説明

蒸気タービン

【課題】動翼の振動応力を抑制し、蒸気タービンの運転可能な蒸気流量の範囲を拡大することができる蒸気タービンを提供することである。
【解決手段】実施形態の蒸気タービン10は、ケーシング20と、ケーシング20に貫設されたタービンロータ22と、タービンロータ22の周方向に複数の動翼21を植設して構成され、タービンロータ22の軸方向に複数段備えられた動翼翼列とを備える。さらに、ケーシング20の内周に設けられたダイアフラム外輪23と、ダイアフラム外輪23の内側に設けられたダイアフラム内輪24と、ダイアフラム外輪23とダイアフラム内輪24との間に、周方向に複数の静翼25を取り付けて構成され、タービンロータ22の軸方向に複数段備えられた、動翼翼列とタービン段落を構成する静翼翼列と、タービン段落の最終段を構成する静翼翼列に蒸気を供給する蒸気供給機構とを備える。

【発明の詳細な説明】
【技術分野】
【0001】
本発明の実施形態は、蒸気タービンに関する。
【背景技術】
【0002】
低圧タービンにおいて、起動時の無負荷運転時、低負荷運転時、低真空下での運転時などの、蒸気の体積流量が少ない条件下では、最終段に配置される高翼長の動翼に大きな振動応力が発生することが知られている。これは、主蒸気の体積流量が少ない流れ場において生じる流体加振力に起因するものである。
【0003】
図6は、従来の蒸気タービン200(低圧タービン)において、主蒸気の体積流量が少ないときの、最終段のタービン段落における流れ場を模式的に示した図である。最終段の、静翼201および動翼202で構成されるタービン段落において、図6に示すように、動翼202の付近には逆流域203が発生する。なお、図6に示した流れ場は、数値解析によって得られた結果である。
【0004】
このような流れ場において、回転している動翼202付近では、非定常的な流れ場となり、動翼202には流体加振力が生じる。この流体加振力は、特に、動翼202の先端付近において発生するため、動翼202にかかる曲げモーメントが大きくなり、振動応力が大きくなる。
【0005】
そのため、蒸気タービンの運転範囲は、振動応力が所定の上限値を超えない範囲に制限されている。振動応力の上限値は、材料の疲労限度や安全率などを考慮して定められる。ここで、図7は、主蒸気の体積流量と動翼の振動応力との関係を示す図である。図7において振動応力の上限値をσ1で示している。
【0006】
図7に示すように、体積流量がV1のときに振動応力がσ1となり、体積流量がV1よりも減少すると振動応力がさらに増加し、ピーク値を得る。そのため、蒸気タービンの運転範囲は、体積流量がV1を下回らないよう制限されている。すなわち、主蒸気の流量が少なくなる低負荷運転や、主蒸気の比容積が小さくなる低真空時の運転は、運転可能な負荷条件や蒸気条件の範囲が制限される。このようなことから、動翼にかかる流体加振力を抑制する技術が検討されている。
【先行技術文献】
【特許文献】
【0007】
【特許文献1】特開2008−2439号公報
【発明の概要】
【発明が解決しようとする課題】
【0008】
しかしながら、従来における、動翼にかかる流体加振力の抑制技術は、所定の範囲の振動応力に限られているため、幅広い条件に適用することは難しい。そのため、特に、主蒸気の体積流量が少ない条件において、動翼の振動応力が制約となり、蒸気タービンの運転可能な蒸気流量の範囲が制限されている。
【0009】
本発明が解決しようとする課題は、動翼の振動応力を抑制し、蒸気タービンの運転可能な蒸気流量の範囲を拡大することができる蒸気タービンを提供することである。
【課題を解決するための手段】
【0010】
実施形態の蒸気タービンは、ケーシングと、前記ケーシングに貫設されたタービンロータと、前記タービンロータの周方向に複数の動翼を植設して構成され、前記タービンロータの軸方向に複数段備えられた動翼翼列とを備える。さらに、前記ケーシングの内周に設けられたダイアフラム外輪と、前記ダイアフラム外輪の内側に設けられたダイアフラム内輪と、前記ダイアフラム外輪と前記ダイアフラム内輪との間に、周方向に複数の静翼を取り付けて構成され、前記タービンロータの軸方向に、前記動翼翼列と交互に複数段備えられた静翼翼列と、タービン段落の最終段を構成する前記静翼翼列内に蒸気を供給する蒸気供給機構とを備える。
