説明

表示制御回路、それを備えた液晶表示装置、および表示制御方法

【課題】量子化により発生する圧縮誤差を抑制または解消する。
【解決手段】本表示制御回路に備えられるオーバーシュート補償部23の画像圧縮部11は、量子化時に発生する誤差をフレーム毎に蓄積し、丸め情報テーブル16を作成する。画像復号部15はデータ復号の際、量子化値からデータ復号した際に丸め情報テーブル16の内容に応じて復号された階調データを修正する。このことにより圧縮誤差による画像品質低下を抑制または解消することができる。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、外部から与えられる入力画像データを表示するための表示制御回路、それを備えた液晶表示装置、および表示制御方法に関し、より詳しくは1フレーム前のデータを使用することにより与えられる入力画像データを補正する表示制御回路、それを備えた液晶表示装置、および表示制御方法に関する。
【背景技術】
【0002】
液晶表示装置に使用される液晶分子の光学的な応答時間は様々であるが、直ちに応答できるものはなく、一般的には数十ミリ秒の時間を要することが多い。このため、例えばこの液晶表示装置における表示階調を0から255までとするとき、例えば100の表示階調で表示を行うとする場合には、一垂直表示期間(以下、「1フレーム」という)前の表示階調が0であった場合であっても、1フレームの間にその表示階調が100へ変化することが起こることが好ましい。
【0003】
しかし、前述したように表示階調が直ちに100に変化するよう液晶分子が応答することはできないので、実際には数十ミリ秒の時間を経た後に100の表示階調へ到達することになる。したがって、100の表示階調へ到達するまでの間、液晶表示装置は本来表示すべき階調とは異なる表示階調(ノーマリブラック型の表示装置では100より低い階調)を表示し続けることになり、表示品質が悪化する。
【0004】
このように表示品質を悪化させる液晶表示装置の階調変化に対する応答速度の問題を解決するためには、一般的にオーバーシュート駆動と呼ばれる駆動方式が用いられることが多い。この方式では入力画像信号の補正のために1フレーム分の画像データを保持する必要があり、使用される1フレーム前の画像データの内容によって違いは生じるが、表示サイズがWXGA(1366×768)であって表示階調がRGB各々8ビットの表示パネルを備える液晶表示装置において、画像メモリに保存されるべき画像データのサイズは、約2500万(=1366×768×8×3)ビットもの大きさとなる。画像メモリのサイズは製造コストに直接関係し、大きなメモリが必要なほど製造コストが高くなるという問題点がある。そこで従来より、製造コストを削減するため、画像データの圧縮を行い、画像メモリサイズを少なくする、という手法が用いられる。
【0005】
例えば、米国特許出願公開第2005/0200631号明細書には、この画像データをブロック切り詰め符号化方式により適宜に圧縮してそのデータサイズを小さくし、画像メモリに記憶する構成が記載されている。この符号化方式を以下BTC(Block Truncation Coding)方式という。この明細書に記載されている圧縮方法については詳述しないが、基本的には、(1)ビット数の削減、(2)色空間変換およびダウンサンプリング、(3)空間冗長性の削減、という3つの手法を用いることにより、非可逆な圧縮が行われる構成となっている。これらのうちBTC方式による圧縮は、上記(3)に対応する圧縮方式である。このような構成により、画像メモリを小さくすることができ、製造コストを削減することができる。
【0006】
また、特開2010−2668号公報には、上記従来において生じるいわゆる残像ノイズの発生を抑制するため、入力画像データの階調値とこれらの平均階調値との差である予測値を所定の閾値と比較し、予測値の1つ以上が閾値を超えている場合に、復号誤差が大きくなると予測される到達階調データを画像圧縮部に与えず、入力画像データを与えるように制御する。このことにより残像ノイズが抑制または解消される。
【先行技術文献】
【特許文献】
【0007】
【特許文献1】米国特許出願公開第2005/0200631号明細書
【特許文献2】特開2010−2668号公報
【発明の概要】
【発明が解決しようとする課題】
【0008】
ここで、上記のように画像データの圧縮を行うことで圧縮誤差が生じることは一般的によく知られている。例えば画像データを圧縮する方法として、隣接する画素値との差分値が閾値より小さい場合は差分値を圧縮コードとし、復号時には隣接する画素値と差分値とから画像データを復号し、さらに隣接する画素値との差分値が閾値より大きい場合は画像データを量子化することで、より少ないビット数の圧縮コードとするものが考えられる。この方法を使用する場合に生じる誤差について検討する。
【0009】
まず、隣接する画像データとの差分値を圧縮コードとする場合、圧縮による誤差は発生しない。例えば、隣接画像データが100で、対象画素の画像データが105の場合、その差分値である5が圧縮コードとなるので、元の画素値105を誤差なく復号可能である。
【0010】
しかし量子化により圧縮する場合、例えば対象画素の画像データが100で4ビットに圧縮する場合、(100+8)÷16=6.75となり、圧縮コードが6となる。この圧縮コードに基づき、復号される場合には6×16=96を画素値として復号するため、元の画素値100との間で−4の圧縮誤差が発生している。
