説明

表面処理溶融Zn−Al系合金めっき鋼板

【課題】優れた耐食性、耐黒変性および塗料密着性を有し、めっき外観性にも優れたクロムフリー表面処理溶融Zn−Al系合金めっき鋼板を提供する。
【解決手段】Al:1.0〜10%、Mg:0.2〜1.0%、Ni:0.005〜0.1%を含有する溶融Zn−Al系合金めっき層を有する溶融Zn−Al系合金めっき鋼板の表面に、特定のチタン含有水性液と、ニッケル化合物又は/及びコバルト化合物と、弗素含有化合物と、水性有機樹脂を所定の割合で含有する処理組成物による皮膜を形成した。皮膜中のNi又は/及びCo成分と最適化されためっき組成により優れた耐黒変性が得られ、また、処理組成物中の弗素含有化合物により反応性が高められてめっき表面に緻密な反応層が形成され、且つ皮膜自体により高いバリア性が付与されるため、優れた耐食性が得られ、さらに、処理組成物中の水性有機樹脂により優れた塗料密着性が得られる。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、自動車、家電、建材用途に最適な表面処理溶融Zn−Al系合金めっき鋼板に関するもので、特に、表面処理組成物やこれにより形成される表面処理皮膜中に6価クロムを全く含まない環境適応型の表面処理めっき鋼板に関するものである。
【背景技術】
【0002】
従来、自動車、建築、土木、家電等の分野では、溶融Zn−Al系合金めっき鋼板が広く利用されている。この溶融Zn−Al系合金めっき鋼板としては、主に、めっき層中のAl含有量が0.2質量%以下の溶融Znめっき鋼板(以下、GIという)、同Al含有量が約5質量%のガルファン(以下、GFという)、同Al含有量が約55質量%のガルバリウム鋼板(以下、GLという)が使用されている。これらのなかでGFは、GLよりも低コストであり、GIよりも耐食性が優れているため、特に建築などの分野では需要が高い。今後は、Zn価格の高騰化に伴い、厚目付Znめっき鋼板の代替として、家電での需要も高くなると予想される。
しかし、GFには、一般に以下のような問題がある。
GFには亀甲模様状スパングルが形成されるが、このスパングルは、めっき条件(例えば、めっき前焼鈍、浴成分)、めっき後の冷却条件(例えば、冷却速度)等によって形態が異なり、このため、裸使用の場合に外観を損なうことがある。また、塗装を施してカラー鋼板とした場合、スパングルが塗装面に浮き上がり、塗装後の外観を損なうこともある。このため、近年では、スパングルの無い金属光沢をもつ美麗なめっき層を有するGFに対する要求が増加している。
【0003】
また、Znよりも酸化し易いMg、Al等の元素を含むめっき層を有している場合、腐食性雰囲気に長時間曝された際に、めっき表面が黒変色する黒変現象が発生し易い欠点がある。このため、溶融Zn−Al系合金めっき鋼板の表面には、黒変色を軽減可能な表面処理が必要となる。
黒変色を抑制する方法としては、Fe、Ni、Co等のイオンを含む水溶液でめっき鋼板表面を置換処理し、Fe、Ni、Co等をめっき層表面に析出させる方法がある(例えば、特許文献1)。しかし、この方法は置換処理工程が新たに必要となるため、製造工程が複雑化する。したがって、耐食性を付与する目的で行う化成処理工程において耐黒変性も同時に向上させる技術が必要となる。
また、自動車、建築、土木、家電等の分野では後塗装を施す場合があり、塗料密着性が必要となる。塗料密着性には、めっき皮膜/化成皮膜界面の密着性と、化成皮膜/塗膜界面の密着性が重要であり、各界面での密着性が不十分であると、塗膜が剥がれる問題が生じる。
【0004】
溶融Zn−Al系合金めっき鋼板に耐食性を付与する化成処理技術は数多く提案されている。従来は、クロム酸、重クロム酸またはその塩類を主要成分とした処理液によるクロメート処理が施されていた。しかし、クロメート処理は公害規制物質である6価クロムを使用しており、環境に対する配慮から、またクロメート処理液の廃液処理に多大な労力と費用とを要することから、クロムを含まないクロメートフリー技術が検討されている。例えば、特許文献2〜4には、チタン、ジルコニウム系のクロメートフリー処理金属板が提案されている。
【特許文献1】特開昭59−177381号公報
【特許文献2】特開2004−2950号公報
【特許文献3】国際公開第2003/93533号パンフレット
【特許文献4】特開2003−306777号公報
【発明の開示】
【発明が解決しようとする課題】
【0005】
しかし、これら従来のクロメートフリー処理では、耐食性、耐黒変性および塗料密着性の全てを満足することはできない。
したがって本発明の目的は、このような従来技術の課題を解決し、表面処理組成物や皮膜中に6価クロムを含まず、優れた耐黒変性、耐食性および塗料密着性を有するとともに、めっき外観性にも優れた表面処理溶融Zn−Al系合金めっき鋼板を提供することにある。
【課題を解決するための手段】
【0006】
本発明者らは、上記課題を解決するために、溶融Zn−Al系合金めっき鋼板のめっき組成と表面処理組成の両面から検討を行い、その結果、以下のような知見を得た。
(i)めっき組成としては、一般的なGFのAl濃度をベースとして、これに適量のMgとNiを含有させせることにより、スパングルの無い若しくは非常に微細なスパングルが形成された金属光沢をもつ美麗なめっき外観を有するとともに、耐黒変性も改善された溶融Zn−Al系合金めっき鋼板が得られる。
【0007】
(ii)表面処理については、まず、耐黒変性を改善するために、処理液中に各種金属塩を添加することを検討した結果、Ni塩又は/及びCo塩を処理液中に添加することが効果的であることが判った。しかし、Ni塩、Co塩などをそのまま処理液中に添加すると耐食性が低下してしまう。耐食性を低下させることなく耐黒変性の改善を図るためには、処理液中にNi塩、Co塩などを添加し、且つ処理によってめっき皮膜表面に緻密な反応層を形成させる必要がある。しかし、Zn−Al系めっき表面には強固なAlの酸化膜が形成されているため、処理の反応性が低いとめっき表面と処理皮膜との間に緻密な反応層が形成されず、十分な耐食性を発現させることができない。そこで検討した結果、特定のチタン含有水性液と、ニッケル化合物又は/及びコバルト化合物と、弗素含有化合物とを所定の割合で含有する処理液(表面処理組成物)で処理することにより、上記(i)のめっき組成の最適化と相俟って優れた耐黒変性が得られるとともに、弗素含有化合物によって反応性が高められる結果、めっき表面に緻密な反応層が形成され、さらに表面処理皮膜自体により高いバリア性が付与されるため、クロメートフリーでありながらクロメート皮膜に匹敵する優れた耐食性が得られることが判った。さらに、上記処理液中に水溶性有機樹脂又は/及び水分散性有機樹脂を特定の割合で加えることにより、高い塗料密着性が付与されることが判った。
【0008】
本発明は、このような知見に基づきなされたもので、以下を要旨とするものである。
[1]鋼板の少なくとも一方の表面に、Al:1.0〜10質量%、Mg:0.2〜1.0質量%、Ni:0.005〜0.1質量%を含有し、残部がZn及び不可避的不純物からなる溶融Zn−Al系合金めっき層を有する溶融Zn−Al系合金めっき鋼板の表面に、
加水分解性チタン化合物、加水分解性チタン化合物の低縮合物、水酸化チタン、水酸化チタンの低縮合物の中から選ばれる少なくとも1種のチタン化合物を過酸化水素水と混合して得られるチタン含有水性液(A)を固形分の割合で5〜60質量%、ニッケル化合物又は/及びコバルト化合物(B)を固形分の割合で0.01〜1質量%、弗素含有化合物(C)を固形分の割合で1〜40質量%、水溶性有機樹脂又は/及び水分散性有機樹脂(D)を固形分の割合で31〜85質量%含有する表面処理組成物(H)を塗布し、乾燥させることにより形成された皮膜付着量が0.5〜3.0g/mの表面処理皮膜を有することを特徴とする表面処理溶融Zn−Al系合金めっき鋼板。
[2]上記[1]の表面処理溶融Zn−Al系合金めっき鋼板において、弗素含有化合物(C)が、ジルコン弗化アンモニウム、ジルコン弗化水素酸の中から選ばれる少なくとも1種であることを特徴とする表面処理溶融Zn−Al系合金めっき鋼板。
【0009】
[3]上記[1]又は[2]の表面処理溶融Zn−Al系合金めっき鋼板において、表面処理組成物(H)が、さらに、有機リン酸化合物(E)を固形分の割合で5〜60質量%含有することを特徴とする表面処理溶融Zn−Al系合金めっき鋼板。
[4]上記[1]〜[3]のいずれかの表面処理溶融Zn−Al系合金めっき鋼板において、表面処理組成物(H)が、さらに、バナジン酸化合物(F)を固形分の割合で0.1〜30質量%含有することを特徴とする表面処理溶融Zn−Al系合金めっき鋼板。
[5]上記[1]〜[4]のいずれかの表面処理溶融Zn−Al系合金めっき鋼板において、表面処理組成物(H)が、さらに、炭酸ジルコニウム化合物(G)を固形分の割合で0.1〜20質量%含有することを特徴とする表面処理溶融Zn−Al系合金めっき鋼板。
[6]上記[1]〜[5]のいずれかの表面処理溶融Zn−Al系合金めっき鋼板において、水溶性有機樹脂又は/及び水分散性有機樹脂(D)が、水分散性アクリル樹脂であることを特徴とする表面処理溶融Zn−Al系合金めっき鋼板。
【発明の効果】
【0010】
本発明の表面処理溶融Zn−Al系合金めっき鋼板は、特定のチタン含有水性液と、ニッケル化合物又は/及びコバルト化合物と、弗素含有化合物と、水溶性有機樹脂又は/及び水分散性有機樹脂とを所定の割合で配合した表面処理組成物による処理皮膜を有することにより、めっき組成の最適化と相俟って優れた耐黒変性が得られるとともに、表面処理組成物中の弗素含有化合物によって反応性が高められる結果、めっき表面に緻密な反応層が形成され、さらに表面処理皮膜自体により高いバリア性が付与されるため、クロメートフリーでありながらクロメート皮膜に匹敵する優れた耐食性が得られる。また、水溶性有機樹脂又は/及び水分散性有機樹脂により高い塗料密着性が得られる。さらに、めっき組成の最適化により、スパングルの無い若しくは非常に微細なスパングルが形成された金属光沢をもつ美麗なめっき外観を有する。
【発明を実施するための最良の形態】
【0011】
本発明の表面処理溶融Zn−Al系合金めっき鋼板(以下、便宜上「表面処理めっき鋼板」という)のベースとなる溶融Zn−Al系合金めっき鋼板は、鋼板の少なくとも一方の表面に、Al:1.0〜10質量%、Mg:0.2〜1.0質量%、Ni:0.005〜0.1質量%を含有し、残部がZnおよび不可避的不純物からなる溶融Zn−Al系合金めっき層を有するものである。この溶融Zn−Al系合金めっき鋼板のめっき組成の限定理由や好ましい製造条件などについては、後に詳述する。
【0012】
本発明の表面処理めっき鋼板において、溶融Zn−Al系合金めっき層表面に形成される表面処理皮膜は、加水分解性チタン化合物、加水分解性チタン化合物の低縮合物、水酸化チタン、水酸化チタンの低縮合物の中から選ばれる少なくとも1種のチタン化合物を過酸化水素水と混合して得られるチタン含有水性液(A)と、ニッケル化合物又は/及びコバルト化合物(B)と、弗素含有化合物(C)と、水溶性有機樹脂又は/及び水分散性有機樹脂(D)とを所定の割合で含有し、さらに必要に応じて、有機リン酸化合物(E)、バナジン酸化合物(F)、炭酸ジルコニウム化合物(G)の1種以上を所定の割合で含有する表面処理組成物(H)を塗布し、乾燥させることにより形成されるものである。この表面処理皮膜は6価クロム(但し、不可避不純物としてのクロムを除く)を含有しない。
【0013】
前記チタン含有水性液(A)は、加水分解性チタン化合物、加水分解性チタン化合物の低縮合物、水酸化チタン、水酸化チタンの低縮合物の中から選ばれる少なくとも1種のチタン化合物と過酸化水素水とを混合して得られるチタンを含む水性液である。
前記加水分解性チタン化合物は、チタンに直接結合する加水分解性基を有するチタン化合物であって、水、水蒸気などの水分と反応することにより水酸化チタンを生成するものである。また、加水分解性チタン化合物は、チタンに結合する基の全てが加水分解性基であるものでもよいし、チタンに結合する基の一部が加水分解性基であるものでもよい。
前記加水分解性基としては、上記したように水分と反応することにより水酸化チタンを生成させるものであれば特に制限はないが、例えば、低級アルコキシル基やチタンと塩を形成する基(例えば、塩素などのハロゲン原子、水素原子、硫酸イオンなど)などが挙げられる。
【0014】
加水分解性基として低級アルコキシル基を含有する加水分解性チタン化合物としては、特に、一般式Ti(OR)(式中、Rは同一若しくは異なる炭素数1〜5のアルキル基を示す)で示されるテトラアルコキシチタンが好ましい。炭素数1〜5のアルキル基としては、例えば、メチル基、エチル基、n−プロピル基、iso−プロピル基、n−ブチル基、iso−ブチル基、sec−ブチル基、tert−ブチル基などが挙げられる。
加水分解性基として、チタンと塩を形成する基を有する加水分解性チタン化合物としては、塩化チタン、硫酸チタンなどが代表的なものとして挙げられる。
【0015】
また、加水分解性チタン化合物の低縮合物は、上記した加水分解性チタン化合物どうしの低縮合物である。この低縮合物は、チタンに結合する基の全てが加水分解性基であるものでもよいし、チタンに結合する基の一部が加水分解性であるものでもよい。
加水分解性基がチタンと塩を形成する基である加水分解性チタン化合物(例えば、塩化チタン、硫酸チタンなど)については、その加水分解性チタン化合物の水溶液とアンモニアや苛性ソーダなどのアルカリ溶液との反応により得られるオルトチタン酸(水酸化チタンゲル)も低縮合物として使用できる。
【0016】
加水分解性チタン化合物の低縮合物及び水酸化チタンの低縮合物としては、縮合度が2〜30の化合物が使用可能であり、特に縮合度が2〜10の化合物を使用することが好ましい。縮合度が30を超えると、過酸化水素と混合した際に白色沈殿を生じ、安定なチタン含有水性液が得られない。
以上挙げた加水分解性チタン化合物、加水分解性チタン化合物の低縮合物、水酸化チタン、水酸化チタンの低縮合物は、1種又は2種以上を使用できるが、そのなかでも、上述した一般式で示される加水分解性チタン化合物であるテトラアルコキシチタンが特に好ましい。
【0017】
チタン含有水性液(A)としては、上記したチタン化合物と過酸化水素水を混合することにより得られるチタンを含む水性液であれば、従来公知のものを特に制限なしに使用することができる。具体的には、下記のものを挙げることができる。
(i)含水酸化チタンのゲル又はゾルに過酸化水素水を添加して得られるチタニルイオン過酸化水素錯体又はチタン酸(ペルオキソチタン水和物)水溶液(特開昭63−35419号公報、特開平1−224220号公報参照)。
【0018】
(ii)塩化チタンや硫酸チタンの水溶液と塩基性溶液から製造した水酸化チタンゲルに過酸化水素水を作用させ、合成することで得られるチタニア膜形成用液体(特開平9−71418号公報、特開平10−67516号公報参照)。
このチタニア膜形成用液体を得る場合、チタンと塩を形成する基を有する塩化チタンや硫酸チタンの水溶液とアンモニアや苛性ソーダなどのアルカリ溶液とを反応させることによりオルトチタン酸と呼ばれる水酸化チタンゲルを沈殿させる。次いで、水を用いたデカンテーションによって水酸化チタンゲルを分離し、良く水洗し、さらに過酸化水素水を加え、余分な過酸化水素を分解除去することにより、黄色透明粘性液体を得ることができる。
【0019】
沈殿した上記オルトチタン酸は、OHどうしの重合や水素結合によって高分子化したゲル状態にあり、そのままではチタンを含む水性液としては使用できない。このゲルに過酸化水素水を添加するとOHの一部が過酸化状態になり、ペルオキソチタン酸イオンとして溶解或いは高分子鎖が低分子に分断された一種のゾル状態になり、余分な過酸化水素は水と酸素になって分解し、無機膜形成用のチタンを含む水性液として使用できるようになる。
このゾルはチタン原子以外に酸素原子と水素原子しか含まないので、乾燥や焼成によって酸化チタンに変化する場合、水と酸素しか発生しないため、ゾルゲル法や硫酸塩などの熱分解に必要な炭素成分やハロゲン成分の除去が必要でなく、低温でも比較的密度の高い酸化チタン膜を形成することができる。
【0020】
(iii)塩化チタンや硫酸チタンの無機チタン化合物水溶液に過酸化水素を加えてぺルオキソチタン水和物を生成させた後に、塩基性物質を添加して得られた溶液を放置又は加熱することによってペルオキソチタン水和物重合体の沈殿物を生成させ、次いで、少なくともチタン含有原料溶液に由来する水以外の溶解成分を除去した後に過酸化水素を作用させて得られるチタン酸化物形成用溶液(特開2000−247638号公報、特開2000−247639号公報参照)。
【0021】
チタン化合物として加水分解性チタン化合物及び/又はその低縮合物(以下、説明の便宜上「加水分解性チタン化合物a」という)を用いるチタン含有水性液(A)は、加水分解性チタン化合物aを過酸化水素水と反応温度1〜70℃で10分間〜20時間程度反応させることにより得ることができる。
この加水分解性チタン化合物aを用いたチタン含有水性液(A)は、加水分解性チタン化合物aと過酸化水素水とを反応させることにより、加水分解性チタン化合物aが水で加水分解されて水酸基含有チタン化合物を生成し、次いで、この水酸基含有チタン化合物に過酸化水素が配位するものと考えられ、この加水分解反応及び過酸化水素による配位が同時近くに起こることにより得られたものであり、室温域での安定性が極めて高く、長期の保存に耐えるキレート液を生成する。従来の製法で用いられる水酸化チタンゲルは、Ti−O−Ti結合により部分的に三次元化しており、このゲルと過酸化水素水を反応させたチタン含有水性液(A)とは組成及び安定性が本質的に異なる。
【0022】
また、加水分解性チタン化合物aを用いたチタン含有水性液(A)を80℃以上で加熱処理又はオートクレーブ処理すると、結晶化した酸化チタンの超微粒子を含む酸化チタン分散液が得られる。前記加熱処理又はオートクレーブ処理が80℃未満では、酸化チタンの結晶化が十分に進まない。このようにして製造された酸化チタン分散液は、酸化チタン超微粒子の平均粒子径が10nm以下、好ましくは1〜6nm程度が望ましい。酸化チタン超微粒子の平均粒子径が10nmより大きくなると造膜性が低下する(塗布後乾燥して皮膜とした場合、膜厚1μm以上でワレを生じる)ので好ましくない。この酸化チタン分散液の外観は半透明状のものである。このような酸化チタン分散液も、チタン含有水性液(A)として使用することができる。
【0023】
加水分解性チタン化合物aを用いたチタン含有水性液(A)を含む表面処理組成物(H)を、めっき鋼板表面に塗布・乾燥(例えば、低温で加熱乾燥)することにより、それ自体で付着性に優れた緻密な酸化チタン含有皮膜(表面処理皮膜)を形成することができる。
表面処理組成物(H)を塗布した後の加熱温度としては、例えば200℃以下、特に150℃以下が好ましく、このような温度で加熱乾燥することにより、水酸基を若干含む非晶質(アモルファス)の酸化チタン含有皮膜が形成できる。
また、上記したような80℃以上の加熱処理又はオートクレーブ処理を経て得られた酸化チタン分散液をチタン含有水性液(A)として用いた場合、表面処理組成物(H)を塗布するだけで結晶性の酸化チタン含有皮膜が形成できるため、加熱処理できない材料のコーティング材として有用である。
【0024】
また、チタン含有水性液(A)としては、酸化チタンゾルの存在下で、加水分解性チタン化合物aと過酸化水素水とを反応させて得られるチタン含有水性液(A1)を使用することもできる。
前記酸化チタンゾルは、無定型チタニア微粒子又は/及びアナタース型チタニア微粒子が水(必要に応じて、例えばアルコール系、アルコールエーテル系などの水性有機溶剤を添加してもよい)に分散したゾルである。この酸化チタンゾルとしては、従来公知のものを使用することができ、例えば、(i)硫酸チタンや硫酸チタニルなどの含チタン溶液を加水分解して得られる酸化チタン凝集物、(ii)チタンアルコキシドなどの有機チタン化合物を加水分解して得られる酸化チタン凝集物、(iii)四塩化チタンなどのハロゲン化チタン溶液を加水分解又は中和して得られる酸化チタン凝集物、などの酸化チタン凝集物を水に分散した無定型チタニアゾル、或いは前記酸化チタン凝集物を焼成してアナタース型チタン微粒子とし、このものを水に分散したゾルを使用することができる。
【0025】
前記無定形チタニアの焼成では、少なくともアナタースの結晶化温度以上の温度、例えば、400℃〜500℃以上の温度で焼成すれば、無定形チタニアをアナタース型チタニアに変換させることができる。この酸化チタンの水性ゾルとしては、例えば、TKS−201(商品名,テイカ社製,アナタース型結晶形,平均粒子径6nm)、TA−15(商品名,日産化学社製,アナタース型結晶形)、STS−11(商品名,石原産業社製,アナタース型結晶形)などが挙げられる。
チタン含有水性液(A1)において、上記酸化チタンゾルxとチタン過酸化水素反応物y(加水分解性チタン化合物aと過酸化水素水との反応生成物)との質量比率x/yは、1/99〜99/1、好ましくは約10/90〜90/10の範囲が適当である。質量比率x/yが1/99未満では、安定性、光反応性などの点において酸化チタンゾルを添加した効果が十分に得られず、一方、99/1を超えると造膜性が劣るので好ましくない。
【0026】
チタン含有水性液(A1)は、酸化チタンゾルの存在下で加水分解性チタン化合物aを過酸化水素水と反応温度1〜70℃で10分間〜20時間程度反応させることにより得ることができる。
チタン含有水性液(A1)の生成形態やその特性は、さきに述べた加水分解性チタン化合物aを用いたチタン含有水性液(A)と同様であるが、特に、酸化チタンゾルを使用することにより、合成時に一部縮合反応が起きて増粘するのが抑えられる。その理由は、縮合反応物が酸化チタンゾルの表面に吸着され、溶液状態での高分子化が抑えられるためであると考えられる。
【0027】
また、チタン含有水性液(A1)を80℃以上で加熱処理又はオートクレーブ処理すると、結晶化した酸化チタンの超微粒子を含む酸化チタン分散液が得られる。この酸化チタン分散液を得るための温度条件、結晶化した酸化チタン超微粒子の粒子径、分散液の外観なども、さきに述べた加水分解性チタン化合物aを用いたチタン含有水性液(A)と同様である。このような酸化チタン分散液も、チタン含有水性液(A1)として使用することができる。
【0028】
さきに述べた加水分解性チタン化合物aを用いたチタン含有水性液(A)と同様、チタン含有水性液(A1)を含む表面処理組成物(H)を、めっき鋼板表面に塗布・乾燥(例えば、低温で加熱乾燥)することにより、それ自体で付着性に優れた緻密な酸化チタン含有皮膜(表面処理皮膜)を形成することができる。
表面処理組成物(H)を塗布した後の加熱温度としては、例えば200℃以下、特に150℃以下が好ましく、このような温度で加熱乾燥することにより、水酸基を若干含むアナタース型の酸化チタン含有皮膜が形成できる。
以上述べたように、チタン含有水性液(A)の中でも、加水分解性チタン化合物aを用いたチタン含有水性液(A)やチタン含有水性液(A1)は、貯蔵安定性、耐食性などに優れた性能を有するので、本発明ではこれらを使用することが特に好ましい。
【0029】
加水分解性チタン化合物、加水分解性チタン化合物の低縮合物、水酸化チタン、水酸化チタンの低縮合物の中から選ばれる少なくとも1種のチタン化合物に対する過酸化水素水の配合割合は、チタン化合物10質量部に対して過酸化水素換算で0.1〜100質量部、望ましく1〜20質量部とすることが好ましい。過酸化水素水の配合割合が過酸化水素換算で0.1質量部未満では、キレート形成が十分でないため白濁沈殿が生じてしまう。一方、100質量部を超えると未反応の過酸化水素が残存し易く、貯蔵中に危険な活性酸素を放出するので好ましくない。
【0030】
過酸化水素水の過酸化水素濃度は特に限定されないが、3〜30質量%程度であることが、取り扱いやすさ、塗装作業性に関係する生成液の固形分の点で好ましい。
チタン含有水性液(A)には、必要に応じて、他のゾルや顔料を添加分散させることもできる。例えば、添加物としては、市販の酸化チタンゾルや酸化チタン粉末、マイカ、タルク、シリカ、バリタ、クレーなどが挙げられ、これらの1種以上を添加することができる。
表面処理組成物(H)中でのチタン含有水性液(A)の添加量は、処理液安定性の観点から、固形分の割合で5〜60質量%、好ましくは8〜40質量%とする。チタン含有水性液(A)の添加量(固形分割合)が5質量%未満、60質量%超のいずれの場合も処理液安定性が劣る。
【0031】
前記ニッケル化合物又は/及びコバルト化合物(B)は耐黒変性向上のために配合されるものであり、ニッケル化合物としては、例えば、酢酸ニッケル、硝酸ニッケル、硫酸ニッケルなどが、また、コバルト化合物としては、酢酸コバルト、硝酸コバルト、硫酸コバルトなどが挙げられ、これらの1種又は2種以上を用いることができる。なかでも、酢酸ニッケル、酢酸コバルトが耐黒変性と耐食性の両立の観点から好適である。
表面処理組成物(H)中でのニッケル化合物又は/及びコバルト化合物(B)の添加量は、耐黒変性と耐食性を両立させるという観点から、固形分の割合で0.01〜1質量%、好ましくは0.05〜0.7質量%とする。ニッケル化合物又は/及びコバルト化合物(B)の添加量が0.01質量%未満では耐黒変性の改善効果が十分に得られず、一方、1質量%を超えると耐食性が低下してしまう。
【0032】
前記弗素含有化合物(C)は、耐食性向上の観点から、処理液(表面処理組成物)とめっき表面との反応性を高め、緻密な反応層を形成するために配合されるものである。弗素含有化合物(C)としては、例えば、ジルコン弗化アンモニウム、ジルコン弗化カリウム、ジルコン弗化水素酸、チタン弗化アンモニウム、弗化水素酸、弗化水素酸アンモニウムなどが挙げられ、これらの1種又は2種以上を用いることができる。なかでも、耐食性と耐黒変性を両立させるという観点からは、ジルコン弗化アンモニウム、ジルコン弗化水素酸の中から選ばれる少なくとも1種を用いること好ましい。
表面処理組成物(H)中での弗素含有化合物(C)の添加量は、固形分の割合で1〜40質量%、好ましくは2〜30質量%とする。弗素含有化合物(C)の添加量が1質量%未満では、処理液とめっき表面との反応性が劣る結果、十分な耐食性が得られず、また、耐黒変性も向上しない。一方、40質量%を超えると、処理液のエッチング性が高くなる結果、めっき表面が過剰にエッチングされ、却って耐食性が劣化してしまう。
【0033】
前記水溶性有機樹脂又は/及び水分散性有機樹脂(D)は、水に溶解又は分散することのできる有機樹脂であり、有機樹脂を水に水溶化又は分散化させる方法としては、従来公知の方法を適用することができる。具体的には、例えば、有機樹脂として単独で水溶化や水分散化できる官能基(例えば、水酸基、ポリオキシアルキレン基、カルボキシル基、アミノ(イミノ)基、スルフィド基、ホスフィン基など)を含有するものを使用でき、必要に応じてそれらの官能基の一部又は全部を、酸性樹脂(カルボキシル基含有樹脂など)であればエタノールアミン、トリエチルアミンなどのアミン化合物;アンモニア水;水酸化リチウム、水酸化ナトリウム、水酸化カリウムなどのアルカリ金属水酸化物で中和したもの、また、塩基性樹脂(アミノ基含有樹脂など)であれば、酢酸、乳酸などの脂肪酸;リン酸などの鉱酸で中和したものなどを水中に溶解又は分散する方法、乳化剤を用いて有機樹脂を水中に分散する方法などが挙げられる。
【0034】
有機樹脂としては、例えば、エポキシ系樹脂、フェノール系樹脂、アクリル系樹脂、ウレタン系樹脂、オレフィン−カルボン酸系樹脂、ナイロン系樹脂、ポリオキシアルキレン鎖を有する樹脂、ポリビニルアルコール、ポリグリセリン、カルボキシメチルセルロース、ヒドロキシメチルセルロース、ヒドロキシエチルセルロースなどが挙げられる。上記有機樹脂は1種又は2種以上を用いることができる。
これらのなかでも特に、水溶性又は水分散性のアクリル系樹脂、ウレタン系樹脂及びエポキシ系樹脂の中から選ばれる少なくとも1種の有機樹脂を用いることが表面処理組成物の貯蔵安定性の面から好ましい。また特に、水分散性のアクリル系樹脂を水溶性有機樹脂又は/及び水分散性有機樹脂(D)中に固形分の割合で50質量%以上、好ましくは70質量%以上用いることが、表面処理組成物の貯蔵安定性と塗膜性能とのバランスの面から好ましい。
【0035】
水分散性のアクリル系樹脂は、従来公知の方法、例えば、乳化重合法、懸濁重合法、親水性の基を有する重合体を溶液重合により合成し、必要に応じて中和、水分散する方法などにより得ることができるが、なかでも、乳化剤としてイオン性の乳化剤を用いず、ノニオン性乳化剤だけを用いた乳化重合法により得られるアクリルエマルションを使用することが表面処理組成物(H)の長期貯蔵安定性の面から好ましい。乳化重合法は1段重合でも多段重合でもよいが、好ましくは多段重合法を用いて、水分散体粒子の最外面側に、例えば、カルボキシル基、アミノ基、水酸基、ポリオキシアルキレン基などの親水性の基を多く配向させることにより、長期貯蔵安定性をより向上させることができる。
具体的には、例えば多段重合法において、初期の重合ではカルボキシル基、アミノ基、水酸基、ポリオキシアルキレン基などの親水性の基を有する不飽和単量体の比率を少なくし、最終的な重合においては親水性の基を有する不飽和単量体の比率を多くすることにより得ることができる。
また、水分散性のアクリル系樹脂における樹脂のガラス転移温度は25〜80℃、好ましくは28〜75℃であることが、表面処理組成物(H)により形成される皮膜の耐食性、耐黒変性などの点から適している。
【0036】
ここで、共重合体のガラス転移温度(℃)は、下式により算出することができる。
1/Tg(゜K)=(W1/T1)+(W2/T2)+・・
Tg(℃)=Tg(゜K)−273
各式中、W1,W2,・・は共重合に使用されたモノマーのそれぞれの質量%、T1,T2,・・はそれぞれ単量体のホモポリマ−のTg(゜K)を表わす。なお、T1,T2,・・は、Polymer Hand Book(Second Edition,J.Brandup・E.H.Immergut 編)III-139〜179頁による値である。また、モノマーのホモポリマーのTgが明確でない場合のガラス転移温度(℃)は、静的ガラス転移温度とし、例えば、示差走査熱量計「DSC−220U」(セイコーインスツルメント社製)を用いて試料を測定カップにとり、真空吸引して完全に溶剤を除去した後、3℃/分の昇温速度で−20℃〜+200℃の範囲で熱量変化を測定し、低温側の最初のベースラインの変化点を静的ガラス転移温度とする。
【0037】
前記カルボキシル基含有不飽和単量体としては、アクリル酸、メタクリル酸、マレイン酸、無水マレイン酸、クロトン酸、イタコン酸などが挙げられる。
前記アミノ基含有不飽和単量体などのような含窒素不飽和単量体としては、N,N−ジメチルアミノエチル(メタ)アクリレート、N,N−ジエチルアミノエチル(メタ)アクリレート、N−t−ブチルアミノエチル(メタ)アクリレートなどの含窒素アルキル(メタ)アクリレート;アクリルアミド、メタクリルアミド、N−メチル(メタ)アクリルアミド、N−エチル(メタ)アクリルアミド、N−メチロール(メタ)アクリルアミド、N−メトキシメチル(メタ)アクリルアミド、N−ブトキシメチル(メタ)アクリルアミド、N,N−ジメチル(メタ)アクリルアミド、N,N−ジメチルアミノプロピル(メタ)アクリルアミド、N,N−ジメチルアミノエチル(メタ)アクリルアミドなどの重合性アミド類;2−ビニルピリジン、1−ビニル−2−ピロリドン、4−ビニルピリジンなどの芳香族含窒素モノマー;アリルアミンなどが挙げられる。
【0038】
前記水酸基やポリオキシアルキレン基含有不飽和単量体としては、2−ヒドロキシエチル(メタ)アクリレート、ヒドロキシプロピル(メタ)アクリレート、2,3−ジヒドロキシブチル(メタ)アクリレート、4−ヒドロキシブチル(メタ)アクリレート、ポリエチレングリコールモノ(メタ)アクリレート、ポリプロピレングリコールモノ(メタ)アクリレートなどの多価アルコールとアクリル酸又はメタクリル酸とのモノエステル化物;上記多価アルコールとアクリル酸又はメタクリル酸とのモノエステル化物にε−カプロラクトンを開環重合した化合物などが挙げられる。
前記親水性の基を有する不飽和単量体と共重合可能な不飽和単量体としては、メチル(メタ)アクリレート、エチル(メタ)アクリレート、n−プロピル(メタ)アクリレート、イソプロピル(メタ)アクリレート、n−ブチル(メタ)アクリレート、イソブチル(メタ)アクリレート、tert−ブチル(メタ)アクリレート、2−エチルヘキシルアクリレート、n−オクチル(メタ)アクリレート、ラウリル(メタ)アクリレート、トリデシル(メタ)アクリレート、オクタデシル(メタ)アクリレート、イソステアリル(メタ)アクリレートなどの炭素数1〜24のアルキル(メタ)アクリレート;酢酸ビニルなどが挙げられる。
以上挙げた不飽和単量体は、1種又は2種以上を用いることができる。なお、本願の記載において、「(メタ)アクリレート」とは「アクリレート又はメタアクリレート」を意味する。
【0039】
前記ウレタン系樹脂としては、ポリエステルポリオール、ポリエーテルポリオールなどのポリオールとジイソシアネートからなるポリウレタンを必要に応じてジオール、ジアミンなどのような2個以上の活性水素を持つ低分子量化合物である鎖伸長剤の存在下で鎖伸長し、水中に安定に分散又は溶解させたものを好適に使用でき、従来公知のものを広く使用できる(例えば、特公昭42−24192号公報、特公昭42−24194号公報、特公昭42−5118号公報、特公昭49−986号公報、特公昭49−33104号公報、特公昭50−15027号公報、特公昭53−29175号公報参照)。
【0040】
ポリウレタン樹脂を水中に安定に分散又は溶解させる方法としては、例えば下記の方法が利用できる。
(1)ポリウレタンポリマーの側鎖又は末端に水酸基、アミノ基、カルボキシル基などのイオン性基を導入することにより親水性を付与し、自己乳化により水中に分散又は溶解する方法。
(2)反応の完結したポリウレタンポリマー又は末端イソシアネート基をオキシム、アルコール、フェノール、メルカプタン、アミン、重亜硫酸ソーダなどのブロック剤でブロックしたポリウレタンポリマーを乳化剤と機械的剪断力を用いて強制的に水中に分散する方法。さらに、末端イソシアネート基を持つウレタンポリマーを水、乳化剤及び鎖伸長剤と混合し、機械的剪断力を用いて分散化と高分子量化を同時に行う方法。
(3)ポリウレタン主原料のポリオールとしてポリエチレングリコールのごとき水溶性ポリオールを使用し、水に可溶なポリウレタンとして水中に分散又は溶解する方法。
なお、ポリウレタン系樹脂は、上述した分散又は溶解方法のうち異なる方法で得られたものを混合して用いることもできる。
【0041】
前記ポリウレタン系樹脂の合成に使用できるジイソシアネートとしては、芳香族、脂環族又は脂肪族のジイソシアネートが挙げられ、具体的には、ヘキサメチレンジイソシアネート、テトラメチレンジイソシアネート、3,3′−ジメトキシ−4,4′−ビフェニレンジイソシアネート、p−キシリレンジイソシアネート、m−キシリレンジイソシアネート、1,3−(ジイソシアナトメチル)シクロヘキサノン、1,4−(ジイソシアナトメチル)シクロヘキサノン、4,4′−ジイソシアナトシクロヘキサノン、4,4′−メチレンビス(シクロヘキシルイソシアネート)、イソホロンジイソシアネート、2,4−トリレンジイソシアネート、2,6−トリレンジイソシアネート、p−フェニレンジイソシアネート、ジフェニルメタンジイソシアネート、m−フェニレンジイソシアネート、2,4−ナフタレンジイソシアネート、3,3′−ジメチル−4,4′−ビフェニレンジイソシアネート、4,4′−ビフェニレンジイソシアネートなどが挙げられる。これらなかでも、2,4−トリレンジイソシアネート、2,6−トリレンジイソシアネート、ヘキサメチレンジイソシアネート、イソホロンジイソシアネートが特に好ましい。
ポリウレタン系樹脂の市販品としては、ハイドランHW−330、同HW−340、同HW−350(いずれも商品名,大日本インキ化学工業社製)、スーパーフレックス100、同150、同E−2500、同F−3438D(いずれも商品名,第一工業製薬社製)などを挙げることができる。
【0042】
前記エポキシ系樹脂としては、エポキシ樹脂にアミンを付加してなるカチオン系エポキシ樹脂;アクリル変性、ウレタン変性などの変性エポキシ樹脂などが好適に使用できる。カチオン系エポキシ樹脂としては、例えば、エポキシ化合物と、1級モノ−又はポリアミン、2級モノ−又はポリアミン、1,2級混合ポリアミンなどとの付加物(例えば、米国特許第3984299号明細書参照);エポキシ化合物とケチミン化された1級アミノ基を有する2級モノ−又はポリアミンとの付加物(例えば、米国特許第4017438号明細書参照);エポキシ化合物とケチミン化された1級アミノ基を有するヒドロキシル化合物とのエーテル化反応生成物(例えば、特開昭59−43013号公報参照)などが挙げられる。
【0043】
エポキシ系樹脂としては、数平均分子量が400〜4000、特に800〜2000、エポキシ当量が190〜2000、特に400〜1000であるものが好ましい。そのようなエポキシ系樹脂は、例えば、ポリフェノール化合物とエピルロルヒドリンとの反応によって得ることができ、ポリフェノール化合物としては、例えば、ビス(4−ヒドロキシフェニル)−2,2−プロパン、4,4−ジヒドロキシベンゾフェノン、ビス(4−ヒドロキシフェニル)−1,1−エタン、ビス(4−ヒドロキシフェニル)−1,1−イソブタン、ビス(4−ヒドロキシ−tert−ブチルフェニル)−2,2−プロパン、ビス(2−ヒドロキシナフチル)メタン、1,5−ジヒドロキシナフタレン、ビス(2,4−ジヒドロキシフェニル)メタン、テトラ(4−ヒドロキシフェニル)−1,1,2,2−エタン、4,4−ジヒドロキシジフェニルスルホン、フェノールノボラック、クレゾールノボラックなどが挙げられる。
【0044】
表面処理組成物(H)中での水溶性有機樹脂又は/及び水分散性有機樹脂(D)の添加量は、塗料密着性の観点から、固形分の割合で31〜85質量%、好ましくは32〜80質量%とする。水溶性有機樹脂又は/及び水分散性有機樹脂(D)の添加量が31質量%未満では、加工などの変形に化成皮膜が追従できず、めっき皮膜/化成皮膜の界面で皮膜が剥離してしまい、塗料密着性が劣る。一方、85質量%を超えると、無機成分によるめっきとの反応性が不十分となり、十分な耐食性、耐黒変性を付与することができない。
【0045】
本発明で用いる表面処理組成物(H)は、以上述べたようなチタン含有水性液(A)、ニッケル化合物又は/及びコバルト化合物(B)、弗素含有化合物(C)及び水溶性有機樹脂又は/及び水分散性有機樹脂(D)を必須とするものであるが、さらに必要に応じて、有機リン酸化合物(E)、バナジン酸化合物(F)、炭酸ジルコニウム化合物(G)のうちの1種以上を含有することができる。
前記有機リン酸化合物(E)としては、例えば、1−ヒドロキシメタン−1,1−ジホスホン酸、1−ヒドロキシエタン−1,1−ジホスホン酸、1−ヒドロキシプロパン−1,1−ジホスホン酸などのヒドロキシル基含有有機亜リン酸;2−ヒドロキシホスホノ酢酸、2−ホスホノブタン−1,2,4−トリカルボン酸などのカルボキシル基含有有機亜リン酸、及びこれらの塩などが好適なものとして挙げられ、これらの1種又は2種以上を用いることができる。
【0046】
有機リン酸化合物(E)は、チタン含有水性液(A)の貯蔵安定性を向上させる効果を有し、なかでも、1−ヒドロキシエタン−1,1−ジホスホン酸はその効果が特に大きいことから、これを使用するのが特に好ましい。
表面処理組成物(H)中での有機リン酸化合物(E)の添加量は、固形分の割合で5〜60質量%であることが、チタン含有水性液(A)の貯蔵安定性や耐水付着性などの点から好ましい。有機リン酸化合物(E)の添加量が5質量%未満では、チタン含有水性液(A)の貯蔵安定性の改善効果が少ない。一方、60質量%を超えると、リン酸が過剰に存在する結果、耐水性が劣化してしまう。有機リン酸化合物(E)のより好ましい添加量は、8〜50質量%である。
【0047】
前記バナジン酸化合物(F)としては、例えば、メタバナジン酸リチウム、メタバナジン酸カリウム、メタバナジン酸ナトリウム、メタバナジン酸アンモニウム、無水バナジン酸などが挙げられ、これらの1種又は2種以上を用いることができる。なかでも、メタバナジン酸アンモニウムが耐水付着性などの点から好ましい。
表面処理組成物(H)中でのバナジン酸化合物(F)の添加量は、固形分の割合で0.1〜30質量%であることが、アルカリ脱脂後耐食性の点から好ましい。バナジン酸化合物(F)の添加量が0.1質量%未満であると、アルカリ脱脂後の耐食性の改善効果が不十分である。一方、30質量%を超えると、Vが過剰に存在するため十分な耐食性を発現できない。バナジン酸化合物(F)のより好ましい添加量は、0.5〜20質量%である。
【0048】
前記炭酸ジルコニウム化合物(G)としては、炭酸ジルコニウムのナトリウム、カリウム、リチウム、アンモニウムなどの塩が挙げられ、これらの1種又は2種以上を用いることができる。なかでも、炭酸ジルコニウムアンモニウムが耐水付着性などの点から好ましい。
表面処理組成物(H)中での炭酸ジルコニウム化合物(G)の添加量は、固形分の割合で0.1〜20質量%であることが、耐食性などの点から好ましい。炭酸ジルコニウム化合物(G)の添加量が0.1質量%未満であると、耐食性の改善効果が不十分である。一方、20質量%を超えると、Zrが過剰に存在するため十分な耐食性を発現できない。炭酸ジルコニウム化合物(G)のより好ましい添加量は、0.2〜15質量%である。
【0049】
表面処理組成物(H)には、さらに必要に応じて、例えば、シランカップリング剤、樹脂微粒子、無機リン酸化合物などのエッチング剤、本発明が規定する成分以外の重金属化合物、増粘剤、界面活性剤、潤滑性付与剤(ポリエチレンワックス、フッソ系ワックス、カルナバワックスなど)、防錆剤、着色顔料、体質顔料、防錆顔料、染料などを含有することができる。
また、表面処理組成物(H)は、必要に応じて、例えばメタノール、エタノール、イソプロピルアルコール、エチレングリコール系溶剤、プロピレングリコール系溶剤などの親水性溶剤で希釈して使用することができる。
表面処理組成物(H)により形成される表面処理皮膜の付着量は、0.5〜3.0g/m、好ましくは0.5〜2.0g/mとする。皮膜付着量が0.5g/m未満では耐食性が劣り、一方、3.0g/mを超えるとロールフォーミングやプレス加工の際にロールや金型に皮膜が付着し、プレス後外観が劣る。
【0050】
次に、本発明の表面処理めっき鋼板のベースとなる溶融Zn−Al系合金めっき鋼板について説明する。この溶融Zn−Al系合金めっき鋼板の溶融Zn−A1系合金めっき層中に添加するMgは、主として、スパングルの無い若しくは非常に微細なスパングルが形成された金属光沢のある美麗なめっき外観を得ることを、また、同じくめっき層中に添加するNiは、主として耐黒変性を向上させることを、それぞれ狙いとするものであるが、このNi添加による耐黒変性の向上には、適量のMgが共存することによってめっき層最表層部にNiが濃化することが必要である。また、めっき後の冷却速度を適正範囲にコントロールすることにより、めっき層最表層部でのNi濃化をより適切に生じさせることができる。
【0051】
以下、溶融Zn−Al系合金めっき層(以下、単に「めっき層」という)の成分組成の限定理由について説明する。
めっき層中のAl含有量が1.0質量%未満では、めっき層−素地界面にFe−Zn系の合金層が厚く形成し、加工性が低下する。一方、Al含有量が10質量%を超えるとZnとAlの共晶組織が得られず、Alリッチ層が増加して犠牲防食作用が低下するので、端面部の耐食性が劣る。また、Alが10質量%を超えるめっき層を得ようとすると、めっき浴中にAlを主体としたトップドロスが発生しやすくなり、めっき外観を損なうという問題も生じる。以上の理由から、めっき層中のAl含有量は1.0〜10質量%、好ましくは3〜7質量%とする。
【0052】
本発明においてめっき組成を限定する狙いの一つは、GF組成の溶融Zn−Al系合金めっきに特有のスパングルを無くし(ゼロスパングル化し)若しくは非常に微細なスパングルを形成し、且つ不めっきのない金属光沢をもつ美麗なめっき外観を得ることにあり、本発明者らは、めっき組成とめっき外観との関係を調べるために、以下のような実験を行った。
GF組成のAl(4〜5質量%)を含有する溶融Zn−Al系合金めっき浴にMgとNiをそれぞれ単独で添加し、これらのめっき浴で鋼板を溶融Zn−Al系合金めっきし、得られためっき鋼板のめっき外観(特に、スパングルサイズ、ドロス付着の程度、色調、光沢)を目視観察した。その結果、Niを添加しためっき層は、本発明者らの実験範囲内ではめっき外観に変化は見られず、通常のGFとほぼ同等のめっき外観を示したが、Mgを添加しためっき層は、その添加量によってスパングルサイズ、色調および光沢等が変化した。
【0053】
Al:4〜5質量%、Ni:0.03質量%を含有する溶融Zn−Al系合金めっき浴(ミッシュメタルとしてのCeおよびLaの合計含有量:0.008質量%)にMgを0〜3質量%添加し、この溶融Zn−Al系合金めっき浴を用いて鋼板をめっきし、めっき層中のMg含有量とめっき外観(スパングルサイズ、ドロス付着の程度、色調)との関係を調べた。その結果を図1に示す。これによれば、Mg含有量が0.1質量%以上でスパングルが微細化しはじめ、0.2質量%以上でスパングルがほぼ消失するとともに、色調が金属光沢のある白色味を示す。また、Mg含有量が0.2質量%未満では、耐黒変性も低下する。これは後述するように、めっき層中でNiと共存するMgが0.2質量%未満であるとNiのめっき層最表層部への濃化がなくなり、結果的に耐黒変性が低下するためである。一方、Mg含有量が1.0質量%を超えると色調が灰白色→灰色へと順次変化していくとともに、ドロス付着が増加してくる。また、Mg含有量が1.0質量%を超えると、めっき層に亀裂が生じやすくなり、加工性が低下するという問題も生じる。また、Mgが多すぎると耐黒変性も劣る。
したがって、めっき層中のMg含有量は、美麗なめっき外観および優れた耐黒変性を得るために下限を0.2質量%とし、ドロス付着と色調低下を防止し、さらに加工性の低下を防止する観点から上限を1.0質量%とする。
【0054】
さきに、めっき組成のうちでMgは主としてめっき外観の改善に、Niは主として耐黒変性の改善に寄与することを述べたが、本発明者らの検討の結果、Niが耐黒変性の改善効果を発揮するには、Mgとの共存が不可欠であることが判った。すなわち、Mgは、美麗なめっき外観を形成する作用を有するとともに、Niと共存することで、間接的にNiによる耐黒変性向上効果を助長していることが判った。このことは、耐黒変性の異なるめっき鋼板について、グロー放電発光表面分析(GDS)により、めっき層を深さ方向で分析することによって明らかにできた。その分析結果の一例を以下に示す。
【0055】
下記の(1)〜(3)の3種類のGF組成の溶融Zn−Al系合金めっき鋼板について(いずれも、めっき後の250℃までの冷却速度が5℃/秒)、めっき層表面から深さ方向にAl、Zn、Mg、Niの各元素の濃化形態を調査した。
(1)めっき層中にMgのみを含有するめっき鋼板であって、耐黒変性が劣るもの
(2)めっき層中にNiのみを含有するめっき鋼板であって、耐黒変性が劣るもの
(3)めっき層中にMgとNiを含有するめっき鋼板であって、耐黒変性が優れるもの
黒変はめっき表面の問題と考えられるので、上記(1)〜(3)のサンプル(めっき鋼板)について、最表面から深さ約200nm(2000Å)までを重点的に分析した。その結果を図2に示す。なお、このめっき成分元素の分析では、GDS分析装置を用いてアノード径4mmφ、電流20mAで深さ方向に30秒間放電して分析した。
【0056】
図2によれば、上記(1)〜(3)のいずれのサンプルもめっき表面近傍に各めっき成分元素の濃化ピークが見られるが、それぞれのサンプルで各元素の濃化形態が微妙に異なることが判る。
まず、耐黒変性が劣っているMgのみを含有するサンプル(1)のめっき層には、最表層部(最表面)のZnとほぼ同位置にMgの濃化ピークが見られ、Alの濃化ピークはZn、Mgの濃化ピークよりも内側(素地側)にある。
また、耐黒変性が劣っているNiのみを含有するサンプル(2)のめっき層の濃化ピークは、最表層部のZnについでAlが見られ、Niの濃化ピークはAlの濃化ピークの内側(素地側)にある。
【0057】
これに対し、耐黒変性が優れるMgとNiを含有するサンプル(3)のめっき層は、Niの濃化ピークがZnと同じ最表層部にあり、Mg、Alの各濃化ピークはNiの濃化ピークの内側(素地側)にある。
また、図2には示していないが、めっき層中にサンプル(3)と同量のMgとNiが共存し、めっき後の250℃までの冷却速度を30℃/秒にして得られためっき鋼板であって、耐黒変性に著効を示さなかったものについて、同様に分析したが、めっき層最表層部へのNiの濃化がサンプル(3)に比べ少ないことが判った。
以上のような分析結果から、耐黒変性の優れためっき層には、その最表層部にNiが濃化し、この最表層部でのNi濃化には、Mgの共存が必要であることが判った。また、Ni濃化には、めっき後の冷却速度が影響することも判明した。
なお、上述した蛍光X線による分析結果から、めっき層最表層部のNi濃化は、めっき最表面から深さ30nm(300Å)程度の間に存在すると推定される。
【0058】
一般的に、酸化物生成の標準エネルギーで言えば、Al、MgはZnに比べて被酸化作用が強く、逆にNiは被酸化作用が弱い元素である。黒変は、被酸化作用の強いめっき成分元素がめっき層最表面に拡散(移動・濃化)して、めっき層最表面に生成している酸化亜鉛から酸素の一部を奪うことにより酸素欠乏型酸化亜鉛に変換させるために発生するとすれば、耐黒変性の劣ったサンプル(1)のめっき層は、最表層部に濃化したMgが酸化亜鉛の酸素を奪い、同じく耐黒変性の劣ったサンプル(2)のめっき層は、AlがNiよりも表層側に濃化していたことから、やはり被酸化作用の強いAlが酸化亜鉛の酸素を奪い、それぞれ酸素欠乏型酸化亜鉛へ変換したことが考えられる。
【0059】
これに対して、耐黒変性の優れたサンプル(3)のめっき層の最表層部には、被酸化作用の弱いNiが濃化し、これがバリア層となって共存するMg、Alの最表層部への拡散(移動・濃化)を抑制し、耐黒変性が向上したものと考えられる。
すなわち、耐黒変性改善には、Niがめっき層最表層部に濃化することでバリヤー層的な役目を果たすことが必要であり、このNiのめっき層最表層部への濃化は、Mgの共存によって生じるものと考えられる。ただし、Mgと共存することで、Niがめっき層最表層部に移動・濃化するメカニズムについては、現状では必ずしも明らかではない。
【0060】
めっき層中のNi含有量が0.005質量%未満では、Mgが共存してもNiのめっき層最表層部への濃化が少なく、耐黒変性の改善効果は得られない。逆にNiが0.005質量%以上であっても、Mgが0.2質量%未満ではNiの最表層部への濃化は見られない。
また、Ni含有量が0.1質量%を超えると、耐黒変性の改善効果はあるものの、めっき浴にNiを含有するAl−Mg系ドロスが発生し、ドロス付着によるめっき外観を損なうので、好ましくない。
以上の理由から、本発明ではめっき層中のNi含有量を0.005〜0.1質量%とし、また、さきに述べたようにMg含有量を0.2〜1.0質量%とする。
【0061】
本発明めっき鋼板では、めっき層中にCeおよび/またはLaを含むミッシュメタルを含有させることができる。このCeおよび/またはLaを含むミッシュメタルは、ゼロスパングル化には効果はないものの、めっき浴の流動性を増して、微細な不めっき状ピンホールの発生を防止し、めっき表面を平滑化する作用をする。
ミッシュメタルの含有量は、CeおよびLaの合計量で0.005質量%未満では、ピンホールの抑制効果が十分に得られず、表面平滑化にも効果がなくなる。一方、CeおよびLaの合計量が0.05質量%を超えると、めっき浴中に未溶解浮遊物として存在するようになり、これがめっき面に付着してめっき外観を損なう。このためCeおよび/またはLaを含有するミッシュメタルは、CeおよびLaの合計量で0.005〜0.05質量%、望ましくは0.007〜0.02質量%とすることが好ましい。
以上のように、GF組成のめっき層に適量のMgとNiを含有させ、さらに必要に応じてCeおよび/またはLaを含むミッシュメタルを適量含有させることにより、スパングルが無く若しくは非常に微細なスパングルが形成され、金属光沢を有し、且つ微小ピンホールなどの不めっきのない美麗なめっき外観と、優れた耐黒変性を有する溶融Zn−Al系合金めっき鋼板を得ることができる。
【0062】
以上のような溶融Zn−Al系合金めっき鋼板は、例えば、下記のような製造条件で得ることができる。
下地鋼板として使用する鋼板は、用途に応じて公知の鋼板から適宜選定すればよく、特に限定する必要はないが、例えば、低炭素アルミキルド鋼板や極低炭素鋼板を用いることが、めっき作業の観点から好ましい。この鋼板(下地鋼板)を溶融Zn−Al系合金めっき浴に浸漬して熱浸(溶融)めっきを行った後、同めっき浴から引き上げて冷却し、鋼板表面に溶融Zn−Al系合金めっき層を形成する。このめっき層は、Al:1.0〜10質量%、Mg:0.2〜1.0質量%、Ni:0.005〜0.1質量%を含有し、さらに必要に応じてCeおよび/またはLaを含有するミッシュメタルを、CeおよびLaの合計量で0.005〜0.05質量%含有し、残部がZnおよび不可避的不純物からなる。したがって、溶融Zn−Al系合金めっき浴の浴組成も、実質的に合金めっき層組成とほぼ同一となるように調整することが好ましい。
また、さきに述べたように、溶融Zn−Al系合金めっき層の最表層部にはNiが濃化する。
【0063】
本発明者らは、特に、溶融Zn−Al系合金めっき層中のMg,Ni含有量およびめっき後冷却速度とめっき層最表層部へのめっき成分元素の濃化挙動について鋭意検討した結果、耐黒変性の向上、すなわち、めっき層最表層部へのNi濃化には、さきに述べたようにMgとNiの共存が不可欠であるが、このNi濃化にはめっき後の250℃までの冷却速度も大きく影響することを見出した。
溶融Zn−Al系合金めっき層中のAl、Mg、Ni等の金属は、めっき後、凝固して常温に至るまで間に、めっき層最表面に向かって徐々に拡散することが知られており、特に本発明者らの実験で注目したMg、Niのめっき層最表面への濃化は、めっきしてから250℃までの冷却速度が大きく影響することが判った。一方、250℃未満の温度域の冷却速度は、Mg、Niの濃化にほとんど影響を与えなかった。
【0064】
具体的には、溶融Zn−Al系合金めっき浴から引き上げためっき鋼板の250℃までの冷却速度を1〜15℃/秒、好ましくは2〜10℃/秒にコントロールすることにより、めっき層最表層部へのNi濃化をより効果的に促進できることが判った。めっき浴から引き上げためっき鋼板の250℃までの冷却速度が1℃/秒未満では、めっき層最表層部にNiの濃化は十分見られるものの、めっき層中に合金層が成長し、亀甲模様になって外観が悪化するとともに、加工性が低下する原因となる。一方、冷却速度が15℃/秒を超えると、めっき層中のMg含有量が0.2〜1.0質量%、Ni含有量が0.005〜0.1質量%の範囲であっても、めっき層最表層部へのNiの濃化が少なくなり、耐黒変性に著効を示さなくなる。したがって、溶融Zn−Al系合金めっき浴から引き上げためっき鋼板の250℃までの冷却速度は1〜15℃/秒、望ましくは2〜10℃/秒とすることが好ましい。
なお、めっき浴温は、390〜500℃の範囲とするのが好ましい。めっき浴温が390℃未満ではめっき浴の粘性が増してめっき表面が凹凸状になりやすく、一方、500℃を超えるとめっき浴中のドロスが増加しやすい。
【0065】
本発明の表面処理めっき鋼板を製造するには、溶融Zn−Al系合金めっき鋼板の表面に、さきに述べたようなチタン含有水性液(A)と、ニッケル化合物又は/及びコバルト化合物(B)、弗素含有化合物(C)、水溶性有機樹脂又は/及び水分散性有機樹脂(D)を必須成分とし、さらに必要に応じて、有機リン酸化合物(E)、バナジン酸化合物(F)、炭酸ジルコニウム化合物(G)の1種以上を含有する表面処理組成物(H)(処理液)を塗布した後、水洗することなく乾燥する。
また、チタン含有水性液(A)や表面処理組成物(H)には、さらに必要に応じて、さきに挙げたような他の添加成分を含有させてもよい。
【0066】
表面処理組成物(処理液)の塗布手段は、例えば、スプレー+ロール絞り、ロールコーター、浸漬など、めっき鋼板表面に処理液を付着させることができる方法であればよい。また、塗布後の乾燥方式についても、例えば、熱風方式、誘導加熱方式、電気炉方式など任意である。
塗布した表面処理組成物(処理液)の乾燥温度(鋼板温度)は40〜200℃程度とすることが好ましい。乾燥温度が40℃未満では、皮膜形成が不十分となり耐食性などが劣った皮膜となる。一方、200℃を超える板温で乾燥させても、乾燥温度に見合う耐食性等の性能の向上効果は得られない。
【実施例】
【0067】
表面処理組成物に用いたチタン含有水性液(A)と成分(B)〜(G)を以下に示す。
[チタン含有水性液(A)の製造]
・製造例1(チタン含有水性液T1)
四塩化チタン60質量%溶液5ccを蒸留水で500ccとした溶液にアンモニア水(1:9)を滴下し、水酸化チタンを沈殿させた。蒸留水で洗浄後、過酸化水素水30質量%溶液を10cc加えてかき混ぜ、チタンを含む黄色半透明の粘性のあるチタン含有水性液T1を得た。
・製造例2(チタン含有水性液T2)
テトラiso−プロポキシチタン10質量部とiso−プロパノール10質量部の混合物を30質量%過酸化水素水10質量部と脱イオン水100質量部の混合物中に20℃で1時間かけて撹拌しながら滴下した。その後25℃で2時間熟成し、黄色透明の少し粘性のあるチタン含有水性液T2を得た。
・製造例3(チタン含有水性液T3)
製造例2で使用したテトラiso−プロポキシチタンの代わりにテトラn−ブトキシチタンを使用した以外は製造例2と同様の製造条件で、チタン含有水性液T3を得た。
【0068】
・製造例4(チタン含有水性液T4)
製造例2で使用したテトラiso−プロポキシチタンの代わりにテトラiso−プロポキシチタンの3量体を使用した以外は製造例2と同様の製造条件で、チタン含有水性液T4を得た。
・製造例5(チタン含有水性液T5)
製造例2に対して過酸化水素水を3倍量用い、50℃で1時間かけて滴下し、さらに60℃で3時間熟成した以外は製造例2と同様の製造条件で、チタン含有水性液T5を得た。
・製造例6(チタン含有水性液T6)
製造例3で製造したチタン含有水性液T3を、さらに95℃で6時間加熱処理することにより、白黄色の半透明なチタン含有水性液T6を得た。
・製造例7(チタン含有水性液T7)
テトラiso−プロポキシチタン10質量部とiso−プロパノール10質量部の混合物を、「TKS−203」(商品名,テイカ社製,酸化チタンゾル)5質量部(固形分)、30質量%過酸化水素水10質量部及び脱イオン水100質量部の混合物中に10℃で1時間かけて撹拌しながら滴下した。その後10℃で24時間熟成し、黄色透明の少し粘性のあるチタン含有水性液T7を得た。
【0069】
[ニッケル化合物又はコバルト化合物(B)]
B1:酢酸ニッケル
B2:硝酸ニッケル
B3:硫酸ニッケル
B4:酢酸コバルト
B5:硝酸コバルト
[弗素含有化合物(C)]
C1:ジルコン弗化アンモニウム
C2:ジルコン弗化水素酸
C3:ジルコン弗化ナトリウム
C4:ジルコン弗化カリウム
【0070】
[水溶性又は水分散性有機樹脂(D)]
水溶性又は水分散性有機樹脂のうち、D1〜D5の水分散性アクリル樹脂は、下記に示す製造例8〜12に従って製造し、D6〜D8は市販品を使用した。表1に、水分散性アクリル樹脂D1〜D5のモノマー組成と樹脂の特性値を示す。なお、下記製造例の「部」および「%」は質量基準である。
・製造例8(水分散性アクリル樹脂D1)
還流冷却器、撹拌器、温度計、滴下ロートを装備した容量2リットルの4つ口フラスコに脱イオン水665部、アクアロンRN−50(注1)9部、アクアロンRN−2025(注2)87部、下記組成のモノマー混合液1(1段目)を強制乳化してなるプレエマルションの5%(28.9部)を加え、窒素置換後昇温した。
モノマー混合液1
脱イオン水:166.5部
アクアロンRN−50:6.6部
アクアロンRN−2025:53部
スチレン:35部
メチルメタクリレート:163.5部
2−エチルヘキシルアクリレート:105部
2−ヒドロキシエチルメタクリレート:5部
メタクリル酸:3部
アクリロニトリル:38.5部
ターシャリードデカンチオール:1部
【0071】
55℃以上に達したら、パーブチルH(注3)5部を脱イオン水83.5部に溶解させてなる酸化剤水溶液の5%(4.43部)及びナトリウムホルムアルデヒドスルホキシレート2.5部を脱イオン水83.5部に溶解させてなる還元剤水溶液の5%(4.3部)を添加し、さらに昇温して60℃の温度で保持した。添加15分後から、残りのプレエマルションを1.5時間、酸化剤水溶液を3.5時間、還元剤水溶液を3.5時間にわたって滴下した。酸化剤水溶液と還元剤水溶液の滴下を続けている間、1段目プレエマルションの滴下終了1時間後より下記組成のモノマー混合液2(2段目)を1時間にわたって滴下した。
モノマー混合液2
スチレン:15部
メチルメタクリレート:84.5部
2−エチルヘキシルアクリレート:22.5部
2−ヒドロキシエチルメタクリレート:4.25部
メタクリル酸:6部
アクリロニトリル:15部
γ−メタクリロキシプロピルトリメトキシシラン:2.75部
【0072】
全ての滴下終了時からさらに1時間60℃の温度に保持し、その後40℃以下に温度を下げ、25%アンモニア水3.35部、スラオフEX(注4)0.35部、2,2,4−トリメチル−1,3−ペンタンジオールモノイソブチレート83.5部を添加し、pH8.0、不揮発分(固形分)31%の水分散性アクリル樹脂D1を得た。
(注1)アクアロンRN−50:商品名,第一工業製薬(株)製,ノニオン性乳化剤,固形分60%
(注2)アクアロンRN−2025:商品名,第一工業製薬(株)製,ノニオン性乳化剤,固形分25%
(注3)パーブチルH:商品名,日本油脂(株)製,t−ブチルハイドロキシパーオキサイド,有効成分69%
(注4)スラオフEX:商品名,日本エンバイロケミカルズ(株)製,防腐剤
【0073】
・製造例9〜12(水分散性アクリル樹脂D2〜D5)
製造例8において、1段目、2段目のモノマー組成を表1に示す配合比とする以外は製造例8と同様の方法で水分散性アクリル樹脂D2〜D5を得た。
D6:スーパーフレックスE−2500(商品名,第一工業製薬(株)製,水性ポリウレタン樹脂)
D7:バイロナールMD−1100(商品名,東洋紡績(株)製,水性ポリエステル樹脂)
D8:アデカレジンEM−0718(商品名,(株)ADEKA製,水性エポキシ樹脂)
【0074】
[有機リン酸化合物(E)]
E1:1−ヒドロキシメタン−1,1−ジホスホン酸
E2:1−ヒドロキシエタン−1,1−ジホスホン酸
[バナジン酸化合物(F)]
F1:メタバナジン酸アンモニウム
F2:メタバナジン酸ナトリウム
[炭酸ジルコニウム化合物(G)]
G1:炭酸ジルコニウムアンモニウム
G2:炭酸ジルコニウムナトリウム
【0075】
表面処理めっき鋼板のベース鋼板としては、表2に示すめっき鋼板を用いた。
上記したチタン含有生成液(A)と成分(B)〜(G)を適宜配合した表面処理組成物をめっき鋼板表面に塗布し、所定の乾燥温度にて5〜20秒間乾燥して供試材とした。これら供試材について、下記の試験方法により耐食性、耐黒変性及び塗料密着性を評価した。その結果を、各供試材に適用した表面処理組成物の組成及びその塗装条件とともに、表3〜表6に示す。
【0076】
(1)耐食性
端部と裏面をテープシールした供試材に対してJIS−Z−2371−2000の塩水噴霧試験を行い、白錆発生面積率が5%となる試験時間を測定した。その評価基準は以下のとおりである。
◎:240時間以上
○:144時間以上、240時間未満
△:96時間以上、144時間未満
×:96時間未満
(2)耐黒変性
供試材を温度80℃、相対湿度95%RH雰囲気に制御された恒温恒湿機に24時間静置した際の白色度(L値)変化をΔL(=試験後のL値−試験前のL値)で算出した。その評価基準は以下のとおりである。
○:ΔL≧−15
×:−15>ΔL
【0077】
(3)塗料密着性
前処理有り/無しの供試材にメラミンアルキッド樹脂(商品名「デリコン#700」,大日本塗料(株)製)を乾燥膜厚で30±2μmになるようにして塗布し、130℃で30分間焼き付けて乾燥した。この供試材について、平板部塗料密着性と加工部塗料密着性を評価した。なお、前処理は下記条件で行った。
処理液:パルクリーンN364S(商品名,日本パーカライジング(株)製),濃度2%,60℃
処理方法:2分間のスプレー処理(1kgf/cm)
(3-1)平板部塗料密着性
塗装面にカッターナイフを用いて1mm間隔で縦・横に11本の線を引き、1mm四方のマス目を碁盤目状に100個作製した。その後、碁盤目部にセロハン粘着テープ(CT24,ニチバン(株)製)を貼り、このセロハン粘着テープを剥がした際に剥離したマス目数で評価した。
【0078】
(3-2)加工部塗料密着性
塗装面にカッターナイフを用いて1mm間隔で縦・横に11本の線を引き、1mm四方のマス目を碁盤目状に100個作製した。その後、碁盤目部をエリクセン試験機で5mm押出成形し、碁盤目部にセロハン粘着テープ(CT24,ニチバン(株)製)を貼り、セロハン粘着テープを剥がした際に剥離したマス目数で評価した。
(3-3)評価基準
◎:剥離無し
○:100マス目のうちの1〜5マス目が剥離(マス目残存数99〜95)
△:100マス目のうちの6〜50マス目が剥離(マス目残存数94〜50)
×:100マス目のうちの51〜100マス目が剥離(マス目残存数49〜0)
【0079】
【表1】

【0080】
【表2】

【0081】
表3及び表5において、*1〜*9は以下の内容を示す。
*1 表2に記載のめっき鋼板No.1〜5
*2 明細書本文に記載のチタン含有水性液T1〜T7
*3 明細書本文に記載のニッケル化合物又はコバルト化合物B1〜B5
*4 明細書本文に記載の弗素含有化合物C1〜C4
*5 明細書本文に記載の水溶性又は水分散性有機樹脂D1〜D8
*6 明細書本文に記載の有機リン酸化合物E1,E2
*7 明細書本文に記載のバナジン酸化合物F1,F2
*8 明細書本文に記載の炭酸ジルコニウム化合物G1,G2
*9 表面処理組成物中での固形分の質量%
【0082】
【表3】

【0083】
【表4】

【0084】
【表5】

【0085】
【表6】

【図面の簡単な説明】
【0086】
【図1】適量のNiを含有するGF組成のめっき層を有する溶融Zn−Al系合金めっき鋼板について、めっき層中のMg含有量とめっき外観との関係を示すグラフ
【図2】GF組成の溶融Zn−Al系合金めっき鋼板であって、めっき層中にMgのみを含有するめっき鋼板、めっき層中にNiのみを含有するめっき鋼板、およびめっき層中にMgとNiを含有するめっき鋼板について、めっき層深さ方向の成分分析結果を示すグラフ

【特許請求の範囲】
【請求項1】
鋼板の少なくとも一方の表面に、Al:1.0〜10質量%、Mg:0.2〜1.0質量%、Ni:0.005〜0.1質量%を含有し、残部がZn及び不可避的不純物からなる溶融Zn−Al系合金めっき層を有する溶融Zn−Al系合金めっき鋼板の表面に、
加水分解性チタン化合物、加水分解性チタン化合物の低縮合物、水酸化チタン、水酸化チタンの低縮合物の中から選ばれる少なくとも1種のチタン化合物を過酸化水素水と混合して得られるチタン含有水性液(A)を固形分の割合で5〜60質量%、ニッケル化合物又は/及びコバルト化合物(B)を固形分の割合で0.01〜1質量%、弗素含有化合物(C)を固形分の割合で1〜40質量%、水溶性有機樹脂又は/及び水分散性有機樹脂(D)を固形分の割合で31〜85質量%含有する表面処理組成物(H)を塗布し、乾燥させることにより形成された皮膜付着量が0.5〜3.0g/mの表面処理皮膜を有することを特徴とする表面処理溶融Zn−Al系合金めっき鋼板。
【請求項2】
弗素含有化合物(C)が、ジルコン弗化アンモニウム、ジルコン弗化水素酸の中から選ばれる少なくとも1種であることを特徴とする請求項1に記載の表面処理溶融Zn−Al系合金めっき鋼板。
【請求項3】
表面処理組成物(H)が、さらに、有機リン酸化合物(E)を固形分の割合で5〜60質量%含有することを特徴とする請求項1又は2に記載の表面処理溶融Zn−Al系合金めっき鋼板。
【請求項4】
表面処理組成物(H)が、さらに、バナジン酸化合物(F)を固形分の割合で0.1〜30質量%含有することを特徴とする請求項1〜3のいずれか一項に記載の表面処理溶融Zn−Al系合金めっき鋼板。
【請求項5】
表面処理組成物(H)が、さらに、炭酸ジルコニウム化合物(G)を固形分の割合で0.1〜20質量%含有することを特徴とする請求項1〜4のいずれか一項に記載の表面処理溶融Zn−Al系合金めっき鋼板。
【請求項6】
水溶性有機樹脂又は/及び水分散性有機樹脂(D)が、水分散性アクリル樹脂であることを特徴とする請求項1〜5のいずれか一項に記載の表面処理溶融Zn−Al系合金めっき鋼板。

【図1】
image rotate

【図2】
image rotate


【公開番号】特開2009−132952(P2009−132952A)
【公開日】平成21年6月18日(2009.6.18)
【国際特許分類】
【出願番号】特願2007−308117(P2007−308117)
【出願日】平成19年11月29日(2007.11.29)
【出願人】(000001258)JFEスチール株式会社 (8,589)
【出願人】(000001409)関西ペイント株式会社 (815)
【出願人】(000200323)JFE鋼板株式会社 (77)
【Fターム(参考)】