説明

薬剤溶解装置

【課題】電気伝導率の測定値のより正確な温度補償を行うことのできる薬剤溶解装置を提供する。
【解決手段】薬剤溶解装置1は、電気伝導率計24の測定値を下記式1、
T=kt/{1+α/100×(t−T)} ・・・(1)
(但し、Tは基準温度[℃]、tは溶液の温度[℃]、kTは電気伝導率のT℃換算値、ktはt℃における電気伝導率、αは溶液の温度係数[%])
に基づいて基準温度Tでの電気伝導率に換算する制御手段31を有し、該制御手段31は、溶質の種類に応じて指定される温度係数αと溶液の温度tとの関係を示す情報を用いて、溶解槽15内の溶液の温度tに従って温度係数αを変更する構成とされる。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、例えば医療分野における血液透析液の調製に利用される薬剤溶解装置に関するものである。
【背景技術】
【0002】
従来、例えば医療分野における血液透析液(以下、単に「透析液」という。)の調製のために、透析施設などにおいて血液透析用乾燥薬剤(以下、「乾燥薬剤」という。)を水に溶解することが広く行われている。
【0003】
透析液の調製に用いられる従来の薬剤溶解装置は、溶解槽と、溶解槽にR/O(Reverse Osmosis:逆浸透)水を供給する給水手段と、溶解槽に供給されるR/O水を計量する計量手段と、計量されたR/O水に例えば顆粒状とされる乾燥薬剤を溶解するための撹拌手段と、乾燥薬剤を溶解した後の溶液を溶解槽から外部に送液する手段と、を備えている。
【0004】
透析液は、治療上の必要性から、その濃度を適正な値に正しく管理しなければならない。そのため、従来、薬剤溶解装置には、乾燥薬剤の溶液の濃度を検出する濃度検出手段が設けられている。濃度検出手段としては、構成が簡単で取り扱いやすく、しかも測定値の変動要因が少なく高信頼性であるなどの多くの利点を有するため、電気伝導率計が用いられている。
【0005】
例えば、溶解槽からの液を循環させる経路に電気伝導率計を設け、溶液の電気伝導率を検出しながら、乾燥薬剤を溶解槽に供給し、電気伝導率計の指示値が所定の値となった時点で乾燥薬剤の供給を停止する。これにより、乾燥薬剤が所定の濃度で溶解された溶液を得ることができる(例えば、特許文献1〜3参照)。
【特許文献1】特開平7−275354号公報
【特許文献2】特開平10−85573号公報
【特許文献3】特公平1−55893号公報
【発明の開示】
【発明が解決しようとする課題】
【0006】
ところで、溶液の溶質濃度が同じであっても、その溶液の電気伝導率は、溶液の温度により変わる。そのため、溶液の電気伝導率は、一般に、基準温度での電気伝導率に換算して表示される。電気伝導率の換算値は、下記式1により算出される。
T=kt/{1+α/100×(t−T)} ・・・(1)
(但し、Tは基準温度[℃]、tは溶液の温度[℃]、kTは電気伝導率のT℃換算値、ktはt℃における電気伝導率、αは溶液の温度係数[%])
【0007】
通常、基準温度Tは25℃とされる。又、温度係数αは、一般に、固定値(例えば2.00%)として設定される。
【0008】
そして、従来の薬剤溶解装置においても、溶液の電気伝導率は、温度係数αは固定値として基準温度での電気伝導率に換算されて管理されていた。
【0009】
しかしながら、温度係数αを固定値として扱うと、薬剤溶解装置の使用環境温度範囲内(例えば、5℃〜35℃)と同じ温度の希釈水で、4桁の精度で電気伝導率を制御し、濃度の安定した溶液(透析液或いは透析液原液など)を調製することができなかった。
【0010】
そこで、従来、薬剤溶解装置の希釈水供給系に加温手段を設け、希釈水を一定温度(例えば、28℃)に加温することで溶液の温度を一定温度とする。そして、その温度の溶液の電気伝導率の検出値と、その温度において設定された基準値との比較に基づいて、溶液の濃度を管理していた。或いは、溶解槽内の溶液自体を加温するように加温手段が設けられることもある。
【0011】
上述のようにして希釈水や溶解槽内の溶液自体を加温してその温度を一定温度とすることによって、濃度の安定した溶液を調製することができる。
【0012】
しかしながら、上述のような加温手段を設けるためには、薬剤溶解装置内にその分のスペースが必要であり、装置構成も複雑化し、又相応のコストがかかる。
【0013】
従って、本発明の目的は、電気伝導率の測定値のより正確な温度補償を行うことのできる薬剤溶解装置を提供することである。
【0014】
本発明の他の目的は、加温手段を設けて溶液の温度を一定とすることなく、より精度よく溶液の電気伝導率を測定することができ、より正確に所定濃度の溶液を調製することを可能とする薬剤溶解装置を提供することである。
【課題を解決するための手段】
【0015】
上記目的は本発明に係る薬剤溶解装置にて達成される。要約すれば、本発明は、溶解槽と、前記溶解槽に溶媒を供給する溶媒供給手段と、前記溶解槽に溶質を供給する溶質供給手段と、前記溶解槽内の溶液の温度を検出する温度計と、前記溶解槽内の溶液の電気伝導率を検出するための電気伝導率計と、を有し、前記電気伝導率計により前記溶解槽内の溶液の電気伝導率を検出することにより、前記溶媒に所定濃度の前記溶質が溶解された溶液を調製する薬剤溶解装置において、
前記電気伝導率計の測定値を下記式1、
T=kt/{1+α/100×(t−T)} ・・・(1)
(但し、Tは基準温度[℃]、tは溶液の温度[℃]、kTは電気伝導率のT℃換算値、ktはt℃における電気伝導率、αは溶液の温度係数[%])
に基づいて基準温度Tでの電気伝導率に換算する制御手段を有し、該制御手段は、前記溶質の種類に応じて指定される前記温度係数αと溶液の温度tとの関係を示す情報を用いて、前記溶解槽内の溶液の温度tに従って前記温度係数αを変更することを特徴とする薬剤溶解装置である。
【0016】
本発明の一実施態様によると、薬剤溶解装置は更に、前記溶質の種類毎に前記温度係数αと溶液の温度tとの関係を示す情報を記憶する記憶手段と、前記溶質の種類を指定する信号を前記制御手段に入力する入力手段と、を有し、前記制御手段は、前記入力手段からの前記溶質の種類を指定する信号に応じた前記記憶手段に記憶された情報を用いて、前記温度係数αを求める。又、好ましい一実施態様によると、前記記憶手段には、前記温度係数αと溶液の温度tとの関係を示す情報として、前記溶質の種類毎に、溶液の温度tを変数とした2次以上の回帰式の回帰定数が記憶されており、前記制御手段は、前記入力手段からの前記溶質の種類を指定する信号に応じた前記記憶手段に記憶された前記回帰定数を読み込み、その回帰定数を用いた前記回帰式により前記温度係数αを算出する。
【0017】
本発明の他の実施態様によると、前記制御手段は、前記温度係数αを、溶液の温度tを変数とした2次以上の回帰式から算出し、薬剤溶解装置は更に、前記回帰式の回帰定数を入力する入力手段を有する。
【0018】
本発明の典型的な実施態様によると、前記溶質は、血液透析用乾燥薬剤であり、又、前記溶媒は、逆浸透水である。
【発明の効果】
【0019】
本発明によれば、電気伝導率の測定値のより正確な温度補償を行うことができる。又、本発明によれば、加温手段を設けて溶液の温度を一定とすることなく、より精度よく溶液の電気伝導率を測定することができ、より正確に所定濃度の溶液を調製することが可能である。
【発明を実施するための最良の形態】
【0020】
以下、本発明に係る薬剤溶解装置を図面に則して更に詳しく説明する。
【0021】
実施例1
[薬剤溶解装置の全体構成]
図1は、本発明に係る薬剤溶解装置の一実施例の概略構成を示す。本実施例では、薬剤溶解装置1は、透析液のA液(又はA剤の濃厚溶液であるA原液)を調製する血液透析液用乾燥薬剤溶解装置として好適に使用することができる。
【0022】
図1に示すように、薬剤溶解装置1は、溶解槽15を有する。又、薬剤溶解装置1は、乾燥薬剤であるA剤101を貯留した薬剤貯留手段としてのホッパー11を有する。ホッパー11は、溶質供給手段としての供給装置13を介して溶解槽15に接続されている。
【0023】
溶解槽15には、水系の極性溶媒であるR/O水を溶解槽15に供給する溶媒供給手段としての入口管路16が、電磁弁である入口弁17を介して接続されている。又、溶解槽15の出口には、出口管路18が接続されている。出口管路18には、送液手段としてのポンプ19が介装されている。又、このポンプ19には、溶解槽15から送出された液を再度溶解槽15に環流させるための環流管路20が接続されている。更に、ポンプ19には、溶解槽15にて調製された所定濃度の溶液を図示しない貯留槽へと送給するための送給管路21が接続されている。
【0024】
環流管路20には電磁弁である環流路弁22及び電気伝導率計24が設置されている。又、送給管路21には、電磁弁である送給路弁23が設置されている。
【0025】
本実施例の薬剤溶解装置1により透析液のA液(又はA原液)を調製する際には、先ず、環流路弁22、送給路弁23が閉じられた状態で、入口弁17が開かれ、入口管路16を通してR/O水が溶解槽15に導入される。水量は、溶解槽15内に設けられた計量手段としてのフロートスイッチ25で計量される。水量が計量されると、入口弁17が閉じられ、環流路弁22を開、送給路弁23を閉とした状態でポンプ19が作動される。これにより、溶解槽15内の水は、出口管路18及び環流管路20を介して循環され、撹拌される。
【0026】
続いて、ホッパー11からA剤101が供給装置13を介して溶解槽15内へと連続的に供給される。A剤101は、塩化ナトリウム、塩化カリウム、塩化カルシウム、塩化マグネシウム、酢酸ナトリウム、氷酢酸、グルコース(ブドウ糖)を所定の割合で含む粉末状薬剤である。
【0027】
A剤101は、循環する水により溶解槽15内にて撹拌、混合される。この時、環流管路20に設置された電気伝導率計24は、環流管路20内を流動する液の電気伝導率を検出する。この電気伝導率を検出することにより、A剤溶液の電気伝導率とA剤の濃度との関係(検量線)に基づいて、A剤溶液のA剤濃度を測定することができる。
【0028】
本実施例では、電気伝導率計24の検出信号は、制御部30において増幅、A/D変換などの所定の信号処理を経てコントローラ31に入力される。制御部30の記憶手段32には、A剤溶液の電気伝導率とA剤101の濃度との関係(検量線)に基づいて予め決められた、A剤溶液に対する電気伝導率計24の検出値の目標値が記憶されている。コントローラ31は、供給装置13を制御してA剤101を適宜供給すると共に、電気伝導率計24の検出値と目標値とを比較して、検出値が目標値に達したことを検知した時点で第1供給装置13によるA剤101の供給を停止させる。これにより、所定の濃度のA剤101を含有するA剤溶液、即ち、A液(又はA原液)が調製される。
【0029】
このようにして、所定濃度のA液(又はA原液)が調製されると、次に、環流路弁22が閉とされ、又送給路弁23が開とされることによって、溶解槽15内の混合溶液が送給管路21へ排出される。この混合溶液は、送給管路21を流動して図示しない貯留槽へと供給される。
【0030】
例えば、薬剤溶解装置1により調製されたA液が供給される貯留槽の下流側には、透析液供給装置又は個人用透析装置が接続される。透析液供給装置又は個人用透析装置は、他の溶解装置にて調整された透析液のB液(又はB剤の濃厚溶液であるB原液)と、薬剤溶解装置1により調製されたA液(又はA原液)とをR/O水で希釈混合して、所定濃度の透析液を調製する。尚、透析液B液は、炭酸水素ナトリウムであるB剤の所定濃度の水溶液である。
【0031】
以上のような工程が終了すると、送給路弁23は閉じられ、1回の溶解動作が終了する。そして、次回の溶解動作時には、上述の動作が繰り返される。
【0032】
ところで、前述のように、溶液の電気伝導率は、その濃度が同じであっても、溶液の温度により変化する。そこで、本実施例の薬剤溶解装置1では、電気伝導率計24の測定値は、基準温度での電気伝導率に換算して管理する。
【0033】
即ち、本実施例の薬剤溶解装置1は、入口管路16に溶媒であるR/O水の温度を検出する温度計26を有する。これにより、結果的に溶解槽15内の溶液の温度を検出することができる。温度計26の検出信号は、制御部30において増幅、A/D変換などの所定の信号処理を経てコントローラ31に入力される。尚、温度計26は、溶解槽15内の溶液自体の温度を検出するように設けられていてもよい。
【0034】
コントローラ31は、電気伝導率計24の測定値を、下記式1、
T=kt/{1+α/100×(t−T)} ・・・(1)
(但し、Tは基準温度[℃]、tは溶液の温度[℃]、kTは電気伝導率のT℃換算値、ktはt℃における電気伝導率、αは溶液の温度係数[%])
に基づいて基準温度Tでの電気伝導率に換算する。本実施例では、基準温度Tは25℃である。
【0035】
ここで、従来の薬剤溶解装置では、温度係数αは固定値(例えば、2.00%))としていた。これは、例えば、常温程度の通常の水溶液の電気伝導率は1℃の温度変化で約2%変化するので、一般の用途では、温度係数αを2.00%とすることで十分な精度で電気伝導率を測定することができるためである。
【0036】
しかし、薬剤溶解装置においては、前述のように、温度係数αを固定値として扱うと、薬剤溶解装置の使用環境温度範囲内(5℃〜35℃)と同じ温度の希釈水で、4桁の精度で電気伝導率を制御することができない。そのため、従来は、希釈水を加温する加温手段を設けたり、或いは溶解槽内の溶液自体を加温する加温手段を設けたりすることで、溶解槽内の溶液の温度を一定温度(例えば、28℃)にしていた。しかしながら、装置の構成の簡略化、低コスト化を考えると、このような加温手段を設けなくても精度よく電気伝導率を測定することができ、正確な濃度の溶液を調製できることが望まれる。
【0037】
本発明者らが鋭意検討した結果、例えばA液(又はA原液)の温度係数αが、温度によって異なることが確認された。そして、予め温度係数αの温度依存性を調べておくことで、任意の温度の溶液の電気伝導率を正確に温度補償することができることが分かった。
【0038】
又、本発明者らの検討の結果、溶質の種類、例えば、血液透析用乾燥薬剤溶解装置であれば乾燥薬剤の種類によって、温度係数の温度依存性が異なることが分かった。
【0039】
そこで、本実施例の薬剤溶解装置1では、詳しくは後述するように、制御手段としてのコントローラ31は、溶質(本実施例ではA剤)の種類に応じて指定される温度係数αと溶液の温度tとの関係を示す情報を用いて、温度係数αを溶解槽15内の溶液の温度tに従って変更する。
【0040】
そして、コントローラ31は、このように可変とされる温度係数αを用いて、上記式1により電気伝導率の測定値を基準温度における電気伝導率に換算して管理する。即ち、所定濃度の溶液の電気伝導率の目標値は基準温度における電気伝導率で設定されており、溶液の電気伝導率の測定値は基準温度における電気伝導率に換算されて、この目標値との比較などの処理に供される。これによって、希釈水、即ち、溶液の温度に拘わらず、常に正確に所定濃度の溶液を調製することができる。
【0041】
[電気伝導率の温度補償]
次に、本実施例の薬剤溶解装置1における電気伝導率計24の測定値の温度補償について更に詳しく説明する。
【0042】
先ず、A剤としてキンダリー3E号(扶桑薬品工業社製)を用いて、溶液の温度係数αの温度依存性を調べた。キンダリー3E号は、透析液のA液に含有される電解質分と非電解質分とが1剤化された粉末状の乾燥薬剤である。
【0043】
正しい濃度、即ち、基準温度(本実施例では25℃)における電気伝導率が既定値(188.9mS/cm)とされたA原液を調製した。このA原液の温度を5℃〜40℃の範囲で1℃刻みで変化させ、各温度において温度補償を行わずに電気伝導率を測定した。そして、基準温度を25℃とした場合の各温度における温度係数を上記式1から算出した。即ち、上記式1中、Tは25[℃]、tは溶液の温度[℃](5℃〜35℃の範囲で1℃刻み)、kT(k25)は188.9[mS/cm]、ktはt℃における電気伝導率[mS/cm]として代入し、各温度tにおける温度係数αを算出した。
【0044】
上述のようにして得られた温度係数αと溶液の温度tとの関係を調べた結果、その関係は下記式2、
α=at2+bt+c ・・・(2)
(但し、αは溶液の温度係数[%]、tは溶液の温度[℃]、a、b、cは回帰定数)
にて示される2次回帰式で表すことができることが分かった。
【0045】
次に、A剤としてキンダリー2E号(扶桑薬品工業社製)、リンパックTA−1(ニプロファーマ社製)、リンパックTA−3(ニプロファーマ社製)を用いて、上記同様にして温度係数αの温度依存性を調べた。キンダリー2E号、リンパックTA−1、リンパックTA−3のいずれも、透析液のA液に含有される電解質分と非電解質分とが1剤化された粉末状の乾燥薬剤である。これらのA剤についても、温度係数αと溶液の温度tとの関係は、上記式2にて示される2次回帰式で表すことができることが分かった。
【0046】
上記各A剤について求められた温度係数αと溶液の温度tとの関係を表す2次回帰曲線を図2に示す。又、各A剤について求められた2次回帰式の回帰定数a、b、cを表1に示す。
【0047】
【表1】

【0048】
尚、表1に示す回帰定数a、b、cは、複数回(4回)の測定で得られた各温度における温度係数αの平均値を用いて求められたものである。
【0049】
この時、上記複数回(4回)の測定で得られた各温度における温度係数αの平均値を用いて求められた回帰定数a、b、cに対する、それぞれの測定で得られた各温度における温度係数αを用いて求められた得られた回帰定数a、b、cの偏差を調べると、定数aは±18%以内、定数bは±6%以内、定数cは±0.005%以内であった。
【0050】
図3に、代表例として、キンダリー3E号を用いた場合について、複数回の測定のそれぞれにおける温度係数αと温度tとの関係と、複数回の測定における温度係数αの平均値と温度tとの関係を示す。その他のA剤を用いた場合にも同様の結果が得られた。
【0051】
又、本発明者らの実験研究の結果、いずれの種類のA剤についても、表1に示す回帰定数に対する偏差が所定範囲内の回帰定数であれば、電気伝導率の換算値は所望の誤差範囲内に収まることが分かった。即ち、表1に示す値に対して、定数aについては±25%以内、定数bについては±6.0%以内、定数cについては±0.3%以内の偏差であれば、電気伝導率の換算値は、±0.5mS/cm以内に収まる。これは、例えば、透析液(又は透析液原液)を調製する場合には許容し得る精度である。
【0052】
図4に、代表例として、キンダリー3E号を用いた場合について、表1に示す回帰定数a、b、cを用いた2次回帰曲線(基準)と、表1に示す回帰定数a、b、cに対してそれぞれ±25%、±6.0%、±0.3%の偏差のある回帰定数a、b、cを用いた2次回帰曲線(プラス誤差、マイナス誤差)を示す。
【0053】
次に、温度係数αを固定値とした場合と、温度係数αと溶液の温度tとの関係を用いて温度tに従って温度係数αを可変とした場合とで、電気伝導率の測定値の温度補償の精度を検討した。
【0054】
ここでは、代表例として、キンダリー3E号を用いた場合について、表1に示す回帰定数a、b、cを使用した2次回帰式に従って温度係数αを可変とした時の電気伝導率の換算値と温度係数αを2.00%で固定値とした時の電気伝導率の換算値との、溶液の温度による変化を表2及び図5に示す。
【0055】
【表2】

【0056】
表2及び図5から分かるように、表1に示す回帰定数を用いた2次回帰式により温度係数αを可変とすることにより、5℃〜40℃の広い温度範囲で電気伝導率を精度よく温度補償することができる。これに対して、温度係数α=2.00%の固定値を用いる場合、略10℃〜26℃の温度範囲(この温度範囲では、可変とした場合の温度係数αも略2.00%となる)では比較的精度よく温度補償されるが、それより低温の温度範囲、より高温の温度範囲では電気伝導率の温度補償の精度は低下している。その他のA剤を用いた場合にも同様の結果が得られた。
【0057】
以上説明したように、予めA剤の種類毎に温度係数αと溶液の温度tとの関係を求めておく。実際の溶液の電気伝導率を測定する際に、その関係に基づいて、その溶液の温度tにおける温度係数αを求める。そして、この温度係数αを用いて電気伝導率計24の測定値を基準温度における電気伝導率に換算することができる。特に、本実施例では、温度係数αと溶液の温度tとの関係は、溶液の温度tを変数とした温度係数αの2次回帰式として表される。
【0058】
より具体的には、本実施例では、制御部30の記憶手段32には、温度係数αと溶液の温度tとの関係を示す情報として、A剤の種類毎に回帰定数a、b、cが記憶されている。
【0059】
又、制御部30のコントローラ31には、操作部40が接続されている。操作部40には、コントローラ31に対して各種設定の入力を行うための入力キーなどとされる入力手段41が設けられている。又、操作部40には、設定情報等が表示されるLCDパネルなどとされる表示手段42が設けられている。操作者は、入力手段41によって、使用するA剤の種類を選択することができる。この時、表示手段42での表示により、操作者が設定事項を確認できるようにすることができる。
【0060】
入力手段41によりA剤の種類が選択されると、A剤の種類を指定する信号がコントローラ31に入力される。コントローラ31は、入力されたA剤の種類を指定する信号に応じて、A剤の種類と関係付けられて記憶手段32に記憶されている回帰定数a、b、cを選択して読み込む。そして、薬剤溶解工程時には、コントローラ31は、その回帰定数a、b、cを用いた上記式2の2次回帰式によって、電気伝導率計24の測定値を基準温度(本実施例では25℃)での電気伝導率値に換算して管理する。
【0061】
以上、本実施例によれば、加温手段を設けて溶液の温度を一定とすることなく、広い温度範囲において、溶質(本実施例ではA剤)の種類に応じて正確に電気伝導率の測定値を温度補償することができる。
【0062】
実施例2
次に、本発明の他の実施例について説明する。
【0063】
[薬剤溶解装置の全体構成]
図6は、本実施例の薬剤溶解装置2の概略構成を示す。本実施例では、薬剤溶解装置2は、透析液のA液(又はA剤の濃厚溶液であるA原液)を調製する血液透析用乾燥薬剤溶解装置として好適に使用することができる。
【0064】
実施例1では、電解質分と非電解質分とが1剤化されたA剤からA液(又はA原液)を調製する場合について説明した。これに対して、本実施例では、薬剤溶解装置2は、電解質分であるA−1剤と、グルコース(非電解質)分であるA−2剤とから成るA剤を溶解してA液(又はA原液)を調製する。尚、図1に示す実施例1の薬剤溶解装置1のものと同一又はそれに相当する要素には同一符号を付して詳しい説明は省略する。
【0065】
図6に示すように、薬剤溶解装置2は、溶解槽15を有する。又、薬剤溶解装置2は、乾燥薬剤であるA−1剤(A剤におけるグルコース(ブドウ糖)を除いた電解質分の粉末状薬剤)101を貯留した薬剤貯留手段としての第1ホッパー11と、乾燥薬剤であるA−2剤(A剤におけるグルコース(非電解質)分の粉末状薬剤)102を貯留した薬剤貯留手段としての第2ホッパー12とを有する。第1、第2ホッパー11、12は、それぞれ溶質供給手段としての第1供給装置13、第2供給装置14を介して溶解槽15に接続されている。
【0066】
又、入口管路16には、溶媒であるR/O水の温度を検出する温度計26が設けられている。これにより、結果的に溶解槽15内の溶液の温度を検出することができる。温度計26の検出信号は、制御部30において増幅、A/D変換などの所定の信号処理を経てコントローラ31に入力される。
【0067】
本実施例の薬剤溶解装置2により透析液のA液(又はA原液)を調製する際には、先ず、環流路弁22、送給路弁23が閉じられた状態で、入口弁17が開かれ、入口管路16を通してR/O水が溶解槽15に導入される。水量は、溶解槽15内に設けられた計量手段としてのフロートスイッチ25で計量される。水量が計量されると、入口弁17が閉じられ、環流路弁22を開、送給路弁23を閉とした状態でポンプ19が作動される。これにより、溶解槽15内の水は、出口管路18及び環流管路20を介して循環され、撹拌される。
【0068】
続いて、第1ホッパー11からA−1剤101が第1供給装置13を介して溶解槽15内へと連続的に供給される。A−1剤101は、透析液のA剤におけるグルコースを除いた塩化ナトリウムを主体とした電解質分で、塩化ナトリウム、塩化カリウム、塩化カルシウム、塩化マグネシウム、酢酸ナトリウム、氷酢酸を所定の割合で含む粉末状薬剤である。
【0069】
A−1剤101は、循環する水により溶解槽15内にて撹拌、混合される。この時、環流管路20に設置された電気伝導率計24は、環流管路20内を流動する液の電気伝導率を検出する。この電気伝導率を検出することにより、A−1剤溶液の電気伝導率とA−1剤の濃度との関係(検量線)に基づいて、A−1剤溶液のA−1剤濃度を測定することができる。
【0070】
本実施例では、電気伝導率計24の検出信号は、制御部30において増幅、A/D変換などの所定の信号処理を経てコントローラ31に入力される。制御部30の記憶手段32には、A−1剤溶液の電気伝導率とA−1剤101の濃度との関係(検量線)に基づいて予め決められた、A−1剤溶液に対する電気伝導率計24の検出値の目標値が記憶されている。コントローラ31は、第1供給装置13を制御してA−1剤101を適宜供給すると共に、電気伝導率計24の検出値と目標値とを比較して、検出値が目標値に達したことを検知した時点で第1供給装置13によるA−1剤101の供給を停止させる。これにより、所定の濃度のA−1剤101を含有するA−1剤溶液が調製される。
【0071】
所定濃度のA−1剤溶液が溶解槽15内に調製されると、次に、A−1剤溶液の流動による撹拌下に、A−2剤102が、第2ホッパー12から第2供給装置14により所定量ずつ溶解槽15へと供給される。A−2剤102は、透析液のA剤におけるグルコース(非電解質)分の粉末状薬剤である。溶解槽15内のA−1剤溶液とA−2剤102とは、ポンプ19により環流管路20を介して循環流動されることにより、十分に撹拌され、A−1剤溶液にA−2剤102が溶解された混合溶液となる。この時、環流管路20に設置された電気伝導率24は、環流管路20内を流動する液の電気伝導率を検出する。この電気伝導率を検出することにより、混合溶液の電気伝導率とA−2剤濃度との関係(検量線)に基づいて、混合溶液のA−2剤濃度を測定することができる。
【0072】
尚、例えば、前述の特許文献2に開示されるように、電解質溶液に非電解質を添加していくと、非電解質の添加量の増加に従って溶液の電気伝導率が一定の関係で減少する。従って、予め電解質と非電解質が同一な系について混合溶液の電気伝導率と非電解質の濃度との相関関係(検量線)を求めておけば、混合溶液の電気伝導率を測定することにより、非電解質濃度を測定することができる。
【0073】
本実施例では、電気伝導率計24の検出信号は、制御部30において増幅、A/D変換などの所定の信号処理を経てコントローラ31に入力される。制御部30の記憶手段32には、所定濃度のA−1剤溶液にA−2剤102を添加した時の、混合溶液の電気伝導率とA−2剤102の濃度との関係(検量線)に基づいて予め決められた、混合溶液に対する電気伝導率計24の検出値の目標値が記憶されている。コントローラ31は、第2供給装置14を制御してA−2剤102を適宜供給すると共に、電気伝導率計24の検出値と目標値とを比較して、検出値が目標値に達したことを検知した時点で第2供給装置14によるA−2剤102の供給を停止させる。これにより、所定濃度のA−2剤102を含有する混合溶液が調製される。
【0074】
このようにして、所定濃度のA−1剤101とA―2剤102とを含有する混合溶液、即ち、A液(又はA原液)が調製されると、次に、環流路弁22が閉とされ、又送給路弁23が開とされることによって、溶解槽15内の混合溶液が送給管路21へ排出される。この混合溶液は、送給管路21を流動して図示しない貯留槽へと供給される。そして、実施例1で説明したように、貯留槽内のA液(又はA原液)は、例えば、透析液供給装置又は個人用透析装置においてB液(又はB原液)と共にR/O水により希釈混合され、所定濃度の透析液が調製される。
【0075】
以上のような工程が終了すると、送給路弁23は閉じられ、1回の溶解動作が終了する。そして、次回の溶解動作時には、上述の動作が繰り返される。
【0076】
[電気伝導率の温度補償]
次に、本実施例の薬剤溶解装置2における電気伝導率計24の測定値の温度補償について説明する。
【0077】
本実施例においても、制御手段としてのコントローラ31は、電気伝導率計24の測定値を温度補償するための温度係数αを、溶質(本実施例ではA剤)の種類に応じて指定される温度係数αと溶液の温度tとの関係を示す情報を用いて、溶解槽15内の溶液の温度tに従って変更する。
【0078】
ここで、実施例1では、A剤が電解質分と非電解質分とが1剤化されていたが、本実施例では、A液(又はA原液)を調製するのに、A−1剤がR/O水に溶解された後、その溶液にA−2剤が溶解される。即ち、本実施例では、電気伝導率計24により、A−1剤溶液の電気伝導率と、A−1剤溶液にA−2剤が溶解された混合溶液の電気伝導率をそれぞれ検出する。
【0079】
従って、本実施例では、各A剤に対して、温度係数αと溶液の温度tとの関係を、A−1剤用と、A−1剤溶液にA−2剤が溶解された混合溶液用とで2つ求めておく。
【0080】
より具体的には、制御部30の記憶手段32には、温度係数αと溶液の温度tとの関係を示す情報として、A剤の種類毎に、A−1剤溶液用の回帰定数a、b、cと、A−1剤溶液にA−2剤が溶解された混合溶液用の回帰定数a、b、cが記憶されている。
【0081】
又、制御部30のコントローラ31には、入力手段41、表示手段42などを備える操作部40が接続されている。そして、実施例1と同様に、操作者は、操作部40の入力手段41によって、使用するA剤の種類を選択することができる。
【0082】
入力手段41によりA剤の種類が選択されると、A剤の種類を指定する信号がコントローラ31に入力される。コントローラ31は、入力されたA剤の種類を指定する信号に応じて、A剤の種類と関係付けられて記憶手段32に記憶されている回帰定数a、b、cを選択して読み込む。本実施例では、A−1剤溶液用の回帰定数a、b、cと、A−1剤溶液にA−2剤が溶解された混合溶液用の回帰定数a、b、cとを読み込む。そして、A−1剤の溶解工程時には、コントローラ31は、A−1剤溶液用の回帰定数a、b、cを用いた上記式2の2次回帰式によって、電気伝導率計24の測定値を基準温度(本実施例では25℃)における電気伝導率値に換算して管理する。又、A−1剤溶液にA−2剤を溶解する工程時には、コントローラ31は、A−1剤溶液にA−2剤が溶解された混合溶液用の回帰定数a、b、cを用いた上記式2の2次回帰式によって、電気伝導率計24の測定値を基準温度(本実施例では25℃)における電気伝導率値に換算して管理する。
【0083】
ここで、A剤が電解質分であるA−1剤とグルコース(非電解質)分であるA−2剤とから成る乾燥薬剤に対する回帰定数の一例を下記の表3に示す。
【0084】
【表3】

【0085】
尚、実施例1で説明したのと同様、本発明者らの実験研究の結果、表3に示す回帰定数に対する偏差が所定範囲内の回帰定数であれば、電気伝導率の換算値は所望の誤差範囲内に収まることが分かった。即ち、表3に示す値に対して、定数aについては±25%以内、定数bについては±6.0%以内、定数cについては±0.3%以内の偏差であれば、電気伝導率の換算値は、±0.5mS/cm以内に収まる。これは、例えば、透析液(又は透析液原液)を調製する場合には許容し得る精度である。
【0086】
以上、本実施例によれば、A剤が電解質分であるA−1剤と非電解質であるA−2剤とから成る場合であっても、加温手段を設けて溶液の温度を一定とすることなく、広い温度範囲において、溶質(本実施例ではA剤)の種類に応じて正確に電気伝導率の測定値を温度補償することができる。
【0087】
以上、本発明を具体的な実施例に則して説明したが、本発明は上述の実施態様に限定されるものではない。
【0088】
例えば、実施例1の薬剤溶解装置1と同様の構成は、炭酸水素ナトリウムの水溶液である透析液のB液の調製にも使用できる。この場合、溶質として乾燥薬剤であるB剤(炭酸水素ナトリウム)を、ホッパー11から供給装置13によって溶解槽15に供給する。そして、この場合、炭酸水素ナトリウム水溶液について、実施例1で説明したのと同様にして温度係数αと溶液の温度tとの関係を示す情報を予め求めておく。
【0089】
又、薬剤溶解装置は、透析液の調製用のものに限定されるものではなく、広く他の薬剤の溶解のために使用することができる。例えば、食品工業や製薬工業において、例えば、食塩や炭酸ソーダなどを水や他の水系の極性溶媒に溶解した溶液、更にはこの電解質溶液に砂糖やアルコールなどの非電解質を混合した混合溶液を使用することは多い。このような、他の薬剤の溶解のための薬剤溶解装置にも、本発明は等しく適用することができる。この場合にも、それぞれの薬剤について、温度係数αと溶液の温度tとの関係を示す情報を予め求めておけばよい。
【0090】
又、本発明によれば、希釈水又は溶液自体を加温する加温手段を設けることなく、広い温度範囲で電気伝導率の測定値を正確に温度補償することができるといった格別なる作用効果を奏し得る。但し、そのような加温手段を設ける場合であっても、本発明によれば、溶液の温度に応じて電気伝導率計の測定値をより正確に温度補償することができる利点がある。
【0091】
又、上記各実施例では、操作者が操作部40から溶質である乾燥薬剤の種類を指定する入力を行い、これによりコントローラ31が乾燥薬剤の種類毎に記憶手段42に記憶されている回帰定数a、b、cを選択して使用するものとした。例えば、薬剤溶解装置が血液透析用乾燥薬剤溶解装置として用いられる場合、現在認可された乾燥薬剤の種類は限られている。又、専用の透析溶解装置を必要とせずに任意の薬剤溶解装置において使用できる乾燥薬剤の種類は更に限られる。
【0092】
具体的には、A剤が1剤化されたものでは、ニプロファーマ社製のリンパックTA−1、リンパックTA−3、扶桑薬品工業社製のキンダリー2E号、キンダリー3E号である。又、A剤が電解質分であるA−1剤と、グルコース(ブドウ糖)分であるA−2剤とで構成されるものでは、ニプロファーマ社製のリンパック、リンパック3号、扶桑薬品工業社製のキンダリー2D号、キンダリー3D号、味の素社製のハイソルブ−D、ハイソルブ−Fである。
【0093】
従って、予めこれらの乾燥薬剤の全て又は一部(使用が予定されるものなど)に関して上記各実施例にて説明したように回帰定数を記憶手段42に記憶させておくことにより、操作者は、使用する乾燥薬剤の種類を入力するだけで、煩雑な設定操作を行うことなく、それぞれの乾燥薬剤に応じて電気伝導率の測定値を正確に温度補償することが可能となる。しかし、本発明はこれに限定されるものではない。
【0094】
例えば、新たに使用可能となった乾燥薬剤について、温度係数αと溶液の温度tとの関係を示す情報として、例えば、上記各実施例において説明した2次回帰式の回帰定数a、b、cの情報を、操作部40の入力手段41などから入力することができる。又、これを記憶手段42に記憶させることができる。このような回帰定数の情報は、薬剤溶解装置の製造者が提供してもよいし、薬剤溶解装置の使用者が別途求めてもよい。
【0095】
又、上記各実施例においては、温度係数αと溶液の温度tとの関係は、2次回帰式で表されるものとして説明した。本発明者らの検討によれば、例えば溶液が透析液(又は透析液原液)である場合には、2次回帰式によって十分な精度で温度係数αと溶液の温度tとの関係を表すことができる。しかし、本発明はこれに限定されるものではなく、3次以上の回帰式としてもよい。この場合、当然、回帰式の次数に応じた数の回帰定数を使用することになる。但し、徒らに回帰式の次数を大きくしても、相応の精度の向上の効果は見られず、逆に過大な演算処理のためにコストが増大することが考えられる。従って、一般には、2次〜3次の回帰式を用いるのが好ましい。
【0096】
更に、温度補償の精度の観点からは、温度係数αと溶液の温度tとの関係は上述のような曲線式(2次以上の回帰式)で表すことが好ましい。即ち、より正確な温度補償を行う場合は、溶液の温度範囲が広ければ広いほど、より多くの測定点において温度係数αと溶液の温度tとの関係を求めておくことが好ましい。しかし、場合によっては、次のような折れ線近似方式を用いてもよい。
【0097】
即ち、折れ線近似方式では、濃度が既知(即ち、基準温度での電気伝導率が既知)の溶液について、例えば10点の温度と、その温度における電気伝導率の値とを求める。そして、各温度間における温度係数と温度との関係を1次式で表現する。実際の電気伝導率の測定時には、溶液の温度がその範囲内に入る温度間の上記1次式より、その溶液の温度における温度係数を求める。従って、折れ線近似方式の場合、予め、溶液(即ち、溶質)の種類毎に、温度間の数だけ1次式を記憶しておく。温度係数αと溶液の温度tとを曲線式で表す場合に比べて精度は劣るが、所望により、このような折れ線近似方式によっても温度係数αを溶液の温度tに従って変更することができる。
【図面の簡単な説明】
【0098】
【図1】本発明に係る薬剤溶解装置の一実施例の概略構成図である。
【図2】A剤の種類毎の温度係数αと溶液の温度tとの関係を示すグラフ図である。
【図3】温度係数αと溶液の温度tとの関係の誤差を説明するためのグラフ図である。
【図4】温度係数αと溶液の温度tとの関係の誤差範囲を説明するためのグラフ図である。
【図5】温度係数αを溶液の温度に従って可変とする場合と、温度係数αを固定値とした場合とでの電気伝導率の温度補償の精度の違いを説明するためのグラフ図である。
【図6】本発明に係る薬剤溶解装置の他の実施例の概略構成図である。
【符号の説明】
【0099】
1 薬剤溶解装置
2 薬剤溶解装置
13 第1供給装置(溶質供給手段)
14 第2供給装置(溶質供給手段)
15 溶解槽
16 入口管路(溶媒供給手段)
18 出口管路(導出路)
19 ポンプ(送液手段)
20 環流管路(環流経路)
21 送給管路(導出路)
22 環流路弁
23 送給路弁(開閉手段)
24 電気伝導率計
30 制御部
31 コントローラ(制御手段)
32 記憶手段
40 操作部
41 入力手段

【特許請求の範囲】
【請求項1】
溶解槽と、前記溶解槽に溶媒を供給する溶媒供給手段と、前記溶解槽に溶質を供給する溶質供給手段と、前記溶解槽内の溶液の温度を検出する温度計と、前記溶解槽内の溶液の電気伝導率を検出するための電気伝導率計と、を有し、前記電気伝導率計により前記溶解槽内の溶液の電気伝導率を検出することにより、前記溶媒に所定濃度の前記溶質が溶解された溶液を調製する薬剤溶解装置において、
前記電気伝導率計の測定値を下記式1、
T=kt/{1+α/100×(t−T)} ・・・(1)
(但し、Tは基準温度[℃]、tは溶液の温度[℃]、kTは電気伝導率のT℃換算値、ktはt℃における電気伝導率、αは溶液の温度係数[%])
に基づいて基準温度Tでの電気伝導率に換算する制御手段を有し、該制御手段は、前記溶質の種類に応じて指定される前記温度係数αと溶液の温度tとの関係を示す情報を用いて、前記溶解槽内の溶液の温度tに従って前記温度係数αを変更することを特徴とする薬剤溶解装置。
【請求項2】
更に、前記溶質の種類毎に前記温度係数αと溶液の温度tとの関係を示す情報を記憶する記憶手段と、前記溶質の種類を指定する信号を前記制御手段に入力する入力手段と、を有し、前記制御手段は、前記入力手段からの前記溶質の種類を指定する信号に応じた前記記憶手段に記憶された情報を用いて、前記温度係数αを求めることを特徴とする請求項1に記載の薬剤溶解装置。
【請求項3】
前記記憶手段には、前記温度係数αと溶液の温度tとの関係を示す情報として、前記溶質の種類毎に、溶液の温度tを変数とした2次以上の回帰式の回帰定数が記憶されており、前記制御手段は、前記入力手段からの前記溶質の種類を指定する信号に応じた前記記憶手段に記憶された前記回帰定数を読み込み、その回帰定数を用いた前記回帰式により前記温度係数αを算出することを特徴とする請求項2に記載の薬剤溶解装置。
【請求項4】
前記制御手段は、前記温度係数αを、溶液の温度tを変数とした2次以上の回帰式から算出し、薬剤溶解装置は更に、前記回帰式の回帰定数を入力する入力手段を有することを特徴とする請求項1に記載の薬剤溶解装置。
【請求項5】
前記溶質は、血液透析用乾燥薬剤であることを特徴とする請求項1〜4のいずれかの項に記載の薬剤溶解装置。
【請求項6】
前記溶媒は、逆浸透水であることを特徴とする請求項1〜5のいずれかの項に記載の薬剤溶解装置。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate


【公開番号】特開2007−117886(P2007−117886A)
【公開日】平成19年5月17日(2007.5.17)
【国際特許分類】
【出願番号】特願2005−313556(P2005−313556)
【出願日】平成17年10月27日(2005.10.27)
【出願人】(000219451)東亜ディーケーケー株式会社 (204)
【Fターム(参考)】