【0011】
この圧縮誤差により、前フレーム画像データとして本来は画素値100を復号すべきところ、画素値96を復号してしまう。このため、例えばオーバシュート駆動を行う場合、液晶パネルに印加すべき階調データの算出において誤った階調データが算出されることで、表示品質が大きく悪化することがある。
【0012】
例えば本来は画素値100から画素値110へ入力画像が変化する場合、画素値10の遷移量である。しかし圧縮誤差が発生することで、上記例では画素値96から画素値110への遷移となり、画素値14の遷移量となる。このことでパネルに印加される階調データが誤って大きくなり、表示品位を大きく悪化させることになる。
【0013】
そこで本発明は、圧縮時に発生する圧縮誤差を抑制または解消することができる表示制御回路、それを備えた液晶表示装置、および表示制御方法を提供することを目的とする。
【課題を解決するための手段】
【0014】
第1の発明は、外部から入力画像データを受け取り、画像を表示する表示パネルに与えるべき書込階調データを生成する表示制御回路であって、
現時点から1フレーム期間前の入力画像データに基づき生成される前フレーム画像データにより示される階調から、現時点で受け取った入力画像データにより示される階調への遷移量に応じて、受け取った前記入力画像データを補正することにより、書込階調データを生成する書込階調決定部と、
前記書込階調データを与えられる前記表示パネルにおいて1フレーム期間後に表示されると推定される到達階調データを前記遷移量に応じて生成する到達階調決定部と、
前記到達階調決定部により生成された前記画像を構成する画素毎の画素階調データの少なくとも一部を量子化することにより非可逆にデータ圧縮する圧縮部と、
前記圧縮部によりデータ圧縮して得られる圧縮コード化されたデータを記憶する記憶部と、
前記記憶部に記憶される圧縮コード化されたデータを読み出して復号したデータを、現時点から1フレーム期間後の前フレーム画像データに相当するデータとして前記書込階調決定部と前記到達階調決定部とに与える復号部と
を備え、
前記圧縮部は、前記量子化により生じる誤差に関連する情報を蓄積した圧縮統計データを生成し、
前記復号部は、前記圧縮統計データに基づき、前記復号したデータを修正し、修正されたデータを前記書込階調決定部と前記到達階調決定部とに与えることを特徴とする。
【0015】
第2の発明は、第1の発明において、
前記圧縮部は、前記量子化により生じる切り上げ誤差および切り下げ誤差それぞれの積算量または発生回数の積算値の少なくとも一部を含む圧縮統計データを生成し、
前記復号部は、前記圧縮統計データに含まれる前記それぞれの前記積算量または前記積算値に応じて、前記復号したデータを修正するための補正値を算出し、算出された補正値に基づき前記復号したデータをそれぞれ修正することを特徴とする。
【0016】
第3の発明は、第2の発明において、
前記圧縮部は、前記量子化により生じる切り上げ誤差および切り下げ誤差のそれぞれの発生回数と、前記量子化により生じる前記誤差の不発生回数とを、前記画素階調データの圧縮毎に1フレーム期間の間それぞれ積算した3つの積算値を含む圧縮統計データを生成し、
前記復号部は、前記圧縮統計データに含まれる前記3つの積算値を比較した結果に応じて前記補正値を算出し、算出された補正値に基づき前記復号したデータをそれぞれ修正することを特徴とする。
【0017】
第4の発明は、第2の発明において、
前記圧縮部は、前記量子化により生じる切り上げ誤差および切り下げ誤差のそれぞれ発生回数と、前記量子化により生じる前記誤差の不発生回数とを、前記画素階調データの圧縮毎にかつ前記データ圧縮のための圧縮コード毎に1フレーム期間の間それぞれ積算した複数の積算値を含む圧縮統計データを生成し、
前記復号部は、前記圧縮統計データに含まれる前記複数の積算値のうち、前記圧縮コード毎の前記発生回数および前記不発生回数を比較した結果に応じて、前記圧縮コード毎の補正値を算出し、前記圧縮コードに応じた補正値に基づき前記復号したデータをそれぞれ修正することを特徴とする。
【0018】
第5の発明は、第1の発明において、
前記圧縮部は、前記到達階調決定部により生成された前記画素階調データの一部と、当該画素階調データに対応する画素に隣接する画素の画素階調データとの差分値を圧縮コードとして可逆的にデータ圧縮することを特徴とする。
【0019】
第6の発明は、第1から第5までの発明のいずれか1つに記載の表示制御回路と、
前記表示制御回路から与えられる書込階調データにより表示を行う液晶表示パネルであって、前記書込階調データに対応する複数の映像信号を伝達するための複数の映像信号線を駆動する映像信号線駆動回路と、前記複数の映像信号線と交差する複数の走査信号線を駆動する走査信号線駆動回路と、前記複数の映像信号線と前記複数の走査信号線とに沿ってマトリクス状に配置される複数の画素形成部と、前記複数の画素形成部に共通的な電位を与える共通電極とを含む液晶表示パネルと
を備える、液晶表示装置であることを特徴とする。
【0020】
第7の発明は、外部から入力画像データを受け取り、画像を表示する表示パネルに与えるべき書込階調データを生成する表示制御方法であって、
