説明

表面粗さ測定センサを有する装置および関連方法

本発明に係る装置(10)は、表面粗さ検出システム(12)および表面粗さ測定センサ(15)を備え、スライド部品およびプローブ先端部(15.4)が協働して作動する装置である。スライド部品は、走査スライド部品(15.3)の形態として、プローブピン(15.2)の最端部に配置される。プローブ先端部(15.4)は、プローブピン(15.2)の内部に配置され、走査スライド部品(15.3)とプローブ先端部(15.4)との間の距離(A)は予め設定されている。表面粗さ検出システム(12)は、平行四辺形構造体を有する1次元、2次元、または3次元の走査システムである。この装置(10)は、走査スライド部品(15.3)およびプローブ先端部(15.4)とともにプローブピン(15.2)を、走査すべき面(F)上で一体的に搬送する搬送デバイスを備えるものである。同様に、本発明は、上記装置(10)を用いた関連する方法に関する。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、表面粗さ測定センサを有する装置および関連方法に関する。
【背景技術】
【0002】
数多くの技術分野において、構成部品または構成材料の表面構造は、重要な品質特性である。
【0003】
表面粗さおよび表面高さを迅速に測定するための表面測定デバイスが複数種類ある。通常、機械的に走査して測定する際、プローブ(探針)の先端部は表面に沿って案内される。その結果、走査した経路における高さ信号、すなわち表面形状プロファイルが記録される。
【0004】
図1Aおよび図1Bに概略的に示すように、いわゆるランナセンサ1および基準面センサ5には相違点がある。ランナセンサ1は、測定対象領域に比して大きい、または小さいランナであって、スライド部材として機能するランナ2を有する。ランナセンサ1のスキャナ3は、ランナ2で測定すべき表面Fの上に載置され、スキャナ3のプローブ先端部4を用いて、ランナ2の走査経路に沿った表面プロファイルを測定する。測定の際、ランナ2は、表面Fの巨視的な不均一性(大まかな表面粗さ)、すなわち、うねりおよび巨視的な形状に伴って変動する。これに対し、プローブ先端部4は、微小半径を有する先端部で表面粗さを検出し、ランナ2なら跨ってしまう溝の形状を検出する。すなわちランナ2は、一種のハイパスフィルタのように機能する。
【0005】
より正しく表面Fのうねりを測定するために、2つのランナを有するランナセンサが存在する。
【0006】
基準面センサ5は、基準面Eに固定されている点に特徴がある。基準面Eは、ほとんどの場合、スキャナ3のヘッド部6に配置されている。基準面センサ5を用いた測定は、ランナセンサ1との比較により行われ、表面粗さの他、構成部品の形状やうねりを検出することができ、より正確でより複雑な測定を行うことができる。
【0007】
たとえば、うねりや3次元形状に関する正確な測定結果を必要としない場合には、ランナセンサ1が用いられる。ランナセンサ1の利点は、さほど正確に位置合わせする必要なく、迅速な測定が可能であるため、取り扱いが簡便である点である。
【0008】
図2Aおよび図2Bにおいて、ランナセンサ1(図2A)と、基準面センサ5(図2B)の検出結果を示す。基準面センサ5は、表面の真の経路が変化しない限り、これに沿って記録され、基準面センサ5はできるだけ手を加えることなく、真の高低を記録するものであるため、図2Bに示す検出結果は現実のものに最も近い。とりわけ、深い溝がある場合、または独立した高いピークS1,S2がある場合、差動式ランナセンサの誤差は顕著なものとなる。たとえばピーク1の前のランナセンサ1の挙動は特徴的である。プローブ先端部4よりも先にランナ2がピークに到達する。よってスキャナ3の全体が持ち上げられ、プローブピン4が周りのスキャナケーシングから下方へ移動する。図2Aにおいて、これがピークS1に到達する前に表面Fの凹部に入り込むような挙動として、領域B1で示すように記録される。ピークS2に到達する前においても、同様のことが当てはまる。
【0009】
またランナセンサは、別の状況においても誤差を含む測定結果を示す場合がある。たとえば、ランナ2とプローブ先端部4が強調し合うように変動する場合、極めて大きな出力信号が生じ、ランナ2とプローブ先端部4が全体的または部分的に相殺し合うように変動する場合、非常に小さい信号しか得られない。こうした問題は、表面が周期的に変化する場合に起こる。従来から知られた表面粗さ検出システムの詳細については、たとえば専門書「表面粗さ測定:理論と実践」(Raimund Volk著、Beuth Verlag出版、2005, ISBN 3410159185, 9783410159186)に記載されている。
【先行技術文献】
【特許文献】
【0010】
【特許文献1】独国特許第19501178号公報
【特許文献2】独国特許第19721015号公報
【特許文献3】欧州特許出願公開第1589317号
【非特許文献】
【0011】