【図面の簡単な説明】
【0011】
【図1】第1の実施の形態の蒸気タービンの鉛直方向の子午断面を示す図である。
【図2】第1の実施の形態の蒸気タービンの最終のタービン段落における下半部の鉛直方向の子午断面を拡大して示した図である。
【図3】第1の実施の形態の蒸気タービンを備える蒸気タービン発電設備の概要を示す図である。
【図4】第1の実施の形態の蒸気タービン10において、蒸気供給機構を機能させたときの、最終段のタービン段落における流れ場を模式的に示した図である。
【図5】第2の実施の形態の蒸気タービンの最終のタービン段落における下半部の鉛直方向の子午断面を拡大して示した図である。
【図6】従来の蒸気タービン200(低圧タービン)において、主蒸気の体積流量が少ないときの、最終段のタービン段落における流れ場を模式的に示した図である。
【図7】主蒸気の体積流量と動翼の振動応力との関係を示す図である。
【発明を実施するための形態】
【0012】
以下、本発明の実施の形態について図面を参照して説明する。
【0013】
(第1の実施の形態)
図1は、第1の実施の形態の蒸気タービン10の鉛直方向の子午断面を示す図である。また、図2は、第1の実施の形態の蒸気タービン10の最終のタービン段落における下半部の鉛直方向の子午断面を拡大して示した図である。以下において、同一の構成部分には同一の符号を付して、重複する説明を省略または簡略する。
【0014】
なお、第1の実施の形態の蒸気タービン10は、低圧タービンであり、ここでは、単流排気式の低圧タービンを例示して説明するが、複流排気式の低圧タービンであってもよい。
【0015】
図1に示すように、蒸気タービン10は、ケーシング20を備え、このケーシング20内には、動翼21が植設されたタービンロータ22が貫設されている。タービンロータ22のロータディスク22aに、動翼21を周方向に複数植設することで動翼翼列が構成され、この動翼翼列は、タービンロータ22の軸方向に複数段構成されている。タービンロータ22は、図示しないロータ軸受によって回転可能に支持されている。
【0016】
ケーシング20の内周には、ダイアフラム外輪23が設置され、このダイアフラム外輪23の内側には、ダイアフラム内輪24が設置されている。ダイアフラム外輪23とダイアフラム内輪24との間には、周方向に複数の静翼25が配置され、静翼翼列を構成している。この静翼翼列は、タービンロータ22の軸方向に動翼翼列と交互に複数段備えられ、静翼翼列と、その直下流側に位置する動翼翼列とで一つのタービン段落を構成している。
【0017】
タービンロータ22とケーシング20との間には、蒸気の外部への漏洩を防止するために、グランドシール部26が設けられている。また、タービンロータ22とダイアフラム内輪24との間には、この間を蒸気が下流側へ通過するのを防止するために、シール部27が設けられている。
【0018】
また、蒸気タービン10には、後述するクロスオーバ管83からの蒸気を蒸気タービン10の内部に蒸気を導入するための蒸気入口管(図示しない)がケーシング20を貫通して設けられている。最終段のタービン段落の下流側には、タービン段落において膨張仕事をした蒸気を排気するための排気室(図示しない)が設けられ、この排気室を介して蒸気が蒸気タービン10の外部に排気される。
【0019】
最終段のタービン段落を構成する静翼翼列には、蒸気を供給する蒸気供給機構が備えられている。この蒸気供給機構は、例えば、図2に示すように、周方向に配置された静翼25間におけるダイアフラム外輪23に形成された、蒸気を静翼25間の蒸気流路に噴出するための蒸気噴出孔30を備える。蒸気噴出孔30は、例えば、スリット状に形成される。