現時点から1フレーム期間前の入力画像データに基づき生成される前フレーム画像データにより示される階調から、現時点で受け取った入力画像データにより示される階調への遷移量に応じて、受け取った前記入力画像データを補正することにより、書込階調データを生成する書込階調決定ステップと、
前記書込階調データを与えられる前記表示パネルにおいて1フレーム期間後に表示されると推定される到達階調データを前記遷移量に応じて生成する到達階調決定ステップと、
前記到達階調決定ステップにおいて生成された階調データの少なくとも一部を量子化することにより非可逆にデータ圧縮する圧縮ステップと、
前記圧縮ステップによりデータ圧縮して得られる圧縮コード化されたデータを記憶する記憶部に記憶される圧縮コード化されたデータを読み出して復号したデータを、現時点から1フレーム期間後の前フレーム画像データに相当するデータとして前記書込階調決定ステップと前記到達階調決定ステップとに与える復号ステップと
を備え、
前記圧縮ステップでは、前記量子化により生じる誤差に関連する情報を蓄積した圧縮統計データを生成し、
前記復号ステップは、前記圧縮統計データに基づき、前記復号したデータを修正し、修正されたデータを前記書込階調決定ステップと前記到達階調決定ステップとに与えることを特徴とする。
【発明の効果】
【0021】
上記第1の発明によれば、圧縮部において、量子化により生じる誤差に関連する情報を蓄積した圧縮統計データが生成され、復号部において、圧縮統計データに基づき、復号したデータが修正され、修正されたデータが書込階調決定部と到達階調決定部とに与えられるので、量子化による圧縮誤差を少なくするように修正すれば、画像を表示する画素階調データを正しく算出することができるため、表示品位を高めることができる。
【0022】
上記第2の発明によれば、量子化により生じる切り上げ誤差および切り下げ誤差それぞれの積算量または発生回数の積算値の少なくとも一部を含む圧縮統計データが生成され、それぞれの積算量または積算値に応じて、復号したデータを修正するための補正値が算出されるので、量子化による圧縮誤差を少なくするような補正値でデータを修正することになって、画像を表示する画素階調データを正しく算出することができるため、表示品位を高めることができる。
【0023】
上記第3の発明によれば、量子化により生じる切り上げ誤差および切り下げ誤差のそれぞれの発生回数と、量子化により生じる誤差の不発生回数とを、データ圧縮毎に1フレーム期間の間それぞれ積算した3つの積算値を含む圧縮統計データが生成されるので、補正値がより圧縮誤差を少なくするものとなり、表示品位をより高めることができる。
【0024】
上記第4の発明によれば、上記圧縮統計データに含まれる複数の積算値のうち、圧縮コード毎の発生回数および不発生回数を比較した結果に応じて、圧縮コード毎の補正値を算出するので、補正値が圧縮コード毎に細かく設定されることとなって、より圧縮誤差を少なくするものとなり、表示品位をより高めることができる。
【0025】
上記第5の発明によれば、一部において、隣接する画素の画素階調データとの差分値を圧縮コードとして可逆的にデータ圧縮するので、その場合には誤差が生じない。そのため、より表示品位を高めることができる。
【0026】
上記第6の発明によれば、上記第1の発明における効果と同様の効果を液晶表示装置において奏することができる。
【0027】
上記第7の発明によれば、上記第1の発明における効果と同様の効果を表示制御方法において奏することができる。
【図面の簡単な説明】
【0028】
【図1】本発明の一実施形態に係る液晶テレビの全体構成を示すブロック図である。
【図2】上記実施形態における液晶表示装置の全体構成を示すブロック図である。
【図3】上記実施形態における表示制御回路の構成を示すブロック図である。
【図4】上記実施形態におけるオーバーシュート補償部の構成を示すブロック図である。
【図5】上記実施形態において、画像圧縮部に入力される到達階調データと、生成されるた圧縮コードおよびその誤差とを示す図である。
【図6】上記実施形態における丸め情報テーブルの第1の内容例を示す図である。
【図7】上記実施形態における丸め情報テーブルの第2の内容例を示す図である。
【図8】上記実施形態において、第1および第2の内容例における、データ復号の誤差抑制を説明するための図である。
【図9】上記実施形態において、第1および第2の内容例における、データ復号の誤差量を示す図である。
【発明を実施するための形態】
【0029】
以下、本発明の一実施形態について添付図面を参照しつつ説明する。
<1. 液晶テレビの全体的な構成>
図1は、本発明の一実施形態に係る液晶テレビの全体構成を示すブロック図である。本液晶テレビは、テレビジョン放送を受信するためのアンテナ2と、受信された電波から所望の伝送データを選局するチューナ3と、選局された伝送データから映像データを復号・抽出する映像処理回路4と、映像データに基づき画像表示を行う液晶表示装置5とを備える。本発明は、液晶表示装置5に備えられる表示制御回路に特徴を有するので、以下に図を参照して詳しく説明する。
【0030】