【非特許文献1】専門書「表面粗さ測定:理論と実践」(Raimund Volk著、Beuth Verlag出版、2005, ISBN 3410159185, 9783410159186)
【発明の概要】
【0012】
3次元の構造物要素に関し、局在的な一致の上に結論を出すことがしばしば重要であり、すなわち一連の表面粗さは、異なる構造物要素それぞれに対し、正確に同一の位置で測定する必要があるということを意味する。
【0013】
表面粗さを検出することの他、たとえば表面の曲率(ギアホイールの歯車の湾曲形状等)の3次元形状、あるいは形態について検出することができる。
【0014】
本発明の1つの目的は、改善された表面粗さ測定を実現する、適当な測定スキャナを有する測定装置を提供することにある。
【0015】
本発明のさらなる目的は、正確に予め設定された同一位置において、構造的要素に対する表面粗さ測定を行うことにある。
【0016】
本発明のさらなる目的は、表面粗さ測定センサをできるだけ簡便に手作業で交換することを可能にすることにある。
【0017】
さらなる目的は、着脱可能な測定スキャナを含むデバイスを有する測定装置を設計して、置換する毎に新規に較正する必要を排除できるものとすることである。さらに、走査システムへの障害を回避できるものでなければならない。
【0018】
これらの目的は、請求項1に係る装置および請求項9に係る方法により解決することができる。
【0019】
本発明に係る装置は、表面粗さ検出システムおよび表面粗さ測定センサを備え、スライド部品およびプローブ先端部が協働して作動する装置である。スライド部品は、走査スライド部品の形態として、プローブピンの最端部に配置される。プローブ先端部は、プローブピンの内部に配置され、走査スライド部品とプローブ先端部との間の距離は予め設定されている。表面粗さ検出システムは、平行四辺形構造体を有する1次元、2次元、または3次元の走査システムである。この装置は、走査スライド部品およびプローブ先端部とともにプローブピンを、走査すべき面上で一体的に搬送する搬送デバイスを備えるものである。
【0020】
本発明に係る面を走査する方法は以下のステップを有する。プローブピンは、その最端部に配置された走査スライド部品を含み、走査スライド部品から距離だけ離間したプローブ先端部を有し、このプローブピンを搬送する。搬送の際、走査スライド部品を面の一点に当接させる。そしてプローブピンを面に沿って少なくとも1つの座標方向に移動させることにより、走査スライド部品およびプローブ先端部を、面上において距離を離間させた状態で移動させる。これと同時に、走査スライド部品に付随する1次元、2次元、または3次元のトランスデューサからの第1の出力信号を収集する。さらに、プローブ先端部に付随するトランスデューサからの第2の出力信号を収集する。そして、第1の出力信号と第2の出力信号とを関連付ける。
【0021】
本発明に係る装置の有利な実施形態は、請求項2〜8の主題を構成するものである。本発明に係る方法の有利な実施形態は、請求項9〜13の主題を構成するものである。
【0022】
本発明は、1次元、2次元、または3次元の測定装置に関連して用いることができる。
【0023】
走査スライド部品の形状は、必ずしも理想的な球面形状である必要はない。走査スライド部品は、楕円形状、円筒形状、または曲率半径の大きい任意の他の形状を有していてもよい。走査スライド部品は、軸方向および半径方向において異なる半径を有していてもよい。
【0024】
好適な実施形態では、表面粗さセンサは置換することができる。さらに好適な実施形態では、択一的にまたは追加的に、表面粗さセンサは長手方向軸の周りを回転させることができる。
【0025】
本発明の1つの利点は、この装置により、面に関して、基準面センサで得られる情報に匹敵するか、むしろより正確な情報が得られる点にある。
【0026】
本発明の1つの利点は、走査スライド部品が理想的な直線から、あるいは理想的な基準面から逸脱しても完全に修正することができる点にある。これは、1次元、2次元、または3次元のトランスデューサの偏向を収集することにより実現される。本発明によれば、これは、走査スライド部品の移動の逸脱と、正確に直線的な基準系が得られるように、プローブ先端部により同時に収集される(信号f3で表される)表面粗さ曲線とを関連付けて、計算で求めることにより実現することができる。従来式のランナセンサで知られた誤差を排除することができる。
【図面の簡単な説明】
【0027】
【図1A】既知のランナ測定装置の概略図である。
【図1B】既知の基準面測定装置の概略図である。
【図2A】図1Aのランナ測定装置により得られた概略的な信号曲線を示す。
【図2B】図1Bの基準面測定装置により得られた概略的な信号曲線を示す。
【図3A】既知の基準面測定装置の機能概念図である。
【図3B】図3Aに示す基準面測定装置により得られた概略的な(基準)信号曲線を示す。
【図4】本発明に係る、対比可能に図示された測定装置の機能概念図である。
【図5】既知のCNC測定装置の斜視図である。
