説明

表面処理剤、該表面処理剤を用いためっき鋼板の製造方法およびめっき鋼板

【課題】
鋼板の折り曲げ加工部の耐食性、耐溶剤性、アルカリ脱脂後の塗装性に優れた皮膜を金属材料表面に形成することができ、1液で貯蔵安定性に優れたクロムフリー表面処理剤、該表面処理剤を用いためっき鋼板の製造方法、およびめっき鋼板を提供する。
【解決手段】
特定のビスフェノール骨格を有する樹脂化合物、カチオン性ウレタン樹脂エマルション、シランカップリング剤、有機チタンキレート化合物、4価のバナジル化合物と水とを、各々所定の割合で配合し、pHが4〜5であることを特徴とする表面処理剤、該表面処理剤を用いためっき鋼板の製造方法、およびめっき鋼板。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、自動車、家電、建材用途に最適なめっき鋼板用表面処理剤であって、特に製造時および製造中にクロムなどを全く含まない環境適応型表面処理剤、その処理剤を用いためっき鋼板の製造方法、および表面処理されためっき鋼板に関する。
【背景技術】
【0002】
家電製品用鋼板、建材用鋼板、自動車用鋼板には、従来から亜鉛系めっき鋼板の表面に耐食性(耐白錆性、耐赤錆性)を向上させる目的でクロム酸、重クロム酸またはその塩類を主要成分とした処理液によるクロメート処理が施された鋼板が広く用いられている。このクロメート処理は耐食性に優れ、且つ比較的簡単に行うことができる経済的な処理方法である。
【0003】
クロメート処理は公害規制物質である6価クロムを使用するものであるが、この6価クロムは処理工程においてクローズドシステムで処理され、完全に還元・回収されて自然界に放出されていないこと、また、有機皮膜によるシーリング作用によってクロメート皮膜中からクロム溶出もほぼゼロにできることから実質的には6価クロムによって環境や人体が汚染されることはない。しかしながら、最近の地球環境問題から、6価クロム自体の使用を自主的に削減しようとする動きが活発化している。また廃棄製品のシュレッダーダストを投棄した場合に環境を汚染しないようにするため、製品中にできるだけ6価クロムを含ませない、若しくはこれを削減する動きも既に始まっている。
【0004】
このようなことから、亜鉛系めっき鋼板の白錆の発生を防止するためにクロメート処理によらない処理技術、所謂クロムフリー技術が数多く提案されており、例えば、無機化合物、有機化合物、有機高分子材料、あるいはこれらを組み合わせた組成物を用いて亜鉛系めっき鋼板に表面処理皮膜を生成させる技術がある。しかしながら、今日までに種々の有用な技術が提案されているものの、これらのクロムフリー技術が市場に出回るに従い、今まで認識していなかった解決すべき課題が新たに確認された。
【0005】
第一の課題は、表面処理亜鉛めっき鋼板の加工部における耐食性の改善である。表面処理亜鉛めっき鋼板は、加工(切断、折り曲げ加工、部品の溶接、塗装)されて製品になるが、表面処理亜鉛めっき鋼板に折り曲げ加工を施す際、曲げ加工部の表側ではめっきが伸ばされる。ここで、上記折り曲げ加工に伴い表面処理皮膜も伸ばされるため、表面処理皮膜が損傷を受けて亜鉛系めっき表面が露出し、この露出部における耐食性の劣化が問題となる。特に曲げ加工の場合、押し出し加工のような局部的な損傷ではなく、皮膜およびめっきの損傷が連続的に起きるため、加工部における耐食性を得ることが非常に難しい。
【0006】
第二の課題は、表面処理皮膜の耐溶剤性を確保することである。上記加工工程において、皮膜表面の油分の付着汚れやマジックで書いた記号を溶剤で拭き取る場合があるが、その際、溶剤により表面処理皮膜が剥離したり、白っぽく変色(白化)する現象がたびたび観察された。表面処理皮膜が剥離した場合には(表面処理)亜鉛めっき鋼板の耐食性が得られず、また、表面処理皮膜が白化すると外観品質が低下する。
【0007】
第三の課題は、表面処理皮膜の塗装性を確保することである。上記の如く加工された表面処理亜鉛めっき鋼板は、一旦、アルカリ洗浄剤などで表面を洗浄し(アルカリ脱脂)、表面を清浄にしてから塗装されることがある。そのため、アルカリ脱脂後の上塗り塗装性が求められる場合があるが、係る特性について検討した公知文献は現状では見当たらない。
【0008】
第四の課題は、表面処理皮膜の耐食性と、表面処理剤の貯蔵安定性との両立を図ることである。最近のクロムフリー技術では、亜鉛めっき鋼板に塗布、乾燥して表面処理皮膜を形成する、所謂、塗布型タイプがもっとも多く採用されている。このように形成した表面処理皮膜にバリアー効果を付与する上では、表面処理皮膜に所定の耐水性が求められる。水に容易に再溶解する表面処理皮膜では耐食性(バリアー効果)を確保することが困難となるためである。その一方で、各々の原料を所定の割合で配合して1液に調製した表面処理剤を安定的に貯蔵保管できることは工業的に重要であり、夏場を想定すれば35〜40℃で保管しても長期に亘り変質することなく安定的に貯蔵保管できることが望まれる。この貯蔵安定性には表面処理剤が増粘やゲル化、沈殿発生などを生じないこと、すなわち、表面処理剤が所定の水溶性を有することが必要となり、更には、保管後でも長期間に亘り調製時の品質を維持できることが求められる。
【0009】
上記のとおり、より特性に優れた表面処理を施した亜鉛めっき鋼板が望まれている。ここで、クロムフリーに関する従来技術を具体的に挙げると、特許文献1には、水分散性シリカとアルキド樹脂とトリアルコキシシラン化合物とを含む水溶液を金属表面に塗布し、乾燥して、被覆皮膜を形成させる方法が開示されている。また、特許文献2および3には、ヒドロキシピロン化合物誘導体からなる水溶性樹脂を使用して、金属材料に耐食性を付与することを目的とした表面処理方法、およびヒドロキシスチレン化合物の水溶液または水分散性重合体を用いて金属材料に耐食性を付与する方法が開示されている。更に、特許文献4には、水系樹脂とコロイダルシリカとバナジン酸アンモニウムを特定比率で配合した表面処理剤を使用する技術が開示されている。しかしながら、これらの何れの技術も、クロメート皮膜を代替できるような耐食性を付与する皮膜を開発するまでには至っていない。
【0010】
