Notice: Undefined variable: fterm_desc_sub in /mnt/www/biblio_conv.php on line 353
血液学的機器の毛細管内の液体を分析する装置および方法
説明

血液学的機器の毛細管内の液体を分析する装置および方法

毛細管内を流動する流体の密度と流体タイプ、毛細管内を流動する血液サンプルの速度と密度、毛細管内で流動が急停止させられた後の血液サンプルの赤血球沈降速度(ESR)、および/または、毛細管内で流動が急停止させられた後の血液サンプルのゼータ沈降速度(ZSR)を求めるための装置と方法。これらの測定は、毛細管とサンプル流体とに対して横断方向に予め決められた周波数の超音波パルスのような波形パルスを方向付けることによって、および、毛細管とサンプル流体とを通るそのパルスの飛行時間、および/または、流動しているかまたは静止している血液サンプルの中を前方移動するかまたは横断方向に移動する細胞から反射するエコー信号のドップラー偏移を求めることによって行われる。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、試験管内の血液サンプルを分析する装置および方法に関し、および、より特定的には、本発明は、血液サンプルを分析するために使用され、および/または、血液塗沫標本スライドガラスの作成に関連しており、および、サンプルの密度/流体タイプと、サンプルの粘度と、サンプルの赤血球沈降速度(ESR)とゼータ沈降速度(ZSR)との1つまたは複数を測定することが可能である、血液学的機器、センサ、または、その類似物と、方法とに関する。
【背景技術】
【0002】
試験管内の血液サンプルを分析する装置は、典型的には、空気、等張液(すなわち、塩水)、血液、等張液、および、その次に、空気といった予め決められた順序で流体が毛細管の中を通過させられることを必要とする。この装置は、典型的には、その装置内の毛細管の長さに沿った様々な位置における毛細管内の血液の有無を判定するための1つまたは複数の流体タイプ検出器を含む。従来では、この検出プロセスは光学密度測定によって行われ、この光学密度測定では、毛細管を通過する光の強度を測定するために、および、毛細管内の液体の密度の測定を可能にするために、既知の強度の光が毛細管を通して透過させられ、受け取られて測定される。空気と等張液とが血液サンプルに比較して実質的に透明であるので、血液の存在と、一連の流体中の血液サンプルのリーディングエッジおよびトレーリングエッジとが、光学密度測定によって検出され識別される。
【0003】
特定の血液処理装置が顕微鏡スライドガラス上の血液塗沫標本の作成のための自動機構に関連付けられている。こうした装置は、スライドガラス上に最適な血液塗沫標本を作成するために必要とされる塗沫(smear)ウェッジ構成要素の塗沫保持時間と速度と加速度とを決定するために、血液サンプルの粘度を測定するか、推定するか、提供されるか、または、他の形で求めるべきである。自動スライドガラス作成装置と、塗沫ウェッジ構成要素と、関連の方法との例が、Gao他に交付された米国特許第5,650,332号および同第5,804,145号と、Kanamori他に交付された米国特許第5,209,903号とに開示されている。
【0004】
Gaoの特許によればスライドガラス全体にわたっての血液塗沫部材の移動が、血液分析データから識別される血液の様々な予め決められた物理パラメータの関数として制御される。例えば、塗沫ウェッジ速度を決定するための基本的なパラメータがヘマトクリットHCTであるが、しかし、他の血液学的パラメータが、異常症状および/または薬剤の存在を修正するために塗沫ウェッジ速度に加算または減算するために使用される。Kanamoriの特許は、血液サンプルのリーディングエッジが第1のセンサからその第1のセンサの下流に配置されている第2のセンサへ進むのに要する時間の量を求めるために、1対の光学センサとタイマとを使用する。経過時間の測定値がサンプルの粘度を求めるために使用される。
【0005】
特定の血液処理装置が、血液サンプルの赤血球沈降速度(ESR)および/またはゼータ沈降速度(ZSR)が測定されることを可能にする。ESRは、一定期間中の、抗凝固処理全血試料中の血漿中の赤血球の沈降の度合いの測度である。基本的なESR測定値は、赤血球と白血球と血小板から成る血液サンプルの濁り細胞部分がほぼ透明な体液血漿すなわち血清から分離する速度である。ESRの増大は、血漿の急性期非対称性タンパク質、主としてフィブリノーゲンとα2グロブリンとγグロブリンとの増加を原因とすると考えられており、および、患者の炎症の存在を示すと考えられている。
【0006】
ZSRは、標準ストレス下での赤血球の集合(packing)の測度(ゼータクリット)である。赤血球膜上の細胞膜内タンパク質は、負の電荷を赤血球に与えるシアル酸を含む。いわゆる「ゼータ電位」として知られている細胞間の陰性が、細胞が身体の循環システムを通って移動する時に細胞が互いに反発し合うことを引き起こす。周囲媒体中のフィブリノーゲンおよびグロブリンのような変質血漿タンパク質が、ゼータ電位の低下の原因となる可能性がある。ゼータ電位の低下はESRの増大の原因となる。したがって、赤血球ヘマトクリットとして%で表現されるZSR測定値は、ストレス下での赤血球の集合し易さを評価し、および、特定の血漿中に懸濁している時の赤血球のゼータ電位におそらくは関係している。男性および女性の両方の正常なZSR値は40%から50%の範囲内であり、および、貧血症の影響を受けない。
【0007】
ウェスターグレン法として知られている方法が、ESRを測定する最良の方法として、the International Council(以前はCommittee) for Standardization in Haematologyによって推奨されてきた。この方法は1920年代から使用されており、および、Br.J.Haematol.,24:671−673,1973に説明されている。さらに、出版された参考文献であるTalkers,”Erythrocyte Sedimentation Rate/Zeta Sedimentation Rate”と、Emer.Med.Clin.OfNorth America,Vol.4,pp.87−93,February 1986と、Moseley et al.,”A Comparison of the Wintrobe,The Westergren and the ZSR Erythrocyte Sedimentation Rate(ESR) Methods to a Candidate Reference Method”,Clin Lab Haemat.,Vol.4,pp 169−178,1982と、Bull et al.,”The Zeta Sedimentation Ratio”,Blood,Vol.40,pp 550−559,October 1972とを参照されたい。ウェスターグレン法は、一定の体積の血液が垂直に方向付けられた管の中に入れられ、および、その管内での赤血球の沈降測度が、典型的には1時間を超える一定期間にわたって定間隔で記録される、重力に基づいた方法である。
【0008】
沈降速度を測定する装置および方法のより最近の事例が、Bullに交付された米国特許第3,848,796号と、Duicに交付された米国特許第5,827,746号とに開示されている。このBullの特許は、いわゆる「Zetafuge」として知られている遠心分離機を開示し、この遠心分離機は、血液サンプルに対して制御された遠心分離を行って赤血球の圧縮と分散とを交互に生じさせることと、特定の標準化された人工的な重力の下で赤血球が互いにどれだけ密接に接近するかを測定することとによって、ZSRを測定する。
【0009】
Duicの特許は、血液サンプルの粘度を最小にするために血液サンプルが高温度に予熱され、その次に、細胞が細管の中心に高密度に集合することを生じさせるように血液サンプルが一定不変の速度で細管の中を通過させられる、ESR測定装置を開示する。この後で、予熱された血液サンプルが、血漿の停止を引き起こすように急停止させられる。しかし、細胞の運動エネルギーとゼータ電位とが、細胞が前進し続けて細管の中心から離れていくことを引き起こす。集束光学密度測定(focused optical density measurement)がその細管の中心を通過する形で行われ、および、ESR測定値が、30秒の一定期間にわたって細管の中心から細胞が離れていく速度に基づいた光減衰の低下を記録することによって得られる。その次に、サンプル中の粒子移動のこの速度が、従来通りの重力ベースの分離ウェスターグレン測定に対して外挿される。
【0010】
上述の装置と方法とシステムと手法はそれらに意図された目的のためには適切に機能するだろうが、光学密度測定の使用は幾つかの欠点と著しい限界とを有する。光学密度測定は、細胞の速度には無関係な管内の流体の平均的な挙動にだけ基づいている情報を提供する可能性がある。光学密度測定は、管内の任意の1つの横断面位置の挙動を単離するために使用されることは不可能である。例えば、光学密度測定は管の中心におけるピーク速度を測定することが不可能であり、かつ、管の端縁における流体速度に対してその管の中心における流体速度を識別することが不可能である。これに加えて、光学密度センサは、十分な量の光が管とサンプルとを通過することを可能にする小さい内径を有する管と組み合わせて使用される時にだけ有効であるにすぎない。当然のことながら、小さい内径の管の使用は、血液学的機器を通過するサンプルの流体処理流量を制限する。
【0011】
血液サンプル中の微小気泡の存在が、光学密度センサによっては検出不可能であり、および、光学密度測定値に大きな影響を与えるので、この微小気泡の存在は深刻な問題を生じさせる。さらに、光学密度センサは、そのセンサが適正に校正された状態のままであるために、そのセンサがその管を通して光学密度測定値を得る管に対して相対的に固定された状態のままでなければならない。そのセンサに対する相対的な管の偶発的な移動はすべて、そのセンサの時間浪費的な再校正を必要とするだろう。こうした偶発的な移動は、センサに無関係な理由のために血液処理機器を修理する過程の中で生じることが多い。
【0012】
血液塗沫の生成に関する問題が、血液サンプルの血液学的パラメータデータが時間の経過に応じて失われるということである。したがって、最適のスライドガラスが作成されることを確実なものにするために、血液分析および/または粘度測定の後に可能な限り迅速に塗沫が生成されるべきである。同様に、ESRおよびZSRの測定は、典型的には、分析のために必要とされる時間に大きく影響する大幅な初期デッドタイムを必要とする。したがって、こうした分析は、例えば血球数のような、著しくより迅速に行われることが可能な他の分析の後に続けて容易に行われることが不可能である。
【0013】
Duicに交付された米国特許第5,827,746号によるESR測定方法および装置は、さらに、光学密度測定に対する依存性を原因とする欠点も有する。ESR測定は、サンプルの温度および粘度と、血漿中のタンパク質濃度と、赤血球のサイズの偏りと、脂質とに依存している。脂質は、光学密度測定のキャリーオーバ(carryover)と基線変動とに関連した問題の原因となる。流体カラムが停止させられると、脂質が管の壁に静電気によって付着させられ、および、その壁の表面上に蓄積し続けるだろう。血小板も管の壁に付着する可能性がある。この蓄積はその管の光減衰の増大の原因となり、および、したがって、光学密度測定に悪影響を与える。したがって、装置を通して逐次的に処理されるすべてのサンプルの光学密度とESR測定値とを歪ませる、未知の漸進的な誤りの蓄積が存在する。さらに、その蓄積の一部分が管の壁から引き剥がされて、分析されている血液サンプルの中を流れる時にも、光学密度測定が悪影響を受ける。上述の方法の別の限界が、この方法が、検査が開始されることが可能である前に正確な高温度に血液サンプルを予熱するという追加の時間浪費的な処理段階を必要とするということである。
【0014】
異常血液サンプル(すなわち、識別の上で最も重要である高いESRを有するサンプル)は、流体カラム内で細胞がより緩慢に分散することの原因となる極端な血球数と血漿粘度とを有する場合が多い。一方、血液サンプルは、正常な速度よりも早く細胞が分散することを結果的に生じさせる低粘度と低血球数とを有することもある。これらの条件は、ESRを測定するための機構を光学密度測定が提供する時には、認識されることも、判定されることも、および/または、訂正されることも不可能である。