図2は、液晶表示装置5の詳しい構成を示すブロック図である。この液晶表示装置5は、アクティブマトリクス型の液晶表示装置であって、表示制御回路200、映像信号線駆動回路(ソースドライバ)300、および走査信号線駆動回路(ゲートドライバ)400からなる駆動制御部と、表示部500と、共通電極駆動回路600とを備えている。表示部500は、複数本(M本)の映像信号線SL(1)〜SL(M)と、複数本(N本)の走査信号線GL(1)〜GL(N)と、それら複数本の映像信号線SL(1)〜SL(M)と複数本の走査信号線GL(1)〜GL(N)との交差点にそれぞれ対応して設けられた複数個(M×N個)の画素形成部とを含んでいる。この画素形成部は、対応する交差点を通過する走査信号線GL(n)にゲート端子が接続されるとともに当該交差点を通過する映像信号線SL(m)にソース端子が接続されたスイッチング素子であるTFT(Thin Film Transistor:薄膜トランジスタ)と、TFTのドレイン端子に接続された画素電極と、各画素形成部に共通的に設けられた共通電極(「対向電極」ともいう)と、各画素電極と共通電極との間に挟持された電気光学素子としての液晶層とによって構成される。このTFTは、走査信号線GL(n)に印加される走査信号G(n)がアクティブになると、当該走査信号線が選択されて導通状態となる。そして、画素電極には駆動用映像信号S(m)が映像信号線SL(m)を介して印加される。これにより、その印加された駆動用映像信号S(m)の電圧が、その画素電極を含む画素形成部に表示値として書き込まれる。
【0031】
表示制御回路200は、外部から送られる入力画像データCDとタイミング制御信号TSとを受け取り、デジタル画像信号である書込階調データWDと、表示部500に画像を表示するタイミングを制御するためのソーススタートパルス信号SSP、ソースクロック信号SCK、ラッチストローブ信号LS、ゲートスタートパルス信号GSP、ゲートクロック信号GCK、および極性反転信号φを出力する。
【0032】
映像信号線駆動回路300は、表示制御回路200から出力された書込階調データWD、ソーススタートパルス信号SSP、ソースクロック信号SCK、およびラッチストローブ信号LSを受け取り、表示部500内の各画素形成部の液晶容量と補助容量とを充電するために駆動用映像信号(ここでは後述する書込階調データWD)を各映像信号線SL(1)〜SL(M)に印加する。このとき、映像信号線駆動回路300では、ソースクロック信号SCKのパルスが発生するタイミングで、各映像信号線SL(1)〜SL(M)に印加すべき電圧を示す書込階調データWDが順次に保持される。そして、ラッチストローブ信号LSのパルスが発生するタイミングで、上記保持された書込階調データWDがアナログ電圧に変換される。変換されたアナログ電圧は、駆動用映像信号として全ての映像信号線SL(1)〜SL(M)に一斉に印加される。もっとも、液晶の光学応答速度によっては所望の階調に到達しないことがある点については前述したとおりである。なお、各映像信号線SL(1)〜SL(M)に印加される映像信号は、表示部500の交流化駆動のために、表示制御回路200から受け取った極性反転信号φに応じてその極性が反転する。
【0033】
走査信号線駆動回路400は、表示制御回路200から出力されたゲートスタートパルス信号GSPとゲートクロック信号GCKとに基づいて、各走査信号線GL(1)〜GL(N)にアクティブな走査信号を順位印加する。
【0034】
共通電極駆動回路600は、液晶の共通電極に与えるべき電圧である共通電圧Vcomを生成する。本実施形態では、映像信号線の電圧の振幅を抑えるために、交流化駆動に応じて共通電極の電位をも変化させている。
【0035】
以上のようにして、各映像信号線SL(1)〜SL(M)に駆動用映像信号が印加され、各走査信号線GL(1)〜GL(N)に走査信号が印加されることにより、表示部500に画像が表示される。
【0036】
<2. 表示制御回路の構成および動作>
図3は、本実施形態における表示制御回路200の構成を示すブロック図である。この表示制御回路200は、タイミング制御を行うタイミング制御回路21と、書込階調データWDを1フレーム分記憶する画像メモリ22と、装置外部から与えられる入力画像データCDに含まれる表示値(表示階調データ)を受けとり、タイミング制御回路21からの制御信号に基づき、受け取った表示値を画像メモリ22に記憶されている1フレーム前の書込階調データWDを参照して、オーバーシュート駆動を行うための(液晶の光学的応答補償を行う)書込階調データWDを生成し出力するオーバーシュート補償部23とを含む。
【0037】
タイミング制御回路21は、外部から送られるタイミング制御信号TSを受け取り、オーバーシュート補償部23の動作を制御するための制御信号CLと、表示部500に画像を表示するタイミングを制御するためのソーススタートパルス信号SSP、ソースクロック信号SCK、ラッチストローブ信号LS、ゲートスタートパルス信号GSP、ゲートクロック信号GCK、および極性反転信号φとを出力する。
【0038】
オーバーシュート補償部23は、外部から送られてくる入力画像データCDに含まれる1つの画素に対応する表示値と、タイミング制御回路21から受け取った制御信号CLと、画像メモリ22から読み出された対応する画素の1フレーム前における過去の書込階調データWDに相当するデータ(以下「前フレーム画像データPD」という)とに基づき、表示部500においてオーバーシュート駆動が実現される書込階調データWDを生成し出力する。このオーバーシュート補償部23の詳しい構成について、さらに図4を参照して説明する。
