し、前記周回ビーム電荷量モニタにより測定された周回ビーム電荷量と、前記照射線量モニタにより測定された照射線量を用いて、照射全体を通して損失する周回ビーム量が最小になるように前記シンクロトロンの運転パターンを変更して、照射するエネルギーの順番を決定する照射順番決定部を有する制御装置を備えることを特徴とする荷電粒子ビーム照射装置。
【請求項2】
請求項1に記載の荷電粒子ビーム照射装置において、
前記照射順番決定部は、あるエネルギーでの照射が完了した時点において、次周期以降の照射を完了するまでに損失すると予測される周回ビーム量が最小となるように、運転パターンを変更することを特徴とする荷電粒子ビーム照射装置。
【請求項3】
請求項2に記載の荷電粒子ビーム照射装置において、
前記照射順番決定部は、あるエネルギーでの照射が完了した時点において、その時点での前記シンクロトロンの運転周期内で照射に用いられない周回ビーム量が最小になるように、運転パターンを変更することを特徴とする荷電粒子ビーム照射装置。
【請求項4】
請求項1に記載の荷電粒子ビーム照射装置において、
前記照射順番決定部は、あるエネルギーでの照射が完了した時点で同周期内に照射が可能な層が有ると判断された場合、次照射層を照射した後に残存すると予測される周回ビーム電荷量がエネルギー変更時のビーム損失量以下になる第1の条件を満たす層が1つだけ存在する場合は、その層を次照射層に決定することを特徴とする荷電粒子ビーム照射装置。
【請求項5】
請求項1に記載の荷電粒子ビーム照射装置において、
前記照射順番決定部は、あるエネルギーでの照射が完了した時点で同周期内に照射が可能な層が有ると判断された場合、次照射層を照射した後に残存すると予測される周回ビーム電荷量がエネルギー変更時のビーム損失量以下になる第1の条件を満たす層が複数ある場合、最も未照射線量が多い層を次照射層に決定することを特徴とする荷電粒子ビーム照射装置。
【請求項6】
請求項1に記載の荷電粒子ビーム照射装置において、
前記照射順番決定部は、あるエネルギーでの照射が完了した時点で同周期内に照射が可能な層が有ると判断された場合、次照射層を照射した後に残存すると予測される周回ビーム電荷量がエネルギー変更時のビーム損失量以下になる第1の条件を満たす層がない場合、その時点での周回ビーム量を基に、照射後に残存すると予測される周回ビーム電荷量がエネルギー変更時のビーム損失量以下になる第2の条件を満たす層の組み合わせがある場合、前記第2の条件を満たす組合せ内の1層を次照射層に決定することを特徴とする荷電粒子ビーム照射装置。
【請求項7】
請求項1に記載の荷電粒子ビーム照射装置において、
前記照射順番決定部は、あるエネルギーでの照射が完了した時点で同周期内に照射が可能な層が有ると判断された場合、次照射層を照射した後に残存すると予測される周回ビーム電荷量がエネルギー変更時のビーム損失量以下になる第1の条件を満たす層がない場合、その時点での周回ビーム量を基に、照射後に残存すると予測される周回ビーム電荷量がエネルギー変更時のビーム損失量以下になる第2の条件を満たす層の組み合わせが複数存在する場合、照射に用いられないビームが最小になると予測される組合せを選ぶことを特徴とする荷電粒子ビーム照射装置。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate

【図11】
image rotate

【図12】
image rotate


【公開番号】特開2012−64403(P2012−64403A)
【公開日】平成24年3月29日(2012.3.29)
【国際特許分類】
【出願番号】特願2010−206932(P2010−206932)
【出願日】平成22年9月15日(2010.9.15)
【出願人】(000005108)株式会社日立製作所 (27,607)
【Fターム(参考)】