【図6】本発明に係る、水平方向に主軸を有する3次元走査ヘッドの基本的構成を示し、より明確となるように離間した走査ヘッドの機械的構成が図示されている。
【図7】本発明に係る、表面粗さ測定センサを有する1次元走査ヘッドの基本的構成を示す。
【図8A】図4に示す本発明に係る測定装置のプローブ先端部により得られた概略的な信号曲線を示す。
【図8B】図4に示す本発明に係る測定装置の走査スライド部品により得られた概略的な信号曲線を示す。
【図8C】図8Bの信号曲線を距離Aだけずらした信号曲線を示す。
【図8D】概略的に示す図8Aの信号曲線および図8Cの信号曲線について、重ね合わせ処理した信号曲線を示す。
【発明を実施するための形態】
【0028】
添付図面を参照しながら、本発明に係る例示的な実施形態をより詳細に説明する。
本明細書においては、関連する技術文献および特許文献で用いられる用語を用いる。ただし、これらの用語は、より十分に理解されるものとして用いられる。本発明の概念や特許クレームの範囲は、選択的に用いられた特定の用語に限定されるものではない。本発明は、別段の労力を課すことなく、他の専門用語で表されるシステムや、他の技術分野におけるシステムに転用することができる。本発明の概念を、他の技術分野において等しく適用することができる。
【0029】
本明細書において「表面粗さ」なる用語は、面の表面品位を表すものである。「表面粗さ」の用語は、より微視的な意味合いで、選択的すなわち局在的な記述として限定的に用いられる。本明細書では、表面粗さに関連して、面Fの構造物、その要素、およびその特徴物は、通常、ナノメートルオーダから約500マイクロメートルの範囲にある大きさを有するものに関する。
【0030】
ここで形状(均一面とも云う)とは、2次元または3次元の平面、あるいは複数の平面が接続された空間上の3次元の物体を意味する。また形状について、構造物および構成要素は、通常、0.5mmから約10mmの範囲にある大きさを有するものに関する。
【0031】
幾何学的形態(単に形態とも云う)は、空間上にある連続する2次元的または3次元的な面、あるいは数学的手法により正確に記述できる複数の面が連続してなる空間上の3次元構造物を意味する。形態に関し、3次元構造物の構成部品または構成要素が連結し、数cmから約100cmまたはそれ以上の大きさを有する。
【0032】
たとえば歯車装置の歯の凸状面、階段または段差のコース、歯車装置の歯のフランクライン、平面の勾配などは、湾曲表面または均一平面の形状と見ることができる。こうした形状を評価し、測定するためには、通常、直線、曲線、または領域に沿った複数の測定ポイントにおいて測定する必要がある。したがって、この点に鑑み、巨視的にも説明を行う。
【0033】
表面粗さは、形状の測定または検出より高い解像度で(より高い空間解像度で)測定する必要がある。
【0034】
図3Aおよび図4において、従来式の基準面センサ5および本発明に係る測定装置10が、機能的な観点で比較されている。それぞれの構成部品がより十分に比較できるように意図して図示されている。図3Aから分かるように、スキャナの前方部分にはレバーアーム3.1が配置されており、レバーアームはピボットベアリング3.2の周りを回転可能に支持されている。伸張ばね3.3がレバーアーム3.1の後方端部に設けられている。構成部品5.1および構成部品5.2は、互いに対して固定的に接続され、基準面Eを規定している。レバーアーム3.1の前方端部のプローブ先端部4が(双方向矢印P1で示すように)上下に移動することに伴い、レバーアーム3.1の後方端部が(双方向矢印P2で示すように)上下に移動する。このレバーアーム3.1の後方端部の上下移動をトランスデューサにより記録することができる。その検出結果は、(たとえば負のY方向において)距離の関数として、たとえば図3Bに示すような信号f1として出力され、この信号が最も広範囲において実際の表面Fに呼応するものとなる。すなわち、信号f1のコース(推移)が実際の表面Fのイメージを与えるものと考えられる。
【0035】
図4において、本発明に係る装置10は、表面粗さ測定センサ15を有し、スライド部品15.3は、プローブ先端部15.4と協働して作動する。走査スライド部品15.3は、プローブピン15.2の最端部に配置され、スライド部品として機能する。プローブピン15.2は、好適には、図4に示すように、中空すなわち管状の形状を有する。プローブ先端部15.4は、プローブピン15.2内に配置され、走査スライド部品15.3とプローブ先端部15.4との間の距離は予め設定されている。ピボットベアリング3.2の周りを回転可能に支持されているレバーアーム13.1は、プローブピン15.2の内部に配設されている。伸張ばね13.3がレバーアーム13.1の後方端部に設けられている。レバーアーム13.1の前方端部にあるプローブ先端部15.4が(双方向矢印P3で示すように)上下移動することに伴い、レバーアーム13.1の後方端部が(双方向矢印P4で示すように)上下に移動する。
【0036】