【0039】
<3. オーバーシュート補償部の構成および動作>
図4は、本実施形態におけるオーバーシュート補償部の構成を示すブロック図である。図4に示されるように、オーバーシュート補償部23は、外部から入力される(現在のフレームにおける)入力画像データCDと前フレーム画像データPDとに基づき、本表示制御回路を備える液晶表示装置をオーバーシュート駆動するための書込階調データWDを出力する書込階調決定部10と、入力画像データCDと前フレーム画像データPDとに基づき、液晶表示装置において1フレーム期間経過後に到達する階調を示す到達階調データを出力する到達階調決定部13と、到達階調決定部13から出力されるデータを圧縮する画像圧縮部11と、圧縮されたデータを画像メモリ22へ書き込むメモリ書き込み部12と、画像メモリ22から圧縮されたデータを読み出すメモリ読み出し部14と、読み出されたデータを前フレーム画像データPDとして復号する画像復号部15と、画像圧縮部11からの丸め情報RIを蓄える丸め情報テーブル16とを備える。
【0040】
書込階調決定部10は、入力画像データCDと前フレーム画像データPDに対応する書込階調データWDとの関係を示す図示されないルックアップテーブル(LUT)を有しており、このLUTを参照することにより書込階調データWDを出力する。このLUTは、1フレーム前の画像データからの階調遷移量に対応する、当該液晶表示装置の表示特性に応じた最適な書込階調データを予め算出することにより作成される。
【0041】
到達階調決定部13は、外部から入力される入力画像データCDと前フレーム画像データPDとに基づき、液晶表示装置において1フレーム期間経過後に到達する階調を示す到達階調データを出力する。液晶の光学応答速度が比較的遅い場合には液晶表示装置に与えられる書込階調データWDに示される階調に到達するまでに1フレーム期間以上の時間がかかる場合がある。そこで、オーバーシュート駆動を行う場合に参照される前フレーム画像データPDを1フレーム期間経過後に実際に到達する到達階調データとすることにより、より正確な駆動を行うことが可能となる。到達階調決定部13は、入力画像データCDとこの前フレーム画像データPDに対応する到達階調データとの関係を示す図示されないルックアップテーブル(LUT)を有しており、このLUTを参照することにより到達階調データを出力する。このLUTは、1フレーム前の画像データからの階調遷移量に対応する、当該液晶表示装置の表示特性に応じて実際に到達すると予測される到達階調データを予め算出することにより作成される。
【0042】
画像圧縮部11は、到達階調決定部13により算出された到達階調データを受け取り、前述した圧縮方式で圧縮コードを出力する。すなわち隣接する画素値との差分値が閾値より小さい場合は差分値を圧縮コードとして出力し、差分値が閾値より大きい場合は画像データを量子化することで、より少ないビット数の圧縮コード化されたデータを出力する。詳しくは、具体例を示して後述する。なお、上記のように各画素の階調値を圧縮コード化したデータそれ自体もここでは圧縮コードと呼ぶ。
【0043】
メモリ書き込み部12は、画像メモリ22へのデータ書き込み位置(アドレス)を管理し、画像圧縮部11から与えられる圧縮コードを画像メモリ22の上記書き込み位置に書き込む。
【0044】
メモリ読み出し部14は、画像メモリ22からのデータ読み出し位置(アドレス)を管理し、前フレーム画像データPDに相当する圧縮コードを画像メモリ22の上記読み出し位置から読み出す。
【0045】
画像復号部15は、メモリ読み出し部14から読み出された圧縮データを前フレーム画像データPDに復号し、復号された前フレーム画像データPDを書込階調決定部10および到達階調決定部13に与える。
【0046】
丸め情報テーブル16は、画像圧縮部11で量子化を行った際に切り下げ誤差が発生したか、切り上げ誤差が発生したか、もしくは誤差の発生なく量子化されたかをフレーム毎に蓄積したテーブルである。
【0047】
本実施形態では、この丸め情報テーブル16に蓄積された丸め情報RIを利用することにより、画像復号部15における前フレーム画像データPDの復号時に生じるべき誤差の発生を抑制する。この誤差の抑制について、図5および図6を参照して詳しく説明する。
【0048】
<4. 誤差の発生例とその抑制動作>
図5は、画像圧縮部に入力される到達階調データと、生成されるた圧縮コードおよびその誤差とを示す図である。入力される上記階調データの一部51(以下では「入力データ51」という)それぞれを、ここでは4ビットの圧縮コードにする例で考える。
【0049】
なお、この4ビットは符号付き整数を表していてもよいし、後述するように最上位ビットは差分値であるか否かを示す識別ビットであって、残る3ビットは符号無し整数を表していてもよい。ここでは後者であるものとする。また、上記識別ビットは、隣接する1つ前のデータに対して圧縮対象となる当該データが所定の閾値(ここでは7)以下の値である場合に付与される。具体例については以下に説明する。
【0050】
入力データ51における1番目のデータ「96」は、画像圧縮部11によって4ビットへ量子化されることにより、圧縮コードである「6」、すなわちコード6を得る(96÷16=6)。ここで画像復号部15による復号時には、圧縮コードを示す6に16が乗算され元の値と同値の96が得られる(6×16=96)。したがってこの場合に誤差の発生はない。