【0020】
ダイアフラム外輪23およびケーシング20には、蒸気噴出孔30に蒸気を導く蒸気導入流路が形成されている。蒸気導入流路は、ダイアフラム外輪23に形成された蒸気室31および蒸気導入孔32a、ケーシング20に形成された蒸気導入孔32b、蒸気導入管33を備える。
【0021】
蒸気室31は、ダイアフラム外輪23内部に、周方向に亘って形成され、静翼25間に形成された各蒸気噴出孔30に連通する。蒸気導入孔32bは、この蒸気室31に蒸気を導入する流路である。
【0022】
蒸気導入孔32bは、ケーシング20に形成され、蒸気導入孔32aに連通している。また、蒸気導入孔32bには、蒸気導入管33が接続されている。
【0023】
このように構成された蒸気導入流路において、蒸気導入管33から蒸気導入孔32bおよび蒸気導入孔32aを介して蒸気室31に導入された蒸気は、周方向に広がり、各蒸気噴出孔30に導かれる。
【0024】
ここで、一般に、低圧タービンの最終段のタービン段落においては、蒸気の圧力および温度が降下するため、蒸気が凝縮し水滴が発生する。このような水滴は、動翼21に衝突することで動翼21を侵食する。また、水滴は、動翼21の背側より流入するため、動翼21には、回転方向とは逆方向の力が作用し、タービン効率が低下する。このような問題を解決するために、例えば、発生した水滴やダイアフラム外輪23に内周面の液膜などを回収する水滴回収機構を低圧タービンの最終段のタービン段落に備えている。
【0025】
水滴回収機構として、例えば、静翼25間のダイアフラム外輪23の内周面に形成されたスリット状の回収孔、その回収孔から回収された凝縮水を回収する回収室を備えている。この回収室は、周方向に亘って形成され、静翼25間に形成された各回収孔に連通するように構成されている。そして、回収室に回収された凝縮水は、蒸気タービンの底部に設けられた排出配管を介して、例えば復水器に導かれる。
【0026】
すなわち、蒸気供給機構と水滴回収機構とは、蒸気を供給するか、凝縮水を回収するかで、機能は異なるが、機構の構成構造は基本的に同じである。そのため、蒸気供給機構として、水滴回収機構を利用することができる。水滴回収機構として使用する場合には、回収孔が、蒸気噴出孔30として、回収室が蒸気室31として、排出配管が蒸気導入管33として機能する。
【0027】
なお、蒸気を蒸気室31の周方向に均一に導入するため、蒸気導入管33として排出配管を利用するとともに、蒸気導入管33を分岐して、周方向の複数箇所に分岐した配管を接続して、蒸気導入孔32bおよび蒸気導入孔32aを介して蒸気室31に蒸気を導入する構成としてもよい。
【0028】
次に、第1の実施の形態の蒸気タービン10を備えた蒸気タービン設備について説明する。なお、ここでは、蒸気供給機構として、水滴回収機構を利用する場合を例示して説明する。
【0029】
図3は、第1の実施の形態の蒸気タービン10を備える蒸気タービン発電設備の概要を示す図である。
【0030】
図3に示された蒸気タービン発電設備は、過熱器40および再熱器41を備えるボイラ42、高圧タービン50、中圧タービン51、第1の実施の形態の蒸気タービン10である低圧タービン、発電機60、復水器70、復水ポンプ71、低圧給水加熱器72、ボイラ給水ポンプ73、高圧給水加熱器74を備えている。
【0031】
この蒸気タービン発電設備では、ボイラ42の過熱器40で発生した高温の蒸気は、主蒸気管80を介して高圧タービン50に導入され、膨張仕事をした後、低温再熱蒸気管81を介して、その一部がボイラ42の再熱器41に導入される。
【0032】
低温再熱蒸気管81から分岐された配管は、前述した蒸気導入管33として機能する。蒸気導入管33には、高圧給水加熱器74を介在させ、高圧タービン50から排気された蒸気を高圧給水加熱器74で熱交換することで冷却する。これによって、高圧給水加熱器74内を流れる、過熱器40に導かれる給水が加熱される。また、蒸気導入管33には、低圧タービンである蒸気タービン10へ供給する蒸気を遮断したり、その流量を調整するための流量調整バルブ33aが備えられている。