特許文献5には、有機樹脂とチオカルボニル基含有化合物とを含む表面処理皮膜の技術が開示されているが、アルカリ脱脂後の耐食性は十分とは云えない。特許文献6には、ケイ酸リチウム水溶液に有機樹脂、シランカップリング剤、固体潤滑剤を含有させた処理液で金属板表面を処理する技術が開示されているが、無機成分が硬い高分子を形成し易いため、折り曲げ加工などの加工部の耐食性が不十分となる。また、アルカリ金属を含むため、塗装の二次密着性に劣る。特許文献7には、カルボキシル基含有ポリウレタン樹脂とエチレン−不飽和カルボン酸共重合体水分散液とシリカ粒子とシランカップリング剤とを特定比率で含む樹脂水性液を使用して樹脂皮膜を形成する技術が開示されているが、耐溶剤性や加工部耐食性は不十分である。特許文献8には、ウレタン系樹脂、潤滑剤、無機コロイド化合物とシランカップリング剤を特定の割合で含む皮膜を有する鋼板が開示されているが、電着塗装を前提として設計されたものであり、電着塗装性には優れるものの、加工部耐食性などは十分に得られていない。
【0011】
特許文献9には、シランカップリング剤とウレタン樹脂を混合し、pH2.5〜4.5に調整された表面処理液が開示されているが、アルカリ脱脂後の耐食性に劣り、耐溶剤性も十分ではない。特許文献10には、水性分散樹脂とシリカ粒子と有機チタネートを特定の割合で含む処理液を使用して皮膜を形成する技術が開示されているが、加工部の耐食性は十分ではない。特許文献11および12には、特定の水性のエポキシ樹脂分散体とウレタン樹脂分散体とシランカップリング剤とリン酸および/またはリン酸化合物と1分子中にフッ素を1〜5個有する化合物を含有する処理液を使用して皮膜を形成する技術が開示されているが、耐アルカリ性が不十分であるためアルカリ脱脂後の耐食性や塗装性の確保が困難であり、また加工部耐食性や耐溶剤性も十分ではない。
【0012】
特許文献13には、特定の樹脂化合物とバナジウム化合物と特定金属を含む金属化合物とを含有する処理液を使用して皮膜を形成する技術が開示されているが、耐アルカリ性が不十分なためアルカリ脱脂後の耐食性が得られず、また加熱時に黄変し易い等の問題が解決されていない。特許文献14には、特定樹脂化合物とカチオン性官能基を有するカチオンウレタン樹脂と反応性官能基を有するシランカップリング剤とTi化合物と酸化合物を特定の割合で含む処理剤を使用して皮膜を形成する技術が開示されている。この技術によると、耐食性や耐指紋性に優れた皮膜が得られるものの、アルカリ脱脂後の耐食性、加工部の耐食性、耐溶剤性に関しては検討されておらず、これらの特性は十分に得られていない。特許文献15には、カチオン性およびノニオン性から選ばれる少なくとも1種の水系樹脂と特定の樹脂化合物と特定の金属を含む金属化合物と水とを含む表面処理剤に関する技術が開示されているが、やはり耐アルカリ、加工部の耐食性、耐溶剤性に関しては検討されておらず、これらの特性は十分に得られていない。特許文献16には、カチオン性ウレタンとカチオン性フェノール系重縮合物とチタンと特定の金属を含む化合物を特定の割合で含む表面処理剤を用いる技術が開示されているが、耐溶剤性や塗装性に関しては検討されておらず、これらの特性は十分なものでなかった。
【0013】
更に、シランカップリング剤を含む従来技術の表面処理剤は、何れも貯蔵安定性に劣る傾向にある。そのため、貯蔵後に表面処理剤の外観上は問題なくても所望の特性が得られないことが多く、また、従来技術においては上記課題に関して全く検討されていない。
【先行技術文献】
【特許文献】
【0014】
【特許文献1】特開昭53−121034号公報
【特許文献2】特公昭57−44751号公報
【特許文献3】特開平1−177380号公報
【特許文献4】特開平11−310757号公報
【特許文献5】特開2000−248369号公報
【特許文献6】特開平11−58599号公報
【特許文献7】特開2006−43913号公報
【特許文献8】特許第3573307号公報
【特許文献9】特開2001−59184号公報
【特許文献10】特開2003−155451号公報
【特許文献11】特開2006−82365号公報
【特許文献12】特開2004−238716号公報
【特許文献13】特開2001−181860号公報
【特許文献14】特許第3883831号公報
【特許文献15】特許第4078044号公報
【特許文献16】特開2006−152436号公報
【発明の概要】
【発明が解決しようとする課題】
【0015】
本発明は、従来技術の有する前記問題点を解決して、耐食性に優れた皮膜を金属材料表面に形成することができ、更に折り曲げ加工部の耐食性、耐溶剤性、アルカリ脱脂後の塗装性、および1液で貯蔵安定性に優れたクロムフリーのめっき鋼板用表面処理剤、該処理剤を用いためっき鋼板の製造方法、および表面処理されためっき鋼板の提供を目的とする。
【課題を解決するための手段】
【0016】
上記課題を解決するために本発明者らが鋭意検討を行った結果、特定の樹脂化合物と特定のカチオン性を有するウレタン樹脂と特定の官能基を有するシランカップリング剤と特定の有機Tiキレート化合物と4価のバナジル化合物を特定の割合で含む表面処理剤を用いて、亜鉛系めっき鋼板の表面を処理することにより、耐食性に優れた皮膜を形成できるとともに、耐溶剤性、塗装性に優れた皮膜を形成でき、更に貯蔵後も同様な皮膜を形成できることを新たに見出し、本発明の完成に至った。本発明は、このような知見に基づきなされたもので、その特徴は以下の通りである。
【0017】
(1) (A)下記一般式(I)で表されるビスフェノール骨格を有する樹脂化合物(以下「樹脂化合物(A)」という。)と
(B)第1〜3アミノ基及び第4アンモニウム塩基から選ばれる少なくとも1種のカチオン性官能基を有するカチオン性ウレタン樹脂エマルション(以下「カチオン性ウレタン(B)」という。)と
(C)活性水素含有アミノ基、エポキシ基、メルカプト基およびメタクリロキシ基から選ばれた少なくとも1種の反応性官能基を有する1種以上のシランカップリング剤と
(D)有機チタンキレート化合物と
(E)4価のバナジル化合物と
(F)水とを含み、
カチオン性ウレタン(B)の固形分含有量が、樹脂化合物(A)、カチオン性ウレタン(B)およびシランカップリング剤(C)の固形分合計量に対する質量比[(B)/{(A)+(B)+(C)}]で0.1〜0.3であり、
シランカップリング剤(C)の固形分含有量が、樹脂化合物(A)、カチオン性ウレタン(B)およびシランカップリング剤(C)の固形分合計量に対する質量比[(C)/{(A)+(B)+(C)}]で0.6〜0.85であり、
シランカップリング剤(C)の固形分含有量が、有機チタンキレート化合物(D)のチタン換算含有量に対する質量比{(C)/Ti}で50〜70であり、
4価のバナジル化合物(E)のバナジウム換算含有量が、有機チタンキレート化合物(D)のチタン換算含有量に対する質量比(V/Ti)で0.3〜0.5であり、
且つpHが4〜5であることを特徴とする表面処理剤。
【化1】