【0051】
次に、入力データ51における2番目のデータ「103」は、(上記識別ビットを設定することによる)差分値であって、隣接値である上記1番目のデータ「96」との差分値が7となるため、コード7を得る。ここで復号時には上記1番目のデータに対応するコード6に対応するデータ「96」に対して、差分値である7を加える結果、元の値と同値の96が得られる。このように差分値が用いられる場合には、当然に誤差の発生はない。
【0052】
続く入力データ51における3番目のデータ「85」は、同様にしてコード5を得る(85÷16=5、余り5)。ここで復号時には、圧縮コードを示す5に16が乗算され80となるため、元の値の85に対して切り下げ誤差が発生する。
【0053】
さらに、入力データ51における4番目のデータ「105」は、同様にしてコード7を得る(105÷16=6、余り9)。ここで復号時には、圧縮コードを示す7に16が乗算され112となるため、元の値の105に対して切り上げ誤差が発生する。
【0054】
画像圧縮部11は、上記誤差の有無および内容を丸め情報テーブル16に記憶させる。この丸め情報テーブル16は、例えばメモリ上の所定領域に記載されており、画像圧縮部11によって書き込まれ、画像復号部15によって適宜読み出される。以下では、この丸め情報テーブル16について、2つの異なる内容例と、その生成および利用方法についてそれぞれ説明する。
【0055】
図6は、丸め情報テーブルの第1の内容例を示す図である。この図6に示される第1の内容例161は、切り下げ誤差の発生回数、切り上げ誤差の発生回数、および誤差無しの回数を1フレームに渡ってそれぞれ積算した値を示している。もっとも説明の便宜のため、1フレーム期間のデータは、(実際には多数であるが)ここでは入力データ51のみであるものとして、合計5つのデータについての積算値が示されている。
【0056】
また図7は、丸め情報テーブルの第2の内容例を示す図である。この図7に示される第2の内容例162は、切り下げ誤差の発生回数、切り上げ誤差の発生回数、および誤差無しの回数をそれぞれ圧縮コード毎に1フレームに渡ってそれぞれ積算した値を示している。もっとも説明の便宜のため、1フレーム期間のデータは、(実際には多数であるが)ここでは入力データ51のみであるものとして、合計5つのデータについての積算値が示されている。
【0057】
これら第1および第2の内容例として示される丸め情報テーブル16が保持するデータの意味は、量子化時に発生した誤差の傾向を示すものである。この情報を参照すれば、データ復号時に発生する誤差を1フレーム内で抑制することが可能になる。なお丸め情報テーブル16は、このような誤差の傾向を判定可能な情報を含んでいればよいので、1フレーム内の全ての画素データについての誤差を計数する必要はなく、その一部であってもよいし、誤差の発生回数以外の内容、例えば誤差量の積算値などを含むものであってもよい。
【0058】
図8は、上記第1および第2の内容例における、データ復号の誤差抑制を説明するための図であり、図9は、上記第1および第2の内容例における、データ復号の誤差量を示す図である。
【0059】
図8において、画像圧縮部11で圧縮されたデータを、本実施形態の構成とは異なり、画像復号部15で補正することなくそのまま復号した場合、圧縮コードを示す数に16を乗算するだけであるため、上述したように、コード6の場合には96であり、コード7であって差分値を示す場合には103であり、コード5の場合には80であり、コード7の場合には112である。
【0060】
このように得られる復号後のデータの階調値が、圧縮前の階調値である図5に示す入力データ51の階調値からどれだけ変化したかを示す誤差量は、図9に示すとおりである。すなわち、図9において、画像圧縮部11で圧縮されたデータを画像復号部15で復号した後で上記の補正値で補正すると、誤差量はそれぞれ、コード6の場合には0であり、コード7であって差分値を示す場合にはそもそも可逆的に復号されるため誤差量は常に0であり、コード5の場合には−5であり、コード7の場合には+7である。
【0061】
これに対して丸め情報テーブル16が図6に示す(第1の内容例に示す)内容である場合、画像復号部15は、この丸め情報テーブル16を参照し、切り下げ誤差の発生回数が、切り上げ誤差の回数および誤差無しの回数よりも多いと判定する。この場合には、切り下げ傾向にあることから、これを補正するため、復号時にプラス方向へデータを修正することが好ましいことがわかる。そこで、画像復号部15は、全ての復号されたデータの階調値に対して4を加える補正を行う。すなわち、補正値を+4に設定する。
【0062】
なおここでは、この補正値は+4であるものとして便宜上説明するが、この値は+4以外の或る1つの値に決定することも可能であるし、圧縮時に発生した誤差を累積加算することにより得られる誤差積算量または誤差の積算回数に応じて、所定の算出式または対応テーブル等を参照することにより算出してもよい。
【0063】
図8において、第1の例で補正する場合、画像圧縮部11で圧縮されたデータを画像復号部15で復号したのち、当該値が差分値である場合を除き、全てに4を加算するため、コード6の場合には100であり、コード7であって差分値を示す場合には103であり、コード5の場合には84であり、コード7の場合には116である。