【0033】
ここで、蒸気導入管33を介して蒸気タービン10の最終段の静翼翼列に導入される蒸気の温度は、翼材の耐熱温度を考慮して、200℃以下であることが好ましい。高圧タービン50から排気された蒸気を高圧給水加熱器74を介することでこの温度範囲まで冷却することができない場合には、蒸気導入管33に熱交換機などの減温器を設けてもよい。
【0034】
なお、蒸気タービン発電設備には、図示していないが、高圧タービン50から排気された蒸気の一部を、高圧給水加熱器74に導き、熱交換して給水を加熱するための配管系統を備えている。給水を加熱した蒸気は、例えば、復水器70に導入される。このように構成することで、熱サイクルの効率を向上することができる。
【0035】
低温再熱蒸気管81を流れ、再熱器41で再び高温の過熱蒸気に加熱(再熱)された蒸気は、高温再熱蒸気管82を介して中圧タービン51に導入される。そして、中圧タービン51で膨張仕事をした後、クロスオーバ管83を介して、低圧タービンである蒸気タービン10に導入される。
【0036】
蒸気タービン10に導入された蒸気は、膨張仕事をした後、復水器70に導かれる。また、蒸気タービン10から抽気された蒸気は、配管84を介して、低圧給水加熱器72に導かれ、熱交換して給水を加熱する。給水を加熱した蒸気は、例えば、復水器70に導入される。また、蒸気タービン10は、発電機60を駆動して発電する。
【0037】
復水器70に導かれた蒸気は、凝縮して復水となる。復水器70の復水は、復水ポンプ71によって、低圧給水加熱器72へ送られ、ボイラ給水ポンプ73によって昇圧され、給水管85を介して、高圧給水加熱器74を経て過熱器40に給水される。
【0038】
蒸気タービン10は、前述したように、静翼25間のダイアフラム外輪23の内周面に形成されたスリット状の回収孔、その回収孔から回収された凝縮水を回収する回収室を備えている。そして、回収室に回収された凝縮水は、排出配管86を介して復水器70に導かれる。また、排出配管86には、復水器70へ流れる凝縮水を遮断するための遮断バルブ86aが設けられている。
【0039】
ここで、蒸気供給機構として、水滴回収機構を利用するため、蒸気導入管33の一部と排出配管86の一部である、蒸気タービン10に接続されている部分は一致する共通配管部87が存在する。なお、蒸気導入管33に設けられた流量調整バルブ33a、および排出配管86に設けられた遮断バルブ86aは、図3に示すように、共通配管部87でない、それぞれの配管に設けられている。
【0040】
この場合、蒸気供給機構と水滴回収機構とを同時に機能させることはできないため、蒸気供給機構を機能させる場合には、遮断バルブ86aは閉じられ、復水器70側への流路を遮断し、流量調整バルブ33aを開き、蒸気タービン10に蒸気を供給する。一方、水滴回収機構を機能させる場合には、流量調整バルブ33aは閉じられ、蒸気タービン10側への流路を遮断し、遮断バルブ86aを開き、復水器70に凝縮水を流す。
【0041】
ここで、蒸気導入管33を介して蒸気タービン10の最終段の静翼翼列に導入される蒸気の圧力は、最終段の静翼翼列の入口における主蒸気の圧力よりも高く、かつ最終段の動翼翼列の外周端部における主蒸気の圧力よりも高くなるように設定されている。すなわち、最終段の静翼翼列に導入される蒸気の圧力は、図6に示すような逆流域が発生した場合においても、蒸気噴出孔30から蒸気を主蒸気が流れる蒸気流路内に噴出することができる圧力に設定される。
【0042】
水滴回収機構を機能させる場合には、例えば、回収孔や回収室の圧力よりも復水器70の圧力が低いため、その圧力差によって凝縮水は、排出配管86を通り復水器70側に流れる。
【0043】
また、前述した、流量調整バルブ33a、遮断バルブ86a、復水ポンプ71、ボイラ給水ポンプ73などは、図示しない制御装置によって、例えば、図示しない、温度検知装置、流量検知装置、圧力検知装置などからの情報に基づいてフィードバック制御されている。