【発明の開示】
【発明が解決しようとする課題】
【0015】
上述の説明から理解できるように、本発明の第1の目的は、血液学的機器の毛細管の中に位置している液体を分析する改良された装置と方法とを提供することである。
【0016】
本発明の別の目的は、血液学的機器の管の中に含まれている液体の密度と、微小気泡がその液体中に存在するか否かとを正確に、容易に、かつ、迅速に求めることが可能な装置と方法とを提供することである。
【0017】
本発明の別の目的は、毛細管の中を流れる血液サンプル中の個々の細胞の速度と、その血液サンプルの粘度とを正確に、容易に、かつ、迅速に測定することが可能な装置と方法とを提供することである。
【0018】
本発明のさらに別の目的は、血液サンプルのESRとZSRとを正確に、容易に、かつ、迅速に測定することが可能な装置と方法とを提供することである。
【0019】
本発明のさらに別の目的は、操作と使用と保守のために最小限の技術だけしか必要とせずに、比較的高い流体処理流量において、費用効率が高い形で毎日の業務で使用することが可能である装置を提供することである。
【課題を解決するための手段】
【0020】
本発明の一側面では、血液サンプルのような流体サンプルを分析するための装置が提供される。この装置は、毛細管と、この毛細管の周囲に取り付けられているセンサアセンブリとを含む。毛細管は、試験管内の血液サンプルの流動のための移動経路を画定し、および、センサアセンブリは、その移動経路を横断方向に横切る形で毛細管の中へ既知の周波数の波形パルスを発射するための、および、そのパルスが毛細管と移動経路とを通って伝搬した後に、または、その流体中の細胞のような粒子からそのパルスが反射された後に、そのパルスを受け取るための少なくとも1つのセンサを有する。受け取られたパルスの時間飛行および/またはドップラー偏移が、流体サンプルに関する所望の情報を得るために測定される。
【0021】
流体密度が、少なくとも1つのフルトリップにおいて管と流体サンプルとを通過して伝搬するパルスの時間の飛行の関数として求められる。この目的のために、本発明の装置は、パルスを受け取るために、パルスが毛細管の中に発射される位置において、または、毛細管に対して直径方向にその反対側の位置において、毛細管内の流体サンプルの移動経路に対して垂直に方向付けられているセンサを有する。
【0022】
流動する血液サンプルまたは静止した血液サンプルの中での細胞の移動速度が、毛細管内の血液サンプルの中を移動する細胞から反射するエコー信号のドップラー偏移の関数として求められる。このために、本発明の装置は、エコー信号を受け取るためのセンサを含む。このセンサは、パルスが毛細管の中に発射される個所に対して移動経路に沿って前方に位置しており、かつ、その毛細管の中に超音波パルスが発射される方向に対して一定の角度に傾斜していることが可能である。こうした傾斜したセンサは、毛細管内での細胞の前方移動の速度を測定するために使用される。この代わりに、または、これに加えて、本発明による装置は、移動経路に対して横断方向に移動する細胞の速度を検出するために、パルスが中に発射される毛細管の横断面に対応する、毛細管に対して垂直に方向付けられているセンサを有することが可能である。
【0023】
波形パルスが、予め選択された周波数の超音波パルスであることが好ましい。これに加えて、1つまたは複数のセンサがピエゾクリスタル変換器であり、毛細管が、層状の血液サンプル流を確実なものにするためにセンサの付近に直線の移動経路を画定し、および、超音波パルスが、その移動経路に対して実質的に垂直な方向に、かつ、毛細管の直径に沿って発射されることが好ましい。さらに、本発明による装置は、毛細管内を流れる流体の流体タイプと、毛細管内を流れる血液サンプルの粘度と、毛細管内の血液サンプルの流動が急停止させられた後の血液サンプルの赤血球沈降速度(ESR)とゼータ沈降速度(ZSR)との1つまたは複数を求めるために使用されることが可能である。
【0024】
本発明の別の側面では、血液サンプルのような流体サンプルを分析する方法が提供される。この方法は、試験管内の血液サンプルのような流体サンプルを毛細管内の移動経路内において流動させることと、その移動経路の中に横断方向に毛細管の中に予め決められた周波数の波形パルスを発射することとを含む。そのパルスは、そのパルスが毛細管と移動経路とを通って少なくとも1つのフルトリップで伝搬した後に、または、流体サンプル中の細胞のような粒子からそのパルスが反射した後に、センサによって受け取られる。この方法は、さらに、毛細管と流体サンプルとを通過して受け取られたパルスの飛行時間を測定する段階、または、細胞また類似の粒子から反射する受け取られたパルスのドップラー偏移を測定する段階も含む。
【0025】
本発明の1つの方法によって、毛細管と流体サンプルとを通過するパルスの飛行時間が、その流体サンプルの密度を求めるために測定される。一方、これは、その流体サンプルの流体タイプと、微小気泡が流体サンプル内に存在するか否かとを判定して報告するために使用される。本発明の別の方法では、流動する血液サンプル中の移動経路に沿って前方に移動する細胞から反射するパルスから受け取られたエコー信号のドップラー偏移が、毛細管内の血液サンプルの移動速度を検出するために測定される。血液サンプルの密度に関する情報と組み合わされたその血液サンプルの速度測定値が、その血液サンプルの粘度を求めるために使用される。
【0026】
本発明のさらに別の方法では、毛細管内の血液サンプルの流動が急停止させられる。その後に、静止した血液サンプル中で依然として移動している細胞から反射するパルスによって生じさせられたエコー信号のドップラー偏移が、前方移動する細胞の速度の減衰率と、横断方向に移動する細胞の速度の減衰率とを求めるために繰り返し測定される。前方移動する細胞の速度の測定された減衰率が血液サンプルに関するESR値を求めるために使用され、および、横断方向に移動する細胞の速度の測定された減衰率がその血液サンプルに関するZSR値を求めるために使用される。
【0027】
これらの方法すべてに関して、波形パルスが、流体サンプルの移動経路に対して実質的に垂直方向にかつ毛細管の直径に沿って方向付けられている超音波パルスであることが好ましい。
【0028】
本発明の上述の目的と特徴と利点と他の目的と特徴と利点とが、添付図面に関連付けて行われる以下の説明から明らかになるはずである。
【発明を実施するための最良の形態】
【0029】
本発明は、試験管内の血液サンプルを分析するための装置および方法に関する。この装置は、例えば、独立した測定装置、または、多機能血液学的機器で使用するためのセンサ、検出器、もしくは、装置、または、自動血液塗沫スライドガラス作成装置に関連して使用するためのセンサ、検出器、もしくは、装置として構成されることが可能である。本発明によるセンサ、検出器、または、装置は、血液サンプルを分析するために使用され、および、流体サンプルの密度/流体タイプ、血液サンプルの粘度、および/または、血液サンプルの赤血球沈降速度(ESR)とゼータ沈降速度(ZSR)の1つまたは複数を求めることが可能である。
【0030】
本発明は、さらに、上述のセンサ、検出器、または、装置の1つまたは複数を有する多機能血液学的機器と、上述のセンサ、検出器、または、装置の1つまたは複数に関連付けて使用される自動血液塗沫スライドガラス作成装置とにも関する。これに加えて、本発明は、流体サンプルの流体タイプと、血液サンプルの粘度と、血液サンプルの赤血球沈降速度(ESR)とゼータ沈降速度(ZSR)とを求めるための方法に関する。
【0031】
本発明による上述のセンサ、検出器、装置、および、機器等は、センサ、装置、または、血液学的機器の毛細管内に収容されている流体を分析するために非光学的な手段を使用する。この目的のために、本発明による装置は、既知の周波数の波形パルスを毛細管と流体サンプルとに対して横断方向に方向付け、および、毛細管と流体サンプルとを横断するそのパルスの時間の飛行を測定し、および/または、流体サンプル中の細胞のような粒子から反射するその波形パルスの結果として生じさせられたエコー信号のドップラー偏移を測定する。これらの測定値が流体の様々なパラメータを求めるために使用される。
【0032】
この波形パルスは、例えば、超音波パルス、音波、音響パルス、または、波形が通過して移動する材料に応じて異なる速度で伝搬するいずれかの他の波形であることが可能である。この波形は、ドップラー偏移測定値が得られることを可能にする波形でなければならない。
【0033】
媒質を通過する音の伝搬は材料の密度に応じて異なる速度を生じる。この伝搬速度は、流体中の音速と流体の音響インピーダンスとに比例している。従って、音響インピーダンスが音速と密度との積(product)に応じて変化するので、密度に比例した信号が、媒質を通過する音の通過時間を観測することから導き出されることが可能である。したがって、本発明では、超音波パルスのような波形パルスが機器の毛細管の中に向けて送り出され、および、そのパルスの通過時間と、場合によっては周波数偏移、または、そのパルスのエコー信号が1つまたは複数の受信器によって受け取られ、および、毛細管内の流体タイプ、毛細管内の血液サンプルの粘度、および/または、毛細管内の血液サンプルの赤血球沈降速度(ESR)とゼータ沈降速度(ZSR)との1つまたは複数を求めるために処理される。
【0034】
Iinumaに交付された米国特許第4,485,821号と、Hansonに交付された米国特許第4,572,664号と、Beach他に交付された米国特許第5,409,010号とが、パルス化超音波装置の例を開示している。Iinuma特許とBeach特許とに開示されている装置は、患者の生体内の血流を測定することに関係する。Iinuma特許とHanson特許とBeach特許との開示内容は特に本明細書に引例として組み入れられている。
【0035】
本発明による様々な実施形態と方法と着想とが以下でそれぞれ別々に説明される。これらの着想は、流体タイプの検出と、粘度測定と、ESRおよびZSRの測定と、血液学的機器とを含み、これらに関係する。
【0036】
流体タイプの検出
流体タイプ検出器は、その検出器の位置において血液学的機器の管の中に空気、等張液、または、血液が存在するかどうかを判定するために、血液学的機器において一般的に使用されている。サンプルの吸引および搬送の方法において互いに異なっている2つの一般的な形態の血液学的機器が存在する。これらの2つの一般的な形態は、サンプル採取弁を伴うインライン真空抜き出し(in−line vacuum draw)を有する血液学的機器(図1を参照されたい)と、いわゆる「吸引/吐出」タイプの血液学的機器(図10を参照されたい)とを含む。
【0037】
サンプル採取弁装置によるインライン真空抜き出しの一例が図1に概略的に示されており、この図では、血液学的機器10が、密閉ガラスビン(図示されていない)から真空によって血液サンプルを抜き出すための吸引針すなわち注射器(syringe)12を有する。このサンプルは検出器14を通して血液サンプル採取弁16に送られ、その次に、第2の検出器18を通過させられ、その後で、多機能血液学的機器10の他の血液分析セクション(図示されていない)に送られる。検出器14と検出器18は、血液、等張液、または、空気がその管路内に存在するかどうかを判定するために、および、適切な吸引が行われたことを確実なものにするように血液搬送を監視するために使用される。これに加えて、検出器14、18は、空気がサンプルカラム中に存在する時と、血液の体積が不十分である(すなわち、不完全吸引状態)時に、表示を与える。
【0038】
吸引/吐出機器の例が図10に概略的に示されており、この図では、血液学的機器150が、密閉ガラスビン(図示されていない)から注射器または押しのけ式ポンプ154によって血液サンプルを抜き出すための吸引針すなわち注射器151を有する。この吸引針151は、サンプルがそれから抜き出される密閉ガラスビンの中に挿入され、および、サンプルが注射器または押しのけ式ポンプ154の作用によって検出器152を通して一定の長さの管すなわちリザーバ管路153の中に搬送される。この抜き出しは、所望の体積のサンプルが密閉ガラスビンから抜き出され終わった後に停止される。その後に、吸引針151がその密閉ガラスビンから抜き出され、サンプルまたはそのサンプルの一部分が1つまたは複数の容器に分けて入れられることを可能にするために移動させられる。これに加えて、例えば押しのけ式ポンプ154によって引き起こされた流動の方向が、サンプルの所望の体積が多機能血液学的機器150の他の血液分析セクション(図示されていない)に分配されることが可能であるように逆にされることが可能である。検出器152は、血液、等張液、または、空気が管路内に存在するかどうかを監視するために、および、適切な吸引が完了されたことを確実なものにするために血液搬送を監視するために使用される。これに加えて、検出器152は、空気がサンプルカラム内に存在している時と、血液の体積が不十分である(すなわち、不完全吸引状態)時に、表示を与える。
【0039】
上述したように、典型的には光学密度センサが血液学的機器において使用されるが、空気と透明な等張液との間の違いと、血液中の気泡の状態とを認識する上で問題点を有する。第1の場合には、等張液と空気との間の光学的差異は最小であり、および、第2の場合には、血液が不透明なので、血液中に含まれている気泡の認識が困難である。これに加えて、光学密度センサは、一般的に、吸引針からサンプルの下流側の行先に延びるプラスチック管の間を連結し移行させなければならない光学測定個所において追加の別個のガラス管要素を必要とする。したがって、これらの問題点と他の問題点とを克服するために、本発明による検出器14、18は、管内の流体のタイプと、血液サンプルのリーディングエッジとトレーリングエッジと、微小気泡の有無とを判定するために、超音波パルスのような波形パルスを使用する。
【0040】
本発明による流体タイプ検出器20が図2に示されている。サンプルが中を通して送られるサンプル管22が断面の形で示されており、および、図示されているように、互いに反対側に位置した近位壁24と遠位壁26をそれぞれ有する。単に一例として示すと、管22はポリウレタンで作られ、約0.020−0.023インチの内径と、約0.030インチの壁厚さとを有することが可能である。当然であるが、本発明の検出器はより小さいかより大きい管と共に使用されることが可能であり、および、異なる材料で作られた管と共に使用されることが可能である。
【0041】
センサ28が、管22を横断方向に通過する形で超音波チャープ(chirp)のようなパルス信号を発射するために、管22の近位壁24の一部分に隣接して配置されている。センサ28がピエゾクリスタル変換器30として設けられルことが可能であり、および、集束コーン32が、管22の小さな部分を横断して垂直方向にピエゾエネルギーを方向付けるために、管22の近位壁24に係合する。図示されている実施形態では、センサ28は、さらに、そのパルスが管22とサンプル流体とを双方向に通過した後にそのパルスの戻りエコー信号を受け取るためにも使用される。あるいは、この代わりに、第2のセンサ(図示されていない)が、そのパルスが管22と血液サンプルとを1方向に通過した後にそのパルスを受け取るために、管22に対して直径方向にセンサ28の反対側に位置していることが可能である。
【0042】
センサ28と管22はハウジング34内に配置されている。このハウジング34は、減衰パッド38を介してセンサ28が上に取り付けられている取り付け基準窓36を含む。図示されているハウジング34は、さらに、後部壁40も含み、この後部壁40は、管22の遠位壁26に係合しており、かつ、発射されたパルスが反射されてセンサ28に戻されることを生じさせる。ハウジング34は、外部信号がセンサ28に到達することを防止するために、および、後部壁40からの発射信号の高度の反射を確実なものにするために、スチールのような高密度材料で形成されていることが好ましい。減衰パッド38は、取り付け基準壁36から反射が生じないようにその減衰パッド内で発射信号を吸収するために使用される。したがって、減衰パッド38は適度な密度を有し、かつ、発射信号周波数に対して損失が大きくなければならない。すべての結合されたエネルギーが熱として消散されるべきである。減衰パッド38は、例えば、シリコンゴム担体内に高濃度のニッケル被覆炭素粒子を含むガスケットタイプの材料であることが可能である。さらに、シリコン担体内の金属被覆粒子が、ピエゾセンサとの接続を可能にする導電経路を提供する。
【0043】
ピエゾクリスタル変換器30は電位の印加に応じて寸法的に成長し、および、この成長が結晶の厚さにおける成長であることが最適である。ピエゾクリスタルがその両側に成長するので、センサ28は、その成長を一方の側に生じさせるように強制する形に取り付けられるべきである。変換器30のピエゾクリスタルのサイズは、機械的な動きと電気的インタフェースとの間の最大の結合を伴ってピエゾクリスタルが働くことを確実なものにするために、ピエゾクリスタルが発射周波数に自己共振するように選択されるべきである。シリコングリースのようなカップリングゲル(図示されていない)が管22と集束コーン32との間で使用されるべきであり、このカップリングゲルは、ピエゾクリスタルと管22との間の整合媒質として作用する。管22の密度と集束コーン32の密度は、センサの最大感度を得るためにほぼ同等であるべきである。例えば、集束コーン32は、管の密度とほぼ同等の密度を有するマグネシウムまたはマグネシウム合金であることが可能である(下記の〔表1〕を参照されたい)。
【0044】
センサ28から管22の中に発射されて、管22の遠位壁26またはハウジング34の後部壁40から反射されてセンサ28に戻される、超音波パルスすなわち超音波チャープのような波形パルスの通過時間すなわち飛行時間は、そのパルスが中を通って移動する媒質の密度に依存する。例えば、〔表1〕が選択された材料の密度(すなわち、比重)を示す。
【0045】
【表1】

【0046】
血液は塩水とほぼ同等の密度を有し、および、血液の密度と、等張液(すなわち、塩水)の密度と、ポリウレタン管の密度は互いに実質的に同一である。超音波パルスがサンプル媒質を通過するその飛行時間を変化させるためには、媒質の密度の大きな変化が必要とされる。したがって、流体サンプルと管22との密度の値が互いに接近している時には、流体サンプルと管22との間の境界すなわち移行部分が識別不可能である(すなわち、移行部分においてパルスの有効な反射が生じない)。上述したように、管22を通過する典型的な流体の順序は、空気、等張液、血液、等張液、空気である。空気が流体タイプ検出器20の位置において管22内に存在している時には、空気から管への移行部分における密度の変化が顕著であり、および、容易に識別可能なエコー信号を生じさせるので、流体タイプ検出器20は、管22の内径寸法と外形寸法とを検出して自己校正することが容易に可能である。したがって、流体タイプ検出器20は、空気が管内に存在する時には管直径検出器として機能し、および、その後で、管22と流体サンプルとの境界条件を観測する必要なしに等張液と血液とが処理される。
【0047】
様々な材料を通過する音の伝搬速度が次の〔表2〕に要約されている。
【0048】
【表2】

【0049】
血液中を通過する音の伝搬速度は、血液の密度に応じて1500m/秒から1650m/秒の範囲内であり、および、等張液(すなわち、塩水)中を通過する音の伝搬速度と実質的に同一である。空気中を通過する音の伝搬速度は血液および等張液のそれよりも著しく遅く、および、したがって、管22内の空気の存在は、パルスの飛行時間の測定から容易に判定されることが可能である。血液と等張液はほぼ同等の密度値と伝搬速度値とを有するが、この2つの流体からの反射(ノイズとも呼ばれる)は互いに著しく異なっており、容易に識別可能である。
【0050】
等張液は均質であり、および、おそらくは管22との移行境界における反射を除いて、発射パルスを全く反射しない。当然のことながら、これは、等張液が微小気泡を含まない場合にだけ当てはまる。例えば、等張液がその使用の直前にその容器内で加熱されるか揺すられた場合には、微小気泡がその等張液中に存在するだろう。微小気泡が細胞に見えるために微小気泡が赤血球数と白血球数の有効性を低下させるので、等張液内の微小気泡の存在は望ましくない。したがって、血液学的機器の適切な動作のためには、等張液に微小気泡が含まれていないことを確実なものにするように注意が払われるべきである。
【0051】
これとは対照的に、血液は、血清と共に、細胞と脂質と他の成分とを含む高密度本体の懸濁液(slurry)を搬送し、および、血液はその懸濁液物体のすべてから多くの反射を生じさせる。したがって、変換器30から管22の遠位壁26までの距離が一定不変であり、かつ、空気が管22内に存在する時に求められることが可能なので、管22内の血液と等張液との間の識別が、その流体中の粒子からの発射パルスのノイズ反射の有無を観測することによって容易に判定されることが可能である。
【0052】
流体タイプ検出器20の動作と制御とが図3に最も適切に示されている。タイミング発生器42が、25MHz発振器46の単一の完全なサイクルの間送信/受信スイッチ44を開き、および、センサ28が管22に向けて集束コーン32(図2を参照されたい)を通してパルスを発射することを可能にする。管22と集束コーン32との密度の差のために、集束コーン32と管22との間の移行部分において僅かな反射が生じさせられる。しかし、発射パルス信号の大部分は管22を通過してその管内に収容されている流体サンプルの中に伝搬し続けるだろう。発射パルス信号は、管22の遠位壁26に当たるまで流体サンプル中を通って伝搬するだろう。サンプル流体が空気である場合には、空気から管22の固体の遠位壁26への移行部分のために、大きな反射が遠位壁26において生じさせられる。サンプルが等張液または血液である場合には、管22と流体サンプルとの密度が類似しているので、発射パルス信号の大部分は管22の遠位壁26の中に伝搬し続けるだろう。ポリウレタン管22とスチールの後部壁40との間の移行部分の密度の大きな変化のために、このパルスはハウジング34の後部壁40に到達して、この後部壁40から反射されるだろう。上述の反射のすべてがセンサ28によって受け取られる。
【0053】
空気が管22内に存在する時には、流体タイプ検出器20は自己校正する。これが生じる時には、空気中では信号の伝搬速度がより低いので、管22の遠位壁26からのエコーの飛行時間が、等張液または血液が管22内に位置している時の飛行時間に比較して著しく長い。これに加えて、管22の遠位壁26からの1つのエコーと、ハウジング34の後部壁40からのもう1つのエコーである、2つの大きなエコーが受け取られる。管の壁厚さが、上述のエコー信号と、信号経路中の構成要素の既知の全体的な形状配置とから容易に求められる。機械的アセンブリが固定された形状配置を有し、および、管の内径が計算されるべき唯一の変数であるので、(管がわずかに圧縮されている場合にさえ)管の内径が容易に求められる。
【0054】
ハウジング34の後部壁40からのエコー信号の早期の到着が、等張液または血液が検出器20の位置において管22内の空気に取って代わっているということを示す。空気と等張液または血液の互いに異なる密度と伝搬値とが、センサ28によって受け取られる反射の著しい変化を生じさせ、および、空気から等張液へのまたは空気から血液への移行部分をセンサ28が容易に識別することを可能にする。このために、パルスが最初に発射されると、タイミング発生器42がランプ波発生器48をリセットする。図3を参照されたい。ハウジング34の後部壁40からのエコー信号がセンサ28によって受け取られると、このことは、サンプル/ホールド#1がランプ波信号の値を凍結させることを引き起こす。ランプ波信号の捕捉された値は管22と流体サンプルとを完全に通過するエコー信号の飛行時間(双方向の通過のために2倍)の関数であり、および、流体の密度を求めるために使用される。後部壁から相対的に大きいエコーを受け取ることが、比較器50がRSフリップフロップ52をトグルすることを引き起こす。
【0055】
血液が管22内に存在する時に、多量の小さなエコー信号ノイズがセンサ28によって受け取られるが、一方、空気と等張液はこうしたノイズを発生させない。こうしたノイズの存在は、管22内から発生されたノイズエコー信号がセンサ28によって受け取られることが予想される時に一定の期間中はゲート制御されるピーク検出器54を用いて求められる。管22内からのノイズエコー信号が止むことが予想され、および、発射信号が管22の遠位壁26に到達し終わると、ピーク検出器54はリセットされ、および、サンプル/ホールド#2がノイズ値を凍結させる。その後に、サンプル/ホールド#1とサンプル/ホールド#2との出力がディジタル化され、および、そのデータが、空気、血液、または、等張液としてサンプル管の内容物を判定して報告するために処理される。
【0056】
微小気泡の存在は、流体タイプ検出器20によって認識され報告されることが可能でなければならない条件である。微小気泡は、細胞と同一のサイズであることが多く、および、例えば細胞のサイズ計数における誤りの原因となる可能性があるので、血液分析機器における深刻な問題点を生じさせる。等張液中の微小気泡の存在は、血液学的機器において交換されているリザーバ容器の乱雑な取り扱いを原因として生じる可能性がある。微小気泡は、さらに、低温貯蔵庫から暖房された実験室に移動される時に生じることがある熱の急激な増大にリザーバ容器がさらされる時に、等張液中で発生させられる可能性もある。血液サンプル中の微小気泡の存在は一般的な問題であり、および、典型的には、吸引前の血液サンプルの過剰な動揺によって、例えばサンプル管を過剰に振り動かすことによって、引き起こされる。
【0057】
本発明による検出器20は、発射パルスの飛行時間が予想飛行時間よりも長いことと、流体サンプルの密度が予想密度よりも低いこととを観測することによって、血液サンプルおよび/または等張液中における微小気泡の存在を検出する。さらに、気泡が流体カラム中に均一に分散していないので、および、超音波パルスによって検出される密度の段階的変化のせいで、気泡自体から反射が生じさせられるので、連続した測定値の相互間の著しい変動が観測されるだろう。したがって、測定された飛行時間および/または密度値が、記憶装置内に記憶されている許容可能な値と比較され、および、連続的に得られた飛行時間および/または密度値の測定値が、これらの相互間の変動が許容可能な範囲内にあるかどうかを判定するために比較される。その後に、流体タイプ検出器20が流体タイプを報告し、および、これに加えて、血液サンプルおよび/または等張液中に微小気泡が存在するか否かを報告する。
【0058】
したがって、上述した通りの流体タイプ検出器とその対応する流体タイプ検出方法とが、密度を測定するために、および、機器の管の中の流体の内容を認識するために使用されることが可能である。この検出器と検出方法は、さらに、血液サンプルと等張液との中の微小気泡の存在を認識することが可能であり、および、血液吸引のリーディングエッジとトレーリングエッジとを検出することが可能である。この検出器は、管の寸法上の変動における変化に対して自己校正および自己補正する機能を有する。これに加えて、この検出器は、図1に示されているように、典型的には吸引針から検出器の下流の行先に至る同一の管(例えばプラスチック管)の中に信号を発射することが可能である。
【0059】
粘度測定
血液サンプルの測定が様々な血液処理手続きにおいて必要とされている。例えば、粘度測定は、スライドガラス上の細胞の所望の単層塗沫を生じさせるために、スライドガラス作成機器のウェッジの適正なホールド時間と塗沫速度と加速度とを決定するために使用されることが可能である。これに加えて、粘度測定が、例えば、細胞計数と白血球/赤血球分離手順とのためのサンプル処理時間を最適化するために、血液サンプルの最適な希釈度を求めるために、多機能血液学的機器において使用されることが可能である。
【0060】
管内の血液の粘度が、その管の内を流れる血液の密度と血液の速度とから求められることが可能である。密閉流路または管の境界に平行な方向に各々の粒子が移動する時に、粘性流が形成される。液体の粘性流に対抗する力が、耐ゆがみ性として知られている。管の中を通る粘性流の場合には、管の表面における液体の分子滑りが存在しないことが仮定されている。粘性流の法則が、管内の粘度と流量とを求めるために適用されてよい。粘度(ポアズ)が、ダイン*秒/cm2=グラム*秒/981cm2の単位で定義される。管内における関係は、
ポアズ=π(管内のデルタ圧力)h4/(125568(管の長さ)(管内の流量))
であり、
ここで、h=管の直径である。
【0061】
上述の変数は、本発明によって次の通りに求められることが可能である。図1に最も適切に示されているように、吸引針12に隣接している管の一方の側は大気圧である。実際に、吸引針の出口側は周囲空気に対して制限を加えるだろう。この制限は一貫した低下を生じさせ、したがって、サンプル管内の気圧は、出口管の開口と長さとに基づいている予測可能な値だけ周囲大気圧からずれているだろう。したがって、デルタ圧力は吸引真空または出口管圧力原に等しく、および、容易に求められることが可能である。粘度測定のための検出器14は、吸引針12から定距離を置いて管の周りに配置されている。この定距離は容易に求められる。検出器14は、本発明の流体タイプ検出器20に関して説明したように、空気が管内に存在する時にその管の直径を測定する。その管内の流量は、検出器14によって血液の密度と血液の速度を測定することによって求められる。検出器14は、本発明の流体タイプ検出器20に関して説明したように、血液の密度を測定し、および、所望の流速測定値を捕捉するために必要とされるタイミングを、この密度測定値から求める。検出器14は、横断面流速プロファイルが概算されることを可能にするために、サンプルの流れの中に発射されて流体サンプルの横断面の中の少なくとも2つの異なる個所に位置している細胞から反射される超音波パルスのような波形パルスのエコー信号のドップラー偏移を測定することによって、血液サンプルの速度を測定する。これに関しては、より詳細に後述する。これらの測定値から、流量容量と最終的には粘度とが求められる。
【0062】
管の中を通して送られる流体がその管の内径の横断面内の任意の個所で一定不変の速度を受けるわけではなく、例えば、管壁における速度が常にゼロなので、少なくとも2つの個所での速度測定によってその管の中を通る流体の流量を測定することが必要である。流速はガウス曲線の横断面形状に類似した横断面形状をとり、および、例えば2点測定によって求められることが可能である。その次に、サンプル流体の流量がその得られた曲線の形状から求められる。該当する2つの点は管の内径の中心と、この中心と管の内径壁との間の第2の個所とである。この横断面全体における任意の個所での流体の速度は、既知の周波数の発射パルスと横断面内のその個所における流体の速度との間の衝突の結果として生じるトップラー偏移から求めることが可能である。測定される最も高い周波数は流れの中心に最も近い流れの周波数だろう。
【0063】
本発明による粘度検出器60が図4に最も適切に示されている。サンプルが中を通過させられるサンプル管62が横断面の形で示されており、および、図示されているように、互いに反対側に位置した近位壁64と遠位壁66とをそれぞれに有する。粘度検出器60は1対のセンサ68、70を含む。密度/発射センサ68は、図2に関連して詳細に説明した流体タイプ検出器20と実質的に同一である。密度/発射センサ68は、超音波チャープのようなパルス信号を管62を通して発射するために、および、このパルス信号のエコーを受け取るために、管62の近位壁64の一部分に隣接して配置されている。センサ68は、管62の小さなセクションを垂直方向に横断するようにピエゾエネルギーを方向付けるために管62の近位壁64に係合しているピエゾクリスタル変換器として設けられることが可能である。センサ68は、上述したように管62内に空気が存在している時に管62内の流体の流体タイプ/密度と管62の直径とを測定するために使用される。
【0064】
第2のセンサ70はドップラーセンサであり、センサ68から発射された信号が管62内の血液サンプル中の前方移動する粒子と衝突することから結果的に生じるドップラー偏移信号を受け取る機能を提供する。図4では、前方移動は図面上での左から右への移動として定義される。図に示されているように、ドップラーセンサ70は管62の遠位壁66に係合し、および、管62の縦軸線に対して、および、管62の中に発射されるパルスの方向に対して一定の角度に配置されている。ドップラーセンサ70は、密度センサ68に対して管62の同一側または反対側に配置されることが可能である。スチールハウジングのような高密度ハウジング74がセンサ68、70と管62の一部分とを取り囲む。減衰パッドが、上述の理由のために、センサ68、70上で使用される。管62がセンサ68、70と係合する場所では、シリコングリースのようなカップリングゲル(図示されていない)が使用されることが可能である。
【0065】
ドップラーセンサ70は、ドップラー偏移を観測することが可能であるように、管62の中心縦軸線に対して角度θに位置していなければならない。この角度はゼロであることが不可能である。図5は、発射信号と2つの採用可能なドップラーセンサ位置との間の関係を示す。任意の交差(intercept)角度θにおいて、ドップラー周波数偏移の量は、
Δf=2VF0cosθ/C
であり、
ここで、V=流体中のコロイド状粒子の速度、
0=送出される搬送波周波数、
θ=交差角度、
C=流体コラム内の音速
【0066】
交差角度が直角に近づくにつれてその交差角度がどれだけ大きくなることが可能であるかに関しては制限がある。これは、流体流の外乱が無いという要件と、ドップラー信号が通過しなければならない管壁距離の量とによって決定される。管壁が硬質の材料ではないので、このことは信号に対する伝搬損失を引き起こすだろう。したがって、公称上の最適な交差角度は、デルタ周波数の変化と信号振幅とをバランスさせる交差角度である。これに加えて、センサ70によって受け取られる信号に対するわずかな補正が、材料密度の違いを原因とする管壁における信号の経路偏移の原因となるように行われなければならない。この補正はスネルの法則によって説明されており、このスネルの法則は、2つ以上の媒質の間に密度の変化がある時に生じるベクトルパスにおける変化を説明する。
【0067】
密度を測定するために使用される発射パルスは、ドップラー偏移を測定するために使用される発射パルスとは異なっている。密度測定では、戻りエコーの飛行時間を求めることだけが必要であり、および、発射搬送波周波数の単一のサイクルが、エコー干渉を防止するので好ましい。ドップラー偏移の測定のためには、搬送波信号の4サイクルバーストが、デルタ周波数測定が安定化することを可能にするために使用されることが可能である。粘度検出器60におけるすべての寸法が実質的に一定不変であるので、パルスレート周波数PRFが最良の性能を得るようにプリセットされることが可能であり、および、後信号処理が、測定窓時間中以外の全時間において無効にされることが可能である。このことが、偽のエコーを受け取る可能性を排除する。
【0068】
血液サンプル内の細胞の動きから見識を得るために可能な限り高く搬送周波数を設定することが望ましい。本発明によって使用可能な動作周波数の一例は25MHzである。この動作周波数では、ドップラーセンサの観測可能な特徴サイズ能力が約40ナノ秒であり、これは、約0.00235インチの対象サイズに相当する。さらに、センサ68とセンサ70の自己共振が主発振器の自己共振に一致することが望ましい。ドップラーセンサ70を形成するのに使用するためのピエゾ材料の一例が、該当する周波数範囲内に単一の高Q自己共振点を伴って動作することが可能であり、かつ、所望の比較的小さいサイズに形成されることが可能であるPZT(ジルコン酸チタン酸鉛)である。パルスレート周波数PRFは、例えば2μsecから100μsecの範囲内に設定されることが可能である。
【0069】
粘度検出器60の制御が図6の回路系ブロック図に最も適切に示されている。主発振器76は25MHz正弦波源である。送信/受信スイッチ78が、単一サイクルまたは4サイクルのバースト信号がセンサ68に供給されかつセンサ68によって管62を通して発射されるか否かを決定する。受信モードでは、センサ68によって受け取られたエコーが、AM検出器82の電圧出力がエコー振幅の関数であるように、帯域フィルタ80とAM検出器82とを通して処理される。スチールハウジング74からセンサ68によって受け取られたエコーは比較的大きく、および、受け取られた時に、RSフリップフロップ84がサンプル/ホールド#1を閉じてランプ波発生器86からの振幅を記録することを引き起こす。パルスが発射された後に、RSフリップフロップ84とランプ波発生器86とが時間遅延の後にリセットされる。この遅延は、センサ68と管62との間の移行部分からのエコーがすべて無視されることを確実なものにするためである。サンプル/ホールド#1によってラッチされる電圧が、パルス伝搬時間×2である。これは、流体の密度と、サンプル/ホールド#2に関するタイミングとを決定するために使用される。
【0070】
サンプル密度の測定の後に、4サイクルのバーストが、センサ68によって管62の中に発射されることが引き起こされる。ドップラーセンサ70は、発射された搬送周波数と血液細胞の速度との積を回復する。これは、ドップラー効果によって引き起こされる周波数偏移に比例してる電圧を生じさせるために周波数弁別器90に一定不変の振幅信号を配送する制限増幅器88を通して処理される。サンプル/ホールド#2は、狭い時間窓の範囲内の予め決められた時間にドップラー信号を捕捉するためにゲートされる。この予め決められた時間は管62の中心からの信号と管62内への約25%から約75%の信号とに対応する。これは、単一のチャープ事象または2つの連続した動作において行われてよい。主発振器76は、タイミング発生器92の動作と制御および数学関数ブロック94との動作を順序付けるために使用される。周波数弁別器90がオープンループモードで動作することと、サンプル/ホールド#2が、速度測定に関して所望の空間精度を実現するように80ナノ秒の期間内に周波数弁別器90の出力をラッチすることが可能であることが好ましい。
【0071】
例えば、公称上の吸引流速が約100μL/秒であることが予想され、および、内径0.023インチの管の場合に、平均流速は約0.373mm/秒となるだろう。入射角が30°でかつ血液中を通過する音の速度が1600m/秒である場合には、ドップラーデルタ周波数は約10Hzである。このピーク速度は約50Hzのドップラー偏移を生じさせる可能性がある。直接周波数弁別器90の使用は、迅速にこの周波数偏移を処理するために利用される。例えば、米国特許第3,292,093号が周波数弁別器の適切な例を開示する。
【0072】
粘度測定値は、粘度検出器60が血液サンプル吸引のリーディングエッジとトレーリングエッジを認識することが可能であるように連続的に測定されることが可能である。均質である血液サンプル吸引内の位置も識別されることが可能である。従って、粘度測定値は、さらに、気泡がこうした吸引中に検出されるので、不完全吸引条件を認識することも可能である。
【0073】
したがって、上述の粘度検出器と粘度検出方法は、機器の管内の流体の密度と速度と粘度とを測定するために使用されることが可能である。こうした測定値は、例えば、血液塗沫スライドガラス作成装置と多機能血液学的機器とにおいて必要とされる。この検出器と検出方法は、さらに、血液サンプル吸引中の気泡の存在を認識し、血液吸引のリーディングエッジとトレーリングエッジとを検出し、サンプルが均質である場合を判定することが可能である。この検出器は、管の寸法的な変動における変化に対する自己校正および自己補正の機能を有し、および、吸引針から検出器の下流の行先まで中断されずに到達する同じ管に連結して使用されることが可能である。
【0074】
ESRおよびZSR測定
ESRは、一定の期間中の抗凝固処理全血試料中の血漿中の赤血球の沈降の度合いの測度であり、および、ZSRは、標準ストレスの下での赤血球の集合(packing)の測度である。本発明では、例えば図4に示されている通りのアセンブリと、例えば図7に示されている通りの方法とを使用することによって、この両方が同時に測定されることが可能である。このために、管内を流れる血液のコラムが急停止させられ、および、血漿中の細胞の減速が、超音波パルスのような既知の周波数を有する波形パルスを管の中に発射することによって、および、戻りエコー信号を受け取って処理することによって、監視される。
【0075】
血液サンプルの定常搬送モード中は、細胞は管の中心内に集中しており、これと同時に血漿が管の壁において優位を占めるだろう。血液サンプルカラムが急停止されると、血漿中の摩擦損失が細胞の運動エネルギーを吸収するまで細胞が前方移動し続けるだろう。最終的には、細胞が懸濁状態から沈降することを重力が引き起こすまで、細胞は細胞と血漿の均質な分布の形に放散するだろう。細胞は、静電荷すなわちゼータ電位を有し、このゼータ電位は血漿のタンパク質組成の関数である。ゼータ電位は細胞が別々に拡散することを引き起こし、したがって、細胞の減速が管内の前方方向と横断方向との両方において同時に発生するだろう。血液サンプルカラムが最初に停止させられると、細胞の横断方向の速度がピークに達し、および、その次に、細胞が平衡分布状態になるにつれて減衰するだろう。この最高の横断方向速度は、細胞の前方移動が停止する前に生じるだろう。
【0076】
赤血球沈降の速度は、血漿のタンパク質組成と、赤血球のサイズおよび形状と、赤血球の濃度と、血液サンプルの温度とに依存している。例えば、血漿中のより多くの量のタンパク質の存在と、より高い赤血球濃度とが、ESRを低下させるだろう。大赤血球は通常の速度よりも早い速度で沈降し、および、小赤血球と不規則な形状の異型赤血球は通常の速度よりも遅い速度で沈降するだろう。血液サンプルの温度は血漿の粘度に影響し、一方、血漿の粘度はESRに影響するだろう。これに加えて、貧血症の個人(低い血球数)は増大したESRを有するように見えるだろう。本発明によるESR/ZSR検出器は、上述の条件のすべての適正な原因となることが可能である。
【0077】
本発明によるESR/ZSR検出器は、粘度検出器60に関して図4に示されているそれと同一である、アセンブリされることが可能である。このために、ESR/ZSR検出器は、管に垂直に方向付けられている発射センサと、管に対して角度θに傾斜しているドップラーセンサとを有する。これらのセンサは、単一の複合センサまたは1対の別々のセンサであることが可能である。血液サンプルが定常状態搬送でありかつESR/ZSR検出器を通過して管内を流れている間に、血液サンプルの密度と粘度が測定される。これらの測定がどのように行われるかに関する説明については、流体タイプ検出器20と粘度検出器60との説明を参照されたい。吸引サンプルの非一貫性と、微小気泡の存在と、不完全な吸引条件も、上述したようにこの時点で検出されることが可能である。
【0078】
血液サンプルの吸引抜き出しが貯蔵ガラスビン等から抜き出される。このサンプルは、30秒以下の時間内に非外傷的に抜き出された全血とK3ADTAとの混合物であり、および、大半の血液分析機器において典型的に使用されるサンプルと同じであることが好ましい。注射器または強制押しのけ式ポンプがサンプルを抜き出すために使用されることが可能であり、または、吸引が真空によってまたはガラスビンの加圧によって抜き出されることが可能である。血液サンプルが実質的に一定不変の速度で流動するこの定常流動条件中は、細胞は、毛細管内の流体カラムの中心で塊状になる。ESR/ZSR測定値が相対的な測定値なので、血液の定常流量は重要ではない。吸引抜き出しが十分な量の血液サンプルを抜き出し終わった後に、管内の血液カラムが急停止させられる。この時点で、ESR/ZSR検出器が、血漿内の細胞の前方移動と横断方向移動との減速率すなわち減衰率を監視する。前方ドップラーセンサが細胞の前方移動を監視し、および、発射センサが細胞の横断方向移動を監視する。これらの監視機能は、移動する細胞から反射するエコー信号のドップラー偏移(すなわち、周波数の変化)を測定することによって行われる。血液サンプルのESR値とZSR値を求めるための必要な測定は、血液細胞の速度がゼロに達する前に、および、好ましくは30秒間以内に完了される。
【0079】
粘度測定中に捕捉されたデータは、ドップラー偏移測定のためのタイミングを与え、および、大半の血液学機器が動作する60−90°Fの周囲温度範囲内で細胞減速率の温度依存性が補償されることを可能にする。ESR/ZSR検出器の粘度測定とドップラー偏移測定との両方の最中に、細胞速度データが毛細管内の固定された空間位置において測定される。例えば、細胞の前方移動がその管の中心で監視され、および、細胞の横断方向移動がその管の内径から約25%の位置で監視される。密度測定が、発射されたパルスの飛行時間に関連した管の近くの内側端縁と遠くの内側端縁との位置に関する情報を検出器に与える。したがって、血液サンプルの密度と、発射センサと前方ドップラーセンサとの間の角度の関係との情報が、やがては前方ドップラーセンサによって観測されるように、管の中心が算出されることを可能にする。
【0080】
図8の回路ブロック図が、ESR/ZSR検出器100の動作と制御を最も適切に示す。主発振器102は25MHz正弦波源である。送信/受信スイッチ104が、単一サイクルまたは4サイクルのバースト信号がセンサ106に供給されかつセンサ106によって管108を通して発射されるか否かを決定する。管108内を一定不変の速度で流動する流体に中に発射される単一の信号のための受信モードでは、センサ106はその信号のエコーを受信するために使用され、および、受信されたエコーが、AM検出器112の電圧出力がエコー振幅の関数であるように帯域フィルタ110とAM検出器112とを通して処理される。この当該のエコーは、検出器100のハウジングの遠方のスチール壁から受け取られるエコーである。管108の壁の相対的に低い密度に比較してスチールハウジングの相対的に高い密度のためにこのエコーが比較的大きい振幅を有するので、このエコーは容易に認識されることが可能である。このエコーを受け取ることは、RSフリップフロップ114がサンプル/ホールド#1(S/H#1)を閉じてランプ波発生器116の振幅を記録することを引き起こす。パルスが発射された後に、センサ106と管108との間の移行部分からのあらゆるエコーが無視されることを確実にするために、RSフリップフロップ114とランプ波発生器116とが一定の時間遅延後にリセットされる。サンプル/ホールド#1によってラッチされる電圧が、パルス伝搬時間×2の情報を提供する。この情報は、管内の流体の密度とサンプル/ホールド#2および#3(S/H#2とS/H#3)に関するタイミングとを求めるために使用される。さらに、この情報は、空気が管108内に存在する時に管108の寸法を測定するためにも使用される。
【0081】
サンプル密度の測定の後に、および、流体が管108内で実質的に一定不変の速度で流動させられている間に、4サイクルのバーストが、管108の中にセンサ106によって発射されることが生じさせられる。前方ドップラーセンサ118は、発射された搬送周波数と血液細胞の前方速度との積を回復する。これは、ドップラー効果によって引き起こされる周波数偏移に比例している電圧を生じさせるために、周波数変調(FM)検出器122(すなわち、周波数弁別器)に定振幅信号を配送する制限増幅器120を通して処理される。サンプル/ホールド#3は、狭い時間窓の範囲内の予め決められた時間にドップラー信号を捕捉するようにゲートされる。この予め決められた時間は、管108の中心からの信号と管108内への約25%から約75%の信号とに対応する。これは、単一のチャープ事象または2つの連続した動作において行われてよい。主発振器102は、タイミング発生器124の動作と制御および数学関数ブロック126との動作を順序付けるために使用される。周波数弁別器122がオープンループモードで動作することと、サンプル/ホールド#3が、測定に関して所望の空間精度を実現するように80ナノ秒の期間内は周波数弁別器の出力をラッチできることとが好ましい。
【0082】
血液サンプルが実質的に定常流動条件において管108を通って移動している間に、密度測定値と粘度測定値とが反復的かつ連続的に得られる。このことが、均質である血液サンプル吸引中の任意の位置に加えて、血液サンプル吸引のリーディングエッジが認識されることを可能にする。したがって、こうした条件において気泡が検出されるので、これらの測定値は不完全吸引条件を認識することも可能である。
【0083】
ESR測定値とZSR測定値とを得るために、血液サンプルの流動が管108内で急停止させられ、および、細胞が通常の流路に対して前方方向と横断方向の両方に移動することを減速し始める。上述したように血液サンプルの密度がすでに確かめられているので、送信/受信スイッチ104が、管108の中にパルスを発射するセンサ106に対する主発振器102の搬送波の4サイクルバーストをゲートするだろう。受信モードでは、センサ106が、パルスのエコーを受信するために使用され、および、そのエコー信号が帯域フィルタ110とFM検出器128とによって処理される。FM検出器の電圧出力は、タイミング発生器124の制御下においてサンプル/ホールド#2によって捕捉される。タイミング発生器124は、FM検出器128の出力をサンプル/ホールド#2が追跡することを引き起こし、および、その次に、管108内の所望の空間位置からのエコーがセンサ106によって受け取られる時に、その追跡がオフにされ、および、FM検出器128からの電圧出力がサンプル/ホールド#2によって凍結される。捕捉位置のためのタイミングは管108の中への25%から75%の距離に基づいており、および、事前に求められた密度測定値によって適正な空間的位置決めのために補正される。このタイミングは、事前の粘度測定中に前方ドップラーセンサ118のために使用されるタイミングと同一である。
【0084】
前方ドップラーセンサ118は、粘度測定モード中のそのセンサの動作に類似した仕方でESR/ZSR測定モードで動作する。しかし、管108の中心におけるドップラー偏移だけが、ESR/ZSR測定中に前方ドップラーセンサ118によって測定されることが必要である。したがって、サンプル/ホールド#3は、管108の中心から受け取られるエコーに関係する信号を捕捉するために使用される。
【0085】
ESR/ZSR検出器130の代案の3センサ式の実施形態が図9に示されている。発射センサ132が、超音波パルスのようなパルスを管134に対して横断方向に発射するために管134に隣接して配置されている。横断方向速度センサ136が、管134を横断方向に伝搬する信号を受け取るために発射センサ132の反対側の位置に管134に隣接して配置されている。前方ドップラーセンサ138は、前進する細胞から信号が反射する時にその信号のドップラー偏移測定値を得るために、管134に対して一定の角度で傾斜している。この実施形態は、送信スイッチ140が発射センサ132に対してRF発振器142をゲートするためにだけ使用されるということと、発射センサ132がエコーの受信のためには不要であるということとを除いて、図8の実施形態と同様に機能する。より正確に述べると、上述した電子装置に相互接続する横断方向速度センサ136がこの機能を実現する。
【0086】
上述の両方の実施形態では、横断方向信号のAM検出と前方ドップラー偏移信号のFM検出とが、血液サンプルの密度と粘度とを求めるために検出される。AM検出は、さらに、管内の血液の密度に関して補正されるように、管の内径を求めるために発射パルスの通過時間を求めるためにも使用される。この密度測定は、さらに、管の中心軸線と、管の中心軸線と内径壁との間のほぼ中間である管内の位置とに対応するゲートタイミングを決定するためにも使用される。サンプルの粘度が、流体が定常流動条件にある時の2つの空間血液速度から算出される。密度データと粘度データは、流体カラムが急停止された後の管内の既知の空間位置における細胞の速度を捕捉するためのゲートタイミングを設定するために、後で使用される。前方細胞速度と横断方向細胞速度との減衰率がESR測定値とVSR測定値とを与える。
【0087】
上述の実施形態に関して説明された多数の電子部品は主としてアナログであるが、信号プロセッサの他の想定された代案の実施形態は、ディジタル信号処理により大きく依存している電子部品を使用する。したがって、例えばFFTのように、ドップラー偏移測定値を処理するための他の電子部品と方法とが使用されることが可能である。これに加えて、センサの個数は増減されることが可能であり、および、単一の複合センサとして組み合わされることが可能であり、または、それぞれ別個のセンサとして提供されることが可能である。
【0088】
ESR値は、サンプル中の細胞の前方移動の減速率の加速された変化率である。この値は、上述の検出器100または検出器130によって得られる情報から容易に求められる。血液サンプルの密度と粘度とに関する補正がそのデータに対して適用され、および、サンプルの温度と全体的な粘度とを補償するので、血液サンプルは予熱される必要はない。
【0089】
ZSR値は、サンプル中の細胞の横断方向移動の減速率の加速された変化率である。この値は、上述の検出器100または検出器130によって得られる情報から容易に求められる。血液サンプルの密度と粘度とに関する補正がそのデータに対して適用され、および、サンプルの温度と全体的な粘度とを補償するので、血液サンプルは予熱される必要はない。従来の技術とは違って、本発明による検出器と方法は、ZSR値を求めるために細胞の動きを直接的に評価する。したがって、ゼータ電位によって引き起こされる細胞の動きが、血液の静的カラム内の開始中央集中位置から横断方向に細胞の動きを観測することによって測定されることが可能である。
【0090】
本発明によるESRとZSRの同時測定は従来技術の方法に比較して数多くの利点を提供する。ESR測定は、従来においては、患者の性別と年齢と妊娠状態とに基づいた異なるスケールの使用に関して付加的な判定を必要とする。しかし、本発明によってESRとZSRとが同時に測定されるので、患者の性別と年齢がその値によって求められて報告されることが可能である。したがって、ESR測定の結果は患者の性別と年齢と妊娠状態とに関する付加的な判定を必要とせず、むしろ、これは検出器100または検出器130によって考慮に入れられる。これに加えて、ZSR測定が、そうでない場合には患者の血球数の少なさのために誤りが生じる可能性がある貧血症の患者に関するESR値を補正するために使用されることが可能である。
【0091】
従来技術のESR測定機器とは違って、得られる速度データがドップラー偏移の関数なので、本発明によるESR/ZSR検出器の校正は比較的簡単である。1つの校正の代案が、検出器がそれに基づいて校正されることが可能な基準を提供するために、等張液中に浮遊させられた標準Latronラテックスビーズ、または、他の重み付きのプラスチックビーズもしくは鉄充填プラスチックビーズを使用することである。定常流動条件の間は、そのビーズは管の中心軸線に沿って集中状態になり、および、急停止させられると、細胞の動きと同様に前方方向と横断方向との両方に移動し続ける。ラテックスビーズは、毛細管の中を通して抜き出される時に生じさせられる静電荷を有し、および、この静電荷は、流体カラムが急停止させられる時に他のビーズをはね返すだろう。あるいは、この代案として、センサと他の電子機器が、例えば選択されたテスト信号をセンサ内に伝送することによって、電子的に校正され検査されることが可能である。
【0092】
したがって、上述の検出器と方法は、血液分析機器の管の中の流体の密度と速度と粘度とESR値とZSR値とを同時に求めるために使用されることが可能である。この検出器と方法は、さらに、血液サンプル吸引中の気泡の存在を認識し、血液吸引のリーディングエッジとトレーリングエッジとを検出し、および、サンプルが均質である場合を判定する。この検出器は、管の寸法上の変動における変化に対する自己校正および自己補正の機能を有し、および、吸引針から検出器の下流の行先に至る管における中断を必要としない。ESR測定値およびZSR測定値が血液粘度と細胞密度とに対して補正され、および、ESR測定値が貧血症に関して補正される。これに加えて、吸引中にサンプルの粘度を事前に知ることによって、血液学的機器は、例えば細胞の計数および赤血球/白血球分離処理のサンプル処理時間を最適化するために、および、目詰り事象を減少させるために、可変的な希釈度によって動作することが可能である。
【0093】
多機能血液学的機器等
図1は、密閉ガラスビン(図示されていない)から真空によって血液サンプルを抜き出すための吸引針すなわち注射器12を有する血液学的機器の一部分を概略的に示す。サンプルは第1の検出器14を通して血液サンプリング弁16に送られ、および、その次に、多機能血液学的機器10の他の血液分析セクション(図示されていない)に送られる前に第2の検出器18を通過させられる。検出器14は、サンプルの流体タイプと、血液サンプルの密度と粘度と、および、血液が急停止させられた後に、血液サンプルのESRとZSRとを測定するために使用されることが可能である。検出器14は、検出器20、60、100、および、130に関して詳細に上述したように動作することが可能である。検出器18は、本発明による流体タイプ検出器であることが可能である。したがって、検出器14、18は、血液または等張液または空気が管内に存在するかどうかを判定することが可能であり、および、適切な吸引が行われたことを確かなものにするために血液搬送を監視することが可能である。これに加えて、検出器14、18は、空気がサンプルカラム中に存在している時と血液の体積が不十分である時(すなわち、不完全吸引条件)とに表示を行うことが可能である。本発明の利点のすべてが必ずしも必要ではない場合には、検出器14が、単なる流体タイプ検出器として、または、単なる粘度検出器として提供されることが可能である。
【0094】
吸引/吐出機器が図10に概略的に示されており、この図では、血液学的装置150が、密閉ガラスビン(図示されていない)から注射器または押しのけ式ポンプ154によって血液サンプルを抜き出すための吸引針すなわち注射器151を有する。この吸引針151は、サンプルが抜き出される密閉ガラスビンの中に挿入され、および、そのサンプルが、注射器または押しのけ式ポンプ154の作用によって検出器152を通過して一定の長さの管すなわちリザーバ管路153の中に送られる。この抜き出しは、所望の体積のサンプルが密閉ガラスビンから抜き出され終わった後に停止される。その後で、吸引針151は密閉ガラスビンから抜き出されて、サンプルまたはサンプルの一部分が1つまたは複数の容器の中に分配されることを可能にするために移動させられる。これに加えて、例えば押しのけ式ポンプ154によって生じさせられる流動の方向が、所望の体積のサンプルが多機能血液学的機器150の他の血液分析セクション(図示されていない)に分配されることが可能であるように逆にされることが可能である。
【0095】
検出器152は、サンプルの流体タイプと、血液サンプルの密度と粘度と、および、血液が急停止させられた後に、血液サンプルのESRとZSRとを測定するために使用されることが可能である。検出器152は、検出器20、60、100、および、130に関して詳細に上述したように動作することが可能である。したがって、検出器152は、血液または等張液または空気が管内に存在するかどうかを判定することが可能であり、および、適切な吸引が行われたことを確かなものにするために血液搬送を監視することが可能である。これに加えて、検出器152は、空気がサンプルカラム中に存在している時と血液の体積が不十分である時(すなわち、不完全吸引条件)とに表示を行うことが可能である。本発明の利点のすべてが必ずしも必要ではない場合には、検出器14が、単なる流体タイプ検出器として、または、単なる粘度検出器として提供されることが可能である。
【0096】
本発明による機器の別の具体例が、本発明による粘度検出器を使用する自動スライドガラス作成装置(図示されていない)である。Gao他に交付された米国特許第5,650,332号と同第5,804,145号とにおける血液塗沫部材と自動スライドガラス作成装置との開示内容が本明細書に引例として組み入れられている。図4に示されている検出器60のような粘度検出器が、スライドガラス作成装置の中に一体化されることが可能であり、または、スライドガラス作成装置と組み合わせて使用される別個の機器として提供されることが可能である。この検出器の粘度測定が、スライドガラス作成装置の塗沫形成ウェッジ(図示されていない)のような血液塗沫部材の動きを制御する。血液塗沫スライドガラスは、最適の血液塗沫スライドガラスが作成されるように、粘度測定値が得られた直後に作成されることが可能である。
【0097】
本発明の検出器と機器と方法とのすべてに関して、毛細管の中を通過する流体サンプルの流れは層流であり、単純なガウス形の断面速度プロファイルを有する。したがって、静脈および動脈の非直線的な性質を原因として自然状態では螺旋状である生体内の血流とは違って、本発明の流体サンプルの流動は実質的に直線の毛細管に沿っている。この管がほぼ直角に曲がっている場合には、渦が生じて、血液流が螺旋状の方向性を有するだろう。直線の管に沿った流れが純粋にガウス形になる距離は、流体の速度とその管の内径との関数である。本発明の血液学的機器のためには、この距離は約2インチから約5インチの間である。したがって、本発明による検出器は、管が検出器の中に入る前に少なくとも約5インチにわたって実質的に直線の経路に沿って延びる管の一部分の周りに係合させられるべきである。これに加えて、センサアセンブリの最適な配置は、層流の流動条件を確保するために可能な限り吸引個所から遠く離れているべきである。
【0098】
凝血塊が、本発明の検出器と機器と方法とが対処する別の問題点である。患者から抜き出された血液は、血液を抜き出すことから生じた損傷の結果として、または、サンプル管中のK3ETDAが凝血塊の作用を中和させる前に血液を凝固させることを開始する異常に高い血小板数の結果として、凝血塊を含む可能性がある。過剰に早い速度で過剰に細い針を通して抜き出される血液も血小板の活性化を開始させるだろうし、および、凝集が生じるだろう。吸引毛細管路が小さすぎる場合、または、サンプルが過剰に早く抜き出される場合には、凝集がより後の時点で開始される可能性もある。こうした凝血塊と凝集は、従来において、血液分析機器におけるこうした凝血塊と凝集の存在に関する問題を生じさせてきた。
【0099】
本発明の検出器は凝血塊の存在を検出することが可能であり、および、凝血塊のサイズを判定することが可能である。凝血塊の方がより大きいサイズであるので、凝血塊からのエコー信号の断面プロファイルが細胞からのエコー信号の断面プロファイルとは異なっているという理由から、凝血塊からのエコー信号の断面プロファイルが本発明の検出器によって認識可能である。これに加えて、凝血塊から反射するチャープ速度は気泡から反射するチャープ速度よりも著しく高く、および、したがって、凝血塊からのエコーは気泡からのエコーから区別されることが可能である。これに加えて、単一細胞の反射の受け取りにおける空隙が測定されることが可能であり、凝血塊のサイズを求めるために使用されることが可能である。凝血塊のサイズが過剰に大きいと考えられる場合には、個々の血球を計数して分類するために使用されるその機器の小さい穴のようなその機器の小さい穴を通してサンプル流体を通過させる試みが行われる前に、サンプル流体がその機器から取り除かれることが可能である。したがって、本発明による検出器の追加の特徴は、こうした検出器が、凝血塊によって機器が目詰まりすることを防止することが可能であり、および、通常の動作条件にその機器を回復するために必要とされる停止時間と労力とを不要にすることが可能であるということである。
【0100】
本発明を本発明の特定の実施形態と方法とに関して説明されてきたが、当業者は、流体サンプルの流体タイプと密度と速度と粘度とESRとVSRとを求めるための方法の等価のバージョンを開発することと、本発明の装置と検出器と機器との類似の形態を構築することとが可能だろう。こうした変型例のすべては、添付されている特許請求項に定義されている本発明の着想の範囲内に含まれる。
【図面の簡単な説明】
【0101】
【図1】本発明によるいわゆる「非吸引/吐出」タイプの血液学的機器の一部分の略ブロック図である。
【図2】本発明によるセンサアセンブリを示す図である。
【図3】図2に示されているセンサの動作と制御に関する回路ブロック図である。
【図4】本発明によるセンサアセンブリの第2の実施形態を示す図である。
【図5】図4に示されているセンサアセンブリの動作を概略的に示す図である。
【図6】図4に示されているセンサの動作と制御に関する回路ブロック図である。
【図7】本発明による血液サンプルの沈降速度を測定する方法の流れ図である。
【図8】本発明による2センサ式ESR/ZSR検出器の動作と制御に関する回路ブロック図である。
【図9】本発明による3センサ式ESR/ZSR検出器の動作と制御に関する回路ブロック図である。
【図10】本発明によるいわゆる「吸引/吐出」タイプの血液学的機器の一部分の略ブロック図である。

【特許請求の範囲】
【請求項1】
血液サンプルを分析する装置であって、
試験管内の血液サンプルの流動のための移動経路を画定する毛細管と、
前記毛細管の周りに配置されているセンサアセンブリであって、予め決められた周波数の波形パルスを前記移動経路に対して横断方向に前記毛細管の中に発射するための、および、前記パルスが前記毛細管と前記移動経路とを少なくとも部分的に通って伝搬した後に、前記パルスと前記パルスのエコーとの少なくとも1つを受け取るための少なくとも1つのセンサを有するセンサアセンブリと、
を備えることを特徴とする装置。
【請求項2】
前記パルスは超音波パルスである請求項1に記載の装置。
【請求項3】
前記センサはピエゾクリスタル変換器である請求項2に記載の装置。
【請求項4】
前記毛細管は前記センサに隣接している直線の移動経路を画定する請求項2に記載の装置。
【請求項5】
前記センサは、前記移動経路に対して実質的に垂直な方向にかつ前記毛細管の直径に沿って前記超音波パルスを発射する請求項4に記載の装置。
【請求項6】
単一の発射センサが、前記超音波パルスを発射するために、および、前記発射センサから離れていく方向に前記毛細管の中に伝搬しかつ前記発射センサに向かって反射して戻される前記超音波パルスのエコー信号を受け取るために使用される請求項5に記載の装置。
【請求項7】
前記発射センサと通信している信号処理回路をさらに備え、これにより、前記毛細管内の前記移動経路中に位置している流体の流体密度が求められることが可能であるようにエコー信号の飛行時間を求める、請求項6に記載の装置。
【請求項8】
空気だけが前記毛細管内に位置している時に、前記信号処理回路は、前記発射センサによって受け取られるエコー信号に基づいて前記毛細管の壁厚さと内径とを求めるようになっている請求項7に記載の装置。
【請求項9】
前記センサアセンブリは、前記移動経路内で前方移動する細胞から反射する前記超音波パルスのエコー信号を受け取るよう第2のセンサが位置合わせされるように、前記発射センサに対して前記移動経路に沿って前方に位置しており、かつ前記移動経路に対して一定の角度で傾斜している第2のセンサを含む請求項6に記載の装置。
【請求項10】
前記移動経路に沿って前方に移動する細胞の細胞速度が求められることが可能であるように、前記第2のセンサに相互接続されており、かつ、前記第2のセンサによって受け取られるエコー信号のドップラー偏移を測定するようになっている信号処理回路をさらに備える請求項9に記載の装置。
【請求項11】
前記信号処理回路は、前記毛細管の断面にわたって細胞の速度の曲線が生成されることが可能であるように、前記毛細管内の2つ以上の異なる空間位置に位置している細胞から反射する前記第2のセンサによって受け取られるエコー信号からドップラー偏移測定値を捕捉するようになっている請求項10に記載の装置。
【請求項12】
前記2つ以上の空間位置は、前記毛細管の中心縦軸線に沿った、かつ、前記毛細管の前記中心縦軸線と内径壁との間のほぼ中間である位置を含む請求項11に記載の装置。
【請求項13】
前記毛細管の中を通る前記血液サンプルの流動を急停止させるための手段をさらに備える請求項9に記載の装置。
【請求項14】
前記第2のセンサに相互接続し、かつ、前記毛細管内の前記血液サンプルの流動が前記手段によって急停止させられることが引き起こされた後に前記第2のセンサによって受け取られたエコー信号のドップラー偏移測定値を得るようになっている信号処理回路をさらに備え、および、前記ドップラー偏移測定値は、前記移動経路に沿って前方に移動する細胞からの前記超音波パルスの反射から前記第2のセンサによって受け取れるエコー信号からである請求項13に記載の装置。
【請求項15】
前記信号処理回路は、前記毛細管の中心縦軸線に沿って位置している細胞から反射する前記第2のセンサによって受け取られるものに対応するエコー信号からドップラー偏移測定値を捕捉するようになっている請求項14に記載の装置。
【請求項16】
前記発射センサに相互接続し、かつ、前記毛細管内の前記血液サンプルの流動が前記手段によって急停止させられることが引き起こされた後に前記発射センサによって受け取られるエコー信号のドップラー偏移測定値を得るようになっている信号処理回路をさらに備え、および、前記ドップラー偏移測定値は、前記移動経路に対して横断方向に移動する細胞からの前記超音波パルスの反射から前記発射センサによって受け取られるエコー信号からである請求項13に記載の装置。
【請求項17】
前記信号処理回路は、前記毛細管の前記中心縦軸線と内径壁との間のほぼ中間に位置している細胞から反射する前記発射センサによって受け取られるものに対応するエコー信号からドップラー偏移測定値を捕捉するようになっている請求項16に記載の装置。
【請求項18】
前記信号処理回路は、前記発射センサに相互接続し、かつ、前記毛細管内の前記血液サンプルの流動が前記手段によって急停止させられることが引き起こされた後に前記発射センサによって受け取られるエコー信号のドップラー偏移測定値を得るようになっており、および、前記ドップラー偏移測定値は、前記移動経路に対して横断方向に移動する細胞からの前記超音波パルスの反射から前記発射センサによって受け取られるエコー信号からである請求項14に記載の装置。
【請求項19】
前記センサアセンブリは、前記超音波パルスを発射するために使用される発射センサと、前記毛細管と移動経路とを完全に通って伝搬する前記超音波パルスを受け取るために使用される、前記発射センサの反対側の位置で前記毛細管に係合する別個の受信センサとを含む請求項5に記載の装置。
【請求項20】
前記センサアセンブリは、前記移動経路内で前方移動する細胞から反射する前記超音波パルスのエコー信号を受け取るように第3のセンサが位置合わせされているように、前記発射センサに対して前記移動経路に沿って前方に位置しており、かつ、前記超音波パルスが前記毛細管の中に発射される前記方向に対して一定の角度で傾斜している第3のセンサを含む請求項19に記載の装置。
【請求項21】
前記毛細管は、ポリウレタンと、ポリウレタンとほぼ同等の比較的低い密度を有する材料とから成るグループから選択された材料で作られている請求項4に記載の装置。
【請求項22】
前記毛細管の周りに前記センサアセンブリを密封するハウジングをさらに備え、および、前記ハウジングは、前記超音波パルスが前記ハウジングから反射するように、前記毛細管の密度よりも高い密度である材料で作られている請求項6に記載の装置。
【請求項23】
前記装置は、前記毛細管の中を流動する流体の密度を測定するための、および、前記流体が空気か等張液か血液であるかどうかを判定するための流体タイプ検出器である請求項6に記載の装置。
【請求項24】
前記装置は、血液サンプルの粘度が求められることを可能にする、前記毛細管内を流動する血液サンプルの密度と粘度とを求めるための粘度検出器である請求項9に記載の装置。
【請求項25】
前記装置は、血液サンプルの赤血球沈降速度(ESR)とゼータ沈降速度(ZSR)とを測定するための検出器である請求項18に記載の装置。
【請求項26】
前記装置は、前記センサアセンブリに対して上流の位置において前記毛細管に相互接続されている血液吸引抜き出し機構を有する多機能血液学的機器の一部分を形成する請求項5に記載の装置。
【請求項27】
前記装置は、細胞の単層塗沫を生じさせるためのウェッジ構成要素を有する自動血液塗沫スライドガラス作成装置の一部分を形成し、および、前記ウェッジ構成要素のホールド時間と塗沫速度と加速度の少なくとも1つが、前記センサアセンブリによって得られた飛行時間測定値とドップラー偏移測定値との関数として求められる請求項9に記載の装置。
【請求項28】
受け取られたパルス/エコーの飛行時間と前記エコーのドップラー偏移との少なくとも1つを測定するための前記少なくとも1つのセンサと通信する信号プロセッサをさらに備える請求項1に記載の装置。
【請求項29】
流体サンプルを分析する方法であって、
毛細管内の移動経路の中を試験管内の血液サンプルを流動させる段階と、
予め決められた周波数の波形パルスを、前記毛細管の中に、および、前記移動経路の中に横断方向に発射する段階と、
前記パルスが前記毛細管と前記横断経路とを少なくとも部分的に通って伝搬した後に、センサによって前記パルスを受け取る段階と、
前記受取り段階中に受け取られた前記パルスの飛行時間とドップラー偏移との少なくとも1つを測定する段階と、
を備えることを特徴とする方法。
【請求項30】
前記パルスは超音波パルスである請求項29に記載の方法。
【請求項31】
前記発射段階中に発射される超音波パルスは、前記血液サンプルの移動経路に対して実質的に垂直方向にかつ前記毛細管の直径に沿って方向付けられる請求項30に記載の方法。
【請求項32】
前記受取り段階中は、超音波パルスが前記毛細管と移動経路とを少なくとも1回は完全に通って伝搬し終わった後に超音波パルスが受け取られ、および、前記測定段階中は、前記毛細管と移動経路とを少なくとも1回は通って伝搬した前記超音波パルスが、前記流体サンプルの密度を求めるために測定されて使用される請求項31に記載の方法。
【請求項33】
等張液と血液とを区別するために前記流体サンプル中の粒子からの前記超音波パルスのノイズ反射の有無を監視する段階をさらに含む請求項32に記載の方法。
【請求項34】
前記測定段階中と前記監視段階中とに得られた情報に基づいて前記毛細管内の空気または等張液または血液の存在を報告する段階をさらに含む請求項33に記載の方法。
【請求項35】
前記受取り段階中は、前記毛細管内を前方移動する細胞から反射する前記超音波パルスからのエコー信号が受け取られ、および、前記測定段階中は、前記エコー信号のドップラー偏移が、前記血液サンプルの速度を求めるために測定され、それによって、前記血液サンプルの密度に関する情報に組み合わされた前記血液サンプルの速度測定値が、前記血液サンプルの粘度を求めるために使用される請求項31に記載の方法。
【請求項36】
前記測定段階中は、前記毛細管の断面内の少なくとも2つの異なる空間位置に位置している細胞から反射するエコー信号からドップラー偏移測定値が得られ、および、前記毛細管の断面にわたっての血液速度のプロファイル曲線が生成される請求項35に記載の方法。
【請求項37】
前記空間位置は、前記毛細管の中心縦軸線に沿った、かつ、前記毛細管の前記中心縦軸線と内径壁との間のほぼ中間である位置を含む請求項36に記載の方法。
【請求項38】
前記毛細管内で前記血液サンプルの流動を急停止させる段階をさらに含み、
ここで、前記血液サンプルの流動が急停止させられた後に前記発射段階が行われ、
前記受取り段階中は、エコー信号が、前記毛細管内の前記移動経路に対して前方移動する細胞から、および、前記血液サンプルの流動が急停止させられた後に前記毛細管の中心縦軸線に対して横断方向に移動する細胞から反射する超音波パルスから同時に受け取られ、
前記測定段階中は、前記エコー信号のドップラー偏移が、前方移動する細胞の速度の減衰率と横断方向に移動する細胞の速度の減衰率とを求めるために測定され、
それによって、前方移動する細胞の速度の測定された減衰率が、前記血液サンプルに関するESR値を求めるために使用され、および、横断方向に移動する細胞の速度の減衰率が、前記血液サンプルに関するZSR値を求めるために使用される
請求項31に記載の方法。
【請求項39】
前記測定段階中は、前方移動する細胞の速度の減衰率を求めるためのドップラー偏移測定値は、前記毛細管の中心縦軸線に沿って位置している細胞から反射するエコー信号から得られる請求項38に記載の方法。
【請求項40】
前記測定段階中は、横断方向に移動する細胞の速度の減衰率を求めるためのドップラー偏移測定値は、前記毛細管の前記中心縦軸線と内径壁との間のほぼ中間に位置している細胞から反射するエコー信号から得られる請求項39に記載の方法。
【請求項41】
血液処理機器中のサンプル流体の密度と流体タイプとを求める方法であって、
毛細管内に画定されている移動経路の中で実質的に層流の形に試験管内の流体サンプルを流動させる段階と、
前記毛細管の直径に沿ってかつ前記移動経路に対して実質的に垂直方向に前記毛細管の中に超音波パルスを発射する段階と、
前記超音波パルスが前記毛細管と移動経路とを少なくとも1回は完全に通って伝搬した後に、前記超音波パルスを受け取る段階と、
前記流体サンプルの密度を求めるために前記毛細管と移動経路とを通る前記超音波パルスの飛行時間を測定する段階と、
を備えることを特徴とする方法。
【請求項42】
等張液と血液とを区別するために前記流体サンプル中の粒子からの前記超音波パルスのノイズ反射の有無を監視する段階をさらに含む請求項41に記載の方法。
【請求項43】
前記測定段階中と前記監視段階中に得られた情報に基づいて前記毛細管内の空気または等張液または血液の存在を報告する段階をさらに含む請求項42に記載の方法。
【請求項44】
前記超音波パルスの飛行時間と前記流体サンプルの密度との少なくとも1つの連続的な測定値を得る段階と、
前記連続的な測定値の中のいずれかの予想外の変動を求めるために前記連続的な測定値を比較する段階と、
血液に関する予め決められた許容可能な限界に対して、前記測定段階中に得られた前記超音波パルスの飛行時間と前記流体サンプルの密度との少なくとも1つを比較する段階と、
前記流体サンプルが前記監視段階によって血液であるとすでに判定されている時に、前記流体サンプル中の微小気泡の有無を前記比較段階に基づいて判定する段階と、
をさらに含む請求項42に記載の方法。
【請求項45】
前記超音波パルスの飛行時間と前記流体サンプルの密度との少なくとも1つの連続的な測定値を得る段階と、
等張液に関する予め決められた許容可能な限界に対して、前記測定段階中に得られた前記超音波パルスの飛行時間と前記流体サンプルの密度との少なくとも1つを比較する段階と、
前記流体サンプルが前記監視段階によって等張液であるとすでに判定されているときに、前記流体サンプル中の微小気泡の有無を前記比較段階に基づいて判定する段階と、
前記等張液中の微小気泡の存在の状態が判定される場合に、この状態を報告する段階と、
をさらに含む請求項42に記載の方法。
【請求項46】
前記超音波パルスは予め決められた周波数の単一サイクルのパルスである請求項42に記載の方法。
【請求項47】
血液サンプルの粘度を求める方法であって、
毛細管内に画定されている移動経路の中で実質的に層流の形に試験管内の流体サンプルを流動させる段階と、
前記毛細管の直径に沿ってかつ前記移動経路に対して実質的に垂直方向に、予め決められた周波数の複数サイクルの超音波パルスを前記毛細管の中に発射する段階と、
前記毛細管の中を前方移動する細胞から反射する前記超音波パルスのエコー信号を受け取る段階と、
前記血液サンプルの速度を求めるために前記エコー信号のドップラー偏移を測定する段階とを含み、
それによって、前記血液サンプルの密度に関する情報に組み合わされている前記血液サンプルの速度測定値が粘度を求めるために使用されることが可能である、
ことを特徴とする方法。
【請求項48】
前記毛細管の直径に沿ってかつ前記移動経路に対して実質的に垂直方向に前記毛細管の中に予め決められた周波数の単サイクルの超音波パルスを発射する段階と、
前記超音波パルスが前記毛細管と移動経路とを少なくとも1回は完全に通って伝搬した後に、前記超音波パルスを受け取る段階と、
前記血液サンプルの密度を求めるために前記毛細管と移動経路とを通る前記超音波パルスの飛行時間を測定する段階と、
前記速度測定値と前記密度測定値とに基づいて前記血液サンプルの粘度を求める段階と、
をさらに含む請求項47に記載の方法。
【請求項49】
前記測定段階中に、前記毛細管の断面内の少なくとも2つの異なる空間位置に位置している細胞から反射するエコー信号からドップラー偏移測定値が得られ、および、前記毛細管の断面全体にわたっての血液速度のプロファイル曲線が生成される請求項47に記載の方法。
【請求項50】
前記空間位置は、前記毛細管の中心縦軸線に沿った、かつ、前記毛細管の前記中心縦軸線と内径壁との間のほぼ中間である位置を含む請求項49に記載の方法。
【請求項51】
細胞の単層塗沫を生じさせるためのウェッジ構成要素を有する自動血液塗沫スライドガラス作成機構に前記粘度測定値を通信する段階と、
前記粘度測定値の関数として前記ウェッジ構成要素のホールド時間と塗沫速度と加速度との少なくとも1つを決定する段階と、
をさらに含む請求項48に記載の方法。
【請求項52】
前記複数サイクルのパルスは4サイクルのパルスである請求項47に記載の方法。
【請求項53】
血液サンプルの赤血球沈降速度(ESR)および/またはゼータ沈降速度(ZSR)を求める方法であって、
毛細管内に画定されている移動経路の中を定常速度で実質的に層流の形に試験管内の流体サンプルを流動させる段階と、
前記流動段階の後に前記流動を急停止させる段階と、
前記血液サンプルの流動が急停止させられた直後に、前記毛細管の直径に沿ってかつ前記移動経路に対して実質的に垂直方向に、予め決められた周波数の複数サイクルの超音波パルスを前記毛細管の中に発射する段階と、
前記毛細管内の前記移動経路に対して前方移動する細胞から反射する前記超音波パルスのエコー信号と、前記毛細管の中心縦軸線に対して横断方向に移動する細胞から反射する前記超音波パルスのエコー信号とを同時に受け取る段階と、
前方移動する細胞の速度の減衰率と横断方向に移動する細胞の速度の減衰率とを求めるために前記エコー信号のドップラー偏移を測定する段階とを含み、
それによって、前方移動する細胞の速度の測定された減衰率が、前記血液サンプルのESR値を求めるために使用され、および、横断方向に移動する細胞の速度の減衰率が、前記血液サンプルのZSR値を求めるために使用される、
ことを特徴とする方法。
【請求項54】
前記測定段階中は、前方移動する細胞の速度の減衰率を求めるためのドップラー偏移測定値は、前記毛細管の前記中心縦軸線に沿った位置にある細胞から反射するエコー信号から得られる請求項53に記載の方法。
【請求項55】
前記測定段階中は、横断方向に移動する細胞の速度の減衰率を求めるためのドップラー偏移測定値は、前記毛細管の前記中心縦軸線と内径壁との間のほぼ中間に位置している細胞から反射するエコー信号から得られる請求項54に記載の方法。
【請求項56】
血液サンプルの赤血球沈降速度(ESR)値を求める方法であって、
毛細管内に画定されている移動経路の中を定常速度で実質的に層流の形に試験管内の流体サンプルを流動させる段階と、
前記流動段階の後に前記流動を急停止させる段階と、
前記血液サンプルの流動が急停止させられた直後に、前記毛細管の直径に沿ってかつ前記移動経路に対して実質的に垂直方向に、予め決められた周波数の複数サイクルの超音波パルスを前記毛細管の中に発射する段階と、
前記毛細管内の前記移動経路に対して前方移動する細胞から反射する前記超音波パルスのエコー信号を受け取る段階と、
前方移動する細胞の速度の減衰率を求めるために前記エコー信号のドップラー偏移を測定する段階とを含み、
それによって、前方移動する細胞の速度の測定された減衰率が、前記血液サンプルのESR値を求めるために使用されることを特徴とする方法。
【請求項57】
前記測定段階中は、前方移動する細胞の速度の減衰率を求めるためのドップラー偏移測定値は、前記毛細管の前記中心縦軸線に沿った位置にある細胞から反射するエコー信号から得られる請求項56に記載の方法。
【請求項58】
血液サンプルのゼータ沈降速度(ZSR)値を求める方法であって、
毛細管内に画定されている移動経路の中を定常速度で実質的に層流の形に試験管内の流体サンプルを流動させる段階と、
前記流動段階の後に前記流動を急停止させる段階と、
前記血液サンプルの流動が急停止させられた直後に、前記毛細管の直径に沿ってかつ前記移動経路に対して実質的に垂直方向に、予め決められた周波数の複数サイクルの超音波パルスを前記毛細管の中に発射する段階と、
前記毛細管の中心縦軸線に対して横断方向に移動する細胞から反射する前記超音波パルスのエコー信号を受け取る段階と、
横断方向に移動する細胞の速度の減衰率を求めるために前記エコー信号のドップラー偏移を測定する段階とを含み、
それによって、横断方向に移動する細胞の速度の測定された減衰率が、前記血液サンプルのZSR値を求めるために使用されることを特徴とする方法。
【請求項59】
前記測定段階中は、横断方向に移動する細胞の速度の減衰率を求めるためのドップラー偏移測定値は、前記毛細管の前記中心縦軸線と内径壁との間のほぼ中間に位置している細胞から反射するエコー信号から得られる請求項58に記載の方法。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate


【公表番号】特表2006−502405(P2006−502405A)
【公表日】平成18年1月19日(2006.1.19)
【国際特許分類】
【出願番号】特願2004−543006(P2004−543006)
【出願日】平成15年9月25日(2003.9.25)
【国際出願番号】PCT/US2003/030103
【国際公開番号】WO2004/032702
【国際公開日】平成16年4月22日(2004.4.22)
【出願人】(504431234)コールター インターナショナル コーポレイション (3)
【Fターム(参考)】