プローブピン15.2および構成部品15.5は、ヒンジ15.6を介して互いに対して移動可能に接続されている。本発明に係る測定装置10において、この移動可能な接続部は、後述するように、スプロケットチェーンとして機能するばね平行四辺形体構造体により実現される。この平行四辺形体構造体は、(たとえば図6に示すように)1次元、2次元、または3次元の走査測定システム12の一部である。
【0037】
本発明によれば、スライド部品15.3を含むプローブピン15.2、およびプローブ先端部15.4は、検出面Fの上を協働して移動する。このとき、プローブピン15.2を介して平行四辺形体構造体に連結された走査スライド部品15.3が信号を出力するとともに(これを信号f2という)、プローブピン15.2の内部に配設されたプローブ先端部15.4が信号を出力する(これを信号f3という)。信号f3の具体例を図8Aに示し、信号f2の具体例を図8Bに示す。
【0038】
図5に示す本発明に係る好適な実施形態において、完全自動化されたCNC制御測定装置10が図示されている。この測定装置は、たとえば、スプールギアの歯車および切削歯車、ワームおよびワームギア、ホブ、バッフルギアなどの表面粗さ、形状、または形態、ゲージの通常のずれ、ならびに曲率測定およびカムシャフト測定や、回転測定のための回転対称的な構成部品の形状または位置を検査するために適しており、使用に関するオプションについて言及する。
【0039】
測定装置10は、駆動可能な捕獲部13と(障害物の反対側に配置されているため視認されず)、中央配置手段14とを有し、測定対象要素11が、定型の円柱状ホイールの支援により、捕獲部13および中央配置手段14の間に同軸上に把持できるように、捕獲部13および中央配置手段14は配置されている。
【0040】
測定装置10は、図5に示すように、これにより把持された測定対象部品の3つの寸法(3次元座標測定システム)を測定するための少なくとも1つのトランスデューサ15を有する。好適には、XYZ座標系のZ座標軸で示す高さ方向に沿って、移動させることができる走査測定システム12が配置される。さらにトランスデューサ15は、互いに対して垂直な座標軸Xおよび座標軸Zに示す方向に沿って移動することができる(好適には、4軸移動制御が可能である。)。
【0041】
図6は、図5に一例として示す走査測定システム12と同一または類似の構成を有する、測定装置10の3次元(3D−)走査測定システム12の斜視図である。したがって、同様の部品については同様の符号を用いる。以下において、本発明の理解に不可欠な構成部品だけを説明する。このような測定装置10の詳細については、特許文献の独国特許第19721015号(3次元走査測定ヘッド)および独国特許第19501178号(2次元走査測定ヘッド)を参照することができる。
【0042】
水平方向に配置された走査測定システム12があり、これは上述のように、数値制御による測定装置10の一部であって、複数の自由度で自らを平行に偏向させる(変位する)ことができる偏向可能なプローブピン15.2を有するものである。プローブピン15.2は、互いに対して機能的に垂直配置された複数のばね平行四辺形システム31,38を介して、固定式走査ベッドベース34にヒンジ固定されている。これらのばね平行四辺形システム31,38は、上述の平行四辺形構造体を構成し、その上にトランスデューサ15が支持されている。プローブピン15.2を含む走査スライド部品15.3の偏位は、走査ベッドベース34に連結された2つまたは3つの(1次元、2次元、または3次元の)トランスデューサ(図示せず)により検出される。これらのトランスデューサが信号f2を出力する。
【0043】
図6に示す走査測定ヘッドは、測定スキャナ15および走査システム12を有する。走査システム12は、(L字状の)角度を有する走査ヘッドベース34を有し、走査ヘッドベースは図5に示す測定装置10の塔部18に連結されている(図示せず)。第1のばね平行四辺形構造体31は、走査ヘッドベース34の前半部分に対して移動可能に連結されている。これは、対をなし、同じ長さを有する2つの構成部品33,35を有し、これらの構成部品は、垂直軸(Z軸に平行に延びる軸)を有する4つのばねヒンジ32.1を用いて、互いに連結され、前方部品35がX方向に平行に移動できるようにするものである。第1のばね平行四辺形構造体31は、それ自体が別のばねヒンジ32.2の水平軸(X軸に平行に延びる軸)の周りに回転することを可能にするものである。平行四辺形構造体31は、板ばね(図示せず)を用いて安定化させることが好ましい。調整可能な張力ばねが必要な状量バランスを与えることにより、第1のばね平行四辺形構造体31が偏向しない状態の走査測定ヘッドのX−Y平面の水平方向の位置を決定する。図6において、張力ばね37は概略的にのみ図示されている。
【0044】