【0044】
ここで、蒸気タービン10の動作について説明する。
【0045】
クロスオーバ管83を経て蒸気タービン10内に流入した蒸気は、各タービン段落の静翼25、動翼21を備える蒸気流路を膨張仕事をしながら通過し、タービンロータ22を回転させる。膨張仕事をした蒸気は、排気流路(図示しない)を通過し、復水器70に導かれる。
【0046】
蒸気タービン10において、通常の運転時には、水滴回収機構を機能させる状態で運転されている。すなわち、流量調整バルブ33aは閉じられ、蒸気タービン10側への流路を遮断し、遮断バルブ86aを開き、復水器70に凝縮水を流している。
【0047】
ここで、図7を参照して前述したように、主蒸気の体積流量がV1よりも低下すると、動翼21に生じる振動応力が上限値σ1を超え、動翼21にかかる流体加振力が増加する。
【0048】
そこで、制御装置は、例えば、流量検知装置などの蒸気の流量に係る情報を検知するための装置からの出力信号に基づき、蒸気タービン10に流れる主蒸気の体積流量がV1よりも少ないと判定した場合には、蒸気供給機構を機能させるように、流量調整バルブ33aおよび遮断バルブ86aを制御する。具体的には、遮断バルブ86aを閉じ、復水器70側への流路を遮断し、流量調整バルブ33aを開き、蒸気タービン10の最終段の静翼翼列に、蒸気導入管33を介して蒸気を供給する。この制御によって、蒸気噴出孔30から蒸気流路内に蒸気が供給される。なお、流量検知装置としては、蒸気の流量に係る情報を検知できるものであればよく、例えば、圧力検知装置や温度検知装置などを含んでもよい。
【0049】
この際、制御装置は、蒸気タービンの運転状態(例えば、主蒸気の流量など)に応じて、流量調整バルブ33aの開度を調整し、蒸気噴出孔30から蒸気流路内に噴出される蒸気の流量を調整してもよい。例えば、主蒸気の体積流量と体積流量V1との差が大きい場合には、流量調整バルブ33aの開度を大きくし、蒸気の供給流量を多くする。一方、主蒸気の体積流量と体積流量V1との差が小さい場合には、流量調整バルブ33aの開度を小さくし、蒸気の供給流量を少なくする。
【0050】
なお、振動応力の上限値σ1は、予め設定される振動応力の上限値であり、例えば、動翼21にかかる流体加振力を考慮して、動翼21において最大限許容できる振動応力の最大値に設定される。
【0051】
図4は、第1の実施の形態の蒸気タービン10において、蒸気供給機構を機能させたときの、最終段のタービン段落における流れ場を模式的に示した図である。なお、図4に示した流れ場は、数値解析によって得られた結果である。
【0052】
図4に示すように、蒸気噴出孔30から蒸気流路内に蒸気を供給することで、主蒸気の体積流量がV1よりも少ない場合においても、図6に示すような、動翼202の先端付近に発生する逆流域は発生しない。また、蒸気噴出孔30は、ダイアフラム外輪23に形成されているため、最終段のタービン段落における動翼21の先端側により多くの蒸気が供給される。これも、動翼21の先端側における逆流域の発生を防止するための一要因となる。そのため、主蒸気の体積流量がV1よりも少ない場合においても、動翼21に生じる振動応力が抑制され、動翼21にかかる流体加振力が抑制される。
【0053】
制御装置は、例えば、流量検知装置などの蒸気の流量に係る情報を検知するための装置などからの出力信号に基づき、蒸気タービン10に流れる主蒸気の体積流量がV1以上であると判定した場合には、水滴回収機構を機能させるように、流量調整バルブ33aおよび遮断バルブ86aを制御する。具体的には、流量調整バルブ33aを閉じ、蒸気タービン10側への流路を遮断し、遮断バルブ86aを開き、復水器70に凝縮水を流す。
【0054】
上記したように、第1の実施の形態の蒸気タービン10によれば、蒸気供給機構を備えることで、主蒸気の体積流量が少ない場合においても、動翼21に生じる振動応力を抑制して、動翼21にかかる流体加振力を抑制することができる。そのため、蒸気タービンの運転可能な蒸気流量の範囲を拡大することができる。