式中、ベンゼン環に結合しているY、およびYは、それぞれ互いに独立に水素、または下記一般式(II)、又は(III)により表されるZ基であり、1ベンゼン環当たりのZ基の置換数の平均値は0.2〜1.0である。nは2〜50の整数を表す。
【化2】


【化3】

式(II)および(III)中、R、R、R、RおよびRはそれぞれ互いに独立に水素原子、炭素数1〜10のアルキル基または炭素数1〜10のヒドロキシアルキル基を表し、Aは水酸イオンまたは酸イオンを表す。
【0018】
(2) 前記表面処理剤はワックス(W)を更に含み、
該ワックス(W)の固形分含有量が、樹脂化合物(A)およびカチオン性ウレタン(B)の固形分合計量に対する質量比[(W)/{(A)+(B)}]で0.2〜0.4である上記(1)記載の表面処理剤。
【0019】
(3) 上記(1)または(2)に記載の表面処理剤をめっき鋼板に塗布し、到達板温50〜180℃で乾燥し、該鋼板表面に付着量が0.2〜1.8g/mである表面処理皮膜を形成することを特徴とするめっき鋼板の製造方法。
【0020】
(4) 上記(3)に記載のめっき鋼板の製造方法を用いて製造されためっき鋼板。
【発明の効果】
【0021】
本発明によると、クロメート皮膜に匹敵する耐食性を有する上、製造プロセス中に導入される折り曲げ加工部の耐食性、耐溶剤性、アルカリ脱脂後の塗装性に優れた皮膜の形成が可能となり、従来品に比してより実用性に富んだクロムフリーめっき鋼板が得られる。また、本発明のクロムフリーめっき鋼板用表面処理剤は、貯蔵安定性にも優れているため、工業的に実施する上で極めて有益である。
【発明を実施するための形態】
【0022】
以下、本発明の詳細とその限定理由を説明する。本発明の表面処理鋼板のベースとなる鋼板は、冷延鋼板をベースとした家電、建材、自動車部品用のめっき鋼板である。特に本発明の表面処理剤の効果を発現するためには、亜鉛系めっき鋼板であることが好ましい。亜鉛系めっき鋼板としては、電気亜鉛めっき鋼板、溶融亜鉛めっき鋼板、亜鉛−アルミ合金めっき鋼板、亜鉛−鉄合金めっき鋼板、亜鉛−マグネシウムめっき鋼板、亜鉛−アルミ−マグネシウム合金めっき鋼板等を用いることができる。アルミニウムめっき鋼板、アルミニウム−Si合金めっき鋼板、アルミニウムシートなどのアルミニウム系材料にも適用することが可能であるが、本発明は亜鉛系めっき鋼板に適用することが最も好ましい。
【0023】
また、亜鉛系めっき鋼板は、亜鉛系めっき鋼板の耐黒変性を向上する目的で、めっきにNiやCoを微量添加したり、Ni、Co、Feを含む酸やアルカリ性の水溶液を用いて、亜鉛系めっき鋼板の表面にこれらの金属を析出させたものでもよい。
【0024】
次に、本発明の表面処理剤について説明する。
【0025】
本発明の表面処理剤は、(A)下記一般式(I)で表される樹脂化合物と、(B)カチオン性ウレタンと、(C)活性水素含有アミノ基、エポキシ基、メルカプト基およびメタクリロキシ基から選ばれた少なくとも1種の反応性官能基を有する1種以上のシランカップリング剤と、(D)有機チタンキレート化合物と(E)4価のバナジル化合物と(F)水とを含み、カチオン性ウレタン(B)の固形分含有量が、樹脂化合物(A)、カチオン性ウレタン(B)およびシランカップリング剤(C)の固形分合計量に対する質量比[(B)/{(A)+(B)+(C)}]で0.1〜0.3であり、シランカップリング剤(C)の固形分含有量が、樹脂化合物(A)、カチオン性ウレタン(B)およびシランカップリング剤(C)の固形分合計量に対する質量比[(C)/{(A)+(B)+(C)}]で0.6〜0.85であり、シランカップリング剤(C)の固形分含有量が、有機チタンキレート化合物(D)のチタン換算含有量に対する質量比{(C)/Ti}で50〜70であり、4価のバナジル化合物(E)のバナジウム換算含有量が、有機チタンキレート化合物(D)のチタン換算含有量に対する質量比(V/Ti)で0.3〜0.5であり、且つpHが4〜5であることを特徴とする。
【0026】
本発明の表面処理剤において樹脂化合物(A)は下式一般式(I)により表される。
【0027】
【化4】

式中、ベンゼン環に結合しているY、およびYは、それぞれ互いに独立に水素、または下記一般式(II)、又は(III)により表されるZ基であり、1ベンゼン環当たりのZ基の置換数の平均値は0.2〜1.0である。nは2〜50の整数を表す。
【0028】
ここで、Z基の置換数の平均値とは、全Z基導入数を全ベンゼン環数(即ち2n)で除算した数値のことである。本発明において、Y、YとしてZ基を選択する場合には、樹脂化合物(A)が第2、第3アミノ基、及び第4級アンモニウム塩基のカチオン性官能基を有することになるため、本発明が対象とする酸性(pH4〜5)の表面処理剤に対してより安定に溶解することが可能となる。また、本発明においては、平均重合度nを2〜50とする。nが2未満では耐食性付与効果が不十分となり、一方50を超えると水溶性の低下、増粘などにより、処理剤中での安定性が低下し、貯蔵安定性が不十分となる。
【0029】
【化5】

【0030】
【化6】

式(II)および(III)中、R、R、R、RおよびRはそれぞれ互いに独立に水素原子、炭素数1〜10のアルキル基または炭素数1〜10のヒドロキシアルキル基を表す。アルキル基またはヒドロキシアルキル基の炭素数が10を超えると樹脂化合物(A)を十分に水溶化することができず、処理剤中での不安定となり適用できない。R、R、R、RおよびRの具体例としては、メチル、エチル、プロピル、ブチル、ヒドロキシエチル、2−ヒドロキシプロピル、ヒドロキシイソブチルなどを挙げることができる。
【0031】
は水酸イオンまたは酸イオンを表す。酸イオンの具体例としては、酢酸イオン、リン酸イオン、蟻酸イオンなどを挙げることができる。
【0032】
一般式(I)で表される樹脂化合物(A)はビスフェノール−ホルマリン縮合物であり、その合成方法は限定されるものではないが、例えば、アルカリ触媒存在下、ビスフェノールAにホルマリンとアミンを作用させることにより得ることができる。
【0033】
本発明における表面処理組成物中のカチオン性ウレタン(B)は、カチオン性官能基として第1〜3アミノ基、及び第4級アンモニウム塩基から選ばれる少なくとも1種のカチオン性官能基を有するものであれば、構成されるモノマー成分であるポリオール、イソシアネート成分および重合方法を特に限定するものではない。カチオン性官能基としては、例えば、アミノ基、メチルアミノ基、エチルアミノ基、ジメチルアミノ基、ジエチルアミノ基、トリメチルアミノ基、トリエチルアミノ基などが挙げられるが、第1〜3アミノ基、又は第4アンモニウム塩基であれば本発明の性能を損なわない限り限定しない。
【0034】
本発明における表面処理剤中のシランカップリング剤(C)は、活性水素含有アミノ基、エポキシ基、ビニル基、メルカプト基およびメタクリロキシ基から選ばれる少なくとも1種の反応性官能基を有し、更にアルコキシを3つもつトリアルコキシシランが好ましい。これらの1種以上のシランカップリング剤であれば特に限定されるものではないが、具体例を挙げると、N−(アミノエチル)3−アミノプロピルトリメトキシシラン、3−アミノプロピルトリメトキシシラン、3−グリシドキシプロピルトリメトキシシラン、3−グリシドキシプロピルメチルジメトキシシラン、2−(3,4エポキシシクロヘキシル)エチルトリエトキシシラン、ビニルトリエトキシシラン、3−メルカプトプロピルトリメトキシシランなどが使用できる。
【0035】
本発明における表面処理剤中の有機チタンキレート化合物(D)としては、チタンアセチルアセトナート、チタンオクチレングリコレート、チタンテトラアセチルアセトナート、チタンエチルアセトアセテートなどが挙げられる。硝酸チタン、硫酸チタン、酢酸チタン、リン酸チタン、炭酸チタンなどの無機塩類では本発明の処理剤中に安定に溶解できないか、もしくは耐食性向上効果を発揮しないため好ましくない。チタンフッ化水素酸には効果が認められるが、チタンフッ化水素酸を採用する場合には、弗素の含有量が、樹脂化合物(A)、カチオン性ウレタン(B)およびシランカップリング剤(C)の固形分合計量に対する質量比で0.8質量%以下となるように配合することが好ましく、0.8質量%を超えると加工部の耐食性が低下する。なお、有機チタンキレート化合物を水に溶解して使用する際、チタンはキレート錯体として溶けているため、この錯体に影響を与えるような極性の高い水溶性溶剤や過酸化物を本発明の処理剤中に添加しない方が好ましい。
【0036】
本発明における表面処理剤で使用する4価のバナジル化合物(E)についても特に限定するものではないが、具体的には、硫酸バナジル、二塩化バナジル、リン酸バナジル、シュウ酸バナジル、バナジルアセチルアセトネートなどが挙げられる。5価のバナジウム化合物は水溶性が高いために皮膜からの溶出性も高く、耐食性向上効果が少ない。また、本発明における表面処理剤で使用する4価のバナジウム化合物としては、VO2+(バナジル)イオンとなるバナジル化合物が最も耐食性向上効果が高く最も好ましい。
【0037】
本発明の表面処理剤においては、カチオン性ウレタン(B)の固形分含有量が、樹脂化合物(A)、カチオン性ウレタン(B)およびシランカップリング剤(C)の固形分合計量に対する質量比[(B)/{(A)+(B)+(C)}]で0.1〜0.3であることが好ましい。より好ましくは0.12〜0.28である。0.1未満であると、ウレタン樹脂の割合が少なすぎて曲げ加工部の耐食性、耐熱性、および表面処理剤の貯蔵安定性が劣化する。また、0.3を超えると耐溶剤性が劣る。
【0038】
また、本発明の表面処理剤においては、シランカップリング剤(C)の固形分含有量が、樹脂化合物(A)、カチオン性ウレタン(B)およびシランカップリング剤(C)の固形分合計量に対する質量比[(C)/{(A)+(B)+(C)}]で0.6〜0.85であることが好ましい。より好ましくは0.65〜0.80である。0.6未満では耐溶剤性が劣り、0.85を超えると加工部の耐食性や表面処理剤の貯蔵安定性が低下する。
【0039】
本発明の表面処理剤においては、シランカップリング剤(C)の固形分含有量が、有機チタンキレート化合物(D)のチタン換算含有量に対する質量比{(C)/Ti}で50〜70とする。より好ましくは55〜65である。50未満であると加工部の耐食性や貯蔵安定性が劣り、70を超えると皮膜の溶出性が高まり、アルカリ脱脂後の塗装性が低下する。
【0040】
なお、本発明の質量比を計算する上で、シランカップリング剤(C)の質量はアルコキシシラン(R−Si(-OR))が加水分解して、シラノール(R−Si(-OH))になった状態の質量とする。これはシランカップリング剤を水に溶かした時に殆どが加水分解し、加水分解により生じたアルコールは本発明の処理剤を塗布乾燥して皮膜を形成する際に揮発し、有効成分としては作用しないためである。