【0064】
なお、コード7であって差分値を示す場合には、隣接画素の階調値である96に対して7を加算することにより算出するのであって、補正後の隣接画素の階調値である100に対して7を加算すると、誤差が生じない差分値の場合にかえって誤差を生じさせることになるため、好ましくない。
【0065】
次に、丸め情報テーブル16が図7に示す(第2の内容例に示す)内容である場合、画像復号部15は、この丸め情報テーブル16を参照し、コード5における切り下げ誤差の発生回数が、切り上げ誤差の回数および誤差無しの回数よりも多いと判定し、コード6における誤差無しの発生回数が、切り下げ誤差の回数および切り上げ誤差の回数よりも多いと判定し、コード7における切り上げ誤差の発生回数が、切り下げ誤差の回数および誤差無しの回数よりも多いと判定する。ここではデータ数が少ないため、その他のコードは発生回数に差がない。
【0066】
このように、第2の内容例では、圧縮コード毎に誤差発生の情報が累積されており、圧縮コード毎に誤差の傾向を判定するため、復号時にさらに誤差を少なくすることができる。すなわち、コード5の場合には、切り下げ傾向にあることから、これを補正するため、復号時にプラス方向へデータを修正することが好ましいことがわかる。そこで、画像復号部15は、コード5を復号したデータの階調値に対して4を加える補正を行う。すなわち、補正値を+4に設定する。なお、この補正値も前述と同様に便宜上のものであって、他の或る1つの値に決定することも可能であるし、圧縮時に発生した誤差を累積加算することにより得られる誤差積算量または誤差の積算回数に応じて、所定の算出式または対応テーブル等を参照することにより算出してもよい。
【0067】
また、同様に、コード6の場合には、切り下げ傾向にも切り上げ傾向にもないことから、これを補正するための補正値は0に設定する。さらに、コード7の場合には、切り上げ傾向にあることから、これを補正するため、復号時にマイナス方向へデータを修正することが好ましいことがわかる。そこで、画像復号部15は、コード7を復号したデータの階調値に対して4を差し引く補正を行う。すなわち、補正値を−4に設定する。なお、その他の補正値の算出については、上記と同様であるため説明を省略する。
【0068】
図8において、第2の例で補正する場合、画像圧縮部11で圧縮されたデータを画像復号部15で復号したのち、当該値が差分値である場合を除き、圧縮コード毎に設定される上記補正値を加算または減算するため、コード6の場合には96であり、コード7であって差分値を示す場合には103であり、コード5の場合には84であり、コード7の場合には108である。
【0069】
このように得られる復号後のデータの階調値が、圧縮前の階調値からどれだけ変化したかを示す誤差量は、図9に示すとおりである。すなわち、図9において、画像圧縮部11で圧縮されたデータを画像復号部15で復号した後で圧縮コード毎に上記の補正値で補正すると、誤差量はそれぞれ、コード6の場合には0であり、コード7であって差分値を示す場合にはそもそも可逆的に復号されるため誤差量は常に0であり、コード5の場合には−1であり、コード7の場合には+3である。
【0070】
したがって、図9を参照すればわかるように、第1および第2の例で補正する場合には、補正しない場合に比べて誤差が抑制されている。また、第1の例で補正する場合よりも、第2の例で補正する場合の方が、より誤差が抑制されていることがわかる。
【0071】
<5. 効果>
このように、本実施形態における表示制御回路の画像復号部15は、画像圧縮部11において圧縮時の圧縮誤差に関係する統計データを示す丸め情報テーブル16を参照し、(量子化)圧縮誤差を少なくするように上記のような補正値で復号データを修正する。このことにより、画像を表示する表示パネルに与える階調データを正しく算出することができるため、表示品位を高めることができる。
【符号の説明】
【0072】
5 …液晶表示装置
10 …書込階調決定部
11 …画像圧縮部
12 …メモリ書き込み部
13 …到達階調決定部
14 …メモリ読み込み部
15 …画像復号部
16 …丸め情報テーブル
21 …タイミング制御回路
22 …画像メモリ
23 …オーバーシュート補償部
200 …表示制御回路
300 …映像信号線駆動回路(ソースドライバ)
400 …走査信号線駆動回路(ゲートドライバ)
500 …表示部
600 …共通電極駆動回路
CD …入力画像データ
WD …書込階調データ
PD …前フレーム画像データ
RI …丸め情報

【特許請求の範囲】
【請求項1】
外部から入力画像データを受け取り、画像を表示する表示パネルに与えるべき書込階調データを生成する表示制御回路であって、
現時点から1フレーム期間前の入力画像データに基づき生成される前フレーム画像データにより示される階調から、現時点で受け取った入力画像データにより示される階調への遷移量に応じて、受け取った前記入力画像データを補正することにより、書込階調データを生成する書込階調決定部と、
前記書込階調データを与えられる前記表示パネルにおいて1フレーム期間後に表示されると推定される到達階調データを前記遷移量に応じて生成する到達階調決定部と、