【0055】
また、蒸気供給機構によって蒸気を供給することで、例えば、動翼の先端部の温度上昇を抑えることができる。そのため、動翼の先端部の温度が上昇するために制限されていた運転条件においても運転が可能となる。
【0056】
(第2の実施の形態)
第2の実施の形態の蒸気タービン11では、蒸気供給機構の蒸気噴出孔の構成が第1の実施の形態の蒸気タービン10の構成と主として異なる以外は、第1の実施の形態の蒸気タービン10の構成と同じである。そのため、ここでは、蒸気噴出孔の構成について主に説明する。
【0057】
図5は、第2の実施の形態の蒸気タービン11の最終のタービン段落における下半部の鉛直方向の子午断面を拡大して示した図である。なお、図5に示された子午断面においては、静翼25は、腹側が示された側面図となる。
【0058】
最終段のタービン段落を構成する静翼翼列には、蒸気を供給する蒸気供給機構が備えられている。この蒸気供給機構は、例えば、図5に示すように、中空の翼構造を有する静翼25の翼面に形成された複数の蒸気噴出孔90を備える。蒸気噴出孔90は、例えば、スリット状に形成され、静翼25の腹側と背側に形成されている。
【0059】
蒸気噴出孔90は、例えば、図5に示すように、タービンロータ22の軸方向に複数列、かつ半径方向に複数個形成することができる。また、列を構成する蒸気噴出孔90の半径方向の位置を、隣接する列どうし交互にずらして千鳥格子状に形成することができる。
【0060】
ここで、静翼25の半径方向の高さの半分よりもダイアフラム外輪23側に形成されている各蒸気噴出孔90の開口面積の合計である全開口面積は、静翼25の半径方向の高さの半分よりもダイアフラム内輪24側に形成されている各蒸気噴出孔90の開口面積の合計である全開口面積よりも大きいことが好ましい。すなわち、蒸気噴出孔90は、静翼25の半径方向の高さの半分よりもダイアフラム外輪23側に主に形成されることが好ましい。このように蒸気噴出孔90を形成することで、最終段のタービン段落における動翼21の先端側により多くの蒸気が供給されるため、動翼21の先端側における逆流域の発生を防止することができる。
【0061】
ダイアフラム外輪23およびケーシング20には、最終段のタービン段落を構成する静翼25の内部、すなわち蒸気噴出孔90に蒸気を導く蒸気導入流路が形成されている。蒸気導入流路は、ダイアフラム外輪23に形成された蒸気室101および蒸気導入孔102a、102b、ケーシング20に形成された蒸気導入孔103、蒸気導入管33を備える。
【0062】
蒸気導入孔102aは、静翼25の内部に連通している。蒸気室101は、ダイアフラム外輪23内部に、周方向に亘って形成され、各静翼25に対応して形成された蒸気導入孔102aに連通するように構成されている。蒸気導入孔102bは、この蒸気室101に蒸気を導入する流路である。
【0063】
蒸気導入孔103は、ケーシング20に形成され、蒸気導入孔102bに連通している。また、蒸気導入孔103には、蒸気導入管33が接続されている。
【0064】
このように構成された蒸気導入流路において、蒸気導入管33から蒸気導入孔103および蒸気導入孔102bを介して蒸気室101に導入された蒸気は、周方向に広がり、各蒸気導入孔102aを介して各静翼25の内部に導かれる。各静翼25の内部に導かれた蒸気は、各蒸気噴出孔90から噴出される。
【0065】
ここで、前述したように、一般に、低圧タービンの最終段のタービン段落においては、蒸気が凝縮して水滴が発生する。そのため、例えば、発生した水滴を回収する水滴回収機構を低圧タービンの最終段のタービン段落に備えている。
【0066】