第1のばね平行四辺形構造体31とプローブピン担持部17.4との間に、連結部品36が配設される。連結部品は、前方部品35の上端部におけるばねヒンジ32.2に平行に配置されたばねヒンジ32.3と、下端部におけるばねヒンジ32.2に平行に配置された別のばねヒンジ32.4とを介して、プローブピン担持部17.4に移動可能に連結される。この連結部品36を用いてもなお、プローブピン担持部17.4は十分に支持されていない。そのため、プローブピン担持部17.4に対して、垂直バーに当接する2つの二重ヒンジロッド26,27を追加的に取り付けてもよい。このバーは、第2のばね平行四辺形構造体38の一部をなすものである。第2のばね平行四辺形構造体は、同一の長さを有し、水平軸を有する4つのばねヒンジにより互いに対して一対のものとして連結配置される構成部品21,22により構成される。第2のばね平行四辺形構造体38は、上側部分22がY方向に平行に変位できるように、走査ヘッドベース34上の下側部分22に固定される。垂直バー25は、この上側部分22に固定される。この構成配置により、プローブピン担持部17.4は、長手方向軸A2に平行に変位し、X方向、Y方向、およびZ方向に同時に偏向することが可能となる。2つの二重ヒンジロッド26、バー25、および走査ピン担持部17.4は、Z方向の移動を可能にするための平行四辺形を構成する。Y軸周りのねじり剛性は、平行四辺形31と、2つの板ばねと協働する連結部品36とにより実現することができる。
【0045】
さらに図6から明らかなように、プローブピン15.2は(置換)ディスク15.1のようなものの上に設置されている。走査測定システムのプローブピン担持部17.4にディスク15.1を固定することができる。図6には図示されないが、たとえばレバー装置により固定することができる。特に好適なレバー装置は、「着脱可能な測定センサを有する装置および当該装置を有する測定デバイス」と題する2004年4月23日付けで出願された欧州特許出願公開第1589317号に記載されている。
【0046】
本発明に係る好適な実施形態において、プローブピン15.2は、長手方向軸A2の周りに回転できるように、ディスク15.1に連結されている。長手方向軸A2の周りに回転することにより、プローブ先端部15.4は異なる方向に配向することができる。すなわち、XY面上にある表面Fだけでなく、別の表面を走査測定することができる。
【0047】
上述の平行四辺形システムは、測定センサ15に対して、ねじれ剛性を有し、ほとんど抵抗のないベースを構成するという利点を有する。測定センサ15が走査測定システム12に連結された際のその動的挙動は、すべての偏向方向(座標方向)において実質的に等しい。平行四辺形の構造物は、空間上を移動する測定センサ15と走査ヘッドベース34との間のスプロケットチェーンとして機能する。走査測定システム12の個々の構成部品を上記のように構成することにより、これに平行に変位しつつ、測定センサ15がX方向、Y方向、およびZ方向に同時に偏向することができる。
【0048】
また本発明に係る別の走査測定ヘッドのさらなる詳細が図7から明らかである。この走査測定ヘッドは、図6に示す走査測定ヘッドと同様に構成されているが、1次元の走査測定ヘッドに関するものである。よって同一の参照符号を用いて説明する。ただし図7は、概略的に図示するものである。測定センサ15は、走査スライド部品15.3を含むプローブピン15.2を有する。この点に関して、走査スライド部品15.3の形状は、必ずしも理想的な球面形状ではなくともよいということに留意されたい。走査スライド部品15.3は、楕円形状、円筒形状、または大きい曲率を有する別の好適な形状を有するものであってもよい。本発明によれば、走査スライド部品15.3は、名前が示すとおり、ランナ部品であって、ランナ測定デバイス1のランナ部品と同様のものである。表面粗さを測定する際、走査スライド部品15.3は、走査測定すべき面F上を引きずりながら移動するものであり、十分に大きな曲率半径を有する必要がある。好適な実施形態では、走査スライド部品15.3は、軸方向(A2の方向)に10mmの半径を有し、半径方向に1mmの半径を有する。当然に、大きい半径が好ましい。プローブ先端部15.4までの距離を短くすべく、ランナとして機能する走査スライド部品15.3の一部は、半径から一部領域のみを含むものであるが、このランナの端部が面Fの上方をスライドするリスクがあるため、半径を必要以上に大きくするように選択すべきではない。端部の半径があまりにも小さいとき、誤差が生じる。
【0049】
好適には、プローブ先端部15.4の先端部半径は、数マイクロメートルである。約2〜10マイクロメートルの範囲の先端部半径を有するプローブ先端部15.4が特に好ましい。
【0050】
走査スライド部品に加え、測定センサ15は、上述のような一体化されたプローブ先端部15.4を有する。このプローブ先端部15.4は、走査スライド部品15.3の底部より微小距離Aだけ後方に配置されている。距離Aは0であることが理想である。しかし、そうすると、2つの方向においてドーム状に形成された走査スライド部品15.3を配置することはできない。球面形状を有する走査スライド部品15.3において、プローブ先端部15.4を受容するための孔を設けることに意味はない。そうすると、孔の端部が面Fに当接するためである。図示された実施例では、距離Aは、1.5mmである。一般に、距離Aは、1.5mm〜5mmの間である。このプローブ先端部15.4は、図4でも示すように、浮動状態で支持され、これによりナノメートルから約500マイクロメートルの大きさを有する面F上の構造体、構成要素および特徴物を検知または測定することができる。
【0051】
プローブ先端部15.4は、同様に、走査スライド部品15.3に直接的に一体化してもよい。ただし、これは、移動方向に対して垂直である半径を有する走査スライド部品15.3に対してのみ機能するものである。しかし、このような走査スライド部品15.3には問題がある。湾曲しない走査スライド部品15.3の方向は、まさに面Fに平行な方向となるためである。
【0052】
測定センサ5は、図7に示す実施形態と同様、平行四辺形構造体40に取り付けられる。任意ではあるが、測定センサ15は、置換ディスク15.1および/または図6に示す構成部品17.4、32.4,36、および32.3を介してばね平行四辺形構造体40に連結される。これらの構成部品は、図7の概略図には図示されていない。任意的な置換ディスク15.1は破線で図示されている。
【0053】
平行四辺形構造体40は、2つの平行な構成部品41と、これに対して垂直で別の2つの平行な構成部品42とを有する。後方の構成部品42は基準ベースとして機能してもよい。この場合、後方の構成部品は、たとえば塔部18または走査ヘッドベース34に連結される。指示部品43またはジブを基準ベース上に取り付けてもよい。走査スライド部品15.3は、プローブピン15.2とともに、Z方向に平行に偏向し、前方部分42は、XZ平面内をシフト移動する。XZ平面内の横方向の移動は、1次元トランスデューサ44に対する指示部品43またはジブの相対的な位置を表示するものである。このトランスデューサ44は、直線的スケールの形態で表示される。このトランスデューサ44は、面Fの形状を記述する信号f2を出力することができる。
【0054】
測定装置10は、テストすべき構造物要素11(図5ではたとえば円筒状ホイール11という)に対して、たとえば垂直方向または半径方向から接近するように走査スライド部品15.3を案内して、プローブピン15.2の長手方向軸A2を水平状態とすることができる。さらに測定デバイス10は、走査スライド部品15.3が所定の面に当接するまで、構造物要素11を回転させるか、移動させることができる。こうして、開始時より、たとえば構造物要素11の湾曲した歯状面に当接させることができる。このために、搬送手段を用いて、測定センサ15をXYZ座標系において搬送することができ、上述のように、空間上の1つ、2つ、または3つすべての座標方向における平行四辺形構造体により、偏向することができる。
【0055】
走査スライド部品15.3は、始点から終点まで面Fの上方を移動する。好適には、走査スライド部品15.3は、図7の矢印P5で示すように、面Fの上方を引きずられる。走査スライド部品15.3が引きずられている間、プローブ先端部15.4は先行する。走査スライド部品15.3が面上を押されている場合、プローブ先端部15.4は後に続く(後行する)。
【0056】
本発明に係る測定装置10は、互いに関連する2つの信号f2,f3を出力する。第1の出力信号f2は、既知の1次元、2次元、または3次元の測定装置である走査スライド部品15.3が面上を走査した際に得られた信号である。例示的な測定信号f2が図8Bに図示されている。測定信号f2は、走査スライド部品15.3が面F上を−Y方向に引きずられる間に生成されたものである。第2の出力信号f3は、プローブ先端部15.4から得られた信号である。この信号f3は、プローブ先端部15.4が面上を−Y方向に引きずられる間に生成されたものである。第1の出力信号f2および第2の出力信号f3は、空間的にも時間的にも互いに対して関連するものである。
【0057】
上述の測定構成において、本発明に係る測定装置10は、(1次元測定の場合)直線に沿って、(2次元測定の場合)XZ平面において、(3次元測定の場合)3つのXYZ方向で走査した空間において、走査スライド部品15.3のすべての偏向を検出する。たとえば図7に示すように、Z面における偏向を1次元測定装置で測定することができる。3次元または2次元空間の偏向は、第1の出力信号f2により表示される(図8Bを参照されたい。)。
【0058】
本発明の第1の実施形態において、出力信号f2(図8B)および出力信号f3(図8A)の2つの信号を互いに関連付けるために、空間的な関係のみを用いた。走査スライド部品15.3は、走査される面Fにおいて、Y軸の負の方向に平行な直線に沿って引きずられるとき、プローブ先端部15.4の出力信号f3は、走査スライド部品15.3とプローブ先端部15.4の距離Aだけ正確に直線的にずれる。信号f2の直線的なずれにより、図8Cに概略的に示す空間的にシフトした信号f2を生成する。そして信号f2およびf3を加算により重ね合わせ処理を行うことができる。重ね合わせ処理により、信号feffを得ることができ、単純な足し算(feff=f2+f3)で求めることができる。重ね合わせ処理において他の関数を用いることもできる。すなわち、信号f3は、信号f2より強く重み付けすることができる。
【0059】
本発明に係るさらなる実施形態において、空間的および時間的関係の両方を用いることができる。走査スライド部品15.3は、プローブ先端部15.4とともに面F上を所定または既知の速度v(t)で案内されるという事実から、時間的関係を知ることができる。走査スライド部品15.3および上記すべてのプローブ先端部15.4の慣性に起因して、速度v(t)に依存して、多少異なる結果を得ることができる。これは、移動速度v(t)が大きすぎると、走査スライド部品15.3および/またはプローブ先端部15.4が面F上の特徴物の上をジャンプする場合の具体例を考慮すれば明らかである。
【0060】
測定センサ15は極めて敏感なものであり、迅速な測定を行う場合、X座標軸、Y座標軸、およびZ座標軸に広がる空間内を移動する際、あるいは回転軸A1の周りに構造体要素11が移動する際に、測定センサ15が構造体要素11に衝突しないことが重要である。特定の測定プロトコルに依存して、異なる測定センサ15を採用可能でなければならない。
【0061】
プローブ先端部15.4がスキャナの「パイプ」15.2により多少なりとも保護されるということは、本発明の利点である。3次元測定センサにスキャナ15を配置することにより、衝突に際して完全に保護することができる。
【0062】
上述のとおり、好適には、置換可能な測定センサ15が用いられる。置換機能は、好適には、置換ディスク15.1に統合される。
【0063】
1次元、2次元、または3次元の測定センサ15が用いられ、プローブ先端部15.4は、使用しないとき、収容された状態にしておくことができる。そのために、通電時において磁性引力がプローブ先端部15.4の内側面またはレバーアーム13.1に作用する電磁石を、たとえばプローブピン15.2の内側に取り付けてもよい。こうしてプローブ先端部15.4をプローブピン15.2内に収容された状態にすることができる。必要に応じて、電磁石への通電を停止してプローブ先端部15.4を作動状態にすることにより、走査スライド部品15.3を用いて、たとえば従来式の1次元、2次元、または3次元のプローブ測定を実施することができる。
【0064】
本発明のさらなる実施形態において、プローブ先端部15.4は、レバーアーム13.1ともに、走査スライド部品15.3より水平方向後方に配置される。
【0065】
装置10の機能性に関する詳細については、「ギア測定のための汎用プローブヘッド」と題する独国特許第19721015号公報に記載されている。
【符号の説明】
【0066】
1…ランナセンサ、2…ランナ、3…スキャナ、3.1…レバーアーム、3.2…ピボットアーム、3.3…張力ばね、4…プローブ先端部、5…基準面センサ、5.1,5.2…基準面センサの構成部品、6…支持部品;
10…測定装置、11…構造体要素、12…走査測定システム、13…捕獲部、13.1…レバーアーム、13.2…ピボットベアリング、13.3…伸張ばね、14…中央配置手段、15…表面粗さ測定センサ、15.1…置換ディスク、15.2…プローブピン、15.3…走査スライド部品、15.4…プローブ先端部、15.5…構成部品、15.6…ヒンジ、17.4…プローブピン担持部、18…塔部;
21…対配置される構成部品、22…対配置される構成部品、25…垂直バー、26…二重ヒンジロッド、27…二重ヒンジロッド;
31…第1のばね平行四辺形構造体、32.1, 32.2, 32.3, 32.4, 32.5…ばねヒンジ、33…対配置される構成部品、34…走査ヘッドベース、35…対配置される構成部品、36…接続部、37…伸張ばね、38…第2のばね平行四辺形構造体;
40…平行四辺形構造体、41…対配置される構成部品、42…対配置される構成部品、43…指示部品、44…固定トランスデューサ;
A…距離、A1…回転軸、A2…長手方向軸、E…基準面、F…面、f1…基準面センサの信号、f2…2次元または3次元の走査ヘッドの信号、f2…f2のシフト信号、f3…プローブ先端部の信号、信号feff…重ね合わせ処理信号、P1,P2,P3,P4…双方向矢印、P5…矢印、座標…X,Y,Z、速度…v(t)。

【特許請求の範囲】
【請求項1】
表面粗さ検出システム(12)および表面粗さ測定センサ(15)を備え、スライド部品およびプローブ先端部(15.4)が協働して作動する装置(10)であって、
スライド部品は、走査スライド部品(15.3)の形態として、プローブピン(15.2)の最端部に配置され、
プローブ先端部(15.4)は、プローブピン(15.2)の内部に配置され、
走査スライド部品(15.3)とプローブ先端部(15.4)との間の距離(A)は予め設定され、
表面粗さ検出システム(12)は、平行四辺形構造体(31,38,40)を有する1次元、2次元、または3次元の走査システムであり、
この装置(10)は、走査スライド部品(15.3)およびプローブ先端部(15.4)とともにプローブピン(15.2)を、走査すべき面(F)上で一体的に搬送する搬送デバイスを備えることを特徴とする装置。