前記到達階調決定部により生成された前記画像を構成する画素毎の画素階調データの少なくとも一部を量子化することにより非可逆にデータ圧縮する圧縮部と、
前記圧縮部によりデータ圧縮して得られる圧縮コード化されたデータを記憶する記憶部と、
前記記憶部に記憶される圧縮コード化されたデータを読み出して復号したデータを、現時点から1フレーム期間後の前フレーム画像データに相当するデータとして前記書込階調決定部と前記到達階調決定部とに与える復号部と
を備え、
前記圧縮部は、前記量子化により生じる誤差に関連する情報を蓄積した圧縮統計データを生成し、
前記復号部は、前記圧縮統計データに基づき、前記復号したデータを修正し、修正されたデータを前記書込階調決定部と前記到達階調決定部とに与えることを特徴とする、表示制御回路。
【請求項2】
前記圧縮部は、前記量子化により生じる切り上げ誤差および切り下げ誤差それぞれの積算量または発生回数の積算値の少なくとも一部を含む圧縮統計データを生成し、
前記復号部は、前記圧縮統計データに含まれる前記それぞれの前記積算量または前記積算値に応じて、前記復号したデータを修正するための補正値を算出し、算出された補正値に基づき前記復号したデータをそれぞれ修正することを特徴とする、請求項1に記載の表示制御回路。
【請求項3】
前記圧縮部は、前記量子化により生じる切り上げ誤差および切り下げ誤差のそれぞれの発生回数と、前記量子化により生じる前記誤差の不発生回数とを、前記画素階調データの圧縮毎に1フレーム期間の間それぞれ積算した3つの積算値を含む圧縮統計データを生成し、
前記復号部は、前記圧縮統計データに含まれる前記3つの積算値を比較した結果に応じて前記補正値を算出し、算出された補正値に基づき前記復号したデータをそれぞれ修正することを特徴とする、請求項2に記載の表示制御回路。
【請求項4】
前記圧縮部は、前記量子化により生じる切り上げ誤差および切り下げ誤差のそれぞれ発生回数と、前記量子化により生じる前記誤差の不発生回数とを、前記画素階調データの圧縮毎にかつ前記データ圧縮のための圧縮コード毎に1フレーム期間の間それぞれ積算した複数の積算値を含む圧縮統計データを生成し、
前記復号部は、前記圧縮統計データに含まれる前記複数の積算値のうち、前記圧縮コード毎の前記発生回数および前記不発生回数を比較した結果に応じて、前記圧縮コード毎の補正値を算出し、前記圧縮コードに応じた補正値に基づき前記復号したデータをそれぞれ修正することを特徴とする、請求項2に記載の表示制御回路。
【請求項5】
前記圧縮部は、前記到達階調決定部により生成された前記画素階調データの一部と、当該画素階調データに対応する画素に隣接する画素の画素階調データとの差分値を圧縮コードとして可逆的にデータ圧縮することを特徴とする、請求項1に記載の表示制御回路。
【請求項6】
請求項1から請求項5までのいずれか1項に記載の表示制御回路と、
前記表示制御回路から与えられる書込階調データにより表示を行う液晶表示パネルであって、前記書込階調データに対応する複数の映像信号を伝達するための複数の映像信号線を駆動する映像信号線駆動回路と、前記複数の映像信号線と交差する複数の走査信号線を駆動する走査信号線駆動回路と、前記複数の映像信号線と前記複数の走査信号線とに沿ってマトリクス状に配置される複数の画素形成部と、前記複数の画素形成部に共通的な電位を与える共通電極とを含む液晶表示パネルと
を備える、液晶表示装置。
【請求項7】
外部から入力画像データを受け取り、画像を表示する表示パネルに与えるべき書込階調データを生成する表示制御方法であって、
現時点から1フレーム期間前の入力画像データに基づき生成される前フレーム画像データにより示される階調から、現時点で受け取った入力画像データにより示される階調への遷移量に応じて、受け取った前記入力画像データを補正することにより、書込階調データを生成する書込階調決定ステップと、
前記書込階調データを与えられる前記表示パネルにおいて1フレーム期間後に表示されると推定される到達階調データを前記遷移量に応じて生成する到達階調決定ステップと、
前記到達階調決定ステップにおいて生成された階調データの少なくとも一部を量子化することにより非可逆にデータ圧縮する圧縮ステップと、
前記圧縮ステップによりデータ圧縮して得られる圧縮コード化されたデータを記憶する記憶部に記憶される圧縮コード化されたデータを読み出して復号したデータを、現時点から1フレーム期間後の前フレーム画像データに相当するデータとして前記書込階調決定ステップと前記到達階調決定ステップとに与える復号ステップと
を備え、
前記圧縮ステップでは、前記量子化により生じる誤差に関連する情報を蓄積した圧縮統計データを生成し、
前記復号ステップは、前記圧縮統計データに基づき、前記復号したデータを修正し、修正されたデータを前記書込階調決定ステップと前記到達階調決定ステップとに与えることを特徴とする、表示制御方法。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate


【公開番号】特開2013−109145(P2013−109145A)
【公開日】平成25年6月6日(2013.6.6)
【国際特許分類】
【出願番号】特願2011−253921(P2011−253921)
【出願日】平成23年11月21日(2011.11.21)
【出願人】(000005049)シャープ株式会社 (33,933)
【Fターム(参考)】