水滴回収機構として、例えば、中空の翼構造を有する静翼25の腹側と背側に形成されたスリット状の回収孔、その回収孔から回収された凝縮水を回収する回収室を備えている。この回収室は、周方向に亘って形成され、静翼25の内部、すなわち回収孔に連通するように構成されている。そして、回収室に回収された凝縮水は、蒸気タービンの底部に設けられた排出配管を介して、例えば復水器に導かれる。
【0067】
すなわち、蒸気供給機構と水滴回収機構とは、蒸気を供給するか、凝縮水を回収するかで、機能は異なるが、機構の構成構造は基本的に同じである。そのため、蒸気供給機構として、水滴回収機構を利用することができる。水滴回収機構として使用する場合には、回収孔が、蒸気噴出孔90として、回収室が蒸気室101として、排出配管が蒸気導入管33として機能する。
【0068】
なお、蒸気を蒸気室101の周方向に均一に導入するため、蒸気導入管33として排出配管を利用するとともに、蒸気導入管33を分岐して、周方向の複数箇所に分岐した配管を接続して、蒸気導入孔103および蒸気導入孔102bを介して蒸気室101に蒸気を導入する構成としてもよい。
【0069】
第2の実施の形態の蒸気タービン11を備えた蒸気タービン設備については、第1の実施の形態の蒸気タービン10を備えた蒸気タービン設備と同じ構成を有する。
【0070】
蒸気タービン11の動作についても、基本的に、第1の実施の形態の蒸気タービン10の動作と同じである。
【0071】
例えば、制御装置は、例えば、流量検知装置などの蒸気の流量に係る情報を検知するための装置などからの出力信号に基づき、蒸気タービン11に流れる主蒸気の体積流量がV1よりも少ないと判定した場合には、蒸気供給機構を機能させるように、流量調整バルブ33aおよび遮断バルブ86aを制御する。具体的には、遮断バルブ86aを閉じ、復水器70側への流路を遮断し、流量調整バルブ33aを開き、蒸気タービン11の最終段の静翼翼列に、蒸気導入管33を介して蒸気を供給する。
【0072】
この制御によって、蒸気噴出孔90から蒸気流路内に蒸気が供給される。これによって、主蒸気の体積流量がV1よりも少ない場合においても、図6に示すような、動翼202の先端付近に発生する逆流域は発生しない。そのため、主蒸気の体積流量がV1よりも少ない場合においても、動翼21に生じる振動応力が抑制され、動翼21にかかる流体加振力が抑制される。
【0073】
そして、制御装置は、例えば、流量検知装置などの蒸気の流量に係る情報を検知するための装置などからの出力信号に基づき、蒸気タービン11に流れる主蒸気の体積流量がV1以上であると判定した場合には、水滴回収機構を機能させるように、通常の状態に、流量調整バルブ33aおよび遮断バルブ86aを制御する。具体的には、流量調整バルブ33aを閉じ、蒸気タービン10側への流路を遮断し、遮断バルブ86aを開き、復水器70に凝縮水を流す。
【0074】
上記したように、第2の実施の形態の蒸気タービン11によれば、蒸気供給機構を備えることで、主蒸気の体積流量が少ない場合においても、動翼21に生じる振動応力を抑制して、動翼21にかかる流体加振力を抑制することができる。そのため、蒸気タービンの運転可能な蒸気流量の範囲を拡大することができる。
【0075】
また、蒸気供給機構によって蒸気を供給することで、例えば、動翼の先端部の温度上昇を抑えることができる。そのため、動翼の先端部の温度が上昇するために制限されていた運転条件においても運転が可能となる。
【0076】
以上説明した実施形態によれば、動翼の振動応力を抑制し、蒸気タービンの運転可能な蒸気流量の範囲を拡大することが可能となる。
【0077】
なお、上記した実施の形態において、最終段のタービン段落の静翼翼列内に、第1の実施の形態では、ダイアフラム外輪23に形成された蒸気噴出孔30から蒸気を導入する構成を、第2の実施の形態では、静翼25に形成された蒸気噴出孔90から蒸気を導入する構成を示したが、それらの双方の構成を備える構成としてもよい。
【0078】
すなわち、最終段のタービン段落の静翼翼列内に、ダイアフラム外輪23に形成された蒸気噴出孔30および静翼25に形成された蒸気噴出孔90から蒸気を導入する構成としてもよい。この構成によっても、上記した実施の形態における作用効果と同様の作用効果を得ることができる。
