説明

表示装置

【課題】より外光の反射を軽減できる反射防止機能を有した視認性の優れた表示装置である。
【解決手段】表示装置において、表示画面表面に複数の凸部と、凸部間を埋めるように保護層とを有する反射防止膜を具備する。外光の反射光は凸部界面が平面ではないので視認側に反射せず隣接する他の凸部に反射する。つまり表示装置に入射する外光のうち、反射防止膜に入射する回数が増加するので、反射防止膜に透過する量が増える。よって、視認側に反射する外光が軽減され、写り込みなどの視認性を低下させる原因を防ぐことができる。さらに複数の凸部間は保護層によって覆われているため、ゴミの侵入を防ぎ、反射防止膜の物理的強度を高めることができる。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、反射防止機能を有する表示装置に関する。
【背景技術】
【0002】
各種ディスプレイ(液晶ディスプレイ、エレクトロルミネセンス(Electro Lu
minescence、以下「EL」ともいう)ディスプレイ、プラズマディスプレイな
ど)を有する表示装置において、外光の表面反射による景色の写り込みなどにより表示画
面が見えにくくなり、視認性が低下してしまうことがある。これは表示装置の大型化や野
外での使用に際し、特に顕著な問題となる。
【0003】
このような外光の反射を防止するために表示装置の表示画面に反射防止膜を設ける方法が
行われている。例えば、反射防止膜として、広く可視光の波長領域に対して有効であるよ
うに屈折率の異なる層を積層し多層構造とする方法がある(例えば、特許文献1参照。)
。多層構造とすることによって、積層する層の界面での反射された外光が互いに干渉して
相殺し合い反射防止効果が得られる。
【先行技術文献】
【特許文献】
【0004】
【特許文献1】特開2003−248102号公報
【発明の概要】
【発明が解決しようとする課題】
【0005】
しかしながら上記のような多層構造では、層界面で反射された外光のうち相殺できなかっ
た光は反射光として視認側に放射されてしまう。互いに外光が相殺するようにするには、
積層する膜の材料の光学特性や膜厚等を精密に制御する必要があり、様々な角度から入射
する外光全てに対して反射防止処理を施すことは困難であった。
【0006】
以上のことより、従来の反射防止膜では機能に限界があり、より反射防止機能の高い反射
防止膜、及びそのような反射防止機能を有する表示装置が求められている。
【0007】
本発明は、より外光の反射を軽減できる反射防止機能を有した視認性の優れた表示装置、
及びそのような表示装置の作製方法を提供することを目的とする。
【課題を解決するための手段】
【0008】
本発明は、表示装置において、表示画面表面に外光の反射を防止する反射防止機能を有す
る反射防止膜として、複数の凸部を有する反射防止膜を用い、かつ複数の凸部間を埋める
ように凸部より低屈折率材料で形成される保護層を設けることを特徴とする。本発明の反
射防止膜の凸部は、円錐形が好ましく凸部の底面と側面との角度は84度以上90度未満
が好ましい。凸部は円錐形の他、針状、円錐の先端が平面である断面が台形の形状、先端
が丸いドーム状などでもよい。
【0009】
本発明の反射防止膜において、凸部の底面の直径と高さの比は1:5〜29、好ましくは
1:10、大きさは高さが1μm以上3μm以下が好ましい。この大きさであると透光性
を低下させることなく、かつ加工も比較的容易である。
【0010】
本発明において、反射防止膜の凸部間を埋めるように設けられる保護層の膜厚は、凸部の
高さと一致する程度でもよく、凸部の高さより大きく凸部を覆うように設けられても良い
。このような場合、凸部による反射防止膜表面の凹凸は保護層によって平坦化される。ま
た、保護層の膜厚は、凸部の高さより小さくてもよく、この場合凸部の底辺側を選択的に
覆い、凸部先端部は表面に露出する構造となる。
【0011】
凸部はその形状より外光の反射をより低減することができる。しかし、凸部間に空気中の
ゴミや埃等の異物が存在すると異物によって外光の反射が生じてしまい、結果として外光
の十分な反射防止効果が得られない恐れがある。本発明ではその凸部の間に保護層が形成
されているので、凸部間にゴミなどの汚染物が侵入することを防ぐことができる。従って
、ゴミなどの侵入による反射防止機能低下を防ぎ、かつ凸部間を埋めることで反射防止膜
としての物理的強度も高めることができ、信頼性向上が達成できる。
【0012】
凸部間を埋める保護層は凸部に用いられる材料より低屈折率の材料を用いるため、凸部に
用いられる材料より空気との屈折率差が小さく、より界面での反射を抑えることができる

【0013】
本発明は表示機能を有する装置である表示装置に用いることができ、本発明を用いる表示
装置には、エレクトロルミネセンス(以下「EL」ともいう。)と呼ばれる発光を発現す
る有機物、無機物、若しくは有機物と無機物の混合物を含む層を、電極間に介在させた発
光素子とTFTとが接続された発光表示装置や、液晶材料を有する液晶素子を表示素子と
して用いる液晶表示装置などがある。本発明において、表示装置とは、表示素子(液晶素
子や発光素子など)を有する装置のことを言う。なお、基板上に液晶素子やEL素子など
の表示素子を含む複数の画素やそれらの画素を駆動させる周辺駆動回路が形成された表示
パネル本体のことでもよい。さらに、フレキシブルプリントサーキット(FPC)やプリ
ント配線基盤(PWB)が取り付けられたもの(ICや抵抗素子や容量素子やインダクタ
やトランジスタなど)も含んでもよい。さらに、偏光板や位相差板などの光学シートを含
んでいても良い。さらに、バックライト(導光板やプリズムシートや拡散シートや反射シ
ートや光源(LEDや冷陰極管など)を含んでいても良い)を含んでいても良い。
【0014】
なお、表示素子や表示装置は、様々な形態を用いたり、様々な素子を有することが出来る
。例えば、EL素子(有機EL素子、無機EL素子又は有機物及び無機物を含むEL素子
)、電子放出素子、液晶素子、電子インク、グレーティングライトバルブ(GLV)、プ
ラズマディスプレイパネル(PDP)、デジタルマイクロミラーデバイス(DMD)、圧
電セラミックディスプレイ、カーボンナノチューブ、など、電気磁気的作用によりコント
ラストが変化する表示媒体を適用することができる。なお、EL素子を用いた表示装置と
してはELディスプレイ、電子放出素子を用いた表示装置としてはフィールドエミッショ
ンディスプレイ(FED)やSED方式平面型ディスプレイ(SED:Surface−
conduction Electron−emitter Disply)など、液晶
素子を用いた表示装置としては液晶ディスプレイ、透過型液晶ディスプレイ、半透過型液
晶ディスプレイ、反射型液晶ディスプレイ、電子インクを用いた表示装置としては電子ペ
ーパーがある。
【0015】
本発明の表示装置の一形態は、複数の凸部を有する反射防止膜が表示画面上に設けられ、
前記複数の凸部の間は前記複数の凸部の屈折率より低い屈折率の保護層を有し、前記凸部
の底面と斜面との角度は84度以上90度未満である。
【0016】
本発明の表示装置の一形態は、一対の基板と、前記一対の基板間に設けられた表示素子と
、前記一対の基板のうち少なくとも一方は透光性基板であり、前記透光性基板の外側に複
数の凸部を有する反射防止膜とを有し、前記複数の凸部の間は前記複数の凸部の屈折率よ
り低い屈折率の保護層を有し、前記凸部の底面と斜面との角度は84度以上90度未満で
ある。
【0017】
本発明の表示装置の一形態は、一対の透光性基板と、前記一対の透光性基板間に設けられ
た表示素子と、前記一対の透光性基板のそれぞれ外側に一対の複数の凸部を有する反射防
止膜とを有し、前記複数の凸部の間は前記複数の凸部の屈折率より低い屈折率の保護層を
有し、前記凸部の底面と斜面との角度は84度以上90度未満である。
【0018】
凸部は円錐形状、針状、円錐の先端が平面である断面が台形の形状、先端が丸いドーム状
などでもよい。また、反射防止膜は均一な屈折率でなく、表面から表示画面側に向かって
屈折率が変化する材料で形成することができる。例えば、複数の凸部において、凸部表面
側は空気と同等な屈折率を有する材料で形成することで、空気から凸部に入射する外光の
凸部表面での反射をより軽減する構造とする。一方、複数の凸部において表示画面側の基
板側に近づくにつれ基板と同等な屈折率を有する材料で形成し、凸部内部を進行し、基板
に入射する光の凸部と基板との界面での反射を軽減する構成とする。
【0019】
基板にガラス基板を用いると、空気の屈折率の方がガラス基板よりも小さいため、凸部は
表面(円錐形であると先端部)の方が屈折率の低い材料で形成され、凸部底面に近づくに
つれ屈折率の高い材料で形成されるような、円錐形先端部より底面に向かって屈折率が増
加するような構成とすればよい。基板にガラスを用いる場合、凸部はフッ化物、酸化物、
又は窒化物を含む膜で形成することができる。
【発明の効果】
【0020】
本発明の反射防止膜を有する表示装置は、表面に複数の凸部を有しており、外光の反射光
は凸部界面が平面ではないので視認側に反射せず隣接する他の凸部に反射する。もしくは
凸部と凸部の間に進行する。入射した外光は凸部に一部透過し反射光は隣接する凸部にま
た入射する。このように凸部界面で反射された外光は隣接する他の凸部に入射を繰り返す

【0021】
つまり表示装置に入射する外光のうち、反射防止膜に入射する回数が増加するので、反射
防止膜に透過する量が増える。よって、視認側に反射する外光が軽減され、写り込みなど
の視認性を低下させる原因を防ぐことができる。
【0022】
さらに本発明ではその凸部の間に保護層が形成されているので、凸部間にゴミなどの汚染
物が侵入することを防ぐことができる。従って、ゴミなどの侵入による反射防止機能低下
を防ぎ、かつ凸部間を埋めることで反射防止膜としての物理的強度も高めることができ、
信頼性向上が達成できる。
【0023】
本発明は、表面に複数の凸部を有し、かつ凸部間に保護層を設けた反射防止膜を具備する
ことによってより外光の反射を軽減できる高い反射防止機能を有し視認性の優れた、かつ
信頼性の高い表示装置を提供することができる。従って、より高画質及び高性能な表示装
置を作製することができる。
【図面の簡単な説明】
【0024】
【図1】本発明の概念図である。
【図2】本発明の概念図である。
【図3】本発明の概念図である。
【図4】本発明の表示装置を示した断面図である。
【図5】本発明の表示装置を示した上面図及び断面図である。
【図6】本発明の表示装置を示した断面図である。
【図7】本発明の表示装置を示した断面図である。
【図8】本発明の表示装置を示した上面図及び断面図である。
【図9】本発明の表示装置を示した上面図及び断面図である。
【図10】本発明の表示装置を示した断面図である。
【図11】本発明の表示装置を示した断面図である。
【図12】本発明の表示装置を示した断面図である。
【図13】本発明の表示装置を示した断面図である。
【図14】本発明の表示モジュールを示した断面図である。
【図15】本発明の表示モジュールを示した断面図である。
【図16】本発明の表示装置として用いることのできるバックライトである。
【図17】本発明の表示装置を示した上面図である。
【図18】本発明の表示装置を示した上面図である。
【図19】本発明が適用される電子機器の主要な構成を示すブロック図である。
【図20】本発明の電子機器を示した図である。
【図21】本発明の電子機器を示した図である。
【図22】本発明に適用できる発光素子の構成を示した断面図である。
【図23】本発明に適用できる発光素子の構成を示した断面図である。
【図24】本発明に適用できる発光素子の構成を示した断面図である。
【図25】本発明の概念図である。
【図26】比較例の実験モデルを示す図である。
【図27】比較例の実験データを示す図である。
【図28】実施例1の実験モデルを示す図である。
【図29】実施例1の実験データを示す図である。
【図30】実施例1の実験データを示す図である。
【図31】実施例2の実験データを示す図である。
【図32】実施例2の実験データを示す図である。
【図33】実施例3の実験モデルを示す図である。
【図34】実施例3の実験データを示す図である。
【図35】実施例3の実験データを示す図である。
【図36】本発明の表示装置を示した上面図及び断面図である。
【図37】本発明の表示装置を示した断面図である。
【発明を実施するための形態】
【0025】
以下に、本発明の実施の形態を図面に基づいて説明する。但し、本発明は多くの異なる態
様で実施することが可能であり、本発明の趣旨及びその範囲から逸脱することなくその形
態及び詳細を様々に変更し得ることは当業者であれば容易に理解される。従って、本実施
の形態の記載内容に限定して解釈されるものではない。なお、実施の形態を説明するため
の全図において、同一部分又は同様な機能を有する部分には同一の符号を付し、その繰り
返しの説明は省略する。
【0026】
(実施の形態1)
本実施の形態では、外光の反射をより軽減できる反射防止機能を有し優れた視認性を付与
することを目的とした表示装置の一例について説明する。
【0027】
本発明は、表示装置において、表示画面表面に外光の反射を防止する反射防止機能を有す
る反射防止膜として、複数の凸部を有する反射防止膜を用いることを特徴とする。本発明
の反射防止膜の凸部は、円錐形が好ましく凸部の底面と側面との角度は84度以上90度
未満が好ましい。
【0028】
図1に本発明の反射防止膜の上面図及び断面図を示す。図1において表示装置の表示装置
450の表示画面表面上に複数の凸部451、及び保護層452が設けられている。図1
(A)は本実施の形態の表示装置の上面図であり、図1(B)は図1(A)の線A−Bに
おける断面図である。また図1(C)は図1(B)の拡大図である。図1(A)(B)に
示すように、凸部451は表示画面上に隣接して設けられている。
【0029】
図1(C)に示すように、本発明の反射防止膜において、凸部451の底面の直径Lと高
さHの比は1:5以上(1:29以下)、好ましくは1:10、高さHは1μm以上3μ
mが好ましい。この大きさであると透光性を低下させることなく、かつ加工も比較的容易
である。
【0030】
また、本発明の凸部において、図1(C)に示すように突起物である凸部の底面と斜面と
がなす角度θは84度以上90度未満が好ましい。上記角度を有する凸部であると、外光
は複数の凸部に反射と透過とを繰り返すので、外光の凸部への透過率が向上し、視認側へ
の反射率を低減することができる。
【0031】
凸部は表示装置450の表示画面表面上に設けられるので、凸部の底面と表示装置450
の表示画面表面とは平行である。よって、凸部斜辺と表示画面表面とのなす好ましい角度
も同様に84度以上90度未満が好ましい。
【0032】
凸部は円錐形の他、針状、円錐の先端が平面である断面が台形の形状、先端が丸いドーム
状などでもよい。凸部の形状の例を図2(A)乃至(C)に示す。図2(A)は、円錐形
のように先がとがっている形状ではなく、上面と底面を有する形状である。よって底面と
垂直な面における断面図では、台形の形状となる。図2(A)のような表示装置460上
に設けられる凸部461において、本発明では、下底面から上底面までを高さHとする。
【0033】
図2(B)は表示装置470上に、先端が丸い凸部471が設けられた例である。このよ
うに凸部は先端が丸く曲率を有する形状でもよく、この場合、凸部の高さHは、底面より
先端部の最も高い位置までとする。
【0034】
図2(C)は表示装置480上に、複数の角度θ1及びθ2を有する凸部481が設けら
れた例である。このように凸部は、円柱状の形状に円錐状の形状が積層されるような形状
でもよい。この場合側面と底面の角度はθ1及びθ2と異なることになる。図2(C)の
ような凸部481の場合、θ1が84度以上90度未満であれば好ましく、高さHは凸部
側面が斜行する円錐形状の部分の高さとする。
【0035】
図3に複数の凸部を有する反射防止膜の形状の例を示す。図3(A)乃至(C)は複数の
凸部の表示画面表面での設置の仕方が異なる例を示す。図3(A2)乃至(C2)は上面
図であり、図3(A1)は図3(A2)線X1−Y1の断面図、図3(B1)は図3(B
2)線X2−Y2の断面図、図3(C1)は図3(C2)線X3−Y3の断面図である。
【0036】
図3(A1)及び(A2)は、表示装置465の表示画面上には複数の凸部466a乃至
466dが一定間隔を有して隣接し、かつ凸部466a乃至466d間に保護層467が
設けられている例である。このように表示画面上で凸部は必ずしも接している必要はない
。本発明では、このように間隔を有して設けられている凸部も、反射防止機能を有する部
分の総称として反射防止膜と呼ぶ。よって膜状に物理的に連続していなくても反射防止膜
と記す。
【0037】
図3(B1)及び(B2)は、表示装置475の表示画面上には複数の凸部476a乃至
476dがお互いに接して密に隣接し、かつ凸部476a乃至476d間に保護層477
が設けられている例である。図3(B1)及び(B2)に示すように、複数の凸部は表示
画面上を密に覆うように互いに接して設置されている。このように円錐形の凸部でできる
だけ表示画面表面を覆うと反射防止膜に入射する光の量が増加するという効果がある。
【0038】
図3(C1)及び(C2)は、表示装置485の表示画面上には複数の凸部を有する反射
防止膜486の凸部を埋めるように保護層487が設けられている例である。図3(C1
)及び(C2)のように、反射防止膜の有する複数の凸部は一体の連続膜とし、反射防止
膜表面に複数の凸部を有する構成としてもよい。このように、本発明の反射防止膜は複数
の凸部を有する様々な形状が適用できる。
【0039】
本発明において、保護層は凸部間に設けられていればよく、その形状は限定されない。凸
部を有する反射防止膜上に設けられる保護層の形状の例を図37(A)乃至(D)に示す
。反射防止膜の凸部間を埋めるように設けられる保護層の膜厚は、凸部の高さと一致する
程度でもよく、図37(A)(B)のように凸部の高さより大きく凸部を覆うように設け
られても良い。このような場合、凸部による反射防止膜表面の凹凸は保護層によって軽減
され、平坦化される。図37(A)は、表示装置490表面に設けられた凸部491によ
る表面の凹凸を凸部491間及び上を完全に覆うように保護層492を設け表面を平坦化
する例である。
【0040】
図37(B)は、表示装置490表面に設けられた凸部491による表面の凹凸を凸部4
91間及び上を完全に覆うように保護層493を設けるが、多少凸部491の凹凸形状を
反映し表面をほぼ平坦化する例である。
【0041】
また、保護層の膜厚は、凸部の高さより小さくてもよく、この場合凸部の底辺側を選択的
に覆い、凸部先端部は表面に露出する構造となる。図37(C)は、表示装置490表面
に設けられた凸部491間を埋めるように保護層494が選択的に覆う構造であり、凸部
491の先端部は表面に露出している。このように表面に凸部491が露出する構造であ
ると、外光が、保護層を介さずに直接凸部491に入射するため、反射防止機能を高める
ことができる。
【0042】
また、保護層の形成方法によっては、図37(D)のように表示装置490上の凸部49
1間に形成された保護層495が凸部間において凹部のように膜厚が減少する形状であっ
てもよい。
【0043】
保護層は、少なくとも反射防止膜の有する凸部に用いる材料より低い屈折率材料を用いれ
ばよい。従って、保護層に用いる材料は表示装置の表示画面を構成する基板、及び基板上
に形成される凸部を有する反射防止膜の材料によって相対的に決定するので、適宜設定す
ることができる。
【0044】
凸部はその形状より外光の反射をより低減することができる。しかし、凸部間に空気中の
ゴミや埃等の異物が存在すると異物によって外光の反射が生じてしまい、結果として外光
の十分な反射防止効果が得られない恐れがある。本発明ではその凸部の間に保護層が形成
されているので、凸部間にゴミなどの汚染物が侵入することを防ぐことができる。従って
、ゴミなどの侵入による反射防止機能低下を防ぎ、かつ凸部間を埋めることで反射防止膜
としての物理的強度も高めることができ、信頼性向上が達成できる。
【0045】
凸部間を埋める保護層は凸部に用いられる材料より低屈折率の材料を用いるため、凸部に
用いられる材料より空気との屈折率差が小さく、より界面での反射を抑えることができる

【0046】
また、反射防止膜及び保護層は均一な屈折率でなく、表面から表示画面側に向かって屈折
率が変化する材料で形成することができる。例えば、複数の凸部において、凸部表面側は
空気と同等な屈折率を有する材料で形成することで、空気から凸部に入射する外光の凸部
表面での反射をより軽減する構造とする。一方、複数の凸部において表示画面側の基板側
に近づくにつれ基板と同等な屈折率を有する材料で形成し、凸部内部を進行し、基板に入
射する光の凸部と基板との界面での反射を軽減する構成とする。基板にガラス基板を用い
ると、空気の屈折率の方がガラス基板よりも小さいため、凸部は表面(円錐形であると先
端部)の方が屈折率の低い材料で形成され、凸部底面に近づくにつれ屈折率の高い材料で
形成されるような、円錐形先端部より底面に向かって屈折率が増加するような構成とすれ
ばよい。
【0047】
反射防止膜を形成する材料としては珪素、窒素、フッ素、酸化物、窒化物、フッ化物など
表示画面表面を構成する基板の材料に応じて適宜設定すればよい。酸化物としては、酸化
珪素(SiO)、ホウ酸(B)、酸化ナトリウム(NaO)、酸化マグネシウ
ム(MgO)、酸化アルミニウム(アルミナ)(Al)、酸化カリウム(KO)
、酸化カルシウム(CaO)、三酸化二ヒ素(亜ヒ酸)(As)、酸化ストロンチ
ウム(SrO)、酸化アンチモン(Sb)、酸化バリウム(BaO)、インジウム
錫酸化物(ITO)、酸化亜鉛(ZnO)、酸化インジウムに酸化亜鉛(ZnO)を混合
したIZO(indium zinc oxide)、酸化インジウムに酸化珪素(Si
)を混合した導電材料、有機インジウム、有機スズ、酸化タングステンを含むインジ
ウム酸化物、酸化タングステンを含むインジウム亜鉛酸化物、酸化チタンを含むインジウ
ム酸化物、酸化チタンを含むインジウム錫酸化物などを用いることができる。窒化物とし
ては、窒化アルミニウム(AlN)、窒化珪素(SiN)などを用いることができる。フ
ッ化物としては、フッ化リチウム(LiF)、フッ化ナトリウム(NaF)、フッ化マグ
ネシウム(MgF)、フッ化カルシウム(CaF)、フッ化ランタン(LaF)な
どを用いることができる。前記珪素、窒素、フッ素、酸化物、窒化物、フッ化物は単数及
び複数種を含んでいてもよく、その混合比は各基板の成分比(組成割合)によって適宜設
定すればよい。
【0048】
複数の凸部を有する反射防止膜はスパッタリング法、真空蒸着法、PVD法(Physi
cal Vapor Deposition)、減圧CVD法(LPCVD法)、または
プラズマCVD法等のCVD法(Chemical Vapor Deposition
)により薄膜を成膜した後、所望の形状にエッチングして形成することができる。また、
選択的にパターンを形成できる液滴吐出法や、パターンが転写または描写できる印刷法(
スクリーン印刷やオフセット印刷などパターンが形成される方法)、その他スピンコート
法などの塗布法、ディッピング法、ディスペンサ法などを用いることもできる。また、イ
ンプリント技術、nmレベルの立体構造物を転写技術で形成できるナノインプリント技術
を用いることもができる。インプリント、ナノインプリントは、フォトリソグラフィー工
程を用いずに微細な立体構造物を形成できる技術である。
【0049】
保護層は、前記反射防止膜を形成する材料などを用いることができるが、より低屈折率材
料としてはシリカ、アルミナ、及び炭素を含むエアロゲルなどを用いることができる。ま
た作製方法としてはウェットプロセスが好ましく、選択的にパターンを形成できる液滴吐
出法や、パターンが転写または描写できる印刷法(スクリーン印刷やオフセット印刷など
パターンが形成される方法)、その他スピンコート法などの塗布法、ディッピング法、デ
ィスペンサ法などを用いることができる。
【0050】
本発明の複数の凸部を有する反射防止膜における反射防止機能を図25を用いて説明する
。図25に、表示画面410上に隣接する凸部411a、411b、411c、411d
を有する反射防止膜、保護層416が示されている。外光414は空気と保護層416と
の界面で一部反射光415となって反射するが、透過光412aは凸部411cに入射し
、一部が透過光413aとなって透過し、他は保護層416と凸部411cとの界面で反
射光412bとなって反射される。反射光412bは隣接する凸部411bに再び入射し
、一部が透過光413bとなって透過し、他は保護層416と凸部411bとの界面で反
射光412cとなって反射される。反射光412cは再び隣接する凸部411cに入射し
、一部が透過光413cとなって透過し、他は保護層416と凸部411cとの界面で反
射光412dとなって反射される。反射光412dも再び隣接する凸部411bに入射し
、一部が透過光413dとなって透過する。
【0051】
このように本実施の形態の反射防止膜を有する表示装置は、表面に複数の凸部を有してお
り、外光の反射光は凸部界面が平面ではないので視認側に反射せず隣接する他の凸部に反
射する。もしくは凸部と凸部の間に進行する。入射した外光は凸部に一部透過し反射光は
隣接する凸部にまた入射する。このように凸部界面で反射された外光は隣接する他の凸部
に入射を繰り返す。
【0052】
つまり表示装置に入射する外光のうち、反射防止膜に入射する回数が増加するので、反射
防止膜に透過する量が増える。よって、視認側に反射する外光が軽減され、写り込みなど
の視認性を低下させる原因を防ぐことができる。
【0053】
さらに本発明ではその凸部の間に保護層が形成されているので、凸部間にゴミなどの汚染
物が侵入することを防ぐことができる。従って、ゴミなどの侵入による反射防止機能低下
を防ぎ、かつ凸部間を埋めることで反射防止膜としての物理的強度も高めることができ、
信頼性向上が達成できる。
【0054】
本発明は、表面に複数の凸部を有し、かつ凸部間に保護層を設けた反射防止膜を具備する
ことによって外光の反射をより軽減できる高い反射防止機能を有し視認性の優れた、かつ
信頼性の高い表示装置を提供することができる。従って、より高画質及び高性能な表示装
置を作製することができる。
【0055】
(実施の形態2)
本実施の形態では、より外光の反射を軽減できる反射防止機能を有し優れた視認性を付与
することを目的とした表示装置の一例について説明する。より具体的には、表示装置の構
成がパッシブマトリクス型の場合に関して示す。
【0056】
表示装置は、第1の方向に延びた第1の電極層751a、第1の電極層751b、第1の
電極層751c、第1の電極層751a、第1の電極層751b及び第1の電極層751
cを覆って設けられた電界発光層752と、第1の方向と垂直な第2の方向に延びた第2
の電極層753a、第2の電極層753b、第2の電極層753cとを有している(図5
(A)(B)参照。)。第1の電極層751a、第1の電極層751b、第1の電極層7
51cと第2の電極層753a、第2の電極層753b、第2の電極層753cとの間に
電界発光層752が設けられている。また、第2の電極層753a、第2の電極層753
b、第2の電極層753cを覆うように、保護膜として機能する絶縁層754を設けてい
る(図5(A)(B)参照。)。なお、隣接する各々の発光素子間において横方向への電
界の影響が懸念される場合は、各発光素子に設けられた電界発光層752を分離してもよ
い。
【0057】
図5(C)は、図5(B)の変形例であり、第1の電極層791a、第1の電極層791
b、第1の電極層791c、電界発光層792、第2の電極層793b、保護層である絶
縁層794が設けられている。図5(C)の第1の電極層791a、第1の電極層791
b、第1の電極層791cのように、第1の電極層は、テーパーを有する形状でもよく、
曲率半径が連続的に変化する形状でもよい。第1の電極層791a、第1の電極層791
b、第1の電極層791cのような形状は、液滴吐出法などを用いて形成することができ
る。このような曲率を有する曲面であると、積層する絶縁層や導電層のカバレッジがよい

【0058】
また、第1の電極層の端部を覆うように隔壁(絶縁層)を形成してもよい。隔壁(絶縁層
)は、他の発光素子間を隔てる壁のような役目を果たす。図6(A)、(B)に第1の電
極層の端部を隔壁(絶縁層)で覆う構造を示す。
【0059】
図6(A)に示す発光素子の一例は、隔壁(絶縁層)775が、第1の電極層771a、
第1の電極層771b、第1の電極層771cの端部を覆うようにテーパーを有する形状
で形成されている。基板779に接して設けられた第1の電極層771a、第1の電極層
771b、第1の電極層771c上に、隔壁(絶縁層)775を形成し、電界発光層77
2、第2の電極層773b、絶縁層774、絶縁層776、基板778が設けられている

【0060】
図6(B)に示す発光素子の一例は、隔壁(絶縁層)765が曲率を有し、その曲率半径
が連続的に変化する形状である。第1の電極層761a、第1の電極層761b、第1の
電極層761c、電界発光層762、第2の電極層763b、絶縁層764、絶縁層76
8が設けられている。
【0061】
図4は、本発明を適用したパッシブマトリクス型の液晶表示装置を示す。図4において、
第1の画素電極層1701a、1701b、1701c、配向膜として機能する絶縁層1
712が設けられた基板1700と、配向膜として機能する絶縁層1704、対向電極層
1705、カラーフィルタとして機能する着色層1706、偏光板1714が設けられた
基板1710とが液晶層1703を挟持して対向している。
【0062】
本発明では、表示装置において、表示画面表面に外光の反射を防止する反射防止機能を有
する反射防止膜として、複数の凸部を有する反射防止膜を用いることを特徴とする。本発
明の反射防止膜の凸部は、円錐形が好ましく凸部の底面と側面との角度は84度以上90
度未満が好ましい。本実施の形態において表示画面視認側である基板758、798、7
78、769、1710表面に反射防止膜757、797、777、767、1707が
設けられている。反射防止膜757、797、777、767、1707の凸部間を埋め
るように保護層756、796、781、766、1708が形成されている。反射防止
膜757、797、777、767、1707は複数の凸部を有する反射防止膜であり、
本実施の形態では凸部は円錐状である。
【0063】
凸部は円錐形の他、針状、円錐の先端が平面である断面が台形の形状、先端が丸いドーム
状などでもよい。また、反射防止膜は均一な屈折率でなく、表面から表示画面側に向かっ
て屈折率が変化する材料で形成することができる。例えば、複数の凸部において、凸部表
面側は空気と同等な屈折率を有する材料で形成することで、空気から凸部に入射する外光
の凸部表面での反射をより軽減する構造とする。一方、複数の凸部において表示画面側の
基板側に近づくにつれ基板と同等な屈折率を有する材料で形成し、凸部内部を進行し、基
板に入射する光の凸部と基板との界面での反射を軽減する構成とする。基板にガラス基板
を用いると、空気の屈折率の方がガラス基板よりも小さいため、凸部は表面(円錐形であ
ると先端部)の方が屈折率の低い材料で形成され、凸部底面に近づくにつれ屈折率の高い
材料で形成されるような、円錐形先端部より底面に向かって屈折率が増加するような構成
とすればよい。
【0064】
反射防止膜を形成する材料としては珪素、窒素、フッ素、酸化物、窒化物、フッ化物など
表示画面表面を構成する基板の材料に応じて適宜設定すればよい。酸化物としては、酸化
珪素(SiO)、ホウ酸(B)、酸化ナトリウム(NaO)、酸化マグネシウ
ム(MgO)、酸化アルミニウム(アルミナ)(Al)、酸化カリウム(KO)
、酸化カルシウム(CaO)、三酸化二ヒ素(亜ヒ酸)(As)、酸化ストロンチ
ウム(SrO)、酸化アンチモン(Sb)、酸化バリウム(BaO)、インジウム
錫酸化物(ITO)、酸化亜鉛(ZnO)、酸化インジウムに酸化亜鉛(ZnO)を混合
したIZO(indium zinc oxide)、酸化インジウムに酸化珪素(Si
)を混合した導電材料、有機インジウム、有機スズ、酸化タングステンを含むインジ
ウム酸化物、酸化タングステンを含むインジウム亜鉛酸化物、酸化チタンを含むインジウ
ム酸化物、酸化チタンを含むインジウム錫酸化物などを用いることができる。窒化物とし
ては、窒化アルミニウム(AlN)、窒化珪素(SiN)などを用いることができる。フ
ッ化物としては、フッ化リチウム(LiF)、フッ化ナトリウム(NaF)、フッ化マグ
ネシウム(MgF)、フッ化カルシウム(CaF)、フッ化ランタン(LaF)な
どを用いることができる。前記珪素、窒素、フッ素、酸化物、窒化物、フッ化物は単数及
び複数種を含んでいてもよく、その混合比は各基板の成分比(組成割合)によって適宜設
定すればよい。
【0065】
複数の凸部を有する反射防止膜はスパッタリング法、真空蒸着法、PVD法(Physi
cal Vapor Deposition)、減圧CVD法(LPCVD法)、または
プラズマCVD法等のCVD法(Chemical Vapor Deposition
)により薄膜を成膜した後、所望の形状にエッチングして形成することができる。また、
選択的にパターンを形成できる液滴吐出法や、パターンが転写または描写できる印刷法(
スクリーン印刷やオフセット印刷などパターンが形成される方法)、その他スピンコート
法などの塗布法、ディッピング法、ディスペンサ法などを用いることもできる。また、イ
ンプリント技術、nmレベルの立体構造物を転写技術で形成できるナノインプリント技術
を用いることもができる。インプリント、ナノインプリントは、フォトリソグラフィー工
程を用いずに微細な立体構造物を形成できる技術である。
【0066】
本実施の形態の反射防止膜を有する表示装置は、表面に複数の凸部を有しており、外光の
反射光は凸部界面が平面ではないので視認側に反射せず隣接する他の凸部に反射する。も
しくは凸部と凸部の間に進行する。入射した外光は凸部に一部透過し反射光は隣接する凸
部にまた入射する。このように凸部界面で反射された外光は隣接する他の凸部に入射を繰
り返す。
【0067】
本発明の反射防止膜を有する表示装置は、表面に複数の凸部を有しており、外光の反射光
は凸部界面が平面ではないので視認側に反射せず隣接する他の凸部に反射する。もしくは
凸部と凸部の間に進行する。入射した外光は凸部に一部透過し反射光は隣接する凸部にま
た入射する。このように凸部界面で反射された外光は隣接する他の凸部に入射を繰り返す

【0068】
つまり表示装置に入射する外光のうち、反射防止膜に入射する回数が増加するので、反射
防止膜に透過する量が増える。よって、視認側に反射する外光が軽減され、写り込みなど
の視認性を低下させる原因を防ぐことができる。
【0069】
さらに本発明ではその凸部の間に保護層が形成されているので、凸部間にゴミなどの汚染
物が侵入することを防ぐことができる。従って、ゴミなどの侵入による反射防止機能低下
を防ぎ、かつ凸部間を埋めることで反射防止膜としての物理的強度も高めることができ、
信頼性向上が達成できる。
【0070】
基板758、759、769、778、779、798、799、1700、1710と
しては、ガラス基板や石英基板等を用いることができる。また可撓性基板を用いてもよい
。可撓性基板とは、折り曲げることができる(フレキシブル)基板のことであり、例えば
、ポリカーボネート、ポリアリレート、ポリエーテルスルフォン等からなるプラスチック
基板等が挙げられる。また、フィルム(ポリプロピレン、ポリエステル、ビニル、ポリフ
ッ化ビニル、塩化ビニル、ポリアミドなどからなる)、無機蒸着フィルム等を用いること
もできる。
【0071】
隔壁(絶縁層)765、隔壁(絶縁層)775としては、酸化珪素、窒化珪素、酸化窒化
珪素、酸化アルミニウム、窒化アルミニウム、酸窒化アルミニウムその他の無機絶縁性材
料、又はアクリル酸、メタクリル酸及びこれらの誘導体、又はポリイミド(polyim
ide)、芳香族ポリアミド、ポリベンゾイミダゾール(polybenzimidaz
ole)などの耐熱性高分子、又はシロキサン樹脂を用いてもよい。また、ポリビニルア
ルコール、ポリビニルブチラールなどのビニル樹脂、エポキシ樹脂、フェノール樹脂、ノ
ボラック樹脂、アクリル樹脂、メラミン樹脂、ウレタン樹脂等の樹脂材料を用いる。また
、ベンゾシクロブテン、パリレン、フッ化アリーレンエーテル、ポリイミドなどの有機材
料、水溶性ホモポリマーと水溶性共重合体を含む組成物材料等を用いてもよい。作製法と
しては、プラズマCVD法や熱CVD法などの気相成長法やスパッタリング法を用いるこ
とができる。また、液滴吐出法や、印刷法(スクリーン印刷やオフセット印刷などパター
ンが形成される方法)を用いることもできる。塗布法で得られる膜やSOG膜なども用い
ることができる。
【0072】
また、液滴吐出法により、導電層、絶縁層などを、組成物を吐出し形成した後、その平坦
性を高めるために表面を圧力によってプレスして平坦化してもよい。プレスの方法として
は、ローラー状のものを表面に走査することによって、凹凸をならすように軽減する、平
坦な板状な物で表面を垂直にプレスするなど行ってもよい。プレスする時に、加熱工程を
行っても良い。また溶剤等によって表面を軟化、または融解させエアナイフで表面の凹凸
部を除去しても良い。また、CMP法を用いて研磨しても良い。この工程は、液滴吐出法
によって凹凸が生じる場合に、その表面の平坦化する場合適用することができる。
【0073】
本発明は、表面に複数の凸部を有する反射防止膜を具備することによって外光の反射をよ
り軽減できる高い反射防止機能を有した視認性の優れた表示装置を提供することができる
。従って、本発明により高画質及び高性能な表示装置を作製することができる。
【0074】
本実施の形態は、上記の実施の形態1と自由に組み合わせることができる。
【0075】
(実施の形態3)
本実施の形態では、外光の反射をより軽減できる反射防止機能を有し優れた視認性を付与
することを目的とした表示装置の一例について説明する。本実施の形態では、上記実施の
形態2とは異なる構成を有する表示装置について説明する。具体的には、表示装置の構成
がアクティブマトリクス型の場合に関して示す。
【0076】
表示装置の上面図を図36(A)に、図36(A)における線E−Fの断面図を図36(
B)に示す。また、図36(A)には、電界発光層532、第2の電極層533及び絶縁
層534は省略され図示されていないが、図36(B)で示すようにそれぞれ設けられて
いる。
【0077】
下地膜として絶縁層523が設けられた基板520上に、第1の方向に延びた第1の配線
と、第1の方向と垂直な第2の方向に延びた第2の配線とがマトリクス状に設けられてい
る。また、第1の配線はトランジスタ521のソース電極又はドレイン電極に接続されて
おり、第2の配線はトランジスタ521のゲート電極に接続されている。さらに、第1の
配線と接続されていないトランジスタ521のソース電極またはドレイン電極である配線
層525bに、第1の電極層531が接続され、第1の電極層531、電界発光層532
、第2の電極層533の積層構造によって発光素子530が設けられている。隣接する各
々の発光素子の間に隔壁(絶縁層)528を設けて、第1の電極層と隔壁(絶縁層)52
8上に電界発光層532および第2の電極層533を積層して設けている。第2の電極層
533上に保護層となる絶縁層534、封止基板である基板538を有している。また、
トランジスタ521として、逆スタガ型薄膜トランジスタを用いている(図36参照。)
。発光素子530より放射される光は基板538側より取り出される。よって視認側の基
板538表面には本発明の複数の凸部を有する反射防止膜529、反射防止膜の凸部間を
埋めるように保護層536を有している。
【0078】
本実施の形態における図36では、トランジスタ521はチャネルエッチ型逆スタガトラ
ンジスタの例を示す。図36において、トランジスタ521は、ゲート電極層502、ゲ
ート絶縁層526、半導体層504、一導電型を有する半導体層503a、503b、ソ
ース電極層又はドレイン電極層である配線層525a、525bを含む。
【0079】
半導体層を形成する材料は、シランやゲルマンに代表される半導体材料ガスを用いて気相
成長法やスパッタリング法で作製される非晶質半導体(以下「アモルファス半導体:AS
」ともいう。)、該非晶質半導体を光エネルギーや熱エネルギーを利用して結晶化させた
多結晶半導体、或いはセミアモルファス(微結晶若しくはマイクロクリスタルとも呼ばれ
る。以下「SAS」ともいう。)半導体などを用いることができる。
【0080】
SASは、非晶質と結晶構造(単結晶、多結晶を含む)の中間的な構造を有し、自由エネ
ルギー的に安定な第3の状態を有する半導体であって、短距離秩序を持ち格子歪みを有す
る結晶質な領域を含んでいる。SASは、珪素を含む気体をグロー放電分解(プラズマC
VD)して形成する。珪素を含む気体としては、SiH、その他にもSi、Si
Cl、SiHCl、SiCl、SiFなどを用いることが可能である。また
、GeFを混合させても良い。この珪素を含む気体をH、又は、HとHe、A
r、Kr、Neから選ばれた一種または複数種の希ガス元素で希釈しても良い。また、ヘ
リウム、アルゴン、クリプトン、ネオンなどの希ガス元素を含ませて格子歪みをさらに助
長させることで安定性が増し良好なSASが得られる。また半導体膜としてフッ素系ガス
より形成されるSAS層に水素系ガスより形成されるSAS層を積層してもよい。
【0081】
非晶質半導体としては、代表的には水素化アモルファスシリコン、結晶性半導体としては
代表的にはポリシリコンなどがあげられる。ポリシリコン(多結晶シリコン)には、80
0℃以上のプロセス温度を経て形成されるポリシリコンを主材料として用いた所謂高温ポ
リシリコンや、600℃以下のプロセス温度で形成されるポリシリコンを主材料として用
いた所謂低温ポリシリコン、また結晶化を促進する元素などを添加し結晶化させたポリシ
リコンなどを含んでいる。もちろん、前述したように、セミアモルファス半導体又は半導
体膜の一部に結晶相を含む半導体を用いることもできる。
【0082】
半導体膜に、結晶性半導体膜を用いる場合、その結晶性半導体膜の作製方法は、公知の方
法(レーザ結晶化法、熱結晶化法、またはニッケルなどの結晶化を助長する元素を用いた
熱結晶化法等)を用いれば良い。また、SASである微結晶半導体をレーザ照射して結晶
化し、結晶性を高めることもできる。結晶化を助長する元素を導入しない場合は、非晶質
半導体膜にレーザ光を照射する前に、窒素雰囲気下500℃で1時間加熱することによっ
て非晶質半導体膜の含有水素濃度を1×1020atoms/cm以下にまで放出させ
る。これは水素を多く含んだ非晶質半導体膜にレーザ光を照射すると非晶質半導体膜が破
壊されてしまうからである。結晶化のための加熱処理は、加熱炉、レーザ照射、若しくは
ランプから発する光の照射(ランプアニールともいう)などを用いることができる。加熱
方法としてGRTA(Gas Rapid Thermal Anneal)法、LRT
A(Lamp Rapid Thermal Anneal)法等のRTA法がある。G
RTAとは高温のガスを用いて加熱処理を行う方法であり、LRTAとはランプ光により
加熱処理を行う方法である。
【0083】
また、非晶質半導体層を結晶化し、結晶性半導体層を形成する結晶化工程で、非晶質半導
体層に結晶化を促進する元素(触媒元素、金属元素とも示す)を添加し、熱処理(550
℃〜750℃で3分〜24時間)により結晶化を行ってもよい。結晶化を助長(促進)す
る元素としては、鉄(Fe)、ニッケル(Ni)、コバルト(Co)、ルテニウム(Ru
)、ロジウム(Rh)、パラジウム(Pd)、オスニウム(Os)、イリジウム(Ir)
、白金(Pt)、銅(Cu)及び金(Au)から選ばれた一種又は複数種類を用いること
ができる。
【0084】
非晶質半導体膜への金属元素の導入の仕方としては、当該金属元素を非晶質半導体膜の表
面又はその内部に存在させ得る手法であれば特に限定はなく、例えばスパッタ法、CVD
法、プラズマ処理法(プラズマCVD法も含む)、吸着法、金属塩の溶液を塗布する方法
を使用することができる。このうち溶液を用いる方法は簡便であり、金属元素の濃度調整
が容易であるという点で有用である。また、このとき非晶質半導体膜の表面のぬれ性を改
善し、非晶質半導体膜の表面全体に水溶液を行き渡らせるため、酸素雰囲気中でのUV光
の照射、熱酸化法、ヒドロキシラジカルを含むオゾン水又は過酸化水素による処理等によ
り、酸化膜を成膜することが望ましい。
【0085】
結晶化を促進する元素を結晶性半導体層から除去、又は軽減するため、結晶性半導体層に
接して、不純物元素を含む半導体層を形成し、ゲッタリングシンクとして機能させる。不
純物元素としては、n型を付与する不純物元素、p型を付与する不純物元素や希ガス元素
などを用いることができ、例えばリン(P)、窒素(N)、ヒ素(As)、アンチモン(
Sb)、ビスマス(Bi)、ボロン(B)、ヘリウム(He)、ネオン(Ne)、アルゴ
ン(Ar)、Kr(クリプトン)、Xe(キセノン)から選ばれた一種または複数種を用
いることができる。結晶化を促進する元素を含む結晶性半導体層に、希ガス元素を含む半
導体層を形成し、熱処理(550℃〜750℃で3分〜24時間)を行う。結晶性半導体
層中に含まれる結晶化を促進する元素は、希ガス元素を含む半導体層中に移動し、結晶性
半導体層中の結晶化を促進する元素は除去、又は軽減される。その後、ゲッタリングシン
クとなった希ガス元素を含む半導体層を除去する。
【0086】
レーザと、半導体膜とを相対的に走査することにより、レーザ照射を行うことができる。
またレーザ照射において、ビームを精度よく重ね合わせたり、レーザ照射開始位置やレー
ザ照射終了位置を制御するため、マーカーを形成することもできる。マーカーは非晶質半
導体膜と同時に、基板上へ形成すればよい。
【0087】
レーザ照射を用いる場合、連続発振型のレーザビーム(CW(CW:continuou
s−wave)レーザビーム)やパルス発振型のレーザビーム(パルスレーザビーム)を
用いることができる。ここで用いることができるレーザビームは、Arレーザ、Krレー
ザ、エキシマレーザなどの気体レーザ、単結晶のYAG、YVO、フォルステライト(
MgSiO)、YAlO、GdVO、若しくは多結晶(セラミック)のYAG、
、YVO、YAlO、GdVOに、ドーパントとしてNd、Yb、Cr、
Ti、Ho、Er、Tm、Taのうち1種または複数種添加されているものを媒質とする
レーザ、ガラスレーザ、ルビーレーザ、アレキサンドライトレーザ、Ti:サファイアレ
ーザ、銅蒸気レーザまたは金蒸気レーザのうち一種または複数種から発振されるものを用
いることができる。このようなレーザビームの基本波、及びこれらの基本波の第2高調波
から第4高調波のレーザビームを照射することで、大粒径の結晶を得ることができる。例
えば、Nd:YVOレーザ(基本波1064nm)の第2高調波(532nm)や第3
高調波(355nm)を用いることができる。このレーザは、CWで射出することも、パ
ルス発振で射出することも可能である。CWで射出する場合は、レーザのパワー密度を0
.01〜100MW/cm程度(好ましくは0.1〜10MW/cm)が必要である
。そして、走査速度を10〜2000cm/sec程度として照射する。
【0088】
なお、単結晶のYAG、YVO、フォルステライト(MgSiO)、YAlO
GdVO、若しくは多結晶(セラミック)のYAG、Y、YVO、YAlO
、GdVOに、ドーパントとしてNd、Yb、Cr、Ti、Ho、Er、Tm、Taの
うち1種または複数種添加されているものを媒質とするレーザ、Arイオンレーザ、また
はTi:サファイアレーザは、連続発振をさせることが可能であり、Qスイッチ動作やモ
ード同期などを行うことによって10MHz以上の発振周波数でパルス発振をさせること
も可能である。10MHz以上の発振周波数でレーザビームを発振させると、半導体膜が
レーザによって溶融してから固化するまでの間に、次のパルスが半導体膜に照射される。
従って、発振周波数が低いパルスレーザを用いる場合と異なり、半導体膜中において固液
界面を連続的に移動させることができるため、走査方向に向かって連続的に成長した結晶
粒を得ることができる。
【0089】
媒質としてセラミック(多結晶)を用いると、短時間かつ低コストで自由な形状に媒質を
形成することが可能である。単結晶を用いる場合、通常、直径数mm、長さ数十mmの円
柱状の媒質が用いられているが、セラミックを用いる場合はさらに大きいものを作ること
が可能である。
【0090】
発光に直接寄与する媒質中のNd、Ybなどのドーパントの濃度は、単結晶中でも多結晶
中でも大きくは変えられないため、濃度を増加させることによるレーザの出力向上にはあ
る程度限界がある。しかしながら、セラミックの場合、単結晶と比較して媒質の大きさを
著しく大きくすることができるため大幅な出力向上ができる。
【0091】
さらに、セラミックの場合では、平行六面体形状や直方体形状の媒質を容易に形成するこ
とが可能である。このような形状の媒質を用いて、発振光を媒質の内部でジグザグに進行
させると、発振光路を長くとることができる。そのため、増幅が大きくなり、大出力で発
振させることが可能になる。また、このような形状の媒質から射出されるレーザビームは
射出時の断面形状が四角形状であるため、丸状のビームと比較すると、線状ビームに整形
するのに有利である。このように射出されたレーザビームを、光学系を用いて整形するこ
とによって、短辺の長さ1mm以下、長辺の長さ数mm〜数mの線状ビームを容易に得る
ことが可能となる。また、励起光を媒質に均一に照射することにより、線状ビームは長辺
方向にエネルギー分布の均一なものとなる。またさらにレーザは、半導体膜に対して入射
角θ(0<θ<90度)を持たせて照射させるとよい。レーザの干渉を防止することがで
きるからである。
【0092】
この線状ビームを半導体膜に照射することによって、半導体膜の全面をより均一にアニー
ルすることが可能になる。線状ビームの両端まで均一なアニールが必要な場合は、その両
端にスリットを配置し、エネルギーの減衰部を遮光するなどの工夫が必要となる。
【0093】
このようにして得られた強度が均一な線状ビームを用いて半導体膜をアニールし、この半
導体膜を用いて表示装置を作製すると、その表示装置の特性は、良好かつ均一である。
【0094】
また、希ガスや窒素などの不活性ガス雰囲気中でレーザ光を照射するようにしても良い。
これにより、レーザ光の照射により半導体表面の荒れを抑えることができ、界面準位密度
のばらつきによって生じるしきい値のばらつきを抑えることができる。
【0095】
非晶質半導体膜の結晶化は、熱処理とレーザ光照射による結晶化を組み合わせてもよく、
熱処理やレーザ光照射を単独で、複数回行っても良い。
【0096】
ゲート電極層は、スパッタリング法、蒸着法、CVD法等の手法により形成することがで
きる。ゲート電極層はタンタル(Ta)、タングステン(W)、チタン(Ti)、モリブ
デン(Mo)、アルミニウム(Al)、銅(Cu)、クロム(Cr)、ネオジウム(Nd
)から選ばれた元素、又は前記元素を主成分とする合金材料もしくは化合物材料で形成す
ればよい。また、ゲート電極層としてリン等の不純物元素をドーピングした多結晶シリコ
ン膜に代表される半導体膜や、AgPdCu合金を用いてもよい。また、ゲート電極層は
単層でも積層でもよい。
【0097】
本実施の形態ではゲート電極層をテーパー形状を有する様に形成するが、本発明はそれに
限定されず、ゲート電極層を積層構造にして、一層のみがテーパー形状を有し、他方は異
方性エッチングによって垂直な側面を有していてもよい。テーパー角度も積層するゲート
電極層間で異なっていても良いし、同一でもよい。テーパー形状を有することによって、
その上に積層する膜の被覆性が向上し、欠陥が軽減されるので信頼性が向上する。
【0098】
ソース電極層又はドレイン電極層は、PVD法、CVD法、蒸着法等により導電膜を成膜
した後、所望の形状にエッチングして形成することができる。また、液滴吐出法、印刷法
、ディスペンサ法、電界メッキ法等により、所定の場所に選択的に導電層を形成すること
ができる。更にはリフロー法、ダマシン法を用いても良い。ソース電極層又はドレイン電
極層の材料は、Ag、Au、Cu、Ni、Pt、Pd、Ir、Rh、W、Al、Ta、M
o、Cd、Zn、Fe、Ti、Si、Ge、Zr、Ba等の元素又はその合金、若しくは
その窒化物を用いて形成する。また、これらの積層構造としても良い。
【0099】
絶縁層523、526、527、534としては、酸化珪素、窒化珪素、酸化窒化珪素、
酸化アルミニウム、窒化アルミニウム、酸窒化アルミニウムその他の無機絶縁性材料、又
はアクリル酸、メタクリル酸及びこれらの誘導体、又はポリイミド(polyimide
)、芳香族ポリアミド、ポリベンゾイミダゾール(polybenzimidazole
)などの耐熱性高分子、又はシロキサン樹脂を用いてもよい。また、ポリビニルアルコー
ル、ポリビニルブチラールなどのビニル樹脂、エポキシ樹脂、フェノール樹脂、ノボラッ
ク樹脂、アクリル樹脂、メラミン樹脂、ウレタン樹脂等の樹脂材料を用いる。また、ベン
ゾシクロブテン、パリレン、フッ化アリーレンエーテル、ポリイミドなどの有機材料、水
溶性ホモポリマーと水溶性共重合体を含む組成物材料等を用いてもよい。作製法としては
、プラズマCVD法や熱CVD法などの気相成長法やスパッタリング法を用いることがで
きる。また、液滴吐出法や、印刷法(スクリーン印刷やオフセット印刷などパターンが形
成される方法)を用いることもできる。塗布法で得られる膜やSOG膜なども用いること
ができる。
【0100】
また、液滴吐出法により、導電層、絶縁層などを、組成物を吐出し形成した後、その平坦
性を高めるために表面を圧力によってプレスして平坦化してもよい。プレスの方法として
は、ローラー状のものを表面に走査することによって、凹凸を軽減する、平坦な板状な物
で表面を垂直にプレスするなど行ってもよい。プレスする時に、加熱工程を行っても良い
。また溶剤等によって表面を軟化、または溶解させエアナイフで表面の凹凸部を除去して
も良い。また、CMP法を用いて研磨しても良い。この工程は、液滴吐出法によって凹凸
が生じる場合に、その表面の平坦化する場合適用することができる。
【0101】
本実施の形態に限定されず、薄膜トランジスタはチャネル形成領域が一つ形成されるシン
グルゲート構造でも、二つ形成されるダブルゲート構造もしくは三つ形成されるトリプル
ゲート構造であっても良い。また、周辺駆動回路領域の薄膜トランジスタも、シングルゲ
ート構造、ダブルゲート構造もしくはトリプルゲート構造であっても良い。
【0102】
なお、本実施の形態で示した薄膜トランジスタの作製方法に限らず、トップゲート型(例
えば順スタガ型、コプラナ型)、ボトムゲート型(例えば、逆コプラナ型)、あるいはチ
ャネル領域の上下にゲート絶縁膜を介して配置された2つのゲート電極層を有する、デュ
アルゲート型やその他の構造においても適用できる。
【0103】
図7(A)(B)は、本発明を適用したアクティブマトリクス型の液晶表示装置を示す。
図7において、基板550上にマルチゲート構造のトランジスタ551及び画素電極層5
60、配向膜として機能する絶縁層561が設けられた基板550と、配向膜として機能
する絶縁層563、対向電極層である導電層564、カラーフィルタとして機能する着色
層565、偏光子(偏光板ともいう)556が設けられた対向基板である基板568とが
液晶層562を挟持して対向している。視認側の基板568表面には本発明の複数の凸部
を有する反射防止膜567、反射防止膜567の凸部間を埋めるように設けられた保護層
566を有している。
【0104】
また、図7(A)の表示装置では、基板568の外側に反射防止膜567を設け、内側に
偏光子556、着色層565、導電層564という順に設ける例を示すが、図7(B)の
ように偏光子569は基板568の外側(視認側)に設けてもよく、その場合、偏光子5
69表面に反射防止膜567を設ければよい。また、偏光子と着色層の積層構造も図7(
A)に限定されず、偏光子及び着色層の材料や作製工程条件によって適宜設定すればよい

【0105】
図13は、本発明を適用したアクティブマトリクス型の電子ペーパーを示す。図13では
アクティブマトリクス型を示すが、本発明はパッシブマトリクス型にも適用することがで
きる。
【0106】
図7では、表示素子として液晶表示素子を用いて例を示したが、ツイストボール表示方式
を用いた表示装置を用いてもよい。ツイストボール表示方式とは、白と黒に塗り分けられ
た球形粒子を第1の電極層及び第2の電極層の間に配置し、第1の電極層及び第2の電極
層に電位差を生じさせて球形粒子の向きを制御することにより、表示を行う方法である。
【0107】
トランジスタ581は逆コプラナ型の薄膜トランジスタであり、ゲート電極層582、ゲ
ート絶縁層584、配線層585a、配線層585b、半導体層586を含む。また配線
層585bは第1の電極層587a、587bは絶縁層598に形成する開口で接してお
り電気的に接続している。第1の電極層587a、587bと第2の電極層588との間
には黒色領域590a及び白色領域590bを有し、周りに、液体で満たされているキャ
ビティ594を含む球形粒子589が設けられており、球形粒子589の周囲は樹脂等の
充填材595で充填されている(図13参照。)。視認側の基板599表面には本発明の
複数の凸部を有する反射防止膜597、反射防止膜597の凸部間を埋めるように設けら
れた保護層596を有している。
【0108】
また、ツイストボールの代わりに、電気泳動素子を用いることも可能である。透明な液体
と、正に帯電した白い微粒子と負に帯電した黒い微粒子とを封入した直径10μm〜20
0μm程度のマイクロカプセルを用いる。第1の電極層と第2の電極層との間に設けられ
るマイクロカプセルは、第1の電極層と第2の電極層によって、電場が与えられると、白
い微粒子と、黒い微粒子が逆の方向に移動し、白または黒を表示することができる。この
原理を応用した表示素子が電気泳動表示素子であり、一般的に電子ペーパーとよばれてい
る。電気泳動表示素子は、液晶表示素子に比べて反射率が高いため、補助ライトは不要で
あり、また消費電力が小さく、薄暗い場所でも表示部を認識することが可能である。また
、表示部に電源が供給されない場合であっても、一度表示した像を保持することが可能で
あるため、電波発信源から表示機能付き半導体装置を遠ざけた場合であっても、表示され
た像を保存しておくことが可能となる。
【0109】
トランジスタはスイッチング素子として機能し得るものであれば、どのような構成で設け
てもよい。半導体層も非晶質半導体、結晶性半導体、多結晶半導体、微結晶半導体など様
々な半導体を用いることができ、有機化合物を用いて有機トランジスタを形成してもよい

【0110】
本発明では、表示装置において、表示画面表面に外光の反射を防止する反射防止機能を有
する反射防止膜として、複数の凸部を有する反射防止膜を用いることを特徴とする。本発
明の反射防止膜は、円錐形が好ましく凸部の底面と側面との角度は84度以上90度未満
が好ましい。本実施の形態において表示画面視認側である基板538、568、599表
面に反射防止膜529、567、597が設けられている。反射防止膜529、567、
597の凸部間を埋めるように保護層536、566、596が設けられている。反射防
止膜529、567、597は複数の凸部を有する反射防止膜であり、本実施の形態では
凸部は円錐状である。
【0111】
凸部は円錐形の他、針状、円錐の先端が平面である断面が台形の形状、先端が丸いドーム
状などでもよい。また、反射防止膜は均一な屈折率でなく、表面から表示画面側に向かっ
て屈折率が変化する材料で形成することができる。例えば、複数の凸部において、凸部表
面側は空気と同等な屈折率を有する材料で形成し、より空気より凸部に入射する外光の凸
部表面の反射を軽減する構造とする。一方、複数の凸部において表示画面側の基板側に近
づくにつれ基板と同等な屈折率を有する材料で形成し、凸部内部を進行し、基板に入射す
る光の凸部と基板との界面での反射を軽減する構成とする。基板にガラス基板を用いると
、空気の屈折率の方がガラス基板よりも小さいため、凸部は表面(円錐形であると先端部
)の方が屈折率の低い材料で形成され、凸部底面に近づくにつれ屈折率の高い材料で形成
されるような、円錐形先端部より底面に向かって屈折率が増加するような構成とすればよ
い。
【0112】
反射防止膜を形成する材料としては珪素、窒素、フッ素、酸化物、窒化物、フッ化物など
表示画面表面を構成する基板の材料に応じて適宜設定すればよい。酸化物としては、酸化
珪素(SiO)、ホウ酸(B)、酸化ナトリウム(NaO)、酸化マグネシウ
ム(MgO)、酸化アルミニウム(アルミナ)(Al)、酸化カリウム(KO)
、酸化カルシウム(CaO)、三酸化二ヒ素(亜ヒ酸)(As)、酸化ストロンチ
ウム(SrO)、酸化アンチモン(Sb)、酸化バリウム(BaO)、インジウム
錫酸化物(ITO)、酸化亜鉛(ZnO)、酸化インジウムに酸化亜鉛(ZnO)を混合
したIZO(indium zinc oxide)、酸化インジウムに酸化珪素(Si
)を混合した導電材料、有機インジウム、有機スズ、酸化タングステンを含むインジ
ウム酸化物、酸化タングステンを含むインジウム亜鉛酸化物、酸化チタンを含むインジウ
ム酸化物、酸化チタンを含むインジウム錫酸化物などを用いることができる。窒化物とし
ては、窒化アルミニウム(AlN)、窒化珪素(SiN)などを用いることができる。フ
ッ化物としては、フッ化リチウム(LiF)、フッ化ナトリウム(NaF)、フッ化マグ
ネシウム(MgF)、フッ化カルシウム(CaF)、フッ化ランタン(LaF)な
どを用いることができる。前記珪素、窒素、フッ素、酸化物、窒化物、フッ化物は単数及
び複数種を含んでいてもよく、その混合比は各基板の成分比(組成割合)によって適宜設
定すればよい。
【0113】
複数の凸部を有する反射防止膜はスパッタリング法、真空蒸着法、PVD法(Physi
cal Vapor Deposition)、減圧CVD法(LPCVD法)、または
プラズマCVD法等のCVD法(Chemical Vapor Deposition
)により薄膜を成膜した後、所望の形状にエッチングして形成することができる。また、
選択的にパターンを形成できる液滴吐出法や、パターンが転写または描写できる印刷法(
スクリーン印刷やオフセット印刷などパターンが形成される方法)、その他スピンコート
法などの塗布法、ディッピング法、ディスペンサ法などを用いることもできる。また、イ
ンプリント技術、nmレベルの立体構造物を転写技術で形成できるナノインプリント技術
を用いることもができる。インプリント、ナノインプリントは、フォトリソグラフィー工
程を用いずに微細な立体構造物を形成できる技術である。
【0114】
保護層は、少なくとも反射防止膜の有する凸部に用いる材料より低い屈折率材料を用いれ
ばよい。従って、保護層に用いる材料は表示装置の表示画面を構成する基板、及び基板上
に形成される凸部を有する反射防止膜の材料によって相対的に決定するので、適宜設定す
ることができる。
【0115】
保護層は、前記反射防止膜を形成する材料などを用いることができるが、より低屈折率材
料としてはシリカ、アルミナ、及び炭素を含むエアロゲルなどを用いることができる。ま
た作製方法としてはウェットプロセスが好ましく、選択的にパターンを形成できる液滴吐
出法や、パターンが転写または描写できる印刷法(スクリーン印刷やオフセット印刷など
パターンが形成される方法)、その他スピンコート法などの塗布法、ディッピング法、デ
ィスペンサ法などを用いることができる。
【0116】
本実施の形態の反射防止膜を有する表示装置は、表面に複数の凸部を有しており、外光の
反射光は凸部界面が平面ではないので視認側に反射せず隣接する他の凸部に反射する。も
しくは凸部と凸部の間に進行する。入射した外光は凸部に一部透過し反射光は隣接する凸
部にまた入射する。このように隣接する凸部界面で反射された外光は他の凸部に入射を繰
り返す。
【0117】
つまり表示装置に入射する外光のうち、反射防止膜に入射する回数が増加するので、反射
防止膜に透過する量が増える。よって、視認側に反射する外光が軽減され、写り込みなど
の視認性を低下させる原因を防ぐことができる。
【0118】
さらに本発明ではその凸部の間に保護層が形成されているので、凸部間にゴミなどの汚染
物が侵入することを防ぐことができる。従って、ゴミなどの侵入による反射防止機能低下
を防ぎ、かつ凸部間を埋めることで反射防止膜としての物理的強度も高めることができ、
信頼性向上が達成できる。
【0119】
本発明は、表面に複数の凸部を有し、かつ凸部間に保護層を設けた反射防止膜を具備する
ことによってより外光の反射を軽減できる高い反射防止機能を有し視認性の優れた、かつ
信頼性の高い表示装置を提供することができる。従って、より高画質及び高性能な表示装
置を作製することができる。
【0120】
本実施の形態は、上記の実施の形態1と自由に組み合わせることができる。
【0121】
(実施の形態4)
本実施の形態では、より外光の反射を軽減できる反射防止機能を有し優れた視認性を付与
することを目的とした表示装置の例について説明する。詳しくは表示素子に液晶表示素子
を用いる液晶表示装置について説明する。
【0122】
図8(A)は、反射防止膜を有する液晶表示装置の上面図であり、図8(B)は図8(A
)線C−Dにおける断面図である。図8(A)の上面図では反射防止膜は省略している。
【0123】
図8(A)で示すように、画素領域606、走査線駆動回路である駆動回路領域608a
、走査線駆動領域である駆動回路領域608bが、シール材692によって、基板600
と対向基板695との間に封止され、基板600上にICドライバによって形成された信
号線駆動回路である駆動回路領域607が設けられている。画素領域606にはトランジ
スタ622及び容量素子623が設けられ、駆動回路領域608bにはトランジスタ62
0及びトランジスタ621を有する駆動回路が設けられている。基板600には、上記実
施の形態と同様の絶縁基板を適用することができる。また一般的に合成樹脂からなる基板
は、他の基板と比較して耐熱温度が低いことが懸念されるが、耐熱性の高い基板を用いた
作製工程の後、転置することによっても採用することが可能となる。
【0124】
画素領域606には、下地膜604a、下地膜604bを介してスイッチング素子となる
トランジスタ622が設けられている。本実施の形態では、トランジスタ622にマルチ
ゲート型薄膜トランジスタ(TFT)を用い、ソース領域及びドレイン領域として機能す
る不純物領域を有する半導体層、ゲート絶縁層、2層の積層構造であるゲート電極層、ソ
ース電極層及びドレイン電極層を有し、ソース電極層又はドレイン電極層は、半導体層の
不純物領域と画素電極層630に接して電気的に接続している。薄膜トランジスタは、多
くの方法で作製することができる。例えば、活性層として、結晶性半導体膜を適用する。
結晶性半導体膜上には、ゲート絶縁膜を介してゲート電極が設けられる。該ゲート電極を
用いて該活性層へ不純物元素を添加することができる。このようにゲート電極を用いた不
純物元素の添加により、不純物元素添加のためのマスクを形成する必要はない。ゲート電
極は、単層構造、又は積層構造を有することができる。不純物領域は、その濃度を制御す
ることにより高濃度不純物領域及び低濃度不純物領域とすることができる。このように低
濃度不純物領域を有する薄膜トランジスタを、LDD(Light doped dra
in)構造と呼ぶ。また低濃度不純物領域は、ゲート電極と重なるように形成することが
でき、このような薄膜トランジスタを、GOLD(Gate Overlaped LD
D)構造と呼ぶ。また薄膜トランジスタの極性は、不純物領域にリン(P)等を用いるこ
とによりn型とする。p型とする場合は、ボロン(B)等を添加すればよい。その後、ゲ
ート電極等を覆う絶縁膜611及び絶縁膜612を形成する。絶縁膜611(及び絶縁膜
612)に混入された水素元素により、結晶性半導体膜のダングリングボンドを終端する
ことができる。
【0125】
さらに平坦性を高めるため、層間絶縁膜として絶縁膜615、絶縁膜616を形成しても
よい。絶縁膜615、絶縁膜616には、有機材料、又は無機材料、若しくはそれらの積
層構造を用いることができる。例えば酸化珪素、窒化珪素、酸化窒化珪素、窒化酸化珪素
、窒化アルミニウム、酸化窒化アルミニウム、窒素含有量が酸素含有量よりも多い窒化酸
化アルミニウムまたは酸化アルミニウム、ダイアモンドライクカーボン(DLC)、ポリ
シラザン、窒素含有炭素(CN)、PSG(リンガラス)、BPSG(リンボロンガラス
)、アルミナ、その他の無機絶縁性材料を含む物質から選ばれた材料で形成することがで
きる。また、有機絶縁性材料を用いてもよく、有機材料としては、感光性、非感光性どち
らでも良く、ポリイミド、アクリル、ポリアミド、ポリイミドアミド、レジスト又はベン
ゾシクロブテン、シロキサン樹脂などを用いることができる。なお、シロキサン樹脂とは
、Si−O−Si結合を含む樹脂に相当する。シロキサンは、シリコン(Si)と酸素(
O)との結合で骨格構造が構成される。置換基として、少なくとも水素を含む有機基(例
えばアルキル基、芳香族炭化水素)が用いられる。置換基として、フルオロ基を用いても
よい。または置換基として、少なくとも水素を含む有機基と、フルオロ基とを用いてもよ
い。
る。
【0126】
また結晶性半導体膜を用いることにより、画素領域と駆動回路領域を同一基板上に一体形
成することができる。その場合、画素部のトランジスタと、駆動回路領域608bのトラ
ンジスタとは同時に形成される。駆動回路領域608bに用いるトランジスタは、CMO
S回路を構成する。CMOS回路を構成する薄膜トランジスタは、GOLD構造であるが
、トランジスタ622のようなLDD構造を用いることもできる。
【0127】
本実施の形態に限定されず、画素領域の薄膜トランジスタはチャネル形成領域が一つ形成
されるシングルゲート構造でも、二つ形成されるダブルゲート構造もしくは三つ形成され
るトリプルゲート構造であっても良い。また、周辺駆動回路領域の薄膜トランジスタも、
シングルゲート構造、ダブルゲート構造もしくはトリプルゲート構造であっても良い。
【0128】
なお、本実施の形態で示した薄膜トランジスタの作製方法に限らず、トップゲート型(例
えば順スタガ型)、ボトムゲート型(例えば、逆スタガ型)、あるいはチャネル領域の上
下にゲート絶縁膜を介して配置された2つのゲート電極層を有する、デュアルゲート型や
その他の構造においても適用できる。
【0129】
次に、画素電極層630及び絶縁膜616を覆うように、印刷法や液滴吐出法により、配
向膜と呼ばれる絶縁層631を形成する。なお、絶縁層631は、スクリーン印刷法やオ
フセット印刷法を用いれば、選択的に形成することができる。その後、ラビング処理を行
う。このラビング処理は液晶のモード、例えばVAモードのときには処理を行わないとき
がある。配向膜として機能する絶縁層633も絶縁層631と同様である。続いて、シー
ル材692を液滴吐出法により画素を形成した周辺の領域に形成する。
【0130】
その後、配向膜として機能する絶縁層633、対向電極として機能する導電層634、カ
ラーフィルタとして機能する着色層635、偏光子641(偏光板ともいう)、及び反射
防止膜642が設けられた対向基板695と、TFT基板である基板600とをスペーサ
637を介して貼り合わせ、その空隙に液晶層632を設ける。本実施の形態の液晶表示
装置は透過型であるため、基板600の素子を有する面と反対側にも偏光子(偏光板)6
43を設ける。偏光子は、接着層によって基板に設けることができる。シール材にはフィ
ラーが混入されていても良く、さらに対向基板695には、遮蔽膜(ブラックマトリクス
)などが形成されていても良い。なお、カラーフィルタ等は、液晶表示装置をフルカラー
表示とする場合、赤色(R)、緑色(G)、青色(B)を呈する材料から形成すればよく
、モノカラー表示とする場合、着色層を無くす、もしくは少なくとも一つの色を呈する材
料から形成すればよい。
【0131】
また、図8の表示装置では、対向基板695の外側に反射防止膜642を設け、内側に偏
光子641、着色層635導電層634という順に設ける例を示すが、偏光子は対向基板
695の外側(視認側)に設けてもよく、その場合、偏光子(偏光板)表面に反射防止膜
を設ければよい。また、偏光子と着色層の積層構造も図8に限定されず、偏光子及び着色
層の材料や作製工程条件によって適宜設定すればよい。
【0132】
なお、バックライトにRGBの発光ダイオード(LED)等を配置し、時分割によりカラ
ー表示する継時加法混色法(フィールドシーケンシャル法)を採用するときには、カラー
フィルタを設けない場合がある。ブラックマトリクスは、トランジスタやCMOS回路の
配線による外光の反射を低減するため、トランジスタやCMOS回路と重なるように設け
るとよい。なお、ブラックマトリクスは、容量素子に重なるように形成してもよい。容量
素子を構成する金属膜による反射を防止することができるからである。
【0133】
液晶層を形成する方法として、ディスペンサ式(滴下式)や、素子を有する基板600と
対向基板695とを貼り合わせてから毛細管現象を用いて液晶を注入する注入法を用いる
ことができる。滴下法は、注入法を適用しづらい大型基板を扱うときに適用するとよい。
【0134】
スペーサは数μmの粒子を散布して設ける方法でも良いが、本実施の形態では基板全面に
樹脂膜を形成した後これをエッチング加工して形成する方法を採用した。このようなスペ
ーサの材料を、スピナーで塗布した後、露光と現像処理によって所定のパターンに形成す
る。さらにクリーンオーブンなどで150〜200℃で加熱して硬化させる。このように
して作製されるスペーサは露光と現像処理の条件によって形状を異ならせることができる
が、好ましくは、スペーサの形状は柱状で頂部が平坦な形状となるようにすると、対向側
の基板を合わせたときに液晶表示装置としての機械的な強度を確保することができる。形
状は円錐状、角錐状などを用いることができ、特別な限定はない。
【0135】
続いて、画素領域と電気的に接続されている端子電極層678に、異方性導電体層696
を介して、接続用の配線基板であるFPC694を設ける。FPC694は、外部からの
信号や電位を伝達する役目を担う。上記工程を経て、表示機能を有する液晶表示装置を作
製することができる。
【0136】
なおトランジスタが有する配線、ゲート電極層、画素電極層630、対向電極層である導
電層634は、インジウム錫酸化物(ITO)、酸化インジウムに酸化亜鉛(ZnO)を
混合したIZO(indium zinc oxide)、酸化インジウムに酸化珪素(
SiO)を混合した導電材料、有機インジウム、有機スズ、酸化タングステンを含むイ
ンジウム酸化物、酸化タングステンを含むインジウム亜鉛酸化物、酸化チタンを含むイン
ジウム酸化物、酸化チタンを含むインジウム錫酸化物、タングステン(W)、モリブデン
(Mo)、ジルコニウム(Zr)、ハフニウム(Hf)、バナジウム(V)、ニオブ(N
b)、タンタル(Ta)、クロム(Cr)、コバルト(Co)、ニッケル(Ni)、チタ
ン(Ti)、白金(Pt)、アルミニウム(Al)、銅(Cu)、銀(Ag)等の金属又
はその合金、若しくはその金属窒化物から選ぶことができる。
【0137】
偏光板と、液晶層との間に位相差板を有した状態で積層してもよい。
【0138】
本発明では、表示装置において、表示画面表面に外光の反射を防止する反射防止機能を有
する反射防止膜として、複数の凸部を有する反射防止膜を用いることを特徴とする。本発
明の反射防止膜は、円錐形が好ましく凸部の底面と側面との角度は84度以上90度未満
が好ましい。本実施の形態において表示画面視認側である対向基板695表面に反射防止
膜642が設けられている。反射防止膜642は複数の凸部を有する反射防止膜であり、
本実施の形態では凸部は円錐状である。本実施の形態では反射防止膜642は、凸部間を
埋めるように保護層を有する反射防止膜である。
【0139】
凸部は円錐形の他、針状、円錐の先端が平面である断面が台形の形状、先端が丸いドーム
状などでもよい。また、反射防止膜は均一な屈折率でなく、表面から表示画面側に向かっ
て屈折率が変化する材料で形成することができる。例えば、複数の凸部において、凸部表
面側は空気と同等な屈折率を有する材料で形成し、より空気より凸部に入射する外光の凸
部表面の反射を軽減する構造とする。一方、複数の凸部において表示画面側の基板側に近
づくにつれ基板と同等な屈折率を有する材料で形成し、凸部内部を進行し、基板に入射す
る光の凸部と基板との界面での反射を軽減する構成とする。基板にガラス基板を用いると
、空気の屈折率の方がガラス基板よりも小さいため、凸部は表面(円錐形であると先端部
)の方が屈折率の低い材料で形成され、凸部底面に近づくにつれ屈折率の高い材料で形成
されるような、円錐形先端部より底面に向かって屈折率が増加するような構成とすればよ
い。
【0140】
本実施の形態の反射防止膜を有する表示装置は、表面に複数の凸部を有しており、外光の
反射光は凸部界面が平面ではないので視認側に反射せず隣接する他の凸部に反射する。も
しくは凸部と凸部の間に進行する。入射した外光は凸部に一部透過し反射光は隣接する凸
部にまた入射する。このように隣接する凸部界面で反射された外光は他の凸部に入射を繰
り返す。
【0141】
つまり表示装置に入射する外光のうち、反射防止膜に入射する回数が増加するので、反射
防止膜に透過する量が増える。よって、視認側に反射する外光が軽減され、写り込みなど
の視認性を低下させる原因を防ぐことができる。
【0142】
さらに本発明ではその凸部の間に保護層が形成されているので、凸部間にゴミなどの汚染
物が侵入することを防ぐことができる。従って、ゴミなどの侵入による反射防止機能低下
を防ぎ、かつ凸部間を埋めることで反射防止膜としての物理的強度も高めることができ、
信頼性向上が達成できる。
【0143】
本発明は、表面に複数の凸部を有し、かつ凸部間に保護層を設けた反射防止膜を具備する
ことによってより外光の反射を軽減できる高い反射防止機能を有し視認性の優れた、かつ
信頼性の高い表示装置を提供することができる。従って、より高画質及び高性能な表示装
置を作製することができる。
【0144】
本実施の形態は、上記の実施の形態1と自由に組み合わせることができる。
【0145】
(実施の形態5)
本実施の形態では、より外光の反射を軽減できる反射防止機能を有し優れた視認性を付与
することを目的とした表示装置の例について説明する。詳しくは表示素子に発光素子を用
いる発光表示装置について説明する。本実施の形態における表示装置の作製方法を、図9
、図12を用いて詳細に説明する。
【0146】
絶縁表面を有する基板100の上に下地膜として、スパッタリング法、PVD法(Phy
sical Vapor Deposition)、減圧CVD法(LPCVD法)、ま
たはプラズマCVD法等のCVD法(Chemical Vapor Depositi
on)などにより窒化酸化珪素膜を用いて下地膜101aを10〜200nm(好ましく
は50〜150nm)形成し、酸化窒化珪素膜を用いて下地膜101bを50〜200n
m(好ましくは100〜150nm)積層する。又はアクリル酸、メタクリル酸及びこれ
らの誘導体、又はポリイミド(polyimide)、芳香族ポリアミド、ポリベンゾイ
ミダゾール(polybenzimidazole)などの耐熱性高分子、又はシロキサ
ン樹脂を用いてもよい。また、ポリビニルアルコール、ポリビニルブチラールなどのビニ
ル樹脂、エポキシ樹脂、フェノール樹脂、ノボラック樹脂、アクリル樹脂、メラミン樹脂
、ウレタン樹脂等の樹脂材料を用いてもよい。また、ベンゾシクロブテン、パリレン、フ
ッ化アリレンエーテル、ポリイミドなどの有機材料、水溶性ホモポリマーと水溶性共重合
体を含む組成物材料等を用いてもよい。また、オキサゾール樹脂を用いることもでき、例
えば光硬化型ポリベンゾオキサゾールなどを用いることができる。
【0147】
また、液滴吐出法や、印刷法(スクリーン印刷やオフセット印刷などパターンが形成され
る方法)、スピンコート法などの塗布法、ディッピング法、ディスペンサ法などを用いる
こともできる。本実施の形態では、プラズマCVD法を用いて下地膜101a、下地膜1
01bを形成する。基板100としてはガラス基板、石英基板やシリコン基板、金属基板
、またはステンレス基板の表面に絶縁膜を形成したものを用いて良い。また、本実施の形
態の処理温度に耐えうる耐熱性を有するプラスチック基板を用いてもよいし、フィルムの
ような可撓性基板を用いても良い。プラスチック基板としてはPET(ポリエチレンテレ
フタレート)、PEN(ポリエチレンナフタレート)、PES(ポリエーテルサルフォン
)からなる基板、可撓性基板としてはアクリル等の合成樹脂を用いることができる。本実
施の形態で作製する表示装置は、基板100を通過させて発光素子よりの光を取り出す構
成であるので、基板100は透光性を有する必要がある。
【0148】
下地膜としては、酸化珪素、窒化珪素、酸化窒化珪素、窒化酸化珪素などを用いることが
でき、単層でも2層、3層といった積層構造でもよい。
【0149】
次いで、下地膜上に半導体膜を形成する。半導体膜は25〜200nm(好ましくは30
〜150nm)の厚さで各種手段(スパッタ法、LPCVD法、またはプラズマCVD法
等)により成膜すればよい。本実施の形態では、非晶質半導体膜を、レーザ結晶化し、結
晶性半導体膜とするものを用いるのが好ましい。
【0150】
このようにして得られた半導体膜に対して、薄膜トランジスタのしきい値電圧を制御する
ために微量な不純物元素(ボロンまたはリン)のドーピングを行ってもよい。この不純物
元素のドーピングは、結晶化工程の前の非晶質半導体膜に行ってもよい。非晶質半導体膜
の状態で不純物元素をドーピングすると、その後の結晶化のための加熱処理によって、不
純物の活性化も行うことができる。また、ドーピングの際に生じる欠陥等も改善すること
ができる。
【0151】
次に結晶性半導体膜を、所望な形状にエッチング加工し、半導体層を形成する。
【0152】
エッチング加工は、プラズマエッチング(ドライエッチング)又はウエットエッチングの
どちらを採用しても良いが、大面積基板を処理するにはプラズマエッチングが適している
。エッチングガスとしては、CF、NFなどのフッ素系、又はCl、BClなど
の塩素系のガスを用い、HeやArなどの不活性ガスを適宜加えても良い。また、大気圧
放電のエッチング加工を適用すれば、局所的な放電加工も可能であり、基板の全面にマス
ク層を形成する必要はない。
【0153】
本発明において、配線層若しくは電極層を形成する導電層や、所定のパターンを形成する
ためのマスク層などを、液滴吐出法のような選択的にパターンを形成できる方法により形
成してもよい。液滴吐出(噴出)法(その方式によっては、インクジェット法とも呼ばれ
る。)は、特定の目的に調合された組成物の液滴を選択的に吐出(噴出)して所定のパタ
ーン(導電層や絶縁層など)を形成することができる。この際、被形成領域にぬれ性や密
着性を制御する処理を行ってもよい。また、パターンが転写、または描写できる方法、例
えば印刷法(スクリーン印刷やオフセット印刷などパターンが形成される方法)、ディス
ペンサ法なども用いることができる。
【0154】
本実施の形態において、用いるマスクは、エポキシ樹脂、アクリル樹脂、フェノール樹脂
、ノボラック樹脂、メラミン樹脂、ウレタン樹脂等の樹脂材料を用いる。また、ベンゾシ
クロブテン、パリレン、フッ化アリレンエーテル、透光性を有するポリイミドなどの有機
材料、シロキサン系ポリマー等の重合によってできた化合物材料、水溶性ホモポリマーと
水溶性共重合体を含む組成物材料等を用いることもできる。或いは、感光剤を含む市販の
レジスト材料を用いてもよく、例えば、ポジ型レジスト、またはネガ型レジストなどを用
いてもよい。液滴吐出法を用いる場合、いずれの材料を用いるとしても、その表面張力と
粘度は、溶媒の濃度を調整する、界面活性剤等を加えるなどして適宜調整する。
【0155】
半導体層を覆うゲート絶縁層107を形成する。ゲート絶縁層はプラズマCVD法または
スパッタ法などを用い、厚さを10〜150nmとして珪素を含む絶縁膜で形成する。ゲ
ート絶縁層としては、窒化珪素、酸化珪素、酸化窒化珪素、窒化酸化珪素に代表される珪
素の酸化物材料又は窒化物材料等の公知の材料で形成すればよく、積層でも単層でもよい
。また、絶縁層は窒化珪素膜、酸化珪素膜、窒化珪素膜の3層の積層、酸化窒化珪素膜の
単層、2層からなる積層でも良い。
【0156】
次いで、ゲート絶縁層107上にゲート電極層を形成する。ゲート電極層は、スパッタリ
ング法、蒸着法、CVD法等の手法により形成することができる。ゲート電極層はタンタ
ル(Ta)、タングステン(W)、チタン(Ti)、モリブデン(Mo)、アルミニウム
(Al)、銅(Cu)、クロム(Cr)、ネオジウム(Nd)から選ばれた元素、又は前
記元素を主成分とする合金材料もしくは化合物材料で形成すればよい。また、ゲート電極
層としてリン等の不純物元素をドーピングした多結晶シリコン膜に代表される半導体膜や
、AgPdCu合金を用いてもよい。また、ゲート電極層は単層でも積層でもよい。
【0157】
本実施の形態ではゲート電極層をテーパー形状を有する様に形成するが、本発明はそれに
限定されず、ゲート電極層を積層構造にして、一層のみがテーパー形状を有し、他方は異
方性エッチングによって垂直な側面を有していてもよい。本実施の形態のように、テーパ
ー角度も積層するゲート電極層間で異なっていても良いし、同一でもよい。テーパー形状
を有することによって、その上に積層する膜の被覆性が向上し、欠陥が軽減されるので信
頼性が向上する。
【0158】
ゲート電極層を形成する際のエッチング工程によって、ゲート絶縁層107は多少エッチ
ングされ、膜厚が減る(いわゆる膜減り)ことがある。
【0159】
半導体層に不純物元素を添加し、不純物領域を形成する。不純物領域は、その濃度を制御
することにより高濃度不純物領域及び低濃度不純物領域とすることができる。低濃度不純
物領域を有する薄膜トランジスタを、LDD(Lightly doped drain
)構造と呼ぶ。また低濃度不純物領域は、ゲート電極と重なるように形成することができ
、このような薄膜トランジスタを、GOLD(Gate Overlaped LDD)
構造と呼ぶ。また薄膜トランジスタの極性は、不純物領域にリン(P)等を用いることに
よりn型とする。p型とする場合は、ボロン(B)等を添加すればよい。
【0160】
本実施の形態では、不純物領域がゲート絶縁層を介してゲート電極層と重なる領域をLo
v領域と示し、不純物領域がゲート絶縁層を介してゲート電極層と重ならない領域をLo
ff領域と示す。図9では、不純物領域においてハッチングと白地で示されているが、こ
れは、白地部分に不純物元素が添加されていないということを示すのではなく、この領域
の不純物元素の濃度分布がマスクやドーピング条件を反映していることを直感的に理解で
きるようにしたためである。なお、このことは本明細書の他の図面においても同様である

【0161】
不純物元素を活性化するために加熱処理、強光の照射、又はレーザ光の照射を行ってもよ
い。活性化と同時にゲート絶縁層へのプラズマダメージやゲート絶縁層と半導体層との界
面へのプラズマダメージを回復することができる。
【0162】
次いで、ゲート電極層、ゲート絶縁層を覆う第1の層間絶縁層を形成する。本実施の形態
では、絶縁膜167と絶縁膜168との積層構造とする。絶縁膜167及び絶縁膜168
は、スパッタ法、またはプラズマCVDを用いた窒化珪素膜、窒化酸化珪素膜、酸化窒化
珪素膜、酸化珪素膜などを用いることができ、他の珪素を含む絶縁膜を単層または3層以
上の積層構造として用いても良い。
【0163】
さらに、窒素雰囲気中で、300〜550℃で1〜12時間の熱処理を行い、半導体層を
水素化する工程を行う。好ましくは、400〜500℃で行う。この工程は層間絶縁層で
ある絶縁膜167に含まれる水素により半導体層のダングリングボンドを終端する工程で
ある。本実施の形態では、410度(℃)で加熱処理を行う。
【0164】
絶縁膜167、絶縁膜168としては他に窒化アルミニウム(AlN)、酸化窒化アルミ
ニウム(AlON)、窒素含有量が酸素含有量よりも多い窒化酸化アルミニウム(AlN
O)または酸化アルミニウム、ダイアモンドライクカーボン(DLC)、窒素含有炭素(
CN)、ポリシラザン、その他の無機絶縁性材料を含む物質から選ばれた材料で形成する
ことができる。また、シロキサンを含む材料を用いてもよい。また、有機絶縁性材料を用
いてもよく、有機材料としては、ポリイミド、アクリル、ポリアミド、ポリイミドアミド
、レジスト又はベンゾシクロブテンを用いることができる。また、オキサゾール樹脂を用
いることもでき、例えば光硬化型ポリベンゾオキサゾールなどを用いることができる。
【0165】
次いで、レジストからなるマスクを用いて絶縁膜167、絶縁膜168、ゲート絶縁層1
07に半導体層に達するコンタクトホール(開口)を形成する。開口を覆うように導電膜
を形成し、導電膜をエッチングして各ソース領域又はドレイン領域の一部とそれぞれ電気
的に接続するソース電極層又はドレイン電極層を形成する。ソース電極層又はドレイン電
極層は、PVD法、CVD法、蒸着法等により導電膜を成膜した後、所望の形状にエッチ
ングして形成することができる。また、液滴吐出法、印刷法、ディスペンサ法、電界メッ
キ法等により、所定の場所に選択的に導電層を形成することができる。更にはリフロー法
、ダマシン法を用いても良い。ソース電極層又はドレイン電極層の材料は、Ag、Au、
Cu、Ni、Pt、Pd、Ir、Rh、W、Al、Ta、Mo、Cd、Zn、Fe、Ti
、Si、Ge、Zr、Ba等の金属又はその合金、若しくはその金属窒化物を用いて形成
する。また、これらの積層構造としても良い。
【0166】
以上の工程で周辺駆動回路領域204にLov領域にp型不純物領域を有するpチャネル
型薄膜トランジスタである薄膜トランジスタ285、Lov領域にnチャネル型不純物領
域を有するnチャネル型薄膜トランジスタである薄膜トランジスタ275を、画素領域2
06にLoff領域にn型不純物領域を有するマルチチャネル型のnチャネル型薄膜トラ
ンジスタである薄膜トランジスタ265、Lov領域にp型不純物領域を有するpチャネ
ル型薄膜トランジスタである薄膜トランジスタ255を有するアクティブマトリクス基板
を作製することができる。
【0167】
本実施の形態に限定されず、薄膜トランジスタはチャネル形成領域が一つ形成されるシン
グルゲート構造でも、二つ形成されるダブルゲート構造もしくは三つ形成されるトリプル
ゲート構造であっても良い。また、周辺駆動回路領域の薄膜トランジスタも、シングルゲ
ート構造、ダブルゲート構造もしくはトリプルゲート構造であっても良い。
【0168】
次に第2の層間絶縁層として絶縁膜181を形成する。図9において、スクライブによる
切り離しのための切り離し領域201、FPCの貼り付け部である外部端子接続領域20
2、周辺部の引き回し配線領域である配線領域203、周辺駆動回路領域204、画素領
域206である。配線領域203には配線179a、配線179bが設けられ、外部端子
接続領域202には、外部端子と接続する端子電極層178が設けられている。
【0169】
絶縁膜181としては酸化珪素、窒化珪素、酸化窒化珪素、窒化酸化珪素、窒化アルミニ
ウム(AlN)、窒素を含む酸化アルミニウム(酸化窒化アルミニウムともいう)(Al
ON)、酸素を含む窒化酸化アルミニウム(窒化酸化アルミニウムともいう)(AlNO
)、酸化アルミニウム、ダイアモンドライクカーボン(DLC)、窒素含有炭素膜(CN
)、PSG(リンガラス)、BPSG(リンボロンガラス)、アルミナ膜、その他の無機
絶縁性材料を含む物質から選ばれた材料で形成することができる。また、シロキサン樹脂
を用いてもよい。また、有機絶縁性材料を用いてもよく、有機材料としては、感光性、非
感光性どちらでも良く、ポリイミド、アクリル、ポリアミド、ポリイミドアミド、レジス
ト又はベンゾシクロブテン、ポリシラザン、低誘電率(Low−k)材料を用いることが
できる。また、オキサゾール樹脂を用いることもでき、例えば光硬化型ポリベンゾオキサ
ゾールなどを用いることができる。平坦化のために設ける層間絶縁層としては、耐熱性お
よび絶縁性が高く、且つ、平坦化率の高いものが要求されるので、絶縁膜181の形成方
法としては、スピンコート法で代表される塗布法を用いると好ましい。
【0170】
絶縁膜181は、その他ディップ法、スプレー塗布、ドクターナイフ、ロールコーター、
カーテンコーター、ナイフコーター、CVD法、蒸着法等を採用することができる。液滴
吐出法により絶縁膜181を形成してもよい。液滴吐出法を用いた場合には材料液を節約
することができる。また、液滴吐出法のようにパターンが転写、または描写できる方法、
例えば印刷法(スクリーン印刷やオフセット印刷などパターンが形成される方法)、ディ
スペンサ法なども用いることができる。
【0171】
画素領域206の絶縁膜181に微細な開口、つまりコンタクトホールを形成する。
【0172】
次に、ソース電極層又はドレイン電極層と接するように、第1の電極層185(画素電極
層ともいう。)を形成する。第1の電極層185は陽極、または陰極として機能し、Ti
、Ni、W、Cr、Pt、Zn、Sn、In、またはMoから選ばれた元素、または窒化
チタン、TiSi、WSi、窒化タングステン、WSi、NbNなどの前
記元素を主成分とする合金材料もしくは化合物材料を主成分とする膜またはそれらの積層
膜を総膜厚100nm〜800nmの範囲で用いればよい。
【0173】
本実施の形態では、表示素子として発光素子を用い、発光素子からの光を第1の電極層1
85側から取り出す構造のため、第1の電極層185が透光性を有する。第1の電極層1
85として、透明導電膜を形成し、所望の形状にエッチングすることで第1の電極層18
5を形成する。
【0174】
本発明においては、透光性電極層である第1の電極層185に、具体的には透光性を有す
る導電性材料からなる透明導電膜を用いればよく、酸化タングステンを含むインジウム酸
化物、酸化タングステンを含むインジウム亜鉛酸化物、酸化チタンを含むインジウム酸化
物、酸化チタンを含むインジウム錫酸化物などを用いることができる。勿論、インジウム
錫酸化物(ITO)、インジウム亜鉛酸化物(IZO)、酸化ケイ素を添加したインジウ
ム錫酸化物(ITSO)なども用いることができる。
【0175】
また、透光性を有さない金属膜のような材料であっても膜厚を薄く(好ましくは、5nm
〜30nm程度の厚さ)して光を透過可能な状態としておくことで、第1の電極層185
から光を放射することが可能となる。また、第1の電極層185に用いることのできる金
属薄膜としては、チタン、タングステン、ニッケル、金、白金、銀、アルミニウム、マグ
ネシウム、カルシウム、リチウム、およびそれらの合金からなる導電膜などを用いること
ができる。
【0176】
第1の電極層185は、蒸着法、スパッタ法、CVD法、印刷法、ディスペンサ法または
液滴吐出法などを用いて形成することができる。本実施の形態では、第1の電極層185
として、酸化タングステンを含むインジウム亜鉛酸化物を用いてスパッタリング法によっ
て作製する。第1の電極層185は、好ましくは総膜厚100nm〜800nmの範囲で
用いればよい。
【0177】
第1の電極層185は、その表面が平坦化されるように、CMP法、ポリビニルアルコー
ル系の多孔質体で拭浄し、研磨しても良い。またCMP法を用いた研磨後に、第1の電極
層185の表面に紫外線照射、酸素プラズマ処理などを行ってもよい。
【0178】
第1の電極層185を形成後、加熱処理を行ってもよい。この加熱処理により、第1の電
極層185中に含まれる水分は放出される。よって、第1の電極層185は脱ガスなどを
生じないため、第1の電極層上に水分によって劣化しやすい発光材料を形成しても、発光
材料は劣化せず、信頼性の高い表示装置を作製することができる。
【0179】
次に、第1の電極層185の端部、ソース電極層又はドレイン電極層を覆う絶縁層186
(隔壁、障壁などと呼ばれる)を形成する。
【0180】
絶縁層186としては酸化珪素、窒化珪素、酸化窒化珪素、窒化酸化珪素などを用いるこ
とができ、単層でも2層、3層といった積層構造でもよい。また、絶縁層186の他の材
料として、窒化アルミニウム、酸素含有量が窒素含有量よりも多い酸化窒化アルミニウム
、窒素含有量が酸素含有量よりも多い窒化酸化アルミニウムまたは酸化アルミニウム、ダ
イアモンドライクカーボン(DLC)、窒素含有炭素、ポリシラザン、その他の無機絶縁
性材料を含む物質から選ばれた材料で形成することができる。シロキサンを含む材料を用
いてもよい。また、有機絶縁性材料を用いてもよく、有機材料としては、感光性、非感光
性どちらでも良く、ポリイミド、アクリル、ポリアミド、ポリイミドアミド、レジスト又
はベンゾシクロブテン、ポリシラザンを用いることができる。また、オキサゾール樹脂を
用いることもでき、例えば光硬化型ポリベンゾオキサゾールなどを用いることができる。
【0181】
絶縁層186は、スパッタリング法、PVD法(Physical Vapor Dep
osition)、減圧CVD法(LPCVD法)、またはプラズマCVD法等のCVD
法(Chemical Vapor Deposition)、また、選択的にパターン
を形成できる液滴吐出法や、パターンが転写または描写できる印刷法(スクリーン印刷や
オフセット印刷などパターンが形成される方法)、ディスペンサ法、その他スピンコート
法などの塗布法、ディッピング法などを用いることもできる。
【0182】
所望の形状に加工するエッチング加工は、プラズマエッチング(ドライエッチング)又は
ウエットエッチングのどちらを採用しても良い。大面積基板を処理するにはプラズマエッ
チングが適している。エッチングガスとしては、CF、NFなどのフッ素系のガス、
又はCl、BClなどの塩素系のガスを用い、HeやArなどの不活性ガスを適宜加
えても良い。また、大気圧放電のエッチング加工を適用すれば、局所的な放電加工も可能
であり、基板の全面にマスク層を形成する必要はない。
【0183】
図9(A)に示す接続領域205において、第2の電極層と同工程、同材料で形成される
配線層はゲート電極層と同工程、同材料で形成される配線層と電気的に接続する。
【0184】
第1の電極層185の上には電界発光層188が形成される。なお、図9では一画素しか
図示していないが、本実施の形態ではR(赤)、G(緑)、B(青)の各色に対応した電
界発光層を作り分けている。
【0185】
次に、電界発光層188の上に導電膜からなる第2の電極層189が設けられる。第2の
電極層189としては、Al、Ag、Li、Ca、またはこれらの合金や化合物MgAg
、MgIn、AlLi、CaF、または窒化カルシウムを用いればよい。こうして第1
の電極層185、電界発光層188及び第2の電極層189からなる発光素子190が形
成される(図9(B)参照。)。
【0186】
図9に示した本実施の形態の表示装置において、発光素子190から発した光は、第1の
電極層185側から、図9(B)中の矢印の方向に透過して射出される。
【0187】
本実施の形態では、第2の電極層189上にパッシベーション膜(保護膜)として絶縁層
を設けてもよい。このように第2の電極層189を覆うようにしてパッシベーション膜を
設けることは有効である。パッシベーション膜としては、窒化珪素、酸化珪素、酸化窒化
珪素、窒化酸化珪素、窒化アルミニウム、酸化窒化アルミニウム、窒素含有量が酸素含有
量よりも多い窒化酸化アルミニウムまたは酸化アルミニウム、ダイアモンドライクカーボ
ン(DLC)、窒素含有炭素膜を含む絶縁膜からなり、該絶縁膜を単層もしくは組み合わ
せた積層を用いることができる。又はシロキサン樹脂を用いてもよい。
【0188】
この際、カバレッジの良い膜をパッシベーション膜として用いることが好ましく、炭素膜
、特にDLC膜を用いることは有効である。DLC膜は室温から100℃以下の温度範囲
で成膜可能であるため、耐熱性の低い電界発光層188の上方にも容易に成膜することが
できる。DLC膜は、プラズマCVD法(代表的には、RFプラズマCVD法、マイクロ
波CVD法、電子サイクロトロン共鳴(ECR)CVD法、熱フィラメントCVD法など
)、燃焼炎法、スパッタ法、イオンビーム蒸着法、レーザ蒸着法などで形成することがで
きる。成膜に用いる反応ガスは、水素ガスと、炭化水素系のガス(例えばCH、C
、Cなど)とを用い、グロー放電によりイオン化し、負の自己バイアスがかかっ
たカソードにイオンを加速衝突させて成膜する。また、CN膜は反応ガスとしてC
ガスとNガスとを用いて形成すればよい。DLC膜は酸素に対するブロッキング効果が
高く、電界発光層188の酸化を抑制することが可能である。そのため、この後に続く封
止工程を行う間に電界発光層188が酸化するといった問題を防止できる。
【0189】
このように発光素子190が形成された基板100と、封止基板195とをシール材19
2によって固着し、発光素子を封止する(図9参照。)。シール材192としては、代表
的には可視光硬化性、紫外線硬化性または熱硬化性の樹脂を用いるのが好ましい。例えば
、ビスフェノールA型液状樹脂、ビスフェノールA型固形樹脂、含ブロムエポキシ樹脂、
ビスフェノールF型樹脂、ビスフェノールAD型樹脂、フェノール型樹脂、クレゾール型
樹脂、ノボラック型樹脂、環状脂肪族エポキシ樹脂、エピビス型エポキシ樹脂、グリシジ
ルエステル樹脂、グリジシルアミン系樹脂、複素環式エポキシ樹脂、変性エポキシ樹脂等
のエポキシ樹脂を用いることができる。なお、シール材で囲まれた領域には充填材193
を充填してもよく、窒素雰囲気下で封止することによって、窒素等を封入してもよい。本
実施の形態は、下面射出型のため、充填材193は透光性を有する必要はないが、充填材
193を透過して光を取り出す構造の場合は、透光性を有する必要がある。代表的には可
視光硬化、紫外線硬化または熱硬化のエポキシ樹脂を用いればよい。以上の工程において
、本実施の形態における、発光素子を用いた表示機能を有する表示装置が完成する。また
充填材は、液状の状態で滴下し、表示装置内に充填することもできる。充填剤として、乾
燥剤などの吸湿性を含む物質を用いると、さらなる吸水効果が得られ、素子の劣化を防ぐ
ことができる。
【0190】
EL表示パネル内には素子の水分による劣化を防ぐため、乾燥剤が設置される。本実施の
形態では、乾燥剤は、画素領域を取り囲むように封止基板に形成された凹部に設置され、
薄型化を妨げない構成とする。また、ゲート配線層に対応する領域にも乾燥剤を形成し、
吸水機能のある乾燥剤の形成面積を広く取っているので、吸水効果が高い。また、発光に
寄与しないゲート配線層上に乾燥剤を形成しているので、光取り出し効率を低下させるこ
ともない。
【0191】
なお、本実施の形態では、ガラス基板で発光素子を封止した場合を示すが、封止の処理と
は、発光素子を水分から保護するための処理であり、カバー材で機械的に封入する方法、
熱硬化性樹脂又は紫外光硬化性樹脂で封入する方法、金属酸化物や窒化物等のバリア能力
が高い薄膜により封止する方法のいずれかを用いる。カバー材としては、ガラス、セラミ
ックス、プラスチックもしくは金属を用いることができるが、カバー材側に光を放射させ
る場合は透光性でなければならない。また、カバー材と上記発光素子が形成された基板と
は熱硬化性樹脂又は紫外光硬化性樹脂等のシール材を用いて貼り合わせられ、熱処理又は
紫外光照射処理によって樹脂を硬化させて密閉空間を形成する。この密閉空間の中に酸化
バリウムに代表される吸湿材を設けることも有効である。この吸湿材は、シール材の上に
接して設けても良いし、発光素子よりの光を妨げないような、隔壁の上や周辺部に設けて
も良い。さらに、カバー材と発光素子の形成された基板との空間を熱硬化性樹脂若しくは
紫外光硬化性樹脂で充填することも可能である。この場合、熱硬化性樹脂若しくは紫外光
硬化性樹脂の中に酸化バリウムに代表される吸湿材を添加しておくことは有効である。
【0192】
図12に、本実施の形態で作製する図9の表示装置において、ソース電極層又はドレイン
電極層と第1の電極層が直接接して電気的な接続を行うのではなく、配線層を介して接続
する例を示す。図12の表示装置において、発光素子を駆動する薄膜トランジスタのソー
ス電極層又はドレイン電極層と、第1の電極層395とは配線層199を介して電気的に
接続している。また、図12では、配線層199の上に第1の電極層395が一部積層す
るように接続しているが、先に第1の電極層395を形成し、その第1の電極層395上
に接するように配線層199を形成する構成でもよい。
【0193】
本実施の形態では、外部端子接続領域202において、端子電極層178に異方性導電層
196によってFPC194を接続し、外部と電気的に接続する構造とする。また表示装
置の上面図である図9(A)で示すように、本実施の形態において作製される表示装置は
信号線駆動回路を有する周辺駆動回路領域204、周辺駆動回路領域209のほかに、走
査線駆動回路を有する周辺駆動回路領域207、周辺駆動回路領域208が設けられてい
る。
【0194】
本実施の形態では、上記のような回路で形成するが、本発明はこれに限定されず、周辺駆
動回路としてICチップを前述したCOG方式やTAB方式によって実装したものでもよ
い。また、ゲート線駆動回路、ソース線駆動回路は複数であっても単数であっても良い。
【0195】
また、本発明の表示装置において、画面表示の駆動方法は特に限定されず、例えば、点順
次駆動方法や線順次駆動方法や面順次駆動方法などを用いればよい。代表的には、線順次
駆動方法とし、時分割階調駆動方法や面積階調駆動方法を適宜用いればよい。また、表示
装置のソース線に入力する映像信号は、アナログ信号であってもよいし、デジタル信号で
あってもよく、適宜、映像信号に合わせて駆動回路などを設計すればよい。
【0196】
図9及び図12に示す表示装置は下面放射型なので素子基板である基板100から光が放
射されるため、基板100側が視認側となる。よって基板100に透光性基板を用い、視
認側にあたる外側に反射防止膜177が設けられている。反射防止膜177は表面に複数
の凸部を有する反射防止膜であり、本実施の形態では凸部は円錐状である。本実施の形態
では反射防止膜177は、凸部間を埋めるように保護層を有する反射防止膜である。
【0197】
凸部は円錐形の他、針状、円錐の先端が平面である断面が台形の形状、先端が丸いドーム
状などでもよい。また、反射防止膜は均一な屈折率でなく、表面から表示画面側に向かっ
て屈折率が変化する材料で形成することができる。例えば、複数の凸部において、凸部表
面側は空気と同等な屈折率を有する材料で形成し、より空気より凸部に入射する外光の凸
部表面の反射を軽減する構造とする。一方、複数の凸部において表示画面側の基板側に近
づくにつれ基板と同等な屈折率を有する材料で形成し、凸部内部を進行し、基板に入射す
る光の凸部と基板との界面での反射を軽減する構成とする。基板にガラス基板を用いると
、空気の屈折率の方がガラス基板よりも小さいため、凸部は表面(円錐形であると先端部
)の方が屈折率の低い材料で形成され、凸部底面に近づくにつれ屈折率の高い材料で形成
されるような、円錐形先端部より底面に向かって屈折率が増加するような構成とすればよ
い。
【0198】
本実施の形態の反射防止膜を有する表示装置は、表面に複数の凸部を有しており、外光の
反射光は凸部界面が平面ではないので視認側に反射せず隣接する他の凸部に反射する。も
しくは凸部と凸部の間に進行する。入射した外光は凸部に一部透過し反射光は隣接する凸
部にまた入射する。このように凸部界面で反射された外光は隣接する他の凸部に入射を繰
り返す。
【0199】
つまり表示装置に入射する外光のうち、反射防止膜に入射する回数が増加するので、反射
防止膜に透過する量が増える。よって、視認側に反射する外光が軽減され、写り込みなど
の視認性を低下させる原因を防ぐことができる。
【0200】
さらに本発明ではその凸部の間に保護層が形成されているので、凸部間にゴミなどの汚染
物が侵入することを防ぐことができる。従って、ゴミなどの侵入による反射防止機能低下
を防ぎ、かつ凸部間を埋めることで反射防止膜としての物理的強度も高めることができ、
信頼性向上が達成できる。
【0201】
本発明は、表面に複数の凸部を有し、かつ凸部間に保護層を設けた反射防止膜を具備する
ことによってより外光の反射を軽減できる高い反射防止機能を有し視認性の優れた、かつ
信頼性の高い表示装置を提供することができる。従って、より高画質及び高性能な表示装
置を作製することができる。
【0202】
本実施の形態は、上記の実施の形態1と自由に組み合わせることができる。
【0203】
(実施の形態6)
本発明を適用して発光素子を有する表示装置を形成することができるが、該発光素子から
発せられる光は、下面放射、上面放射、両面放射のいずれかを行う。本実施の形態では、
両面放射型、上面放射型の例を、図11及び図10を用いて説明する。
【0204】
図11に示す表示装置は、素子基板1600、薄膜トランジスタ1655、薄膜トランジ
スタ1665、薄膜トランジスタ1675、薄膜トランジスタ1685、第1の電極層1
617、電界発光層1619、第2の電極層1620、充填材1622、シール材163
2、絶縁膜1601a、絶縁膜1601b、ゲート絶縁層1610、絶縁膜1611、絶
縁膜1612、絶縁層1614、封止基板1625、配線層1633、端子電極層168
1、異方性導電層1682、FPC1683、反射防止膜1627a、1627bによっ
て構成されている。表示装置は、外部端子接続領域232、封止領域233、周辺駆動回
路領域234、画素領域236を有している。充填材1622は、液状の組成物の状態で
、滴下法によって形成することができる。滴下法によって充填材が形成された素子基板1
600と封止基板1625を張り合わして発光表示装置を封止する。
【0205】
図11の表示装置は、両面放射型であり、矢印の方向に素子基板1600側からも、封止
基板1625側からも光を放射する構造である。よって、第1の電極層1617及び第2
の電極層1620として透光性電極層を用いる。
【0206】
本実施の形態においては、透光性電極層である第1の電極層1617及び第2の電極層1
620に、具体的には透光性を有する導電性材料からなる透明導電膜を用いればよく、酸
化タングステンを含むインジウム酸化物、酸化タングステンを含むインジウム亜鉛酸化物
、酸化チタンを含むインジウム酸化物、酸化チタンを含むインジウム錫酸化物などを用い
ることができる。勿論、インジウム錫酸化物(ITO)、インジウム亜鉛酸化物(IZO
)、酸化ケイ素を添加したインジウム錫酸化物(ITSO)なども用いることができる。
【0207】
また、透光性を有さない金属膜のような材料であっても膜厚を薄く(好ましくは、5nm
〜30nm程度の厚さ)して光を透過可能な状態としておくことで、第1の電極層161
7及び第2の電極層1620から光を放射することが可能となる。また、第1の電極層1
617及び第2の電極層1620に用いることのできる金属薄膜としては、チタン、タン
グステン、ニッケル、金、白金、銀、アルミニウム、マグネシウム、カルシウム、リチウ
ム、およびそれらの合金からなる導電膜などを用いることができる。
【0208】
以上のように、図11の表示装置は、発光素子1605より放射される光が、第1の電極
層1617及び第2の電極層1620両方を通過して、両面から光を放射する構成となる

【0209】
図10の表示装置は、矢印の方向に上面射出する構造である。図10に示す表示装置は、
素子基板1300、薄膜トランジスタ1355、薄膜トランジスタ1365、薄膜トラン
ジスタ1375、薄膜トランジスタ1385、配線層1324、第1の電極層1317、
電界発光層1319、第2の電極層1320、保護膜1321、充填材1322、シール
材1332、絶縁膜1301a、絶縁膜1301b、ゲート絶縁層1310、絶縁膜13
11、絶縁膜1312、絶縁層1314、封止基板1325、配線層1333、端子電極
層1381、異方性導電層1382、FPC1383によって構成されている。
【0210】
図11及び図10における表示装置において、端子電極層に積層していた絶縁層はエッチ
ングによって除去されている。このように端子電極層の周囲に透湿性を有する絶縁層を設
けない構造であると信頼性がより向上する。図10において表示装置は、外部端子接続領
域232、封止領域233、周辺駆動回路領域234、画素領域236を有している。図
10の表示装置は、前述の図11で示した両面射出型の表示装置において、第1の電極層
1317の下に、反射性を有する金属層である配線層1324を形成する。配線層132
4の上に透明導電膜である第1の電極層1317を形成する。配線層1324としては、
反射性を有すればよいので、チタン、タングステン、ニッケル、金、白金、銀、銅、タン
タル、モリブデン、アルミニウム、マグネシウム、カルシウム、リチウム、およびそれら
の合金からなる導電膜などを用いればよい。好ましくは、可視光の領域で反射性が高い物
質を用いることがよく、本実施の形態では、窒化チタン膜を用いる。また、第1の電極層
1317にも導電膜を用いてもよく、その場合、反射性を有する配線層1324は設けな
くてもよい。
【0211】
第1の電極層1317及び第2の電極層1320に、具体的には透光性を有する導電性材
料からなる透明導電膜を用いればよく、酸化タングステンを含むインジウム酸化物、酸化
タングステンを含むインジウム亜鉛酸化物、酸化チタンを含むインジウム酸化物、酸化チ
タンを含むインジウム錫酸化物などを用いることができる。勿論、インジウム錫酸化物(
ITO)、インジウム亜鉛酸化物(IZO)、酸化ケイ素を添加したインジウム錫酸化物
(ITSO)なども用いることができる。
【0212】
また、透光性を有さない金属膜のような材料であっても膜厚を薄く(好ましくは、5nm
〜30nm程度の厚さ)して光を透過可能な状態としておくことで、第2の電極層132
0から光を放射することが可能となる。また、第2の電極層1320に用いることのでき
る金属薄膜としては、チタン、タングステン、ニッケル、金、白金、銀、アルミニウム、
マグネシウム、カルシウム、リチウム、およびそれらの合金からなる導電膜などを用いる
ことができる。
【0213】
発光素子を用いて形成する表示装置の画素は、単純マトリクス方式、若しくはアクティブ
マトリクス方式で駆動することができる。また、デジタル駆動、アナログ駆動どちらでも
適用可能である。
【0214】
封止基板にカラーフィルタ(着色層)を形成してもよい。カラーフィルタ(着色層)は、
蒸着法や液滴吐出法によって形成することができ、カラーフィルタ(着色層)を用いると
、高精細な表示を行うこともできる。カラーフィルタ(着色層)により、各RGBの発光
スペクトルにおいてブロードなピークが鋭いピークになるように補正できるからである。
【0215】
単色の発光を示す材料を形成し、カラーフィルタや色変換層を組み合わせることによりフ
ルカラー表示を行うことができる。カラーフィルタ(着色層)や色変換層は、例えば封止
基板に形成し、素子基板へ張り合わせればよい。
【0216】
もちろん単色発光の表示を行ってもよい。例えば、単色発光を用いてエリアカラータイプ
の表示装置を形成してもよい。エリアカラータイプは、パッシブマトリクス型の表示部が
適しており、主に文字や記号を表示することができる。
【0217】
図11に示す表示装置は両面放射型なので素子基板1600及び封止基板1625両方か
ら光が放射されるため、素子基板1600側も封止基板1625側も視認側となる。よっ
て素子基板1600及び封止基板1625両方に透光性基板を用い、それぞれ視認側にあ
たる外側に反射防止膜1627a、1627bが設けられている。一方図10に示す表示
装置は上面放射型であるので視認側の封止基板1325が透光性基板であり、外側に反射
防止膜1327が設けられている。反射防止膜1627a、1627b、1327は表面
に複数の凸部を有する反射防止膜であり、本実施の形態では凸部は円錐状である。本実施
の形態では反射防止膜1627a、1627b、1327は、凸部間を埋めるように保護
層を有する反射防止膜である。
【0218】
凸部は円錐形の他、針状、円錐の先端が平面である断面が台形の形状、先端が丸いドーム
状などでもよい。また、反射防止膜は均一な屈折率でなく、表面から表示画面側に向かっ
て屈折率が変化する材料で形成することができる。例えば、複数の凸部において、凸部表
面側は空気と同等な屈折率を有する材料で形成し、より空気より凸部に入射する外光の凸
部表面の反射を軽減する構造とする。一方、複数の凸部において表示画面側の基板側に近
づくにつれ基板と同等な屈折率を有する材料で形成し、凸部内部を進行し、基板に入射す
る光の凸部と基板との界面での反射を軽減する構成とする。基板にガラス基板を用いると
、空気の屈折率の方がガラス基板よりも小さいため、凸部は表面(円錐形であると先端部
)の方が屈折率の低い材料で形成され、凸部底面に近づくにつれ屈折率の高い材料で形成
されるような、円錐形先端部より底面に向かって屈折率が増加するような構成とすればよ
い。
【0219】
本実施の形態の反射防止膜を有する表示装置は、表面に複数の凸部を有しており、外光の
反射光は凸部界面が平面ではないので視認側に反射せず隣接する他の凸部に反射する。も
しくは凸部と凸部の間に進行する。入射した外光は凸部に一部透過し反射光は隣接する凸
部にまた入射する。このように凸部界面で反射された外光は隣接する他の凸部に入射を繰
り返す。
【0220】
つまり表示装置に入射する外光のうち、反射防止膜に入射する回数が増加するので、反射
防止膜に透過する量が増える。よって、視認側に反射する外光が軽減され、写り込みなど
の視認性を低下させる原因を防ぐことができる。
【0221】
さらに本発明ではその凸部の間に保護層が形成されているので、凸部間にゴミなどの汚染
物が侵入することを防ぐことができる。従って、ゴミなどの侵入による反射防止機能低下
を防ぎ、かつ凸部間を埋めることで反射防止膜としての物理的強度も高めることができ、
信頼性向上が達成できる。
【0222】
本発明は、表面に複数の凸部を有し、かつ凸部間に保護層を設けた反射防止膜を具備する
ことによってより外光の反射を軽減できる高い反射防止機能を有し視認性の優れた、かつ
信頼性の高い表示装置を提供することができる。従って、より高画質及び高性能な表示装
置を作製することができる。
【0223】
本実施の形態は、上記の実施の形態1と自由に組み合わせることができる。
【0224】
(実施の形態7)
本実施の形態では、より外光の反射を軽減できる反射防止機能を有し優れた視認性を付与
することを目的とした表示装置の例について説明する。詳しくは表示素子に発光素子を用
いる発光表示装置について説明する。
【0225】
本実施の形態では、本発明の表示装置の表示素子として適用することのできる発光素子の
構成を、図22を用いて説明する。
【0226】
図22は発光素子の素子構造であり、第1の電極層870と第2の電極層850との間
に、有機化合物と無機化合物を混合してなる電界発光層860が挟持されている発光素子
である。電界発光層860は、図示した通り、第1の層804、第2の層803、第3の
層802から構成されており、特に第1の層804および第3の層802に大きな特徴を
有する。
【0227】
まず、第1の層804は、第2の層803にホールを輸送する機能を担う層であり、少
なくとも第1の有機化合物と、第1の有機化合物に対して電子受容性を示す第1の無機化
合物とを含む構成である。重要なのは、単に第1の有機化合物と第1の無機化合物が混ざ
り合っているのではなく、第1の無機化合物が第1の有機化合物に対して電子受容性を示
す点である。このような構成とすることで、本来内在的なキャリアをほとんど有さない第
1の有機化合物に多くのホールキャリアが発生し、極めて優れたホール注入性及びホール
輸送性を示す。
【0228】
したがって第1の層804は、無機化合物を混合することによって得られると考えられ
ている効果(耐熱性の向上など)だけでなく、優れた導電性(第1の層804においては
特に、ホール注入性および輸送性)をも得ることができる。このことは、互いに電子的な
相互作用を及ぼさない有機化合物と無機化合物を単に混合した従来のホール輸送層では、
得られない効果である。この効果により、従来よりも駆動電圧を低くすることができる。
また、駆動電圧の上昇を招くことなく第1の層804を厚くすることができるため、ゴミ
等に起因する素子の短絡も抑制することができる。
【0229】
ところで、上述したように、第1の有機化合物にはホールキャリアが発生するため、第
1の有機化合物としてはホール輸送性の有機化合物が好ましい。ホール輸送性の有機化合
物としては、例えば、フタロシアニン(略称:HPc)、銅フタロシアニン(略称:C
uPc)、バナジルフタロシアニン(略称:VOPc)、4,4’,4’’−トリス(N
,N−ジフェニルアミノ)トリフェニルアミン(略称:TDATA)、4,4’,4’’
−トリス[N−(3−メチルフェニル)−N−フェニルアミノ]トリフェニルアミン(略
称:MTDATA)、1,3,5−トリス[N,N−ジ(m−トリル)アミノ]ベンゼン
(略称:m−MTDAB)、N,N’−ジフェニル−N,N’−ビス(3−メチルフェニ
ル)−1,1’−ビフェニル−4,4’−ジアミン(略称:TPD)、4,4’−ビス[
N−(1−ナフチル)−N−フェニルアミノ]ビフェニル(略称:NPB)、4,4’−
ビス{N−[4−ジ(m−トリル)アミノ]フェニル−N−フェニルアミノ}ビフェニル
(略称:DNTPD)、4,4’,4’’−トリス(N−カルバゾリル)トリフェニルア
ミン(略称:TCTA)などが挙げられるが、これらに限定されることはない。また、上
述した化合物の中でも、TDATA、MTDATA、m−MTDAB、TPD、NPB、
DNTPD、TCTAなどに代表される芳香族アミン化合物は、ホールキャリアを発生し
やすく、第1の有機化合物として好適な化合物群である。
【0230】
一方、第1の無機化合物は、第1の有機化合物から電子を受け取りやすいものであれば
何であってもよく、種々の金属酸化物または金属窒化物が可能であるが、周期表第4族乃
至第12族のいずれかの遷移金属酸化物が電子受容性を示しやすく好適である。具体的に
は、酸化チタン、酸化ジルコニウム、酸化バナジウム、酸化モリブデン、酸化タングステ
ン、酸化レニウム、酸化ルテニウム、酸化亜鉛などが挙げられる。また、上述した金属酸
化物の中でも、周期表第4族乃至第8族のいずれかの遷移金属酸化物は電子受容性の高い
ものが多く、好ましい一群である。特に酸化バナジウム、酸化モリブデン、酸化タングス
テン、酸化レニウムは真空蒸着が可能で扱いやすいため、好適である。
【0231】
なお、第1の層804は、上述した有機化合物と無機化合物の組み合わせを適用した層
を、複数積層して形成していてもよい。また、他の有機化合物あるいは他の無機化合物を
さらに含んでいてもよい。
【0232】
次に、第3の層802について説明する。第3の層802は、第2の層803に電子を
輸送する機能を担う層であり、少なくとも第3の有機化合物と、第3の有機化合物に対し
て電子供与性を示す第3の無機化合物とを含む構成である。重要なのは、単に第3の有機
化合物と第3の無機化合物が混ざり合っているのではなく、第3の無機化合物が第3の有
機化合物に対して電子供与性を示す点である。このような構成とすることで、本来内在的
なキャリアをほとんど有さない第3の有機化合物に多くの電子キャリアが発生し、極めて
優れた電子注入性及び電子輸送性を示す。
【0233】
したがって第3の層802は、無機化合物を混合することによって得られると考えられ
ている効果(耐熱性の向上など)だけでなく、優れた導電性(第3の層802においては
特に、電子注入性および輸送性)をも得ることができる。このことは、互いに電子的な相
互作用を及ぼさない有機化合物と無機化合物を単に混合した従来の電子輸送層では、得ら
れない効果である。この効果により、従来よりも駆動電圧を低くすることができる。また
、駆動電圧の上昇を招くことなく第3の層802を厚くすることができるため、ゴミ等に
起因する素子の短絡も抑制することができる。
【0234】
ところで、上述したように、第3の有機化合物には電子キャリアが発生するため、第3
の有機化合物としては電子輸送性の有機化合物が好ましい。電子輸送性の有機化合物とし
ては、例えば、トリス(8−キノリノラト)アルミニウム(略称:Alq)、トリス(
4−メチル−8−キノリノラト)アルミニウム(略称:Almq)、ビス(10−ヒド
ロキシベンゾ[h]−キノリナト)ベリリウム(略称:BeBq)、ビス(2−メチル
−8−キノリノラト)(4−フェニルフェノラト)アルミニウム(略称:BAlq)、ビ
ス[2−(2’−ヒドロキシフェニル)ベンズオキサゾラト]亜鉛(略称:Zn(BOX
)、ビス[2−(2’−ヒドロキシフェニル)ベンゾチアゾラト]亜鉛(略称:Zn
(BTZ))、バソフェナントロリン(略称:BPhen)、バソキュプロイン(略称
:BCP)、2−(4−ビフェニリル)−5−(4−tert−ブチルフェニル)−1,
3,4−オキサジアゾール(略称:PBD)、1,3−ビス[5−(4−tert−ブチ
ルフェニル)−1,3,4−オキサジアゾール−2−イル]ベンゼン(略称:OXD−7
)、2,2’,2’’−(1,3,5−ベンゼントリイル)−トリス(1−フェニル−1
H−ベンゾイミダゾール)(略称:TPBI)、3−(4−ビフェニリル)−4−フェニ
ル−5−(4−tert−ブチルフェニル)−1,2,4−トリアゾール(略称:TAZ
)、3−(4−ビフェニリル)−4−(4−エチルフェニル)−5−(4−tert−ブ
チルフェニル)−1,2,4−トリアゾール(略称:p−EtTAZ)などが挙げられる
が、これらに限定されることはない。また、上述した化合物の中でも、Alq、Alm
、BeBq、BAlq、Zn(BOX)、Zn(BTZ)などに代表される芳
香環を含むキレート配位子を有するキレート金属錯体や、BPhen、BCPなどに代表
されるフェナントロリン骨格を有する有機化合物や、PBD、OXD−7などに代表され
るオキサジアゾール骨格を有する有機化合物は、電子キャリアを発生しやすく、第3の有
機化合物として好適な化合物群である。
【0235】
一方、第3の無機化合物は、第3の有機化合物に電子を与えやすいものであれば何であ
ってもよく、種々の金属酸化物または金属窒化物が可能であるが、アルカリ金属酸化物、
アルカリ土類金属酸化物、希土類金属酸化物、アルカリ金属窒化物、アルカリ土類金属窒
化物、希土類金属窒化物が電子供与性を示しやすく好適である。具体的には、酸化リチウ
ム、酸化ストロンチウム、酸化バリウム、酸化エルビウム、窒化リチウム、窒化マグネシ
ウム、窒化カルシウム、窒化イットリウム、窒化ランタンなどが挙げられる。特に酸化リ
チウム、酸化バリウム、窒化リチウム、窒化マグネシウム、窒化カルシウムは真空蒸着が
可能で扱いやすいため、好適である。
【0236】
なお、第3の層802は、上述した有機化合物と無機化合物の組み合わせを適用した層
を、複数積層して形成していてもよい。また、他の有機化合物あるいは他の無機化合物を
さらに含んでいてもよい。
【0237】
次に、第2の層803について説明する。第2の層803は発光機能を担う層であり、
発光性の第2の有機化合物を含む。また、第2の無機化合物を含む構成であってもよい。
第2の層803は、種々の発光性の有機化合物、無機化合物を用いて形成することができ
る。ただし、第2の層803は、第1の層804や第3の層802に比べて電流が流れに
くいと考えられるため、その膜厚は10nm〜100nm程度が好ましい。
【0238】
第2の有機化合物としては、発光性の有機化合物であれば特に限定されることはなく、
例えば、9,10−ジ(2−ナフチル)アントラセン(略称:DNA)、9,10−ジ(
2−ナフチル)−2−tert−ブチルアントラセン(略称:t−BuDNA)、4,4
’−ビス(2,2−ジフェニルビニル)ビフェニル(略称:DPVBi)、クマリン30
、クマリン6、クマリン545、クマリン545T、ペリレン、ルブレン、ペリフランテ
ン、2,5,8,11−テトラ(tert−ブチル)ペリレン(略称:TBP)、9,1
0−ジフェニルアントラセン(略称:DPA)、5,12−ジフェニルテトラセン、4−
(ジシアノメチレン)−2−メチル−[p−(ジメチルアミノ)スチリル]−4H−ピラ
ン(略称:DCM1)、4−(ジシアノメチレン)−2−メチル−6−[2−(ジュロリ
ジン−9−イル)エテニル]−4H−ピラン(略称:DCM2)、4−(ジシアノメチレ
ン)−2,6−ビス[p−(ジメチルアミノ)スチリル]−4H−ピラン(略称:Bis
DCM)等が挙げられる。また、ビス[2−(4’,6’−ジフルオロフェニル)ピリジ
ナト−N,C2’]イリジウム(ピコリナート)(略称:FIrpic)、ビス{2−[
3’,5’−ビス(トリフルオロメチル)フェニル]ピリジナト−N,C2’}イリジウ
ム(ピコリナート)(略称:Ir(CFppy)(pic))、トリス(2−フェニ
ルピリジナト−N,C2’)イリジウム(略称:Ir(ppy))、ビス(2−フェニ
ルピリジナト−N,C2’)イリジウム(アセチルアセトナート)(略称:Ir(ppy
(acac))、ビス[2−(2’−チエニル)ピリジナト−N,C3’]イリジウ
ム(アセチルアセトナート)(略称:Ir(thp)(acac))、ビス(2−フェ
ニルキノリナト−N,C2’)イリジウム(アセチルアセトナート)(略称:Ir(pq
(acac))、ビス[2−(2’−ベンゾチエニル)ピリジナト−N,C3’]イ
リジウム(アセチルアセトナート)(略称:Ir(btp)(acac))などの燐光
を放出できる化合物用いることもできる。
【0239】
第2の層803を一重項励起発光材料の他、金属錯体などを含む三重項励起材料を用いて
も良い。例えば、赤色の発光性の画素、緑色の発光性の画素及び青色の発光性の画素のう
ち、輝度半減時間が比較的短い赤色の発光性の画素を三重項励起発光材料で形成し、他を
一重項励起発光材料で形成する。三重項励起発光材料は発光効率が良いので、同じ輝度を
得るのに消費電力が少なくて済むという特徴がある。すなわち、赤色画素に適用した場合
、発光素子に流す電流量が少なくて済むので、信頼性を向上させることができる。低消費
電力化として、赤色の発光性の画素と緑色の発光性の画素とを三重項励起発光材料で形成
し、青色の発光性の画素を一重項励起発光材料で形成しても良い。人間の視感度が高い緑
色の発光素子も三重項励起発光材料で形成することで、より低消費電力化を図ることがで
きる。
【0240】
また、第2の層803においては、上述した発光を示す第2の有機化合物だけでなく、
さらに他の有機化合物が添加されていてもよい。添加できる有機化合物としては、例えば
、先に述べたTDATA、MTDATA、m−MTDAB、TPD、NPB、DNTPD
、TCTA、Alq、Almq、BeBq、BAlq、Zn(BOX)、Zn(
BTZ)、BPhen、BCP、PBD、OXD−7、TPBI、TAZ、p−EtT
AZ、DNA、t−BuDNA、DPVBiなどの他、4,4’−ビス(N−カルバゾリ
ル)ビフェニル(略称:CBP)、1,3,5−トリス[4−(N−カルバゾリル)フェ
ニル]ベンゼン(略称:TCPB)などを用いることができるが、これらに限定されるこ
とはない。なお、このように第2の有機化合物以外に添加する有機化合物は、第2の有機
化合物を効率良く発光させるため、第2の有機化合物の励起エネルギーよりも大きい励起
エネルギーを有し、かつ第2の有機化合物よりも多く添加されていることが好ましい(そ
れにより、第2の有機化合物の濃度消光を防ぐことができる)。あるいはまた、他の機能
として、第2の有機化合物と共に発光を示してもよい(それにより、白色発光なども可能
となる)。
【0241】
第2の層803は、発光波長帯の異なる発光層を画素毎に形成して、カラー表示を行
う構成としても良い。典型的には、R(赤)、G(緑)、B(青)の各色に対応した発光
層を形成する。この場合にも、画素の光放射側にその発光波長帯の光を透過するフィルタ
ーを設けた構成とすることで、色純度の向上や、画素部の鏡面化(映り込み)の防止を図
ることができる。フィルターを設けることで、従来必要であるとされていた円偏光板など
を省略することが可能となり、発光層から放射される光の損失を無くすことができる。さ
らに、斜方から画素部(表示画面)を見た場合に起こる色調の変化を低減することができ
る。
【0242】
第2の層803で用いることのできる材料は低分子系有機発光材料でも高分子系有機
発光材料でもよい。高分子系有機発光材料は低分子系に比べて物理的強度が高く、素子の
耐久性が高い。また塗布により成膜することが可能であるので、素子の作製が比較的容易
である。
【0243】
発光色は、発光層を形成する材料で決まるため、これらを選択することで所望の発光
を示す発光素子を形成することができる。発光層の形成に用いることができる高分子系の
電界発光材料は、ポリパラフェニレンビニレン系、ポリパラフェニレン系、ポリチオフェ
ン系、ポリフルオレン系が挙げられる。
【0244】
ポリパラフェニレンビニレン系には、ポリ(パラフェニレンビニレン) [PPV]
の誘導体、ポリ(2,5−ジアルコキシ−1,4−フェニレンビニレン) [RO−P
PV]、ポリ(2−(2’−エチル−ヘキソキシ)−5−メトキシ−1,4−フェニレン
ビニレン)[MEH−PPV]、ポリ(2−(ジアルコキシフェニル)−1,4−フェニ
レンビニレン)[ROPh−PPV]等が挙げられる。ポリパラフェニレン系には、ポリ
パラフェニレン[PPP]の誘導体、ポリ(2,5−ジアルコキシ−1,4−フェニレン
)[RO−PPP]、ポリ(2,5−ジヘキソキシ−1,4−フェニレン)等が挙げられ
る。ポリチオフェン系には、ポリチオフェン[PT]の誘導体、ポリ(3−アルキルチオ
フェン)[PAT]、ポリ(3−ヘキシルチオフェン)[PHT]、ポリ(3−シクロヘ
キシルチオフェン)[PCHT]、ポリ(3−シクロヘキシル−4−メチルチオフェン)
[PCHMT]、ポリ(3,4−ジシクロヘキシルチオフェン)[PDCHT]、ポリ[
3−(4−オクチルフェニル)−チオフェン][POPT]、ポリ[3−(4−オクチル
フェニル)−2,2ビチオフェン][PTOPT]等が挙げられる。ポリフルオレン系に
は、ポリフルオレン[PF]の誘導体、ポリ(9,9−ジアルキルフルオレン)[PDA
F]、ポリ(9,9−ジオクチルフルオレン)[PDOF]等が挙げられる。
【0245】
前記第2の無機化合物としては、第2の有機化合物の発光を消光しにくい無機化合物で
あれば何であってもよく、種々の金属酸化物や金属窒化物を用いることができる。特に、
周期表第13族または第14族の金属酸化物は、第2の有機化合物の発光を消光しにくい
ため好ましく、具体的には酸化アルミニウム、酸化ガリウム、酸化ケイ素、酸化ゲルマニ
ウムが好適である。ただし、これらに限定されることはない。
【0246】
なお、第2の層803は、上述した有機化合物と無機化合物の組み合わせを適用した層
を、複数積層して形成していてもよい。また、他の有機化合物あるいは他の無機化合物を
さらに含んでいてもよい。発光層の層構造は変化しうるものであり、特定の電子注入領域
や発光領域を備えていない代わりに、もっぱらこの目的用の電極層を備えたり、発光性の
材料を分散させて備えたりする変形は、本発明の趣旨を逸脱しない範囲において許容され
うるものである。
【0247】
上記のような材料で形成した発光素子は、順方向にバイアスすることで発光する。発
光素子を用いて形成する表示装置の画素は、単純マトリクス方式、若しくはアクティブマ
トリクス方式で駆動することができる。いずれにしても、個々の画素は、ある特定のタイ
ミングで順方向バイアスを印加して発光させることとなるが、ある一定期間は非発光状態
となっている。この非発光時間に逆方向のバイアスを印加することで発光素子の信頼性を
向上させることができる。発光素子では、一定駆動条件下で発光強度が低下する劣化や、
画素内で非発光領域が拡大して見かけ上輝度が低下する劣化モードがあるが、順方向及び
逆方向にバイアスを印加する交流的な駆動を行うことで、劣化の進行を遅くすることがで
き、発光表示装置の信頼性を向上させることができる。また、デジタル駆動、アナログ駆
動どちらでも適用可能である。
【0248】
よって、封止基板にカラーフィルタ(着色層)を形成してもよい。カラーフィルタ(
着色層)は、蒸着法や液滴吐出法によって形成することができ、カラーフィルタ(着色層
)を用いると、高精細な表示を行うこともできる。カラーフィルタ(着色層)により、各
RGBの発光スペクトルにおいてブロードなピークが鋭いピークになるように補正できる
からである。
【0249】
単色の発光を示す材料を形成し、カラーフィルタや色変換層を組み合わせることによ
りフルカラー表示を行うことができる。カラーフィルタ(着色層)や色変換層は、例えば
封止基板に形成し、素子基板へ張り合わせればよい。
【0250】
もちろん単色発光の表示を行ってもよい。例えば、単色発光を用いてエリアカラータ
イプの表示装置を形成してもよい。エリアカラータイプは、パッシブマトリクス型の表示
部が適しており、主に文字や記号を表示することができる。
【0251】
第1の電極層870及び第2の電極層850は仕事関数を考慮して材料を選択する必要
があり、そして第1の電極層870及び第2の電極層850は、画素構成によりいずれも
陽極、又は陰極となりうる。駆動用薄膜トランジスタの極性がpチャネル型である場合、
図22(A)のように第1の電極層870を陽極、第2の電極層850を陰極とするとよ
い。また、駆動用薄膜トランジスタの極性がnチャネル型である場合、図22(B)のよ
うに、第1の電極層870を陰極、第2の電極層850を陽極とすると好ましい。第1の
電極層870および第2の電極層850に用いることのできる材料について述べる。第1
の電極層870、第2の電極層850が陽極として機能する場合は仕事関数の大きい材料
(具体的には4.5eV以上の材料)が好ましく、第1の電極層、第2の電極層850が
陰極として機能する場合は仕事関数の小さい材料(具体的には3.5eV以下の材料)が
好ましい。しかしながら、第1の層804のホール注入、ホール輸送特性や、第3の層8
02の電子注入性、電子輸送特性が優れているため、第1の電極層870、第2の電極層
850共に、ほとんど仕事関数の制限を受けることなく、種々の材料を用いることができ
る。
【0252】
図22(A)、(B)における発光素子は、第1の電極層870より光を取り出す構
造のため、第2の電極層850は、必ずしも光透光性を有する必要はない。第2の電極層
850としては、Ti、Ni、W、Cr、Pt、Zn、Sn、In、Ta、Al、Cu、
Au、Ag、Mg、Ca、LiまたはMoから選ばれた元素、または窒化チタン、TiS
、WSi、窒化タングステン、WSi、NbNなどの前記元素を主成分
とする合金材料もしくは化合物材料を主成分とする膜またはそれらの積層膜を総膜厚10
0nm〜800nmの範囲で用いればよい。
【0253】
第2の電極層850は、蒸着法、スパッタ法、CVD法、印刷法、ディスペンサ法ま
たは液滴吐出法などを用いて形成することができる。
【0254】
また、第2の電極層850に第1の電極層870で用いる材料のような透光性を有す
る導電性材料を用いると、第2の電極層850からも光を取り出す構造となり、発光素子
から放射される光は、第1の電極層870と第2の電極層850との両方より放射される
両面放射構造とすることができる。
【0255】
なお、第1の電極層870や第2の電極層850の種類を変えることで、本発明の発光
素子は様々なバリエーションを有する。
【0256】
図22(B)は、電界発光層860が、第1の電極層870側から第3の層802、第
2の層803、第1の層804の順で構成されているケースである。
【0257】
以上で述べたように、本発明の発光素子は、第1の電極層870と第2の電極層850
との間に挟持された層が、有機化合物と無機化合物が複合された層を含む電界発光層86
0から成っている。そして、有機化合物と無機化合物を混合することにより、それぞれ単
独では得られない高いキャリア注入性、キャリア輸送性という機能が得られる層(すなわ
ち、第1の層804および第3の層802)が設けられている有機及び無機複合型の発光
素子である。また、上記第1の層804、第3の層802は、第1の電極層870側に設
けられる場合、特に有機化合物と無機化合物が複合された層である必要があり、第2の電
極層850側に設けられる場合、有機化合物、無機化合物のみであってもよい。
【0258】
なお、電界発光層860は有機化合物と無機化合物が混合された層であるが、その形成
方法としては公知の種々の手法を用いることができる。例えば、有機化合物と無機化合物
の両方を抵抗加熱により蒸発させ、共蒸着する手法が挙げられる。その他、有機化合物を
抵抗加熱により蒸発させる一方で、無機化合物をエレクトロンビーム(EB)により蒸発
させ、共蒸着してもよい。また、有機化合物を抵抗加熱により蒸発させると同時に、無機
化合物をスパッタリングし、両方を同時に堆積する手法も挙げられる。その他、湿式法に
より成膜してもよい。
【0259】
また、第1の電極層870および第2の電極層850に関しても同様に、抵抗加熱によ
る蒸着法、EB蒸着法、スパッタリング、湿式法などを用いることができる。
【0260】
図22(C)は、図22(A)において、第1の電極層870に反射性を有する電極
層を用い、第2の電極層850に透光性を有する電極層を用いており、発光素子より放射
された光は第1の電極層870で反射され、第2の電極層850を透過して放射される。
同様に図22(D)は、図22(B)において、第1の電極層870に反射性を有する電
極層を用い、第2の電極層850に透光性を有する電極層を用いており、発光素子より放
射された光は第1の電極層870で反射され、第2の電極層850を透過して放射される

【0261】
本実施の形態は、上記の発光素子を有する表示装置についての実施の形態と自由に組み合
わせることが可能である。
【0262】
本実施の形態における表示装置においても複数の凸部を有する反射防止膜を表示装置表示
画面表面に設けるので、表示装置に入射する外光のうち、反射防止膜に入射する回数が増
加するので、反射防止膜に透過する量が増える。よって、視認側に反射する外光が軽減さ
れ、写り込みなどの視認性を低下させる原因を防ぐことができる。
【0263】
さらに本発明ではその凸部の間に保護層が形成されているので、凸部間にゴミなどの汚染
物が侵入することを防ぐことができる。従って、ゴミなどの侵入による反射防止機能低下
を防ぎ、かつ凸部間を埋めることで反射防止膜としての物理的強度も高めることができ、
信頼性向上が達成できる。
【0264】
本発明は、表面に複数の凸部を有し、かつ凸部間に保護層を設けた反射防止膜を具備する
ことによってより外光の反射を軽減できる高い反射防止機能を有し視認性の優れた、かつ
信頼性の高い表示装置を提供することができる。従って、より高画質及び高性能な表示装
置を作製することができる。
【0265】
本実施の形態は、上記の実施の形態1乃至3、5、及び6と適宜自由に組み合わせること
ができる。
【0266】
(実施の形態8)
本実施の形態では、より外光の反射を軽減できる反射防止機能を有し優れた視認性を付与
することを目的とした表示装置の例について説明する。詳しくは表示素子に発光素子を用
いる発光表示装置について説明する。本実施の形態では、本発明の表示装置の表示素子と
して適用することのできる発光素子の構成を、図23及び図24を用いて説明する。
【0267】
エレクトロルミネセンスを利用する発光素子は、発光材料が有機化合物であるか、無機化
合物であるかによって区別され、一般的に、前者は有機EL素子、後者は無機EL素子と
呼ばれている。
【0268】
無機EL素子は、その素子構成により、分散型無機EL素子と薄膜型無機EL素子とに分
類される。前者は、発光材料の粒子をバインダ中に分散させた電界発光層を有し、後者は
、発光材料の薄膜からなる電界発光層を有している点に違いはあるが、高電界で加速され
た電子を必要とする点では共通である。なお、得られる発光のメカニズムとしては、ドナ
ー準位とアクセプター準位を利用するドナー−アクセプター再結合型発光と、金属イオン
の内殻電子遷移を利用する局在型発光とがある。一般的に、分散型無機EL素子ではドナ
ー−アクセプター再結合型発光、薄膜型無機EL素子では局在型発光である場合が多い。
【0269】
本発明で用いることのできる発光材料は、母体材料と発光中心となる不純物元素とで構成
される。含有させる不純物元素を変化させることで、様々な色の発光を得ることができる
。発光材料の作製方法としては、固相法や液相法(共沈法)などの様々な方法を用いるこ
とができる。また、噴霧熱分解法、複分解法、プレカーサーの熱分解反応による方法、逆
ミセル法やこれらの方法と高温焼成を組み合わせた方法、凍結乾燥法などの液相法なども
用いることができる。
【0270】
固相法は、母体材料と、不純物元素又は不純物元素を含む化合物を秤量し、乳鉢で混合、
電気炉で加熱、焼成を行い反応させ、母体材料に不純物元素を含有させる方法である。焼
成温度は、700〜1500℃が好ましい。温度が低すぎる場合は固相反応が進まず、温
度が高すぎる場合は母体材料が分解してしまうからである。なお、粉末状態で焼成を行っ
てもよいが、ペレット状態で焼成を行うことが好ましい。比較的高温での焼成を必要とす
るが、簡単な方法であるため、生産性がよく大量生産に適している。
【0271】
液相法(共沈法)は、母体材料又は母体材料を含む化合物と、不純物元素又は不純物元素
を含む化合物を溶液中で反応させ、乾燥させた後、焼成を行う方法である。発光材料の粒
子が均一に分布し、粒径が小さく低い焼成温度でも反応が進むことができる。
【0272】
発光材料に用いる母体材料としては、硫化物、酸化物、窒化物を用いることができる。
硫化物としては、例えば、硫化亜鉛(ZnS)、硫化カドミウム(CdS)、硫化カルシ
ウム(CaS)、硫化イットリウム(Y)、硫化ガリウム(Ga)、硫化ス
トロンチウム(SrS)、硫化バリウム(BaS)等を用いることができる。また、酸化
物としては、例えば、酸化亜鉛(ZnO)、酸化イットリウム(Y)等を用いるこ
とができる。また、窒化物としては、例えば、窒化アルミニウム(AlN)、窒化ガリウ
ム(GaN)、窒化インジウム(InN)等を用いることができる。さらに、セレン化亜
鉛(ZnSe)、テルル化亜鉛(ZnTe)等も用いることができ、硫化カルシウム−ガ
リウム(CaGa)、硫化ストロンチウム−ガリウム(SrGa)、硫化バ
リウム−ガリウム(BaGa)、等の3元系の混晶であってもよい。
【0273】
局在型発光の発光中心として、マンガン(Mn)、銅(Cu)、サマリウム(Sm)、テ
ルビウム(Tb)、エルビウム(Er)、ツリウム(Tm)、ユーロピウム(Eu)、セ
リウム(Ce)、プラセオジウム(Pr)などを用いることができる。なお、フッ素(F
)、塩素(Cl)などのハロゲン元素が添加されていてもよい。ハロゲン元素は電荷補償
として機能することもできる。
【0274】
一方、ドナー−アクセプター再結合型発光の発光中心として、ドナー準位を形成する第1
の不純物元素及びアクセプター準位を形成する第2の不純物元素を含む発光材料を用いる
ことができる。第1の不純物元素は、例えば、フッ素(F)、塩素(Cl)、アルミニウ
ム(Al)等を用いることができる。第2の不純物元素としては、例えば、銅(Cu)、
銀(Ag)等を用いることができる。
【0275】
ドナー−アクセプター再結合型発光の発光材料を固相法を用いて合成する場合、母体材料
と、第1の不純物元素又は第1の不純物元素を含む化合物と、第2の不純物元素又は第2
の不純物元素を含む化合物をそれぞれ秤量し、乳鉢で混合した後、電気炉で加熱、焼成を
行う。母体材料としては、上述した母体材料を用いることができ、第1の不純物元素又は
第1の不純物元素を含む化合物としては、例えば、フッ素(F)、塩素(Cl)、硫化ア
ルミニウム(Al)等を用いることができ、第2の不純物元素又は第2の不純物元
素を含む化合物としては、例えば、銅(Cu)、銀(Ag)、硫化銅(CuS)、硫化
銀(AgS)等を用いることができる。焼成温度は、700〜1500℃が好ましい。
温度が低すぎる場合は固相反応が進まず、温度が高すぎる場合は母体材料が分解してしま
うからである。なお、粉末状態で焼成を行ってもよいが、ペレット状態で焼成を行うこと
が好ましい。
【0276】
また、固相反応を利用する場合の不純物元素として、第1の不純物元素と第2の不純物元
素で構成される化合物を組み合わせて用いてもよい。この場合、不純物元素が拡散されや
すく、固相反応が進みやすくなるため、均一な発光材料を得ることができる。さらに、余
分な不純物元素が入らないため、純度の高い発光材料が得ることができる。第1の不純物
元素と第2の不純物元素で構成される化合物としては、例えば、塩化銅(CuCl)、塩
化銀(AgCl)等を用いることができる。
【0277】
なお、これらの不純物元素の濃度は、母体材料に対して0.01〜10atom%であれ
ばよく、好ましくは0.05〜5atom%の範囲である。
【0278】
薄膜型無機EL素子の場合、電界発光層は、上記発光材料を含む層であり、抵抗加熱蒸着
法、電子ビーム蒸着(EB蒸着)法等の真空蒸着法、スパッタリング法等の物理気相成長
法(PVD)、有機金属CVD法、ハイドライド輸送減圧CVD法等の化学気相成長法(
CVD)、原子層エピタキシ法(ALE)等を用いて形成することができる。
【0279】
図23(A)乃至(C)に発光素子として用いることのできる薄膜型無機EL素子の一例
を示す。図23(A)乃至(C)において、発光素子は、第1の電極層50、電界発光層
52、第2の電極層53を含む。
【0280】
図23(B)及び図23(C)に示す発光素子は、図23(A)の発光素子において、電
極層と電界発光層間に絶縁層を設ける構造である。図23(B)に示す発光素子は、第1
の電極層50と電界発光層52との間に絶縁層54を有し、図23(C)に示す発光素子
は、第1の電極層50と電界発光層52との間に絶縁層54a、第2の電極層53と電界
発光層52との間に絶縁層54bとを有している。このように絶縁層は電界発光層を挟持
する一対の電極層のうち一方の間にのみ設けてもよいし、両方の間に設けてもよい。また
絶縁層は単層でもよいし複数層からなる積層でもよい。
【0281】
また、図23(B)では第1の電極層50に接するように絶縁層54が設けられているが
、絶縁層と電界発光層の順番を逆にして、第2の電極層53に接するように絶縁層54を
設けてもよい。
【0282】
分散型無機EL素子の場合、粒子状の発光材料をバインダ中に分散させ膜状の電界発光層
を形成する。発光材料の作製方法によって、十分に所望の大きさの粒子が得られない場合
は、乳鉢等で粉砕などによって粒子状に加工すればよい。バインダとは、粒状の発光材料
を分散した状態で固定し、電界発光層としての形状に保持するための物質である。発光材
料は、バインダによって電界発光層中に均一に分散し固定される。
【0283】
分散型無機EL素子の場合、電界発光層の形成方法は、選択的に電界発光層を形成できる
液滴吐出法や、印刷法(スクリーン印刷やオフセット印刷など)、スピンコート法などの
塗布法、ディッピング法、ディスペンサ法などを用いることもできる。膜厚は特に限定さ
れることはないが、好ましくは、10〜1000nmの範囲である。また、発光材料及び
バインダを含む電界発光層において、発光材料の割合は50wt%以上80wt%以下と
するよい。
【0284】
図24(A)乃至(C)に発光素子として用いることのできる分散型無機EL素子の一例
を示す。図24(A)における発光素子は、第1の電極層60、電界発光層62、第2の
電極層63の積層構造を有し、電界発光層62中にバインダによって保持された発光材料
61を含む。
【0285】
本実施の形態に用いることのできるバインダとしては、有機材料や無機材料を用いること
ができ、有機材料及び無機材料の混合材料を用いてもよい。有機材料としては、シアノエ
チルセルロース系樹脂のように、比較的誘電率の高いポリマーや、ポリエチレン、ポリプ
ロピレン、ポリスチレン系樹脂、シリコーン樹脂、エポキシ樹脂、フッ化ビニリデンなど
の樹脂を用いることができる。また、芳香族ポリアミド、ポリベンゾイミダゾール(po
lybenzimidazole)などの耐熱性高分子、又はシロキサン樹脂を用いても
よい。なお、シロキサン樹脂とは、Si−O−Si結合を含む樹脂に相当する。シロキサ
ンは、シリコン(Si)と酸素(O)との結合で骨格構造が構成される。置換基として、
少なくとも水素を含む有機基(例えばアルキル基、芳香族炭化水素)が用いられる。置換
基として、フルオロ基を用いてもよい。または置換基として、少なくとも水素を含む有機
基と、フルオロ基とを用いてもよい。また、ポリビニルアルコール、ポリビニルブチラー
ルなどのビニル樹脂、フェノール樹脂、ノボラック樹脂、アクリル樹脂、メラミン樹脂、
ウレタン樹脂、オキサゾール樹脂(ポリベンゾオキサゾール)等の樹脂材料を用いてもよ
い。これらの樹脂に、チタン酸バリウム(BaTiO)やチタン酸ストロンチウム(S
rTiO)などの高誘電率の微粒子を適度に混合して誘電率を調整することもできる。
【0286】
バインダに含まれる無機材料としては、酸化珪素(SiOx)、窒化珪素(SiNx)、
酸素及び窒素を含む珪素、窒化アルミニウム(AlN)、酸素及び窒素を含むアルミニウ
ムまたは酸化アルミニウム(Al)、酸化チタン(TiO)、BaTiO、S
rTiO、チタン酸鉛(PbTiO)、ニオブ酸カリウム(KNbO)、ニオブ酸
鉛(PbNbO)、酸化タンタル(Ta)、タンタル酸バリウム(BaTa
)、タンタル酸リチウム(LiTaO)、酸化イットリウム(Y)、酸化ジル
コニウム(ZrO)、その他の無機材料を含む物質から選ばれた材料で形成することが
できる。有機材料に、誘電率の高い無機材料を含ませる(添加等によって)ことによって
、発光材料及びバインダよりなる電界発光層の誘電率をより制御することができ、より誘
電率を大きくすることができる。バインダに無機材料と有機材料との混合層を用い、高い
誘電率とすると、発光材料により大きい電荷を誘起することができる。
【0287】
作製工程において、発光材料はバインダを含む溶液中に分散されるが本実施の形態に用い
ることのできるバインダを含む溶液の溶媒としては、バインダ材料が溶解し、電界発光層
を形成する方法(種々のウエットプロセス)及び所望の膜厚に適した粘度の溶液を作製で
きるような溶媒を適宜選択すればよい。有機溶媒等を用いることができ、例えばバインダ
としてシロキサン樹脂を用いる場合は、プロピレングリコールモノメチルエーテル、プロ
ピレングリコールモノメチルエーテルアセテート(PGMEAともいう)、3−メトシキ
−3メチル−1−ブタノール(MMBともいう)などを用いることができる。
【0288】
図24(B)及び図24(C)に示す発光素子は、図24(A)の発光素子において、電
極層と電界発光層間に絶縁層を設ける構造である。図24(B)に示す発光素子は、第1
の電極層60と電界発光層62との間に絶縁層64を有し、図24(C)に示す発光素子
は、第1の電極層60と電界発光層62との間に絶縁層64a、第2の電極層63と電界
発光層62との間に絶縁層64bとを有している。このように絶縁層は電界発光層を挟持
する一対の電極層のうち一方の間にのみ設けてもよいし、両方の間に設けてもよい。また
絶縁層は単層でもよいし複数層からなる積層でもよい。
【0289】
また、図24(B)では第1の電極層60に接するように絶縁層64が設けられているが
、絶縁層と電界発光層の順番を逆にして、第2の電極層63に接するように絶縁層64を
設けてもよい。
【0290】
図23における絶縁層54、図24における絶縁層64のような絶縁層は、特に限定され
ることはないが、絶縁耐圧が高く、緻密な膜質であることが好ましく、さらには、誘電率
が高いことが好ましい。例えば、酸化シリコン(SiO)、酸化イットリウム(Y
)、酸化チタン(TiO)、酸化アルミニウム(Al)、酸化ハフニウム(H
fO)、酸化タンタル(Ta)、チタン酸バリウム(BaTiO)、チタン酸
ストロンチウム(SrTiO)、チタン酸鉛(PbTiO)、窒化シリコン(Si
)、酸化ジルコニウム(ZrO)等やこれらの混合膜又は2種以上の積層膜を用い
ることができる。これらの絶縁膜は、スパッタリング、蒸着、CVD等により成膜するこ
とができる。また、絶縁層はこれら絶縁材料の粒子をバインダ中に分散して成膜してもよ
い。バインダ材料は、電界発光層に含まれるバインダと同様な材料、方法を用いて形成す
ればよい。膜厚は特に限定されることはないが、好ましくは10〜1000nmの範囲で
ある。
【0291】
本実施の形態で示す発光素子は、電界発光層を挟持する一対の電極層間に電圧を印加する
ことで発光が得られるが、直流駆動又は交流駆動のいずれにおいても動作することができ
る。
【0292】
本実施の形態における表示装置においても複数の凸部を有する反射防止膜を表示装置表示
画面表面に設けるので、表示装置に入射する外光のうち、反射防止膜に入射する回数が増
加するので、反射防止膜に透過する量が増える。よって、視認側に反射する外光が軽減さ
れ、写り込みなどの視認性を低下させる原因を防ぐことができる。
【0293】
さらに本発明ではその凸部の間に保護層が形成されているので、凸部間にゴミなどの汚染
物が侵入することを防ぐことができる。従って、ゴミなどの侵入による反射防止機能低下
を防ぎ、かつ凸部間を埋めることで反射防止膜としての物理的強度も高めることができ、
信頼性向上が達成できる。
【0294】
本発明は、表面に複数の凸部を有し、かつ凸部間に保護層を設けた反射防止膜を具備する
ことによってより外光の反射を軽減できる高い反射防止機能を有し視認性の優れた、かつ
信頼性の高い表示装置を提供することができる。従って、より高画質及び高性能な表示装
置を作製することができる。
【0295】
本実施の形態は、上記の実施の形態1乃至3、5、及び6と適宜自由に組み合わせること
ができる。
【0296】
(実施の形態9)
本実施の形態では、バックライトの構成について説明する。バックライトは光源を有する
バックライトユニットとして表示装置に設けられ、バックライトユニットは効率よく光を
散乱させるため、光源は反射板により囲まれている。
【0297】
図16(A)に示すように、バックライトユニット352は、光源として冷陰極管401
を用いることができる。また、冷陰極管401からの光を効率よく反射させるため、ラン
プリフレクタ332を設けることができる。冷陰極管401は、大型表示装置に用いるこ
とが多い。これは冷陰極管からの輝度の強度のためである。そのため、冷陰極管を有する
バックライトユニットは、パーソナルコンピュータのディスプレイに用いることができる

【0298】
図16(B)に示すように、バックライトユニット352は、光源として発光ダイオード
(LED)402を用いることができる。例えば、白色に発する発光ダイオード(W)4
02を所定の間隔に配置する。また、発光ダイオード(W)402からの光を効率よく反
射させるため、ランプリフレクタ332を設けることができる。
【0299】
また図16(C)に示すように、バックライトユニット352は、光源として各色RGB
の発光ダイオード(LED)403、404、405を用いることができる。各色RGB
の発光ダイオード(LED)403、404、405を用いることにより、白色を発する
発光ダイオード(W)402のみと比較して、色再現性を高くすることができる。また、
発光ダイオードからの光を効率よく反射させるため、ランプリフレクタ332を設けるこ
とができる。
【0300】
またさらに図16(D)に示すように、光源として各色RGBの発光ダイオード(LED
)403、404、405を用いる場合、それらの数や配置を同じとする必要はない。例
えば、発光強度の低い色(例えば緑)を複数配置してもよい。
【0301】
さらに白色を発する発光ダイオード402と、各色RGBの発光ダイオード(LED)4
03、404、405とを組み合わせて用いてもよい。
【0302】
なおRGBの発光ダイオードを有する場合、フィールドシーケンシャルモードを適用する
と、時間に応じてRGBの発光ダイオードを順次点灯させることによりカラー表示を行う
ことができる。
【0303】
発光ダイオードを用いると、輝度が高いため、大型表示装置に適する。また、RGB各色
の色純度が良いため冷陰極管と比べて色再現性に優れており、配置面積を小さくすること
ができるため、小型表示装置に適応すると、狭額縁化を図ることができる。
【0304】
また、光源を必ずしも図16に示すバックライトユニットとして配置する必要はない。例
えば、大型表示装置に発光ダイオードを有するバックライトを搭載する場合、発光ダイオ
ードは該基板の背面に配置することができる。このとき発光ダイオードは、所定の間隔を
維持し、各色の発光ダイオードを順に配置させることができる。発光ダイオードの配置に
より、色再現性を高めることができる。
【0305】
このようなバックライトを用いた表示装置に対し、表面に複数の凸部を有する反射防止膜
を具備することによってより外光の反射を軽減できる高い反射防止機能を有した視認性の
優れた表示装置を提供することができる。従って、本発明により高画質及び高性能な表示
装置を作製することができる。特に、発光ダイオードを有するバックライトは、大型表示
装置に適しており、大型表示装置のコントラスト比を高めることにより、暗所でも質の高
い映像を提供することができる。
【0306】
本実施の形態は、上記の実施の形態1乃至4と適宜自由に組み合わせることができる。
【0307】
(実施の形態10)
図15は、本発明を適用して作製されるEL表示モジュールを構成する一例を示している
。図15において、基板2800上には、画素により構成された画素部が形成されている
。基板2800及び封止基板2820は可撓性を有する基板を用いている。
【0308】
図15では、画素部の外側であって、駆動回路と画素との間に、画素に形成されたものと
同様なTFT又はそのTFTのゲートとソース若しくはドレインの一方とを接続してダイ
オードと同様に動作させた保護回路部2801が備えられている。駆動回路2809は、
単結晶半導体で形成されたドライバIC、ガラス基板上に多結晶半導体膜で形成されたス
ティックドライバIC、若しくはSASで形成された駆動回路などが適用されている。
【0309】
素子層が転写された基板2800は、液滴吐出法で形成されたスペーサ2806a、スペ
ーサ2806bを介して封止基板2820と固着されている。スペーサは、基板の厚さが
薄く、また画素部の面積が大型化した場合にも、2枚の基板の間隔を一定に保つために設
けておくことが好ましい。TFT2802、TFT2803とそれぞれ接続する発光素子
2804、発光素子2805上であって、基板2800と封止基板2820との間にある
空隙には透光性の樹脂材料を充填して固体化しても良いし、無水化した窒素若しくは不活
性気体を充填させても良い。視認側である封止基板2820の外側に凸部を有する反射防
止膜2827が設けられ、反射防止膜2827の凸部を埋めるように保護層2828が形
成されている。
【0310】
図15では発光素子2804、発光素子2805を上面放射型(トップエミッション型)
の構成とした場合を示し、図中に示す矢印の方向に光を放射する構成としている。各画素
は、画素を赤色、緑色、青色として発光色を異ならせておくことで、多色表示を行うこと
ができる。また、このとき封止基板2820側に各色に対応した着色層2807a、着色
層2807b、着色層2807cを形成しておくことで、外部に放射される発光の色純度
を高めることができる。また、画素を白色発光素子として着色層2807a、着色層28
07b、着色層2807cと組み合わせても良い。
【0311】
外部回路である駆動回路2809は、外部回路基板2811の一端に設けられた走査線若
しくは信号線接続端子と、配線基板2810で接続される。また、基板2800に接して
若しくは近接させて、熱を機器の外部へ伝えるために使われる、パイプ状の高効率な熱伝
導デバイスであるヒートパイプ2813と放熱板2812を設け、放熱効果を高める構成
としても良い。
【0312】
なお、図15では、トップエミッションのELモジュールとしたが、発光素子の構成や
外部回路基板の配置を変えてボトムエミッション構造、もちろん上面、下面両方から光が
放射する両面放射構造としても良い。トップエミッション型の構成の場合、隔壁となる絶
縁層を着色しブラックマトリクスとして用いてもよい。この隔壁は液滴吐出法により形成
することができ、ポリイミドなどの樹脂材料に、顔料系の黒色樹脂やカーボンブラック等
を混合させて形成すればよく、その積層でもよい。
【0313】
また、位相差板や偏光板を用いて、外部から入射する光の反射光を遮断するようにして
もよい。隔壁となる絶縁層を着色しブラックマトリクスとして用いてもよい。この隔壁は
液滴吐出法により形成することができ、ポリイミドなどの樹脂材料に、カーボンブラック
等を混合させてもよく、その積層でもよい。液滴吐出法によって、異なった材料を同領域
に複数回吐出し、隔壁を形成してもよい。位相差板としてはλ/4板、λ/2板を用い、
光を制御できるように設計すればよい。構成としては、順にTFT素子基板、発光素子、
封止基板(封止材)、位相差板(λ/4、λ/2)、偏光板となり、発光素子から放射さ
れた光は、これらを通過し偏光板側より外部に放射される。この位相差板や偏光板は光が
放射される側に設置すればよく、両面放射される両面放射型の表示装置であれば両方に設
置することもできる。また、偏光板の外側に反射防止膜を有していても良い。これにより
、より高繊細で精密な画像を表示することができる。
【0314】
また、本発明は視認側の基板上に複数の凸部を有する反射防止膜を設けるが、視認側と
素子を介して反対側の封止構造において、画素部が形成された側にシール材や接着性の樹
脂を用いて樹脂フィルムを貼り付けて封止構造を形成してもよい。樹脂による樹脂封止、
プラスチックによるプラスチック封止、フィルムによるフィルム封止、など様々な封止方
法を用いることができる。樹脂フィルムの表面には水蒸気の透過を防止するガスバリア膜
を設けておくと良い。フィルム封止構造とすることで、さらなる薄型化及び軽量化を図る
ことができる。
【0315】
本実施の形態における表示装置においても複数の凸部を有する反射防止膜を表示装置表示
画面表面に設けるので、表示装置に入射する外光のうち、反射防止膜に入射する回数が増
加するので、反射防止膜に透過する量が増える。よって、視認側に反射する外光が軽減さ
れ、写り込みなどの視認性を低下させる原因を防ぐことができる。
【0316】
さらに本発明ではその凸部の間に保護層が形成されているので、凸部間にゴミなどの汚染
物が侵入することを防ぐことができる。従って、ゴミなどの侵入による反射防止機能低下
を防ぎ、かつ凸部間を埋めることで反射防止膜としての物理的強度も高めることができ、
信頼性向上が達成できる。
【0317】
本発明は、表面に複数の凸部を有し、かつ凸部間に保護層を設けた反射防止膜を具備する
ことによってより外光の反射を軽減できる高い反射防止機能を有し視認性の優れた、かつ
信頼性の高い表示装置を提供することができる。従って、より高画質及び高性能な表示装
置を作製することができる。
【0318】
本実施の形態は、上記の実施の形態1乃至3、5乃至8と適宜自由に組み合わせることが
できる。
【0319】
(実施の形態11)
本実施の形態を図14(A)及び図14(B)を用いて説明する。図14(A)、図14
(B)は、本発明を適用して作製されるTFT基板2600を用いて表示装置(液晶表示
モジュール)を構成する一例を示している。
【0320】
図14(A)は液晶表示モジュールの一例であり、TFT基板2600と対向基板260
1がシール材2602により固着され、その間にTFT等を含む画素部2603、液晶層
を含む表示素子2604、着色層2605、偏光板2606が設けられ表示領域を形成し
ている。着色層2605はカラー表示を行う場合に必要であり、RGB方式の場合は、赤
、緑、青の各色に対応した着色層が各画素に対応して設けられている。TFT基板260
0の外側に偏光板2607、拡散板2613が配置されている。対向基板2601の内側
には偏光板2606、外側には反射防止膜2626が配設されている。光源は冷陰極管2
610と反射板2611により構成され、回路基板2612は、フレキシブル配線基板2
609によりTFT基板2600と接続され、コントロール回路や電源回路などの外部回
路が組みこまれている。また偏光板と、液晶層との間に位相差板を有した状態で積層して
もよい。本実施の形態では反射防止膜2626は、凸部間を埋めるように保護層2627
を有する反射防止膜である。
【0321】
また、図14(A)の表示装置では、対向基板2601の外側に反射防止膜2626を設
け、内側に偏光板2606、着色層2605という順に設ける例を示すが、偏光板260
6は対向基板2601の外側(視認側)に設けてもよく、その場合、偏光板2606表面
に反射防止膜2626を設ければよい。また、偏光板2606と着色層2605の積層構
造も図14(A)に限定されず、偏光板2606及び着色層2605の材料や作製工程条
件によって適宜設定すればよい。
【0322】
液晶表示モジュールには、TN(Twisted Nematic)モード、IPS(I
n−Plane−Switching)モード、FFS(Fringe Field S
witching)モード、MVA(Multi−domain Vertical A
lignment)モード、PVA(Patterned Vertical Alig
nment)、ASM(Axially Symmetric aligned Mic
ro−cell)モード、OCB(Optical Compensated Bire
fringence)モード、FLC(Ferroelectric Liquid C
rystal)モード、AFLC(AntiFerroelectric Liquid
Crystal)などを用いることができる。
【0323】
図14(B)は図14(A)の液晶表示モジュールにOCBモードを適用した一例であり
、FS−LCD(Field sequential−LCD)となっている。FS−L
CDは、1フレーム期間に赤色発光と緑色発光と青色発光をそれぞれ行うものであり、時
間分割を用いて画像を合成しカラー表示を行うことが可能である。また、各発光を発光ダ
イオードまたは冷陰極管等で行うので、カラーフィルタが不要である。よって、3原色の
カラーフィルタを並べ、各色の表示領域を限定する必要がなく、どの領域でも3色全ての
表示を行うことができる。一方、1フレーム期間に3色の発光を行うため、液晶の高速な
応答が求められる。本発明の表示装置に、FS方式を用いたFLCモード、及びOCBモ
ードを適用し、高性能で高画質な表示装置、また液晶テレビジョン装置を完成させること
ができる。
【0324】
OCBモードの液晶層は、いわゆるπセル構造を有している。πセル構造とは、液晶分子
のプレチルト角がアクティブマトリクス基板と対向基板との基板間の中心面に対して面対
称の関係で配向された構造である。πセル構造の配向状態は、基板間に電圧が印加されて
いない時はスプレイ配向となり、電圧を印加するとベンド配向に移行する。このベンド配
向が白表示となる。さらに電圧を印加するとベンド配向の液晶分子が両基板と垂直に配向
し、光が透過しない状態となる。なお、OCBモードにすると、従来のTNモードより約
10倍速い高速応答性を実現できる。
【0325】
また、FS方式に対応するモードとして、高速動作が可能な強誘電性液晶(FLC:Fe
rroelectric Liquid Crystal)を用いたHV(Half V
)−FLC、SS(Surface Stabilized)−FLCなども用いること
ができる。OCBモードは粘度の比較的低いネマチック液晶を用い、HV−FLC、SS
−FLCには、強誘電相を有するスメクチック液晶を用いることができる。
【0326】
また、液晶表示モジュールの高速光学応答速度は、液晶表示モジュールのセルギャップを
狭くすることで高速化する。また液晶材料の粘度を下げることでも高速化できる。上記高
速化は、TNモードの液晶表示モジュールの画素領域の画素ピッチが30μm以下の場合
に、より効果的である。また、印加電圧を一瞬だけ高く(または低く)するオーバードラ
イブ法により、より高速化が可能である。
【0327】
図14(B)の液晶表示モジュールは透過型の液晶表示モジュールを示しており、光源と
して赤色光源2910a、緑色光源2910b、青色光源2910cが設けられている。
光源は赤色光源2910a、緑色光源2910b、青色光源2910cのそれぞれオンオ
フを制御するために、制御部2912が設置されている。制御部2912によって、各色
の発光は制御され、液晶に光は入射し、時間分割を用いて画像を合成し、カラー表示が行
われる。
【0328】
本実施の形態における表示装置においても複数の凸部を有する反射防止膜を表示装置表示
画面表面に設けるので、表示装置に入射する外光のうち、反射防止膜に入射する回数が増
加するので、反射防止膜に透過する量が増える。よって、視認側に反射する外光が軽減さ
れ、写り込みなどの視認性を低下させる原因を防ぐことができる。
【0329】
さらに本発明ではその凸部の間に保護層が形成されているので、凸部間にゴミなどの汚染
物が侵入することを防ぐことができる。従って、ゴミなどの侵入による反射防止機能低下
を防ぎ、かつ凸部間を埋めることで反射防止膜としての物理的強度も高めることができ、
信頼性向上が達成できる。
【0330】
本発明は、表面に複数の凸部を有し、かつ凸部間に保護層を設けた反射防止膜を具備する
ことによってより外光の反射を軽減できる高い反射防止機能を有し視認性の優れた、かつ
信頼性の高い表示装置を提供することができる。従って、より高画質及び高性能な表示装
置を作製することができる。
【0331】
本実施の形態は、上記の実施の形態1乃至4、及び9と適宜自由に組み合わせることがで
きる。
【0332】
(実施の形態12)
本発明によって形成される表示装置によって、テレビジョン装置(単にテレビ、又はテレ
ビジョン受信機ともよぶ)を完成させることができる。図19はテレビジョン装置の主要
な構成を示すブロック図を示している。
【0333】
図17(A)は本発明に係る表示パネルの構成を示す上面図であり、絶縁表面を有する基
板2700上に画素2702をマトリクス上に配列させた画素部2701、走査線側入力
端子2703、信号線側入力端子2704が形成されている。画素数は種々の規格に従っ
て設ければ良く、XGAであってRGBを用いたフルカラー表示であれば1024×76
8×3(RGB)、UXGAであってRGBを用いたフルカラー表示であれば1600×
1200×3(RGB)、フルスペックハイビジョンに対応させ、RGBを用いたフルカ
ラー表示であれば1920×1080×3(RGB)とすれば良い。
【0334】
画素2702は、走査線側入力端子2703から延在する走査線と、信号線側入力端子2
704から延在する信号線とが交差することで、マトリクス状に配設される。画素部27
01の画素それぞれには、スイッチング素子とそれに接続する画素電極層が備えられてい
る。スイッチング素子の代表的な一例はTFTであり、TFTのゲート電極層側が走査線
と、ソース若しくはドレイン側が信号線と接続されることにより、個々の画素を外部から
入力する信号によって独立して制御可能としている。
【0335】
図17(A)は、走査線及び信号線へ入力する信号を、外付けの駆動回路により制御する
表示パネルの構成を示しているが、図18(A)に示すように、COG(Chip on
Glass)方式によりドライバIC2751を基板2700上に実装しても良い。ま
た他の実装形態として、図18(B)に示すようなTAB(Tape Automate
d Bonding)方式を用いてもよい。ドライバICは単結晶半導体基板に形成され
たものでも良いし、ガラス基板上にTFTで回路を形成したものであっても良い。図18
において、ドライバIC2751は、FPC(Flexible printed ci
rcuit)2750と接続している。
【0336】
また、画素に設けるTFTを結晶性を有する半導体で形成する場合には、図17(B)に
示すように走査線側駆動回路3702を基板3700上に形成することもできる。図17
(B)において、画素部3701は、信号線側入力端子3704と接続した図17(A)
と同様に外付けの駆動回路により制御する。画素に設けるTFTを移動度の高い、多結晶
(微結晶)半導体、単結晶半導体などで形成する場合は、図17(C)に示すように、画
素部4701、走査線駆動回路4702と、信号線駆動回路4704を基板4700上に
一体形成することもできる。
【0337】
表示パネルには、図17(A)で示すような構成として、図19において、画素部901
のみが形成されて走査線側駆動回路903と信号線側駆動回路902とが、図18(B)
のようなTAB方式により実装される場合と、図18(A)のようなCOG方式により実
装される場合と、図17(B)に示すようにTFTを形成し、画素部901と走査線側駆
動回路903を基板上に形成し信号線側駆動回路902を別途ドライバICとして実装す
る場合、また図18(C)で示すように画素部901と信号線側駆動回路902と走査線
側駆動回路903を基板上に一体形成する場合などがあるが、どのような形態としても良
い。
【0338】
図19において、その他の外部回路の構成として、映像信号の入力側では、チューナ90
4で受信した信号のうち、映像信号を増幅する映像信号増幅回路905と、そこから出力
される信号を赤、緑、青の各色に対応した色信号に変換する映像信号処理回路906と、
その映像信号をドライバICの入力仕様に変換するためのコントロール回路907などか
らなっている。コントロール回路907は、走査線側と信号線側にそれぞれ信号が出力す
る。デジタル駆動する場合には、信号線側に信号分割回路908を設け、入力デジタル信
号をm個に分割して供給する構成としても良い。
【0339】
チューナ904で受信した信号のうち、音声信号は、音声信号増幅回路909に送られ、
その出力は音声信号処理回路910を経てスピーカー913に供給される。制御回路91
1は受信局(受信周波数)や音量の制御情報を入力部912から受け、チューナ904や
音声信号処理回路910に信号を送出する。
【0340】
これらの表示モジュールを、図20(A)、(B)に示すように、筐体に組みこんで、テ
レビジョン装置を完成させることができる。表示モジュールとして液晶表示モジュールを
用いれば液晶テレビジョン装置、ELモジュールを用いればELテレビジョン装置、また
プラズマテレビジョン、電子ぺーパーなども作製することができる。図20(A)におい
て、表示モジュールにより主画面2003が形成され、その他付属設備としてスピーカー
部2009、操作スイッチなどが備えられている。このように、本発明によりテレビジョ
ン装置を完成させることができる。
【0341】
筐体2001に表示用パネル2002が組みこまれ、受信機2005により一般のテレビ
放送の受信をはじめ、モデム2004を介して有線又は無線による通信ネットワークに接
続することにより一方向(送信者から受信者)又は双方向(送信者と受信者間、又は受信
者間同士)の情報通信をすることもできる。テレビジョン装置の操作は、筐体に組みこま
れたスイッチ又は別体のリモコン装置2006により行うことが可能であり、このリモコ
ン装置にも出力する情報を表示する表示部2007が設けられていても良い。
【0342】
また、テレビジョン装置にも、主画面2003の他にサブ画面2008を第2の表示用パ
ネルで形成し、チャネルや音量などを表示する構成が付加されていても良い。この構成に
おいて、主画面2003及びサブ画面2008を本発明の液晶表示用パネルで形成するこ
とができし、主画面2003を視野角の優れたEL表示用パネルで形成し、サブ画面を低
消費電力で表示可能な液晶表示用パネルで形成しても良い。また、低消費電力化を優先さ
せるためには、主画面2003を液晶表示用パネルで形成し、サブ画面をEL表示用パネ
ルで形成し、サブ画面は点滅可能とする構成としても良い。本発明を用いると、このよう
な大型基板を用いて、多くのTFTや電子部品を用いても、信頼性の高い表示装置とする
ことができる。
【0343】
図20(B)は例えば20〜80インチの大型の表示部を有するテレビジョン装置であり
、筐体2010、表示部2011、操作部であるリモコン装置2012、スピーカー部2
013等を含む。本発明は、表示部2011の作製に適用される。図20(B)のテレビ
ジョン装置は、壁かけ型となっており、設置するスペースを広く必要としない。
【0344】
勿論、本発明はテレビジョン装置に限定されず、パーソナルコンピュータのモニタをはじ
め、鉄道の駅や空港などにおける情報表示盤や、街頭における広告表示盤など特に大面積
の表示媒体として様々な用途に適用することができる。
【0345】
本実施の形態は、上記の実施の形態1乃至11と適宜自由に組み合わせることができる。
【0346】
(実施の形態13)
本発明に係る電子機器として、テレビジョン装置(単にテレビ、又はテレビジョン受信機
ともよぶ)、デジタルカメラ、デジタルビデオカメラ、携帯電話装置(単に携帯電話機、
携帯電話ともよぶ)、PDA等の携帯情報端末、携帯型ゲーム機、コンピュータ用のモニ
タ、コンピュータ、カーオーディオ等の音響再生装置、家庭用ゲーム機等の記録媒体を備
えた画像再生装置等が挙げられる。その具体例について、図21を参照して説明する。
【0347】
図21(A)に示す携帯情報端末機器は、本体9201、表示部9202等を含んでいる
。表示部9202は、本発明の表示装置を適用することができる。その結果、視認性が優
れた高画質な画像を表示することができる高性能な携帯情報端末機器を提供することがで
きる。
【0348】
図21(B)に示すデジタルビデオカメラは、表示部9701、表示部9702等を含ん
でいる。表示部9701は本発明の表示装置を適用することができる。その結果、視認性
が優れた高画質な画像を表示することができる高性能なデジタルビデオカメラを提供する
ことができる。
【0349】
図21(C)に示す携帯電話機は、本体9101、表示部9102等を含んでいる。表示
部9102は、本発明の表示装置を適用することができる。その結果、視認性が優れた高
画質な画像を表示することができる高性能な携帯電話機を提供することができる。
【0350】
図21(D)に示す携帯型のテレビジョン装置は、本体9301、表示部9302等を含
んでいる。表示部9302は、本発明の表示装置を適用することができる。その結果、視
認性が優れた高画質な画像を表示することができる高性能な携帯型のテレビジョン装置を
提供することができる。またテレビジョン装置としては、携帯電話機などの携帯端末に搭
載する小型のものから、持ち運びをすることができる中型のもの、また、大型のもの(例
えば40インチ以上)まで、幅広いものに、本発明の表示装置を適用することができる。
【0351】
図21(E)に示す携帯型のコンピュータは、本体9401、表示部9402等を含んで
いる。表示部9402は、本発明の表示装置を適用することができる。その結果、視認性
が優れた高画質な画像を表示することができる高性能な携帯型のコンピュータを提供する
ことができる。
【0352】
このように、本発明の表示装置により、視認性が優れた高画質な画像を表示することがで
きる高性能な電子機器を提供することができる。
【0353】
本実施の形態は、上記の実施の形態1乃至12と適宜自由に組み合わせることができる。
【実施例1】
【0354】
本実施例では本発明に用いる反射防止膜を用いた光学計算の結果について説明する。また
、比較として積層構造の反射防止膜についても光学計算を行った。本実施例では表1、表
2、及び図26乃至図30を用いて説明する。
【0355】
本実施例においての計算は、光デバイス用光学計算シミュレータFullWAVE(Rs
oft株式会社製)を用いている。反射率の計算を2次元で光学計算を行い計算した。
【0356】
比較例として低屈折率層及び高屈折率層の積層からなる多層構造の反射防止膜の外光に対
する反射に関して計算を行った。比較例は図26に示すようにガラス基板10(n=1.
52、反射率4%)上に高屈折率層11a(n=1.9)及び低屈折率層11b(n=1
.34)からなる反射防止膜11を形成し、低屈折率層11b表面は空気12(n=1.
0)にさらされている。比較例の構造、各屈折率、厚さを表1に示す。
【0357】
【表1】

【0358】
なお、高屈折率層11aは光路長(実際の距離×屈折率)が視感度の高い波長λ550n
mの4分の1になるように設定した薄膜(Q:λ/4とも示す)であり、低屈折率層11
bは光路長(実際の距離×屈折率)が視感度の高い波長550nmの2分の1になるよう
に設定した薄膜(H:λ/2とも示す)であるので、反射防止膜11は所謂QH型反射防
止膜である。外光に該当する光はガラス基板10及び反射防止膜11上方より空気側より
垂直に照射され、ガラス基板10及び反射防止膜11より空気側に反射される反射光をモ
ニター14で検出した。光源13より照射された光は空気層を通過し、低屈折率層11b
、高屈折率層11a、ガラス基板10へ入射する。
【0359】
比較例における波長と反射率の関係を図27に示す。図27に示すように、可視光領域で
ある測定領域波長380nm〜780nmにおいて反射率は一定ではなく、波長依存が見
られる。波長約450nm〜約750nm付近では反射率は1%以下であるが、450n
m以下、及び750nm以上の短波長、長波長の領域になると反射率は増加している。こ
の反射率の増加は特に450nm以下の短波長、紫外光において顕著であった。このよう
に比較例のような積層構造であると可視光領域である測定領域波長380nm〜780n
mにおいて均一な低反射率を示すことは困難であり、また、550nm付近であっても反
射率は約1%程度しか低下させることが難しいことが確認できる。
【0360】
本発明を用いた表面に凸部を有する反射防止膜の外光に対する反射に関して計算を行った
。本実施例では試料A1〜A8として複数隣接する円錐型の凸部を用い、凸部は底面と垂
直な面における断面が図28に示すような二等辺三角形となる。図28において基板20
上に凸部21及び凸部間を埋めるように保護層22が設けられている。断面に示すように
円錐の高さHと底面の直径Lとの比に依存して角度θは決定する。円錐の高さH:底面の
直径Lを29:1、10:1、9.5:1、5.7:1、4.1:1、2.8:1、2.
4:1、1.9:1と変えて、角度θが89、87.2、87、85、83、80、78
、75(deg.)における試料A1〜A8に外光に対応する光を入射し、凸部を有する
反射防止膜より反射される光の反射率を計算した。表2に試料A1〜A8の断面における
角度θ、高さH:直径(底辺)L、高さH及び直径(底辺)Lの大きさを示す。
【0361】
【表2】

【0362】
また凸部は酸素を含む窒化珪素とし光の波長に対する屈折率を設定し(例えば屈折率1.
48(波長380nm)、1.47(波長550nm)、1.46(波長780nm))
、凸部を有する反射防止膜が設けられる基板はガラス基板(屈折率1.52)、保護層の
屈折率は1.05とした。
【0363】
図29に試料A1〜A8の外光の波長と反射率の関係を示す。図29に示すように、試料
A1〜A5においては測定した可視光波長領域(380nm〜700nm)において反射
率は約0.4%以下であったが、試料A6〜A8においては可視光波長領域において反射
率は約0.2%以上、波長によっては約0.4%〜約0.6%という大きな値となった。
図30に図29の結果を凸部の斜辺の角度と測定波長における平均反射率の関係に表した
グラフを示す。試料A1は角度89度、試料A2は角度87.2度、試料A3は角度87
度、試料A4は角度85度、試料A5は角度83度、試料A6は角度80度、試料A7は
角度78度、試料A8は角度75度にそれぞれ対応している。角度84度以上90度未満
においては平均反射率は0.15%以下であるのに対し、82度、80度では急激に平均
反射率が0.3%付近まで増加している。この結果より、凸部の斜辺の角度は84度以上
90度未満であると、外光の反射を平均反射率0.15%以下に軽減することができる。
よって本発明の反射防止膜を用いると高い反射防止効果を発揮することが確認できる。
【実施例2】
【0364】
本実施例では本発明を用いた表面に凸部を有する反射防止膜の外光に対する反射に関して
計算を行った。本実施例を表3、図31及び図32を用いて説明する。
【0365】
本発明を用いた表面に凸部を有する反射防止膜の外光に対する反射に関して計算を行った
。本実施例でも実施例1と同様試料Bとして円錐型の凸部を用い、凸部は底面と垂直な面
における断面が図28に示すような二等辺三角形となる。断面に示すように円錐の高さH
と底面の直径Lとの比に依存して角度θは決定する。円錐の高さH:底面の直径Lは10
:1、図30において低い反射率を示した角度87.2度(deg.)は一定となるよう
に、円錐の高さHを1μm、1.5μm、2.0μm、2.25μm、2.5μm、3.
0μmと変え、それに伴い底面の直径Lの大きさを0.1μm、0.15μm、0.20
μm、0.225μm、0.25μm、0.30μmと変えて試料B1〜B6とする。試
料B1〜B6に外光に対応する光を入射し、凸部を有する反射防止膜より反射される光の
反射率を計算した。表3に試料B1〜B6の断面における角度θ、高さH:直径(底辺)
L、高さH及び直径(底辺)Lの大きさを示す。
【0366】
【表3】

【0367】
また凸部は酸素を含む窒化珪素とし光の波長に対する屈折率を設定し(例えば屈折率1.
48(波長380nm)、1.47(波長550nm)、1.46(波長780nm))
、凸部を有する反射防止膜が設けられる基板はガラス基板(屈折率1.52)、保護層の
屈折率は1.05とした。
【0368】
図31に試料B1〜B6の外光の波長と反射率の関係を示す。図31に示すように、試料
B1〜B6においては測定した可視光波長領域(380nm〜780nm)において反射
率は約0.2%以下であった。図32に図31の結果を凸部の斜辺の高さと測定波長にお
ける平均反射率の関係に表したグラフを示す。試料B1は高さ1μm、試料B2は高さ1
.5μm、試料B3は高さ2.0μm、試料B4は高さ2.25μm、試料B5は2.5
μm、試料B6は3μmにそれぞれ対応している。高さ1μmから3μmにおいては平均
反射率は約0.1%以下である。この結果より、凸部の大きさは斜辺の角度は87、2度
において、高さ1μm〜3μm範囲で外光の反射を反射率約0.1%以下に軽減すること
ができ、高い反射防止効果を発揮することが確認できる。また高さ1μm〜3μmにおけ
る凸部であると可視光領域の光に対する透光性も低下しない。
【実施例3】
【0369】
本実施例では本発明を用いた表面に凸部を有する反射防止膜の外光に対する反射に関して
計算を行った。本実施例を表4、図33乃至図35を用いて説明する。
【0370】
本発明を用いた表面に凸部を有する反射防止膜の外光に対する反射に関して計算を行った
。本実施例では試料C1〜C7として複数隣接する表面に上底面を有する円錐型の凸部を
用い、凸部は底面と垂直な面における断面が図33に示すような台形となる。図33にお
いて基板30上に凸部31及び凸部間を埋めるように保護層32が設けられている。断面
に示すように台形の高さは1μmとし、上平面の直径(上底aという)と底面の(直径下
底b)というとの比に依存して角度θは決定する。上底a/下底bを0、0.05、0.
075、0.1、0.125、0.15、0.2と変えて、各角度θにおける試料C1〜
C7に外光に対応する光を入射し、凸部を有する反射防止膜より反射される光の反射率を
計算した。表4に試料C1〜C7の断面における上底a/下底bを示す。
【0371】
【表4】

【0372】
また凸部は酸素を含む窒化珪素とし光の波長に対する屈折率を設定し(例えば屈折率1.
48(波長380nm)、1.47(波長550nm)、1.46(波長780nm))
、凸部を有する反射防止膜が設けられる基板はガラス基板(屈折率1.52)、保護層の
屈折率は1.05とした。
【0373】
図34に試料C1〜C7の外光の波長と反射率の関係を示す。図34に示すように、試料
C1〜C7においては測定した可視光波長領域(380nm〜780nm)において反射
率は約0.7%以下であった。図35に図34の結果を上底aと下底aの比を示す上底a
/下底bと測定波長における平均反射率の関係に表したグラフを示す。試料C1は上底a
/下底bにおいて試料C1は0、試料C2は0.05、試料C3は0.075、試料C4
は0.1、試料C5は0.125、試料C6は0.15、試料C7は0.2にそれぞれ対
応している。比率0から0.2においては平均反射率は約0.7%以下である。この結果
より、上底面と下底面を有する凸部において、上底と下底の比が0.2以下の範囲で外光
の反射を反射率約0.7%以下、平均反射率約0.5%以下に軽減することができ、高い
反射防止効果を発揮することが確認できる。

【特許請求の範囲】
【請求項1】
第1の透光性基板と、第2の透光性基板とを有し、
前記第1の透光性基板は、トランジスタを有し、
前記第2の透光性基板は、表示画面側に、第1の凸部及び第2の凸部を有し、
前記第2の透光性基板は、前記表示画面側に、保護層を有し、
前記保護層は、前記第1の凸部の上が露出するように選択的に設けられ、
前記保護層は、前記第2の凸部の上が露出するように選択的に設けられ、
前記第1の凸部は、前記第2の透光性基板と異なる材料を有し、
前記第2の凸部は、前記第2の透光性基板と異なる材料を有し、
前記第1の凸部の底部は、前記第2の凸部の底部と間隔を有して配置されたことを特徴とする表示装置。
【請求項2】
第1の透光性基板と、第2の透光性基板とを有し、
前記第1の透光性基板は、トランジスタを有し、
前記第2の透光性基板は、表示画面側に、第1の凸部及び第2の凸部を有し、
前記第2の透光性基板は、前記表示画面側に、保護層を有し、
前記保護層は、前記第1の凸部の上が露出するように選択的に設けられ、
前記保護層は、前記第2の凸部の上が露出するように選択的に設けられ、
前記第1の凸部は、前記第2の透光性基板と異なる材料を有し、
前記第2の凸部は、前記第2の透光性基板と異なる材料を有し、
前記第1の凸部は、前記第2の凸部の底部と離れた底部を有することを特徴とする表示装置。
【請求項3】
第1の透光性基板と、第2の透光性基板とを有し、
前記第1の透光性基板は、トランジスタを有し、
前記第2の透光性基板は、表示画面側に、第1の凸部及び第2の凸部を有し、
前記第2の透光性基板は、前記表示画面側に、保護層を有し、
前記保護層は、前記第1の凸部の上が露出するように選択的に設けられ、
前記保護層は、前記第2の凸部の上が露出するように選択的に設けられ、
前記第1の凸部は、前記第2の透光性基板と異なる材料を有し、
前記第2の凸部は、前記第2の透光性基板と異なる材料を有し、
前記第1の凸部の底部は、前記第2の凸部の底部と接しないことを特徴とする表示装置。
【請求項4】
請求項1乃至3のいずれか一において、
前記第1の凸部は、インジウムと、錫と、酸素とを有し、
前記第2の凸部は、インジウムと、錫と、酸素とを有することを特徴とする表示装置。
【請求項5】
請求項1乃至3のいずれか一において、
前記第1の凸部は、亜鉛と、酸素とを有し、
前記第2の凸部は、亜鉛と、酸素とを有することを特徴とする表示装置。
【請求項6】
請求項1乃至3のいずれか一において、
前記第1の凸部は、インジウムと、亜鉛と、酸素とを有し、
前記第2の凸部は、インジウムと、亜鉛と、酸素とを有することを特徴とする表示装置。
【請求項7】
請求項1乃至6のいずれか一に記載の表示装置を有することを特徴とするELディスプレイ。
【請求項8】
請求項1乃至6のいずれか一に記載の表示装置を有することを特徴とするテレビジョン装置、携帯電話装置、携帯情報端末、又は携帯型ゲーム機。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate

【図11】
image rotate

【図12】
image rotate

【図13】
image rotate

【図14】
image rotate

【図15】
image rotate

【図16】
image rotate

【図17】
image rotate

【図18】
image rotate

【図19】
image rotate

【図20】
image rotate

【図21】
image rotate

【図22】
image rotate

【図23】
image rotate

【図24】
image rotate

【図25】
image rotate

【図26】
image rotate

【図27】
image rotate

【図28】
image rotate

【図29】
image rotate

【図30】
image rotate

【図31】
image rotate

【図32】
image rotate

【図33】
image rotate

【図34】
image rotate

【図35】
image rotate

【図36】
image rotate

【図37】
image rotate


【公開番号】特開2013−77016(P2013−77016A)
【公開日】平成25年4月25日(2013.4.25)
【国際特許分類】
【出願番号】特願2012−259734(P2012−259734)
【出願日】平成24年11月28日(2012.11.28)
【分割の表示】特願2007−141851(P2007−141851)の分割
【原出願日】平成19年5月29日(2007.5.29)
【出願人】(000153878)株式会社半導体エネルギー研究所 (5,264)
【Fターム(参考)】