【0041】
本発明の表面処理剤においては、4価のバナジル化合物(E)のバナジウム換算含有量が、有機チタンキレート化合物(D)のチタン換算含有量に対する質量比(V/Ti)で0.3〜0.5とする。より好ましくは0.35〜0.48である。0.3未満であると耐食性が劣り、0.5を超えるとアルカリ脱脂後の塗装性が低下する。
【0042】
本発明の表面処理剤はpHが4〜5とする。pH4未満では、表面処理をする亜鉛系めっき鋼板より亜鉛の溶出が多くなり、耐食性が低下する。一方、pH5を超えると表面処理剤の安定性が得られなくなる。pHを4〜5に調整する際に使用する酸性分としてはリン酸、酢酸、蟻酸、フッ酸、弗化物などが好ましく、硫酸、硝酸などの強酸は好ましくない。硫酸や硝酸を使用すると、pH調整の際にpHショック(局部的で急激なpH変化)によりカチオンフェノールやカチオンウレタンが表面処理剤中でゲル状物となる傾向が観られ、また、これに伴い形成される塩の溶出性が高く、耐食性を低下させてしまうからである。酢酸、蟻酸は弱酸であるためpH調整には好適である。また、これらは揮発性が高く、本発明の薬剤の乾燥時に揮発して、皮膜中の残存が少なくなるため、過剰に添加したとしても性能低下が少ない点においても好ましい。リン酸を使用する場合、その含有量は、樹脂化合物(A)、カチオン性ウレタン(B)およびシランカップリング剤(C)の固形分合計量に対して8質量%以下であることが好ましく、6質量%以下がより好ましい。リン酸は耐食性を向上させるが、8質量%を超えると貯蔵安定性の劣化が懸念される。また、フッ酸や弗化物を使う場合には、弗素の含有量が、樹脂化合物(A)、カチオン性ウレタン(B)およびシランカップリング剤(C)の固形分合計量に対して0.8質量%以下となるように配合することが好ましい。上記含有量が0.8質量%を超えると、亜鉛系めっきに対するエッチング性が強くなり、加工部の耐食性を低下させる。一方、pHを4〜5に調整する際に使用するアルカリ成分としては、アンモニア水や沸点が100℃以下のアミンが好ましい。NaOHやKOHの強アルカリを使用するとpHショックでゲル状物を形成したり、貯蔵安定性を低下させる。
【0043】
本発明においては、皮膜の潤滑性を確保する目的で、表面処理剤にワックス(W)を含有することができる。ワックス(W)は、ワックス(W)の固形分含有量が、樹脂化合物(A)およびカチオン性ウレタン(B)の固形分合計量に対する質量比[(W)/{(A)+(B)}]で0.2〜0.4となるように配合することが好ましく、0.3〜0.4がより好ましい。上記含有量が0.2以上で潤滑性が得られ、0.4以下にすると潤滑性を確保でき、経済的に不利となることがなく、また耐食性も低下させることがないので好ましい。ワックス(W)は融点70〜120℃のものの少なくとも1種以上を使用することが好ましく、具体例としてはポリエチレンワックス、酸化ポリエチレンワックス、ポリプロピレンワックス、マイクロクリスタイリンワックスなどが挙げられる。融点が70℃以上で潤滑性が得られ、融点が120℃以下とすると硬過ぎることがなく潤滑性が得られる。ワックス(W)は乳化剤で水に安定に分散したエマルションが好ましく、粒径が0.08〜0.3μmのものが好ましい。粒径が0.08μm以上で潤滑性の効果が得られ、また乳化剤の使用量が増えることがないために耐アルカリ性や塗装性が低下しない。一方、0.3μm以下の粒径とするとワックス(W)の比重が低くなることに起因した処理剤中での浮上分離が生じることがなく、貯蔵安定性に優れるので好ましい。
【0044】
本発明で使用する水(F)は、樹脂化合物(A)、カチオン性ウレタン(B)、シランカップリング剤(C)、有機チタンキレート化合物(D)の各成分、およびpH調整に使用する酸成分やアルカリ成分に対して影響が少ないものが好ましい。例えば、水に不純物として含まれるMg、Ca、Siなどの硬度成分は、本発明の樹脂化合物(A)やカチオン性ウレタン(B)の溶解性や分散性を低下させるため、これら(A)、(B)の凝集物を発生させる要因となり得る。また、水に不純物として含まれるNaやClなどは、皮膜中に残存した場合に耐食性を低下させたり、塗装密着性を低下させることがある。そのため、使用する水(F)は不純物が少ないものが好ましく、例えばその電気伝導度が100μS/cm未満であることが好ましい。より好ましくは50μS/cm以下、更に好ましくは10μS/cm以下である。
【0045】
本発明の表面処理剤には、必要に応じて消泡剤や濡れ性向上剤を添加してもよい。消泡剤の種類は特に限定されず、例えばシリコーン系や脂肪酸系のエマルションタイプなどが使用できる。濡れ性向上剤とは表面処理剤の表面張力を下げ、亜鉛系めっき鋼板に対する濡れ性を向上させ、外観均一性を向上させるものである。濡れ性向上剤としては水溶性溶剤、例えば、エタノール、T−ブタノール、ブチルセロソルブなどが挙げられるが、これらに限定されるものではない。またアセチレンを含む濡れ性向上剤などは消泡効果も合わせ持つため好適である。更に、本発明の表面処理剤には、耐黒変性を向上させる目的で、硝酸ニッケル、硝酸アンモニウムなどの硝酸塩を加えてもよい。先述のとおり硝酸はpHショックを与えるが、硝酸塩であればpHショックを与えない。
【0046】
次に、上記表面処理剤を用いためっき鋼板の製造方法について説明する。
本発明の表面処理剤を用いてめっき鋼板に表面処理皮膜を形成する場合においては、表面処理剤をめっき鋼板に塗布し、到達板温50〜180℃で乾燥し、該鋼板表面に片面当たりの付着量で0.2〜1.8g/mの表面処理皮膜を形成させることが好ましい。付着量は0.3〜1.6g/mがより好ましく、0.4〜1.4g/mがより一層好ましい。付着量が0.2g/m未満では十分な耐食性が得られず、1.8g/mを超えると付着量の効果は飽和し、経済的に不利であるばかりか塗装性を低下させる。本発明の表面処理剤をめっき鋼板に塗布する方法としては、ロールコーター(3ロール方式、2ロール方式等)スクイズコーター、ダイコーターなど、いずれの方法でもよい。また、スクイズコーター等による塗布処理、あるいは浸漬処理、スプレー処理の後にエアーナイフ法やロール絞り法により塗布量の調節、外観の均一化、膜厚の均一化を行うことも可能である。