【0079】
以上説明した実施形態によれば、動翼の振動応力を抑制し、蒸気タービンの運転可能な蒸気流量の範囲を拡大することが可能となる。
【0080】
本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。
【符号の説明】
【0081】
10,11…蒸気タービン、20…ケーシング、21…動翼、22…タービンロータ、22a…ロータディスク、23…ダイアフラム外輪、24…ダイアフラム内輪、25…静翼、26…グランドシール部、27…シール部、30,90…蒸気噴出孔、31,101…蒸気室、32a,32b,102a,102b、103…蒸気導入孔、33…蒸気導入管、33a…流量調整バルブ、40…過熱器、41…再熱器、42…ボイラ、50…高圧タービン、51…中圧タービン、60…発電機、70…復水器、71…復水ポンプ、72…低圧給水加熱器、73…ボイラ給水ポンプ、74…高圧給水加熱器、80…主蒸気管、81…低温再熱蒸気管、82…高温再熱蒸気管、83…クロスオーバ管、84…配管、85…給水管、86…排出配管、86a…遮断バルブ、87…共通配管部。

【特許請求の範囲】
【請求項1】
ケーシングと、
前記ケーシングに貫設されたタービンロータと、
前記タービンロータの周方向に複数の動翼を植設して構成され、前記タービンロータの軸方向に複数段備えられた動翼翼列と、
前記ケーシングの内周に設けられたダイアフラム外輪と、
前記ダイアフラム外輪の内側に設けられたダイアフラム内輪と、
前記ダイアフラム外輪と前記ダイアフラム内輪との間に、周方向に複数の静翼を取り付けて構成され、前記タービンロータの軸方向に、前記動翼翼列と交互に複数段備えられた静翼翼列と、
タービン段落の最終段を構成する前記静翼翼列内に蒸気を供給する蒸気供給機構と
を具備することを特徴とする蒸気タービン。
【請求項2】
前記蒸気供給機構が、
前記静翼間における前記ダイアフラム外輪に形成された蒸気噴出孔と、
前記ダイアフラム外輪および前記ケーシングに形成され、前記蒸気噴出孔に蒸気を導く蒸気導入流路と
を備えていることを特徴とする請求項1記載の蒸気タービン。
【請求項3】
前記蒸気供給機構が、
中空の翼構造を有する前記静翼の翼面に形成された複数の蒸気噴出孔と、
前記ダイアフラム外輪および前記ケーシングに形成され、前記静翼の内部に蒸気を導く蒸気導入流路と
を備えていることを特徴とする請求項1記載の蒸気タービン。
【請求項4】
前記静翼の半径方向の高さの半分よりも前記ダイアフラム外輪側に形成されている各前記蒸気噴出孔の開口面積の合計である全開口面積が、前記静翼の半径方向の高さの半分よりも前記ダイアフラム内輪側に形成されている各前記蒸気噴出孔の開口面積の合計である全開口面積よりも大きいことを特徴とする請求項3記載の蒸気タービン。
【請求項5】
前記蒸気噴出孔が、スリット形状に形成されていることを特徴とする請求項2乃至4のいずれか1項記載の蒸気タービン。
【請求項6】
前記蒸気噴出孔から噴出される蒸気の圧力が、最終段の前記静翼翼列の入口における主蒸気の圧力よりも高く、かつ最終段の前記動翼翼列の外周端部における主蒸気の圧力よりも高いことを特徴とする請求項2乃至5のいずれか1項記載の蒸気タービン。
【請求項7】
前記蒸気供給機構が、
蒸気タービンの運転状態に応じて、前記蒸気導入流路に供給する蒸気流量を調整する蒸気流量調整機構をさらに備えていることを特徴とする請求項2乃至6のいずれか1項記載の蒸気タービン。
【請求項8】
前記蒸気噴出孔および前記蒸気導入流路を構成する蒸気供給系統が、前記タービン段落の最終段に構成された、蒸気の凝縮によって発生する水滴を回収する水滴回収系統を利用していることを特徴とする請求項2乃至7のいずれか1項記載の蒸気タービン。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate