説明

表面加工方法及び表面加工装置

【課題】被加工物に生じるゆがみの影響で加工ヘッドとガラス基板間におけるエッチャント流路が不安定になり液ダレ、液引き等を発生させる。
【解決手段】加工ヘッド2によりエッチャントを垂直姿勢に保持した被加工物3の表面に供給し吸引することで、加工ヘッド2と被加工物3との隙間に一定面積のエッチング領域をなすエッチャントの流路を形成し、加工ヘッド2と被加工物3とを相対的に走査して被加工物3の表面を加工する際、加工ヘッド2と被加工物3との相対走査時に、加工ヘッド表面と被加工物表面との間の距離を計測しながら加工ヘッド表面と被加工物表面との隙間を前記エッチャント流路が安定形成される所定範囲内を維持すべく被加工物表面に対して加工ヘッド2の向きを変更する。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、加工ヘッドによりフッ酸等のエッチャント(エッチング液)をガラス基板、半導体基板等の被加工物の表面に供給し、吸引することにより、該加工ヘッドと被加工物との隙間に一定面積のエッチング領域をなすエッチャントの流路を形成し、例えば加工ヘッドを走査して被加工物の表面を加工する表面加工方法および表面加工装置に関する。
【背景技術】
【0002】
液晶テレビやパソコンモニターのパネルは、TFTアレイやカラーフィルターから構成されており、これらは露光装置を用いてフォトマスクに描かれたパターンを繰り返し転写することにより作製される。
【0003】
近年、大型液晶テレビの需要拡大に伴い、大型パネルに対応したフォトマスクの大型化、さらに、ディスプレイの高画質化が進んできたことにより、パネルの品質を左右するフォトマスクの高精細化が求められてきている。
【0004】
フォトマスクサイズとして、1220mm×1400mmの露光装置も発表され、さらに大型化が進むとされる。
【0005】
フォトマスクの基材としては、熱膨張係数の小さい合成石英ガラスが用いられるが、露光精度にはこの基材の平坦度が大きく左右する。平坦度の悪い基材を用いると、パターンずれを引き起こし、高精細なものが得られないことが経験上把握され、平坦度として数μmが求められている。
【0006】
この平坦度のような厳しい要求性能を、従来の水、研磨砥粒、研磨布を用いた両面研磨法や片面研磨法等の機械研磨法で行うことは非常に難しいものと考えられる。
【0007】
このような機械的研磨法にあっては、研磨面圧と研磨ヘッドと被加工物との相対的運動速度の均一化等を工夫することにより、基板の平坦化を高めるようにしているが、基板全面を同時に研磨しながら平坦化するため、部分的な形状を平坦化するための制御が極めて難しいのが現状である。
【0008】
そこで、機械加工に代わる加工方法として、プラズマを用いて局所的なエッチングを行い表面を平坦化する方法が提案されている。これは、予め被加工物の形状あるいは厚さ分布を測定後、その分布に応じて被加工物上のプラズマの走査速度を制御することにより、エッチングの除去量を制御し、高平坦化を実現するための修正加工方法である。
【0009】
このプラズマエッチング方法をガラス基板の加工に適応した場合、このプラズマエッチングによる修正加工方法では、ガラス基板の大型化に伴って加工時間が極端に長くなるため、加工速度を速める必要がある。加工速度を速めるためには、加工領域の拡大、すなわちプラズマ領域の大面積化が必要であるが、その材料物性の違いから、具体的には、比誘電率、熱伝導率の違いから、プラズマが不安定となり加工量が変動したり、投入電力が増大し、熱がガラス基板に蓄積されることにより制御が難しくなり、被加工物の表面粗さを悪化させることになる。
【0010】
また、プラズマエッチング方法では、真空チャンバー、ガス排気装置等の高価な装置を必要とし、大型ガラス基板の加工では、加工に係る費用がさらに増大するという問題がある。
【0011】
そこで、本出願人は、上述した機械的な加工方法、プラズマエッチング加工方法に代わる新たな加工方法として、ケミカルエッチング法に着目した(特許文献1、2)。
【0012】
特許文献1に開示のケミカルエッチング法は、活性状態と不活性状態とを温度により取り得るエッチング液(エッチャント)を使用し、タンク内に収容されている不活性のエッチャントに浸漬している半導体基板の主面の一部にエッチャント噴出用ノズルによって活性のエッチャントを当てつつ、該半導体基板の主面に平行する方向に、該エッチャント噴出用ノズルに対して該半導体基板を相対移動させてその主面全体に活性のエッチャントを当てると共に、該半導体基板の主面に当てた反応後のエッチャントをエッチャント排出用パイプによって直ちにタンク外部へ排出する。
【0013】
特許文献2には、処理液としてのエッチャントが供給される導入通路と該エッチャントが排出される排出通路を有するパイプを内外に配置した同心管構造のノズルが開示され、被処理物に向けてエッチャントを内側のパイプより供給し、外側のパイプと内側のパイプとの隙間から被処理物に向けて供給されたエッチャントを供給する。
【特許文献1】特開平11−045872号公報
【特許文献2】特開平10−163153号公報
【発明の開示】
【発明が解決しようとする課題】
【0014】
上述した特許文献1に開示の技術を大きなサイズの被加工物に適用しようとする場合、この被加工物を収容することができるタンクが必要となり、設備が非常に大きくなり、現実的ではない。