【0047】
本発明の表面処理剤をめっき鋼板にコーティング(塗布)した後は、好ましくは水洗することなく、加熱乾燥を行う。乾燥手段としては、ドライヤー、熱風炉、高周波誘導加熱炉、赤外線炉などを用いることができる。乾燥はめっき鋼板自体の到達板温で50〜180℃の範囲で行う。到達板温が50℃より低いと皮膜中に水分が多量に残り、耐食性が不十分となる。また、到達板温が180℃を超えると非経済的であるばかりでなく皮膜が硬くて脆くなり、加工部の耐食性が低下する。
【0048】
上記方法により形成された表面処理皮膜を有する本発明のめっき鋼板は、更にその表面に樹脂皮膜をコーティングしてさらに高度な耐食性を得ることも可能である。
【0049】
なお、本発明の表面処理剤により形成される表面処理皮膜は、めっき鋼板の片面、両面のいずれに実施してもよい。
【0050】
次に、本発明の作用について述べる。本発明の表面処理剤において各成分は以下のような作用を持つと推測しているが、本発明はこれらの推測により何ら制限されるものではない。
本発明の表面処理剤は、樹脂化合物(A)、カチオン性ウレタン(B)、シランカップリング剤(C)が主成分であり、これらの主成分により皮膜の骨格が形成される。
【0051】
カチオン性官能基(一般式(II)または(III))を有する樹脂化合物(A)を含む表面処理剤のpHを弱酸性に調整することにより、表面処理剤は安定性を増し、貯蔵安定性が確保される。また、カチオン性を付与することにより、樹脂化合物(A)はアルカリには溶けなくなるためアルカリに対して耐性のある皮膜となる。更に、樹脂化合物(A)のフェノールの骨格としてビスフェノールを選択することにより、極性溶剤に対して溶け難くなり(耐溶剤性の付与)、密着性、耐食性が向上する。
【0052】
しかしながら、上記樹脂化合物(A)は加熱により黄色味を帯び易い上(耐熱黄変の低下)、硬い皮膜となり易い。そこで、本発明においては、カチオン性ウレタン(B)を配合することにより、フェノール樹脂の硬さを和らげ、加工部の耐食性を確保する。
【0053】
カチオン性ウレタン(B)は上記効果を有する一方、極性溶剤に対して皮膜を剥離し易くしてしまう。そこで、本発明においては、(極性溶剤に対する)耐溶剤性および耐黄変性を担保する目的で、シランカップリング剤(C)を配合する。シランカップリング剤(C)は末端のアルコキシ基が加水分解して活性なシラノール基(Si−OH)を生じるため、素材(亜鉛系めっき鋼板)や上塗り塗膜との密着性向上に寄与する。更に、シランカップリング剤(C)の一部は脱水縮合してシロキサン結合(Si−O−Si)を生じ、これが連続してポリマー化する(ポリシロキサン化:−Si−O−Si−O−Si−)。これにより、非常に安定な構造となり、皮膜に耐食性、耐溶剤性、耐黄変性を付与することができる。
【0054】
以上のように、主成分である樹脂化合物(A)、カチオン性ウレタン(B)、シランカップリング剤(C)を適正な割合で使用することにより、バランス良く各種の性能を得ることができるものと考えられる。しかしながら、上記主成分のみでは従来の課題、並びに、このたび新たに確認された課題を解決する満足なものは得られない。これらの課題を解決すべく、本発明の表面処理剤では上記主成分に加え、有機チタンキレート化合物(D)を必須成分とする。有機チタンキレート化合物(D)は、表面処理剤を乾燥して皮膜を形成する際、ポリシロキサン化を促進する触媒として働くものと推測される。これにより、皮膜の耐アルカリ性が飛躍的に向上し、アルカリ脱脂後の耐食性が向上するとともに耐溶剤性や塗装性も向上する。
【0055】
上記効果を得るためには、シランカップリング剤(C)の含有量に応じて決定される所定含有量の有機チタンキレート化合物(D)が必要となる。その含有量が少ない場合には所望の効果が得られず、その含有量が過剰な場合にはポリシロキサンが増加しすぎて硬くて脆い皮膜になり、加工部の耐食性が低下する。また、有機チタンキレート化合物(D)によるポリシロキサン化は皮膜形成時に促進されると理想的であるが、表面処理剤の貯蔵時においてもポリシロキサン化を促進するため、その含有量が過剰な場合には、貯蔵安定性(増粘・ゲル化の抑制)が低下し、貯蔵後に貯蔵前と同様の品質が得られなくなる。
【0056】
また、本発明の表面処理剤では4価のバナジル化合物(E)も必須成分とする。本発明において、4価のバナジル化合物(E)は腐食のインヒビター(例えば亜鉛の不動態化)として作用するものと推測される。特に酸素を一つもったバナジル〔VO2+〕イオンは湿潤環境下でも溶出し難く、皮膜中に留まりながらインヒビター効果を発揮するため、めっき鋼板が折り曲げ加工のような強加工をうけ、表面処理皮膜やめっき表面自体が延性損傷した部分の耐食性やアルカリ脱脂後の耐食性を向上するものと推測される。なお、係る効果は、カチオン性官能基を有する皮膜骨格が適正であることを前提とし、更に同様にカチオンとして存在するTiとの相乗効果により達成されるものと本発明者らは推測している。
【実施例】
【0057】
表1(表1aおよび表1b)に示す樹脂化合物(a)、表2に示すウレタン(b)、表3に示すシランカップリング剤(c)、表4に示すチタン化合物(d)、表5に示すバナジウム化合物(e)、および表6にワックス(w)エマルションを適宜混合して表面処理剤を調製した。例えば、実施例1の表面処理剤は表8の組成になるように配合し、酢酸とアンモニアで表8に示すpHに調整後、110℃×2時間の乾燥固形分が10質量%なるように脱イオン水で調製した。他の表面処理剤についても全てpHを酢酸とアンモニアで調整し、乾燥固形分を10質量%に調製した。なお、上記の脱イオン水としては、電気伝導度が10μS/cmのイオン交換水を使用した。
【0058】
表7に示すめっき鋼板を処理原板として用いた。このめっき鋼板の表面をアルカリ脱脂処理、水洗乾燥した後、片面に表8に示す表面処理剤をロールコーターにより塗布し、水洗することなく表8に示す各温度で加熱乾燥して、表面処理皮膜を有するめっき鋼板を製造した。表面処理皮膜の片面当たりの付着量は表面処理剤の固形分(加熱残分)、または塗布条件(ロールの圧下力、回転速度など)により調整した。付着量は配合したシランカップリング剤(C)のSiを蛍光X線分析装置により定量し、そこから換算した。表面処理剤の組成、および品質(平面部耐食性、曲げ加工部耐食性、アルカリ脱脂後の耐食性、耐熱変色性、塗装性、アルカリ脱脂後の塗装性、耐溶剤性、貯蔵安定性、潤滑性)の各試験を行った結果を表8に示す。なお、品質性能の評価は、以下の条件で行った。
【0059】
(1) 耐食性
各サンプルについて塩水噴霧試験(JIS-Z-2371-2000)を行い、120時間経過後の白錆発生面積率で評価した。評価基準は以下の通りである。
◎:白錆発生面積率0%
○+:白錆発生面積率5%未満
○ :白錆発生面積率5%以上、10%未満
○−:白錆発生面積率10%以上、20%未満
△ :白錆発生面積率20%以上、40%未満
× :白錆発生面積率40%以上
【0060】
(2)曲げ加工部の耐食性
各サンプルを直径2mmの棒(ステンレス製)を挟み込むようにして180°曲げて、万力を用いて絞め込んだ。この曲げたサンプルについて塩水噴霧試験(JIS-Z-2371-2000)を行い、72時間経過後の曲げ加工部外(表)側の白錆発生状態を評価した。評価基準は次の通りである。
◎:曲げ加工部に錆発生なし
○+:曲げ加工部の錆発生面積率が5%未満
○ :曲げ加工部の錆発生面積率が5%以上、10%未満
○−:曲げ加工部の錆発生面積率が10%以上、40%未満
△ :曲げ加工部の錆発生面積率が40%以上、80%未満
× :曲げ加工部の錆発生面積率が80%以上
【0061】
(3)アルカリ脱脂後の耐食性
アルカリ脱脂剤CL−N364S(日本パーカライジング(株)製)を20g/lの濃度で純水に溶解し、60℃に加温した。このアルカリ溶液に各サンプルを2分間浸漬し、取り出して水洗して乾燥した。各サンプルについて塩水噴霧試験(JIS-Z-2371-2000)を行い、72時間経過後の白錆発生面積率で評価した。評価基準は上記(1)に示した通りである。
【0062】
(4)耐熱変色性
各サンプルを赤外線イメージ炉にて30秒で板温500℃に加熱し、30秒間保持した後、室温まで自然放冷した時の表面外観を目視観察した。その評価基準は以下の通りである。
◎ :変色なし
○ :極僅かに褐色味あり
△ :淡い褐色に変色
× :褐色に変色
【0063】
(5)塗装性
各サンプルについてメラミンアルキッド系塗料であるデリコン(登録商標)#700(大日本塗料(株)製)を塗装し、130℃で30分間焼付け、膜厚30μmの塗膜を形成した後、沸騰水に2時間浸漬し、直ちに、碁盤目(10×10個、1mm間隔)の鋼素地まで達するカットを入れた。更にエリクセン押し出し機にてカット部が外(表)側となる様に5mm押し出し加工を施し、接着テープによる貼着・剥離を行い、塗膜の剥離面積を測定した。評価の基準は以下の通りである。なお、エリクセン押し出し条件は、JIS-Z-2247-2006に準拠し、ポンチ径:20mm、ダイス径:27mm、絞り幅:27mmとした。
◎ :剥離なし
○+:剥離面積3%未満
○ :剥離面積3%以上、10%未満
○−:剥離面積10%以上、20%未満
△ :剥離面積20%以上、50%未満
× :剥離面積50%以上
【0064】
(6)アルカリ脱脂後の塗装性
上記(3)と同様のアルカリ脱脂を行い、その各サンプルに上記(5)と同様の塗装性試験を行った。評価基準も同じである。
【0065】
(7)耐溶剤性
各サンプルの表面にメタノールを染み込ませたガーゼを4.90N(500gf)の荷重をかけて押し付け、その荷重のまま10回往復するように擦った。その擦った痕を目視にて評価した。評価基準は以下の通りである。
◎ :痕跡なし。
○+:上から見ると痕跡が見えないが、斜めから見ると僅かに見える。
○ :上から見ると痕跡が見ないが、斜めから見ると明らかに見える。
○−:上から見て僅かに痕跡が見える。
△ :上から見て痕跡が明らかに見える。
× :皮膜が剥離している。
【0066】
(8)貯蔵安定性
表8に示した各表面処理剤を40℃の恒温槽に30日間保管した。取り出して、各表面処理剤の外観を目視によって調べ、評価した。評価基準は次の通りである。更に、上記条件で保管した表面処理剤を使用して製造した表面処理皮膜を有するめっき鋼板について上記した(1)〜(3)の試験を行った。
◎:変化なし
○:極微量の沈殿が見られる
△:微量の沈殿が見られる、もしくはやや粘度が高くなった
×:多量の沈殿が見られる、もしくはゲル化した
【0067】
(9)潤滑性
各サンプルより直径100mmの円板状の試験片を切り出し、ポンチ径:50mm、ダイス径51.91mm、しわ押さえ力:1トンの条件でカップ状に成型した。成型品の絞り加工を受けた面(カップの側面外側)の外観を目視によって調べ、傷つき程度および黒化程度を評価した。評価基準は次の通りである。
◎ :全面に渡って殆ど変化なく、外観が均一
○+:極僅かに黒化が発生したが、外観は均一
○ :傷つきおよび黒化が少し発生し、外観が明らかに不均一
○−:局部的に傷つきおよび黒化が発生し、外観が明らかに不均一
△ : コーナー部を中心に傷つきおよび黒化が激しく発生
× :成型できずに割れた
【0068】
【表1a】