【請求項2】
請求項1に記載の装置(10)であって、
表面粗さ検出システム(12)は、走査すべき面(F)の形状または形態を表すことができる第1の信号(f2)と、走査すべき面(F)の表面粗さを表すことができる第2の信号(f3)とを出力することを特徴とする装置。
【請求項3】
請求項2に記載の装置(10)であって、
第1の信号(f2)は、走査スライド部品(15.3)より出力することができ、
第2の信号(f3)は、プローブ先端部(15.4)より出力することができることを特徴とする装置。
【請求項4】
請求項2または3に記載の装置(10)であって、
第1の信号(f2)および第2の信号(f3)を空間的におよび/または時間的に関連付けて、走査すべき面(F)の特性に関する情報を得ることを特徴とする装置。
【請求項5】
請求項1〜4のいずれか1に記載の装置(10)であって、
表面粗さ測定センサ(15)は、複数の自由度に関して偏向可能であり、
表面粗さ検出システム(12)は、偏向に関する情報を表す信号(f2)を生成することを特徴とする装置。
【請求項6】
請求項1〜5のいずれか1に記載の装置(10)であって、
走査スライド部品(15.3)およびプローブ先端部(15.4)とともにプローブピン(15.2)は、その長手方向軸(A2)の周りに回転可能に支持されることを特徴とする装置。
【請求項7】
請求項1〜6のいずれか1に記載の装置(10)であって、
プローブピン(15.2)は、少なくとも部分的には中空に形成され、その内部にレバーアーム(13.1)を受容し、レバーアームの一方の端部にプローブ先端部(15.4)を設けたことを特徴とする装置。
【請求項8】
請求項1〜7のいずれか1に記載の装置(10)であって、
プローブ先端部(15.4)をプローブピン(15.2)の内部に収容できるように、電磁石がプローブピン(15.2)の内部に配設されることを特徴とする装置。
【請求項9】
面(F)を走査する方法であって、
プローブピン(15.2)の最端部に配置された走査スライド部品(15.3)を含み、走査スライド部品(15.3)から距離(A)だけ離間したプローブ先端部(15.4)を有するプローブピン(15.2)を搬送して、走査スライド部品(15.3)が面(F)の一点と当接させるステップと、
プローブピン(15.2)を面(F)に沿って少なくとも1つの座標方向に移動させることにより、走査スライド部品(15.3)およびプローブ先端部(15.4)を、面(F)上において距離(A)を離間させた状態で移動させるステップと、
走査スライド部品(15.3)に付随する1次元、2次元、または3次元のトランスデューサからの第1の出力信号(f2)を収集するステップと、
プローブ先端部(15.4)に付随するトランスデューサからの第2の出力信号(f3)を収集するステップと、
第1の出力信号(f2)と第2の出力信号(f3)とを関連付けるステップとを有することを特徴とする方法。
【請求項10】
請求項9に記載の方法であって、
関連付けるステップは、第1の出力信号(f2)または第2の出力信号(f3)を、距離(Aだけ)空間的にずらした後に、重ね合わせ処理を行うことにより実行されることを特徴とする方法。
【請求項11】
請求項9に記載の方法であって、
関連付けるステップは、第1の出力信号(f2)または第2の出力信号(f3)を、時間的にずらした後に、重ね合わせ処理を行うことにより実行されることを特徴とする方法。
【請求項12】
請求項9、10、または11に記載の方法であって、
第1の信号(f2)は、走査すべき面(F)の形状または形態を表し、
第2の信号(f3)は、走査すべき面(F)の表面粗さを表すことを特徴とする方法。
【請求項13】
請求項9、10、または11に記載の方法であって、
プローブピン(15.2)が搬送されるとき、プローブピンの長手方向軸(A2)の周りにプローブピンを回転させることを特徴とする方法。

【図1A】
image rotate

【図1B】
image rotate

【図2A】
image rotate

【図2B】
image rotate

【図3A】
image rotate

【図3B】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8A−8D】
image rotate


【公表番号】特表2012−514735(P2012−514735A)
【公表日】平成24年6月28日(2012.6.28)
【国際特許分類】
【出願番号】特願2011−541293(P2011−541293)
【出願日】平成21年12月3日(2009.12.3)
【国際出願番号】PCT/EP2009/066323
【国際公開番号】WO2010/079019
【国際公開日】平成22年7月15日(2010.7.15)
【出願人】(596043494)クリンゲルンベルク・アクチェンゲゼルシャフト (15)
【氏名又は名称原語表記】Klingelnberg AG
【Fターム(参考)】