【0015】
これに対し、特許文献2に開示の技術では、基板を不活性なエッチャントが収容されているタンク内に浸漬する必要はないが、本発明者等はこのようなケミカルエッチングによりガラス基板等の表面を平坦化加工することについて実験を行ったところ、目的とする平面形状が得られない場合が生じることを知見した。
【0016】
ここで、ガラス基板等の表面を平坦化加工する手法としては、ガラス基板等の被加工物の表面形状を測定して得られた測定データに基づいて、該被加工物の表面を目的とする形状となるように部分的に加工するという修正加工が用いられている。
【0017】
そこで、この修正加工を上述のケミカルエッチング式の表面加工方法に適用して被加工物の表面を高平坦度に加工するためには、加工ヘッドによりフッ酸等のエッチャント(エッチング液)をガラス基板、半導体基板等の被加工物の表面に供給し、吸引することにより、該加工ヘッドと被加工物との隙間に一定面積のエッチング領域をなすエッチャントの流路を形成し、例えば加工ヘッドを表面形状測定データと目的とする形状とにより決定され除去量に応じた走査速度で走査する。その際、加工ヘッドを静止した状態でエッチング領域によって形成された被加工物の表面に単位となる加工痕形状(以下、単位加工痕と称す)を測定し、測定結果に基づく単位加工痕に基づいて、加工前における被加工物の表面から加工により除去すべき除去量と加工ヘッドの走査速度を求め、この走査速度により加工ヘッドを駆動する。
【0018】
しかしながら、所定の走査速度で加工ヘッドを駆動しても計算値通りに加工できず、目的とする平面形状が得られないことがあった。つまり、このケミカルエッチング式の加工方法は、数値制御による修正加工であって、本来は平坦化のために算出した目的の除去量で実際の加工が行われるべきであるが、実際の加工による除去量がこの目的の除去量からずれると目的とする平坦形状が得られないことになる。
【0019】
このような除去量のずれが生じる原因として、被加工物としてガラス基板を例えば水平姿勢で保持すると、保持位置間で生じる撓み、保持部とその周辺との間で生じる部分的な変形等が考えられる。
【0020】
ガラス基板に上述の撓み等によってゆがみや部分的な曲面等が発生すると、加工ヘッド表面とガラス基板の表面間の間隙が設定値よりも広いあるいは狭い状態が発生する。
【0021】
本発明者等は、加工ヘッド表面とガラス基板の表面との面間距離が拡がりすぎると、加工ヘッド表面と被加工物表面との間よりエッチャントがたれ落ちる液ダレ、あるいは加工ヘッドをガラス基板に対して走査した際に、走査方向後方にエッチャントが後に引かれるように残る液引きの原因の一つであることを知見した。
【0022】
さらに、このような液ダレ、液引きは、例えば加工ヘッドのノズルからガラス基板表面に向けて供給されているエッチャントの全量が、該ノズルの周囲に設けた排出孔に吸引作用により流れるという安定状態では発生しないが、前記面間距離が拡がりすぎると上記したエッチャント流れの不安定化を招き、これにより前記液ダレ、液引きが発生することを本発明者等は知見した。
【0023】
このような液ダレや液引きはガラス基板等の被加工物に対する高平坦度の表面加工に大きな影響を及ぼすことになる。
【0024】
本発明はこのような観点に鑑みなされたもので、加工時に被加工物にゆがみ等が存在しても、被加工物の表面を目的とする形状に加工して、高平坦度な表面を有するガラス基板等の被加工物を提供できる表面加工方法及び表面加工装置を提供することを目的とするものである。
【課題を解決するための手段】
【0025】
本発明の目的を実現する第1の表面加工方法は、加工ヘッドによりエッチャントを垂直姿勢に保持した被加工物の表面に供給し、吸引することにより、該加工ヘッドと被加工物との隙間に一定面積のエッチング領域をなすエッチャントの流路を形成し、該加工ヘッドと該被加工物とを相対的に走査して被加工物の表面を加工する表面加工方法であって、前記加工ヘッドと前記被加工物との相対走査時に、前記加工ヘッド表面と前記被加工物表面との間の距離を計測しながら前記加工ヘッド表面と前記被加工物表面との隙間を前記エッチャント流路が安定形成される所定範囲内を維持すべく前記被加工物表面に対して前記加工ヘッドの向きを変更することを特徴とする。
【0026】
本発明の目的を実現する第2の表面加工方法は、上記した第1の表面加工方法において、前記エッチャント流路を安定形成する所定範囲は、エッチャントの液ダレ、液引きを発生させない隙間と、前記加工ヘッドが前記被加工物に接触しない隙間の範囲であることを特徴とする。
【0027】
本発明の目的を実現する第3の表面加工方法は、上記いずれかの表面加工方法において、前記加工ヘッドは、対向する前記被加工物表面に対して任意の向きに変更可能であることを特徴とする。
【0028】
本発明の目的を実現する第4の表面加工方法は、上記いずれかの表面加工方法において、前記加工ヘッドの表面と、対向する前記被加工物の表面との距離を複数点で計測し、各計測値が所定の範囲内に収まるように該加工ヘッドの向きを変更させることを特徴とする。
【0029】
本発明の目的を実現する第5表面加工方法は、上記いずれかの表面加工方法において、前記加工ヘッドの表面と前記被加工物の表面との距離を計測する複数の計測点は前記エッチング領域を取り囲むことを特徴とする。
【0030】
本発明の目的を実現する第6の表面加工方法は、上記いずれかの表面加工方法において、前記被加工物を垂直姿勢に保持した状態を維持して、該被加工物の表面形状を計測し、その後該表面形状計測データに基づいて前記加工ヘッドと該被加工物とを相対的に走査させて加工することを特徴とする。
【0031】
本発明の目的を実現する第7表面加工方法は、上記いずれかの表面加工方法において、前記被加工物は、矩形平板形状の合成石英ガラスであることを特徴とする。
【0032】
本発明の目的を実現する第8表面加工方法は、上記第7の表面加工方法において、前記合成石英ガラスは、フォトマスク用のガラス基板であることを特徴とする。
【0033】
本発明の目的を実現する第9表面加工方法は、上記第8の表面加工方法において、前記フォトマスク用のガラス基板は、1辺が300mm角以上であることを特徴とする。
【0034】
本発明の目的を実現する表面加工装置は、加工ヘッドによりエッチャントを垂直姿勢に保持した被加工物の表面に供給し、吸引することにより、該加工ヘッドと被加工物との隙間に一定面積のエッチング領域をなすエッチャントの流路を形成し、該加工ヘッドを該被加工物に対し走査して被加工物の表面を加工する表面加工装置であって、前記被加工物の表面に対向する垂直平面内を上下および左右方向に移動部材が移動する前記加工ヘッドを該被加工物に対して走査させるための二次元移動ステージと、前記二次元移動ステージの前記移動部材に設けられ、前記被加工物に向けて前記加工ヘッドを取り付け、該被加工物の表面に対して該加工ヘッドの向きを変更可能に姿勢制御を行う姿勢制御機構と、前記加工ヘッドの表面と前記被加工物の表面との距離を複数点で計測する距離センサーと、前記距離センサーの計測結果に基づいて、前記姿勢制御機構を駆動制御する姿勢制御駆動手段と、を有し、前記姿勢制御駆動手段は、前記加工ヘッド表面と前記被加工物表面との距離が前記エッチャント流路を安定形成する所定範囲内を維持すべく前記被加工物表面に対して前記加工ヘッドの向きを変更することを特徴とする。
【0035】
本発明の目的を実現する第2の表面加工装置は、上記した表面加工装置において、前記エッチャント流路を安定形成する所定範囲は、エッチャントの液ダレ、液引きを発生させない隙間と、前記加工ヘッドが前記被加工物に接触しない隙間の範囲であることを特徴とする。
【0036】
本発明の目的を実現する第3の表面加工装置は、上記したいずれかの表面加工装置において、前記加工ヘッドは、対向する前記被加工物表面に対して任意の向きに変更可能であることを特徴とする。
【0037】
本発明の目的を実現する第4の表面加工装置は、上記したいずれかの表面加工装置において、前記距離センサーは、前記加工ヘッドのエッチング領域を取り囲む複数点に配置したことを特徴とする。
【発明の効果】
【0038】
本発明の表面加工方法によれば、ガラス基板等の被加工物が加工時の保持形態により被加工物にゆがみが生じ、走査時における加工ヘッド表面と被加工物表面との面間距離が変化し、エッチャントの液ダレや液引きの原因となるが、面間距離を液ダレや液引きの発生しない範囲内となるように加工ヘッドを煽り動作等によって向きを変更しているので、被加工物の表面を目的形状に加工でき、その際加工ヘッドはこのゆがみに倣うようにして被加工物と相対移動するため、加工量の変動が少なく、加工後に被加工物の保持解除でゆがみが取れると、被加工物の表面は目的とする平坦度が得られる。
【0039】
合成石英ガラスを用いてフォトマスク用基板を修正加工する場合、基板のサイズが大きくなればなるほどゆがみが大きく、またゆがみが多く発生する。このため、本発明の表面加工方法を用いて加工すれば大サイズの基板をゆがみの影響を排除でき、特に基板を垂直姿勢で保持することがゆがみの影響を少なくする上で非常に望ましい。
【0040】
また、本発明の表面加工装置によれば、ガラス基板等の被加工部材を垂直姿勢で保持する構成としているので、被加工物の自重によるゆがみを極力少なくした保持状態で加工ヘッドを被加工物の表面に対して相対移動させることができ、加工量の変動を極めて小さくすることができ、加工後に被加工物の保持を解除してゆがみを取り除けば高平坦度に加工したガラス基板等の被加工物が得られる。
【0041】
さらに、被加工物を垂直姿勢に保持し、加工ヘッドを走査する構成としているので、装置自体の設置面積を少なくすることができる。
【発明を実施するための最良の形態】
【0042】
以下本発明を図面に示す実施形態に基づいて詳細に説明する。
【0043】
図1は本発明によるケミカルエッチング式の表面加工装置(湿式エッチング加工装置と略す)を示す図、図2は図1の加工ヘッドと被加工物としてのガラス基板を垂直姿勢に保持する基板ホルダーとの関係を示す図である。
【0044】
図1に示す湿式エッチング加工装置1は、破線で囲ったエッチャント循環装置1Aと、エッチャント循環装置1Aと接続した加工ヘッド2を備え、被加工物としてのガラス基板3の表面に対して加工ヘッド2を直交する2方向に移動させる加工ヘッド走査装置1Bと、により構成している。被加工物としてのガラス基板3は、例えば合成石英ガラス板,フォトマスク基板,大型フォトマスク基板等が例示でき、大型基板としては一辺が300mm角以上のものを指す。また、加工物はガラス基板に限らず、シリコンウエハー等であっても良い。
【0045】
エッチャント循環装置1Aは、密閉構造のエッチャントタンク4内にフッ酸等のエッチャント5が収容され、このエッチャントタンク4内のエッチャント5をエッチャント供給系6により加工ヘッド2に供給する。また、加工ヘッド2とエッチャントタンク4とはエッチャント回収管7により接続され、加工ヘッド2からガラス基板3の表面に供給されたエッチャント5を吸引してエッチャント回収管7からエッチャントタンク4に戻す。
【0046】
また、エッチャントタンク4にはガス排気管8が接続され、吸引ポンプを兼ねるガス排気ポンプ9によりエッチャントタンク4内のガスを排気する。エッチャントタンク4のエッチャント5の濃度が低下あるいは増加した場合、またエッチャントの収容量が減少した場合に、濃度コントローラ10から、水11、エッチャント5を個々にあるいは混合してエッチャントタンク4内に補給管12を介して供給するようになっている。エッチャントとしては、フッ化水素酸(フッ酸)あるいはフッ化水素酸とフッ化アンモニウムの混合液等を使用することができる。
【0047】
フッ酸は、濃度20wt%では、水の方が多く蒸発し濃度が濃くなり、濃度50wt%ではフッ化水素が多く蒸発し濃度が薄くなる傾向を示す。このため、本実施形態では、エッチャント濃度を共沸濃度近傍の濃度に設定している。
【0048】
すなわち、大型ガラス基板をエッチャントにより加工する場合、全体の加工時間が長く、加工量が多いため、フッ酸の蒸発と加工によるフッ酸の消耗によりフッ酸濃度が変化し、濃度調整が複雑化する。しかし、エッチャント濃度を共沸濃度とすると、エッチャントの蒸発濃度がエッチャント濃度と等しいので、エッチャント濃度を一定に維持することができる。なお、エッチャントの循環使用により消耗したエッチャントを補給するために、フッ酸や水分の補給が行われ、エッチャント濃度は共沸濃度に維持すべく濃度制御を行うが、エッチャント濃度を共沸濃度に制御する際、実際のエッチャント濃度を共沸濃度に維持することは難しく、実際には共沸濃度よりも高く或いは低い濃度となるが、上述の共沸濃度による効果が得られる範囲内であれば、丁度の共沸濃度でなくても良い。
【0049】
エッチャント供給系6は、エッチャントタンク4側から順に、送液ポンプ13、熱交換器14、送液されるエッチャント5の温度を計測するための測温体15、送液されるエッチャント5の流量を調節する流量調節バルブ16、送液されるエッチャント5の流量を計測する流量計17、フッ酸濃度センサー18が配置され、フッ酸濃度センサー18から下流側に設けられたフレキシブル管からなる供給管19が加工ヘッド2に接続されている。
【0050】
熱交換器14は、測温体15の測温情報に基づいて送液されるエッチャント5の温度が所定の温度となるように、温調ユニット20によりエッチャント5を加熱或いは冷却する。また、流量調節バルブ16は、流量計17の流量情報に基づいて送液されるエッチャント5の流量が所定の流量となるように、流量を調節する。フッ酸濃度センサー18は、測定した濃度値を濃度コントローラ10へフィードバックし、エッチャントタンク4内を設定した濃度にコントロールする。
【0051】
吸引ポンプを兼ねるガス排気ポンプ9は、エッチャントタンク4内の気体を吸引して排気することによりエッチャントタンク4内を負圧状態とし、加工ヘッド2とガラス基板3との間に供給されたエッチャント5及びエッチャント5の一部から気化したガスを加工ヘッド2より吸引し、回収管7を通してエッチャントタンク4内に回収する。ガラス基板3の表面に供給されたエッチャント5の一部から気化したガスが拡散するとガラス基板3の表面を腐食して表面粗さを悪化させる原因の一つとなるが、この気化ガスを加工ヘッド2により吸引して排気することにより、ガラス基板3の表面における表面粗さを高めることができる。
【0052】
なお、エッチャント循環装置1Aにおける上述の各種制御は不図示の制御装置により実行される。
【0053】
図2に示すように、加工ヘッド走査装置1Bは、被加工物であるガラス基板3を垂直姿勢に保持する不図示の基板保持台を装置基台31に固定し、該基板保持台に保持されたガラス基板3の表面に沿って垂直方向と水平方向の直交する2方向に移動可能な2方向移動ステージ32に加工ヘッド2を取付け、加工ヘッド2を水平方向に移動させる主走査速度と、垂直方向に所定ピッチで送る副走査方向の送り量を制御する加工ヘッド走査速度制御部33とにより構成しており、この加工ヘッド走査速度制御部33を除く前記基板保持台と2方向移動ステージ32を装置カバー34により覆い、室内にエッチャント5が飛散し、気化ガスが放散されるのを防いでいる。
【0054】
2方向移動ステージ32は、門型に形成されたアルミ製の垂直フレーム35を構成する一対の垂直フレーム部材36にそれぞれ直線移動案内機構37を取り付け、この一対の直線移動案内機構37に水平フレーム部材38を取り付け、水平フレーム部材38を超高精度に垂直方向に移動可能としている。また、水平フレーム部材38には主走査方向駆動用のボールねじ39を走査方向に沿って取り付け、このボールねじ39のナット部に加工ヘッド2を取り付けている。
【0055】
さらに、一対の垂直フレーム部材36の間に、垂直方向に沿って副走査方向用のボールねじ40を取り付け、このボールねじ40のナット部に水平フレーム部材38を取り付けている。
【0056】
主走査方向駆動用のボールねじ39と副走査方向用のボールねじ40はそれぞれのねじ部材を回転駆動する不図示のモータを有し、これらのモータを加工ヘッド走査速度制御部33により駆動制御している。
【0057】
加工ヘッド2は、円盤形状に形成されたノズルブロック体41と、ノズルブロック体41の背面側に接合される円盤形状の背面ブロック体42とを固定ねじ43とにより一体化して全体的に円盤形状とした構成としている。
【0058】
図1(b)に示すように、ノズルブロック体41は、中心位置にエッチャントを供給する供給ノズル部44を形成し、この供給ノズル部44を中心とする同一円周上にエッチャントを吸引して排出する複数の排出孔45が等ピッチで形成されている。ノズルブロック体41の背面側には、これら複数の排出孔45に対応して背面側に開口する第1周溝46が形成され、これら複数の排出孔45がこの周溝46に連通している。
【0059】
背面ブロック体42は、中心部に開口47を有するドーナツ状に形成され、前面には、第1周溝46と同一内外周径を有する第2周溝48が形成され、背面ブロック体42をノズルブロック体41に接合した際に、第1周溝46と第2周溝48とによって複数の排出孔45からのエッチャントを1箇所に集める環状の回収部を形成している。なお、排出孔45の直径を1mm以下、排出孔45の間隔を0.5mm以下とした。
【0060】
また、ノズルブロック体41と背面ブロック体42の材料としては、耐エッチャント特性に優れ、曲げ強度、硬度等の機械特性の優れたものを選定することが望ましい。特に、ポリテトラフルオロエチレン等のフッ素樹脂,硬質塩ビ,ABS,ポリエチレン,ポリプロピレン,ポリカーボネイト,メチルペンテン,PEEK等が用いられる。
【0061】
背面ブロック体42の胴部には、第2周溝48に連通する排出路49が複数形成され、これら排出路49の排出端部にエッチャント循環装置1Aの回収管7が接続される。そして、エッチャント循環装置1Aの供給管19が背面ブロック体42の開口47を通してノズルブロック体41のエッチャント供給ノズル部44に接続される。
【0062】
加工ヘッド2のエッチャント供給ノズル部44からガラス基板3の表面に連続的に供給されたエッチャント5は、該エッチャント供給ノズル部44を中心として半径Rの円周上に複数設けられた排出孔45に連続的に吸引排出されるので、ヘッドと被加工物の表面との間におけるエッチャントの流路が形成される一定の領域であるエッチング領域が半径Rで形成されることになる。
【0063】
また、上記した構成の加圧ヘッド2は、2方向移動ステージ32により、図3中矢印で示すように、垂直姿勢に保持されたガラス基板3の上端の水平方向一端側から他端側に向けて水平に移動する主走査を行い、該他端側の所定位置に到達すると、所定量だけ下方に送られる副走査を行った後、一端側に向けて主走査を行うというラスタースキャン方式により加工を行う。なお、スキャンの順序は、逆に下から上に向かって行うようにしても良い。
【0064】
上述した主走査速度の制御は、修正加工を前提とした場合、ガラス基板3の表面の形状を予め測定し、測定結果に基づいて目的の形状に最も近づくように、加工前形状と加工ヘッド2で加工してできる静止加工痕形状から加工除去量と加工ヘッドの主走査速度を演算する。例えば、凸形状の大きい部分はエッチング量を多く、凸形状の小さい部分や凹形状の部分はエッチング量を少なくするように加工ヘッド2の主走査速度を制御する。
【0065】
ガラス基板3の表面の形状測定は、レーザー等を用いた非接触方式、触針等の接触方式の測定手段を用いて行うことができる。なお、測定はガラス基板3を垂直姿勢に保持して行うため、ガラス基板3の自重たわみの影響を排除することができる。
【0066】
本実施形態において、ガラス基板3を垂直姿勢に保持する不図示の基板保持台は、ガラス基板3の外径サイズよりも大きな外径サイズに形成された枠体を有し、ガラス基板3をこの枠体の内周部分に配置し、例えば吸着法により保持する。
【0067】
ガラス基板3を前記基板保持台に対して垂直姿勢に保持した場合、例えば保持部分とその周囲にゆがみが生じることがある。また、ガラス基板3は垂直姿勢に保持した場合であっても種々の要因により部分的、あるいは全体的にゆがみが生じることがあり、これはガラス基板毎に異なる。
【0068】
一方、加工ヘッド2は、2方向移動ステージ32に取り付けられているため、図5(b)に示す加工ヘッド2の水平方向における往復主走査状態、図6(b)の垂直方向にステップ移動(副走査)する場合、加工ヘッド2が2方向移動ステージ32の加工ヘッド取り付け部に固定され、加工ヘッド2の表面が主走査方向および副走査方向に対して平行であると、ガラス基板3のゆがみにより加工ヘッド2の表面とガラス基板3の表面との面間距離が変化し、面間距離が拡がりすぎると液ダレ、液引きを生じる。
【0069】
エッチャントの液ダレ、液引き原因の一つとして、図1(b)に示す加工ヘッド2の供給ノズル部44からガラス基板表面に向けて供給されているエッチャントの全量が、供給ノズル部44の周囲に設けた排出孔45に吸引作用により流れるという安定状態では発生しないが、前記面間距離が拡がりすぎると上記したエッチャント流れの不安定化を招き、これにより前記液ダレ、液引きが発生する。