【表1b】

【0069】
【表2】

【0070】
【表3】

【0071】
【表4】

【0072】
【表5】

【0073】
【表6】

【0074】
【表7】

【0075】
【表8】









【0076】
表8に示すように、本発明の表面処理剤を用いて製造した試験板は、何れも優れた耐食性(平面部、加工部、脱脂後)、耐熱変色性、塗装性(そのまま、脱脂後)、耐溶剤性を有する。また、本発明の表面処理剤は、貯蔵後においても貯蔵前と同様の優れた品質を維持している。
【0077】
一方、本発明の範囲外である比較例1(No.4)は、カチオン性ウレタン(B)の含有量が本発明の範囲に満たないため、曲げ部耐食性が全く得られず、貯蔵後では耐食性が低下していた。比較例2(No.8)は、カチオン性ウレタン(B)の含有量が本発明の範囲を超えるため、アルカリ脱脂後の品質に劣り、耐溶剤性も満足ではなかった。比較例3(No.9)および比較例4(No.10)は、本発明の有機チタンキレート化合物(D)が配合されていないため、曲げ加工部やアルカリ脱脂後の品質が得らなかった。
【0078】
4価のバナジル化合物(E)を配合しない比較例5(No.11)、比較例7(No.13)および比較例8(No.14)は、やはり曲げ加工部の耐食性が得られなく、貯蔵後の品質も低下していた。比較例6(No.12)は、5価のバナジル化合物を使用したため曲げ加工部やアルカリ脱脂後の耐食性が得られず更にアルカリ脱脂後の塗装性が低下した。比較例9(No.15)は、4価のバナジル化合物(E)を使用したものの、その組成が適正でないため、曲げ加工部や耐溶剤性が得られず、貯蔵後の耐食性も低下した。尚、比較例7(No.13)は特許第3883831号を、比較例9(No.15)は特開2006−152436号を参考に試験したものである。
【0079】
比較例10(No.21)は、シランカップリング剤(C)の含有量が本発明の範囲に満たないため、耐溶剤性が劣り、一方、比較例11(No.24)は、上記含有量が本発明の範囲を超えるため、曲げ加工部の耐食性が得られず、貯蔵後の液は耐食性を発揮しなかった。比較例12(No.25)は、有機チタンキレート化合物(D)のチタンに対するシランカップリング剤(C)の含有量が本発明の範囲を超えるためアルカリ脱脂後の耐食性や塗装性に劣り、一方、比較例13(No.28)は、上記含有量が本発明の範囲に満たないため曲げ加工部の耐食性が得られず、貯蔵後の液は耐食性を発揮しなかった。
【0080】
比較例14(No.29)は、有機チタンキレート化合物(D)のチタンに対する4価のバナジル化合物(E)のバナジウムの含有量が本発明の範囲に満たないため耐食性を発揮せず、一方、比較例15(No.32)は、上記含有量が本発明の範囲を超えるためアルカリ脱脂後の耐食性と塗装性が劣った。適正なpHに調整していない比較例16(No.38)、比較例17(No.39)、比較例18(No.42)、および比較例19(No.43)は耐食性が得られず、貯蔵安定性にも劣った。pHが高い比較例19(No.43)では薬剤がゲル化して試験ができなかった。
【0081】
樹脂化合物(A)に関し、比較例20(No.55)、比較例24(No.59)、比較例28(No.67)および比較例32(No.71)はZ基の置換数の平均値が本発明の範囲に満たないため、また、比較例23(No.58)、比較例27(No.62)、比較例31(No.70)および比較例35(No.74)はZ基のアルキル基の炭素数が本発明の範囲を超えるため、表面処理剤の作成段階で未溶解物が生じた。比較例21(No.56)、比較例25(No.60)、比較例29(No.68)および比較例33(No.72)は、Z基の置換数の平均値が本発明の範囲を超えるため、表面処理剤の貯蔵後において貯蔵前と同様の品質を維持することができなかった。比較例22(No.57)、比較例26(No.61)、比較例30(No.69)および比較例34(No.73)は、Z基の平均重合度が本発明の範囲を超えるため、貯蔵後の表面処理剤がゲル化した。
【0082】
比較例36(No.77)はウレタン樹脂がノニオン性であるため、また、比較例37(No.78)はウレタン樹脂がアニオン性であるため、表面処理剤の作成段階でウレタン樹脂が凝集した。比較例38(No.80)は、シランカップリング剤が本発明の範囲外であるため、十分な耐食性が得られなかった。
【0083】
また、本発明の表面処理剤を用いた場合であっても、適正な付着量、乾燥条件が外れると所望の効果が得られない。発明例1A(No.44)、発明例2A(No.49)、発明例1B(No.50)および発明例2B(No.53)は、何れも本願の請求項1及び2に係る発明の表面処理剤であるため、優れた耐熱変色性および貯蔵安定性(外観)を示す。しかしながら発明例1A(No.44)では皮膜の付着量が本願の請求項3に係る発明の範囲に満たないため、十分な耐食性が得られない。一方、発明例2A(No.49)では皮膜の付着量が本願の請求項3に係る発明の範囲を超えるため塗装性が低下した。発明例1B(No.50)では乾燥温度が本願の請求項3に係る発明の範囲に満たないため、十分な耐食性が得られない。一方、発明例2B(No.53)では乾燥温度が本願の請求項3に係る発明の範囲を超えるため、曲げ加工部の耐食性や塗装性低下した。
【産業上の利用可能性】
【0084】
本発明によると、クロメート処理を使用することなく、耐食性(特に曲げ加工部)に優れ、耐熱性、塗装性、耐溶剤性にも優れる表面処理めっき鋼板の供給が可能になり、且つ1液で貯蔵後も優れた品質を得られる処理剤はコスト低減および廃棄物を減らす効果も奏する。

【特許請求の範囲】
【請求項1】
(A)下記一般式(I)で表されるビスフェノール骨格を有する樹脂化合物(以下「樹脂化合物(A)」という。)と
(B)第1〜3アミノ基及び第4アンモニウム塩基から選ばれる少なくとも1種のカチオン性官能基を有するカチオン性ウレタン樹脂エマルション(以下「カチオン性ウレタン(B)」という。)と
(C)活性水素含有アミノ基、エポキシ基、メルカプト基およびメタクリロキシ基から選ばれた少なくとも1種の反応性官能基を有する1種以上のシランカップリング剤と
(D)有機チタンキレート化合物と
(E)4価のバナジル化合物と
(F)水とを含み、
カチオン性ウレタン(B)の固形分含有量が、樹脂化合物(A)、カチオン性ウレタン(B)およびシランカップリング剤(C)の固形分合計量に対する質量比[(B)/{(A)+(B)+(C)}]で0.1〜0.3であり、
シランカップリング剤(C)の固形分含有量が、樹脂化合物(A)、カチオン性ウレタン(B)およびシランカップリング剤(C)の固形分合計量に対する質量比[(C)/{(A)+(B)+(C)}]で0.6〜0.85であり、
シランカップリング剤(C)の固形分含有量が、有機チタンキレート化合物(D)のチタン換算含有量に対する質量比{(C)/Ti}で50〜70であり、
4価のバナジル化合物(E)のバナジウム換算含有量が、有機チタンキレート化合物(D)のチタン換算含有量に対する質量比(V/Ti)で0.3〜0.5であり、
且つpHが4〜5であることを特徴とする表面処理剤。
【化1】

式中、ベンゼン環に結合しているY、およびYは、それぞれ互いに独立に水素、または下記一般式(II)、又は(III)により表されるZ基であり、1ベンゼン環当たりのZ基の置換数の平均値は0.2〜1.0である。nは2〜50の整数を表す。
【化2】

【化3】

式(II)および(III)中、R、R、R、RおよびRはそれぞれ互いに独立に水素原子、炭素数1〜10のアルキル基または炭素数1〜10のヒドロキシアルキル基を表し、Aは水酸イオンまたは酸イオンを表す。
【請求項2】
前記表面処理剤はワックス(W)を更に含み、
該ワックス(W)の固形分含有量が、樹脂化合物(A)およびカチオン性ウレタン(B)の固形分合計量に対する質量比[(W)/{(A)+(B)}]で0.2〜0.4である請求項1記載の表面処理剤。
【請求項3】
請求項1または2に記載の表面処理剤をめっき鋼板に塗布し、到達板温50〜180℃で乾燥し、該鋼板表面に付着量が0.2〜1.8g/mである表面処理皮膜を形成することを特徴とするめっき鋼板の製造方法。
【請求項4】
請求項3記載のめっき鋼板の製造方法を用いて製造されためっき鋼板。

【公開番号】特開2010−236074(P2010−236074A)
【公開日】平成22年10月21日(2010.10.21)
【国際特許分類】
【出願番号】特願2009−88410(P2009−88410)
【出願日】平成21年3月31日(2009.3.31)
【出願人】(000001258)JFEスチール株式会社 (8,589)
【Fターム(参考)】