【0070】
このような液ダレや液引きはガラス基板等の被加工物に対する高平坦度の表面加工に大きな影響を及ぼすことになる。
【0071】
そこで、本実施形態ではガラス基板3の表面に対して加工ヘッド2の向きを3次元で変更可能とする所謂煽り動作を可能とし、加工ヘッド2の表面とガラス基板3の表面との間隙に介在するエッチャントが上述の安定状態で吸引排出するように加工ヘッド2の姿勢を制御している。
【0072】
図5(a)に示す往復主走査、図6(a)に示す副操作において、加工ヘッド2の表面とガラス基板3の表面との面間距離が拡がる場合には、上述の煽り動作により前記面間距離を上述の液ダレ、液引きの生じない所定範囲内とすることにより、ガラス基板3の表面を目的形状に加工することができ、高平坦度の表面を有するガラス基板を提供することが可能となる。
【0073】
また、図7(b)に示すように、加工ヘッド2が2方向移動ステージ32の加工ヘッド取り付け部に固定されている場合、ガラス基板3のゆがみによりガラス基板表面が加工ヘッド2側に近づきすぎていると、主走査軌道上を加工ヘッド2が移動する際、加工ヘッド2がガラス基板3に接触するおそれがある。
【0074】
しかし、加工ヘッド2を煽り動作させることにより、図7(a)に示すように、狭まった面間距離を拡げて加工ヘッド2がガラス基板3に接触することを回避することができる。
【0075】
したがって、ガラス基板3と加工ヘッド2の面間距離の上限値を液ダレ、液引きが生じない距離とし、加工ヘッド2がガラス基板3の表面に当接しない距離を下限値とする範囲内で加工ヘッドを煽り動作させれば良いことになる。
【0076】
本実施形態において、加工ヘッド2は、図4に示すように、加工ヘッド2の後端部に煽り動作を行わせる姿勢制御機構51を取り付け、この姿勢制御機構51を2方向移動ステージ32における水平フレーム部材38に対して水平方向に移動する主走査方向駆動用のボールねじ39に螺合している加工ヘッド取付部である不図示のナット部(以下、螺進ナット部とする)に取り付けている。
【0077】
この姿勢制御機構51は、前記螺進ナット部に固定される固定部52と、加工ヘッド2が取り付けられるヘッド取り付け部53とを前後方向に対向配置し、ヘッド取り付け部53の向きを固定部52に対して3次元で変更可能としている。
【0078】
姿勢制御機構51において、ヘッド取り付け部53の向きを変更可能とする向き変更機構は、3点支持を利用した構成で、矩形枠あるいは平板状に形成した固定部52とヘッド取り付け部53の間で、一箇所の角部に自在軸受をなすボール部材54を設け、このボール部材54の両側に位置する角部に第1アクチュエータ55と第2アクチュエータ56を配置し、また固定部とヘッド取り付け部53との間にコイルバネ57を配置し、コイルバネ57のバネ力によりヘッド取り付け部53を第1アクチュエータ55、および第2アクチュエータ56との当接端に常時当接するように付勢し、ヘッド取り付け部53にガタが生じないようにしている。
【0079】
また、姿勢制御機構51のヘッド取り付け部53には、ガラス基板3に向けて、加工ヘッド2の周囲に等間隔に4つの距離センサー58を図4(b)に示すように配置している。なお、距離センサー58は4点配置の構成としているが、3点配置としても良い。距離センサー58としては、レーザー変位計、空気マイクロメーター等が用いられる。
【0080】
距離センサー58は、加工ヘッド2の周囲の複数箇所で加工ヘッド2の表面とガラス基板3の距離を同時に測定し、測定値を姿勢制御駆動装置59に入力する。
【0081】
姿勢制御駆動装置59は、これらの距離センサー58からの測定値にバラツキがあれば、バラツキがないように第1アクチュエータ55、第2アクチュエータ56を駆動制御する。第1アクチュエータ55および第2アクチュエータ56は例えば電磁ソレノイドへの通電を制御することで作動部材を進退自在とし、該作動部材がヘッド取り付け部53の背面側と当接する。
【0082】
主走査方向に移動する加工ヘッド2が対向しているガラス基板3にゆがみがあると、姿勢制御駆動装置59は、これを複数の距離センサー58の測定値のバラツキとして検知し、当該移動箇所におけるガラス基板3のゆがみに合わせて加工ヘッド2の表面と平行となるように第1アクチュエータ55および第2アクチュエータ56を駆動制御して前記作動部材を進退させ、ヘッド取り付け部53の向きを変更して加工ヘッド2の姿勢を制御する。
【0083】
この加工ヘッド2の姿勢制御は、加工ヘッド2の主走査に伴って連続的に行われる。
【0084】
姿勢制御駆動装置59は、各距離センサー58の測定値における最大値と最小値の差が100μmとなるように第1アクチュエータ55と第2アクチュエータ56とを駆動制御して加工ヘッド2の表面がガラス基板3の対向部分と平行となるように姿勢制御する。なお、ガラス基板3の表面と加工ヘッド2の表面との距離は50μm〜500μmに設定する。
【0085】
本実施形態では、ガラス基板3を垂直姿勢に保持した状態で修正加工のために表面形状の測定を行い、この保持状態をそのまま維持して加工ヘッド2により修正加工を行っている。ガラス基板3を垂直姿勢に保持した状態でガラス基板3には上述のようにゆがみが生じている。
【0086】
しかし、加工前のガラス基板3を加工装置に垂直姿勢に保持した状態で、表面形状の測定を行い、この表面形状平坦化のために算出した目的の除去量に従って加工ヘッド2の駆動およびエッチャントの給排出等を制御しているので、加工後のガラス基板3を水平姿勢とした場合でも高平坦度の基板表面が得られる。
【実施例】
【0087】
図8は加工ヘッド2とガラス基板3との対向面間距離を調節して加工状態を検証するための面間距離制御システムのブロック図で、距離センサー58としてレーザー変位計を使用しており、距離センサー58を取り付けたX軸ステージ60を矢印方向に移動可能とし、このX軸ステージ60に取り付けた加工ヘッド2をガラス基板3に対して対向距離を調節可能としている。
【0088】
距離センサー58の距離情報はレーザー変位計コントローラである距離センサーコントローラ61を経て制御装置65のデジタルパネルメータ(DPM)62に入力される。DPM62には、面間距離の上限値と下限値が設定され、この上限値と下限値の範囲内でX軸ステージ60をステッピングモータ(不図示)により駆動する。前記ステッピングモータは、X軸ステージコントローラ63からの指令に基づきモータドライバー64を介して駆動される。
【0089】
ガラス基板3と加工ヘッド2との面間距離を0.25mmに設定し、主走査速度を240mm/minとし、レーザー変位計である距離センサー58で測定したデータを基に、出力種別機能により、比較設定値の上限を20μm、下限設定値を−20μmに設定し、出力のON−OFFで±20μm以下に制御した。
【0090】
図9に上記の面間距離制御を行った場合と行わなかった場合の制御結果を示す。図9において、横軸は主走査方向の始端側からの距離(mm)、縦軸はガラス基板と加工ヘッド間距離である面間距離(mm)を示す。図9より、制御ありでは面間距離は殆ど0.25mmに維持されているが、制御なしでは面間距離が拡大されることが示される。
【0091】
図10に制御しながら加工した時のガラス基板の傾きと面間距離(ギャップ)の制御結果を示す。図10はガラス基板の傾きを120mmで約0.75mm(0.36度)としている。
【0092】
図10において、傾斜線はガラス基板の傾きを示しており、走査が進むにつれて基板表面が加工ヘッド2の走査軌道に対して遠ざかるが、加工ヘッド2をガラス基板に対する面間距離(ギャップ)を制御することで、ギャップをギャップの設定値に対して0.02mm以下のズレに制御できた。
【0093】
また、この面間距離制御を行った場合の加工状態を検証した。
【0094】
加工ヘッドは1辺13mmの角型ノズルで、排出部の幅を0.5mmのものを使用した。
【0095】
加工条件は以下のとおりである。
【0096】
フッ酸濃度:35wt%(共沸濃度)
ノズル基板間距離:350μm
フッ酸循環流量:25L/h
吸引:31.4L/min
基板保持姿勢:垂直保持
走査速度:240mm/min
走査距離:120mm
加工量測定範囲:10〜110mm(20mm間隔)。
【0097】
図11は上記した上記加工条件および面間距離制御を実行した時の加工量分布を示す図で、縦軸はライン断面積比、横軸は走査位置を示す。なお、ライン断面積比は主走査開始位置から50mmの位置を基準とした。面間距離制御を実行しているので、加工量分布は5%以下で加工には問題がなかった。
【0098】
なお、面間距離制御を実行せずに加工を実行すると、基板への接触、液引き、液ダレが確認された。
【図面の簡単な説明】
【0099】
【図1】(a)は本発明の第1実施形態を示す湿式エッチング加工装置の概略図、(b)は(a)に示す加工ヘッドの正面図。
【図2】図1のA−A矢視図。
【図3】図2の加工ヘッド走査装置における走査順序を示す図。
【図4】姿勢制御機構の概略構成を示し、(a)は横断面図、(b)は上面図。
【図5】(a)は加工ヘッドの主走査時におけるエッチャント流路の安定形成状態、(b)は不安定形成状態を説明する図。
【図6】(a)は加工ヘッドのステップ(副)走査時におけるエッチャント流路の安定形成状態、(b)は不安定形成状態を説明する図。
【図7】(a)加工ヘッドの主走査時における加工ヘッドとガラス基板との接触回避制御状態、(b)は接触非回避制御状態を説明する図。
【図8】加工ヘッドとガラス基板との対向面間距離を調節して加工状態を検証するための面間距離制御システムのブロック図。
【図9】面間距離の制御結果を示す図。
【図10】制御しながら加工した時のガラス基板の傾きと面間距離(ギャップ)の制御結果を示す図。
【図11】図8のシステムを用いて加工したときの加工量分布を示す図。
【符号の説明】
【0100】
1 湿式エッチング加工装置
1A エッチャント循環装置
1B 加工ヘッド走査装置
2 加工ヘッド
3 ガラス基板(加工物)
4 エッチャントタンク
5 エッチャント
6 エッチャント供給系
7 エッチャント回収管
8 ガス排気管
9 ガス排気ポンプ
10 濃度コントローラ
11 水
12 補給管
13 送液ポンプ
14 熱交換器
15 測温体
16 流量調節バルブ
17 流量計
18 フッ酸濃度センサー
19 供給管
20 温調ユニット
31 装置基台
32 2方向移動ステージ
33 加工ヘッド走査速度制御部
34 装置カバー
35 垂直フレーム
36 垂直フレーム部材
37 直線移動案内機構
38 水平フレーム部材
39 主走査方向駆動用のボールねじ
40 副走査方向用のボールねじ
41 ノズルブロック体
42 背面ブロック体
43 固定ねじ
44 供給ノズル部
45 排出孔
46 第1周溝
47 開口
48 第2周溝
49 排出路
51 姿勢制御機構
52 固定部
53 ヘッド取り付け部
54 ボール部材
55 第1アクチュエータ
56 第2アクチュエータ
57 コイルバネ
58 距離センサー
59 姿勢制御駆動装置
60 X軸ステージ
61 距離センサーコントローラ
62 デジタルパネルメータ(DPM)
63 X軸ステージコントローラ
64 モータドライバー
65 制御装置


【特許請求の範囲】
【請求項1】
加工ヘッドによりエッチャントを垂直姿勢に保持した被加工物の表面に供給し、吸引することにより、該加工ヘッドと被加工物との隙間に一定面積のエッチング領域をなすエッチャントの流路を形成し、該加工ヘッドと該被加工物とを相対的に走査して被加工物の表面を加工する表面加工方法であって、
前記加工ヘッドと前記被加工物との相対走査時に、前記加工ヘッド表面と前記被加工物表面との間の距離を計測しながら前記加工ヘッド表面と前記被加工物表面との隙間を前記エッチャント流路が安定形成される所定範囲内を維持すべく前記被加工物表面に対して前記加工ヘッドの向きを変更することを特徴とする表面加工方法。
【請求項2】
前記エッチャント流路を安定形成する所定範囲は、エッチャントの液ダレ、液引きを発生させない隙間と、前記加工ヘッドが前記被加工物に接触しない隙間の範囲であることを特徴とする請求項1に記載の表面加工方法。
【請求項3】
前記加工ヘッドは、対向する前記被加工物表面に対して任意の向きに変更可能であることを特徴とする請求項1または2に記載の表面加工方法。
【請求項4】
前記加工ヘッドの表面と、対向する前記被加工物の表面との距離を複数点で計測し、各計測値が所定の範囲内に収まるように該加工ヘッドの向きを変更させることを特徴とする請求項1から3のいずれかに記載の表面加工方法。
【請求項5】
前記加工ヘッドの表面と前記被加工物の表面との距離を計測する複数の計測点は前記エッチング領域を取り囲むことを特徴とする請求項1から4のいずれかに記載の表面加工方法。
【請求項6】
前記被加工物を垂直姿勢に保持した状態を維持して、該被加工物の表面形状を計測し、その後該表面形状計測データに基づいて前記加工ヘッドと該被加工物とを相対的に走査させて加工することを特徴とする請求項1から5のいずれかに記載の表面加工方法。
【請求項7】
前記被加工物は、矩形平板形状の合成石英ガラスであることを特徴とする請求項1から6のいずれかに記載の表面加工方法。
【請求項8】
前記合成石英ガラスは、フォトマスク用のガラス基板であることを特徴とする請求項7に記載の表面加工方法。
【請求項9】
前記フォトマスク用のガラス基板は、1辺が300mm角以上であることを特徴とする請求項8に記載の表面加工方法。
【請求項10】
加工ヘッドによりエッチャントを垂直姿勢に保持した被加工物の表面に供給し、吸引することにより、該加工ヘッドと被加工物との隙間に一定面積のエッチング領域をなすエッチャントの流路を形成し、該加工ヘッドを該被加工物に対し走査して被加工物の表面を加工する表面加工装置であって、
前記被加工物の表面に対向する垂直平面内を上下および左右方向に移動部材が移動する前記加工ヘッドを該被加工物に対して走査させるための二次元移動ステージと、
前記二次元移動ステージの前記移動部材に設けられ、前記被加工物に向けて前記加工ヘッドを取り付け、該被加工物の表面に対して該加工ヘッドの向きを変更可能に姿勢制御を行う姿勢制御機構と、
前記加工ヘッドの表面と前記被加工物の表面との距離を複数点で計測する距離センサーと、
前記距離センサーの計測結果に基づいて、前記姿勢制御機構を駆動制御する姿勢制御駆動手段と、
を有し、
前記姿勢制御駆動手段は、前記加工ヘッド表面と前記被加工物表面との距離が前記エッチャント流路を安定形成する所定範囲内を維持すべく前記被加工物表面に対して前記加工ヘッドの向きを変更することを特徴とする表面加工装置。
【請求項11】
前記エッチャント流路を安定形成する所定範囲は、エッチャントの液ダレ、液引きを発生させない隙間と、前記加工ヘッドが前記被加工物に接触しない隙間の範囲であることを特徴とする請求項10に記載の表面加工装置。
【請求項12】
前記加工ヘッドは、対向する前記被加工物表面に対して任意の向きに変更可能であることを特徴とする請求項10または11に記載の表面加工装置。
【請求項13】
前記距離センサーは、前記加工ヘッドのエッチング領域を取り囲む複数点に配置したことを特徴とする請求項10から12のいずれかに記載の表面加工装置。


【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate

【図11】
image rotate


【公開番号】特開2008−311442(P2008−311442A)
【公開日】平成20年12月25日(2008.12.25)
【国際特許分類】
【出願番号】特願2007−158000(P2007−158000)
【出願日】平成19年6月14日(2007.6.14)
【出願人】(000003300)東ソー株式会社 (1,901)
【Fターム(参考)】