説明

被覆線及びその製造方法

【課題】被覆層における製造時間(とくに架橋工程時間)の短縮及び密着力の向上を実現することができる被覆線及びその製造方法を提供する。
【解決手段】被覆線10は、導体20と、シラン架橋された絶縁性樹脂組成物から形成され、導体20を被覆するとともに、外周に溝31aを有する1層又は2層以上の溝付き絶縁層31と、溝付き絶縁層31の最外層を被覆するシース層40とを備える。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、被覆線及びその製造方法に関する。
【背景技術】
【0002】
近年、絶縁電線などの電力用電線や光ケーブルなどの通信用ケーブルなど、導体上に被覆層が被覆された各種の被覆線に対して高温環境下での耐熱性が要求されるケースが増えている。耐熱性の被覆線としては、高価なエンジニアリング・プラスチックを被覆層として導体上に被覆した一例はあるものの、加工性に優れ安価なポリオレフィン系樹脂を架橋した絶縁性樹脂組成物を被覆層として使用する例が多い。
【0003】
被覆線の被覆層を構成する絶縁性樹脂組成物を架橋させる方法としては、主に、パーオキサイド架橋法、電子線架橋法、シラン架橋法の3種類が用いられている。そのなかでも、シラン架橋法は、電子線架橋法に用いられる高価な設備を必要とせず、ポリオレフィンなどの主原料となる樹脂に有機シラン化合物をグラフト重合させた後に触媒を混練させて得た絶縁性樹脂組成物を被覆線の被覆層として導体の外周上に被覆させた後、その被覆層の表面に空気中の水分を自然浸透させることによって被覆層の架橋を進行させることができる安価な架橋法である。そのため、被覆線の被覆層を構成する絶縁性樹脂組成物を架橋させる方法としてシラン架橋法が採用されることが多い(例えば、特許文献1を参照。)。
【0004】
特許文献1には、導体の外周に、シラン架橋された非ハロゲン難燃性熱可塑性エラストマー組成物からなる絶縁層を単層又は複層形成した構成、さらには絶縁層にシース層(最外層)を形成した構成を有する被覆線が開示されている。この被覆線の非ハロゲン難燃性熱可塑性エラストマー組成物は、80℃の水蒸気雰囲気中に24時間放置して架橋を行っている。
【0005】
シラン架橋法においては、表面からの水分の浸透によるアルコキシシランの加水分解とその後の脱水及び縮合反応とによって進行するため、温度や湿度の影響を受けやすく、温湿度管理が必須である。そのため、被覆層の形成直後に所定の温度及び湿度に管理された環境下で所定の架橋時間だけ保管するといった管理が行われている。
【先行技術文献】
【特許文献】
【0006】
【特許文献1】特開2007−70602号公報
【発明の概要】
【発明が解決しようとする課題】
【0007】
しかし、従来の被覆線は、シラン架橋法を用いた場合、絶縁層の外周の表面積に応じてシラン架橋に所定の架橋時間を要し、また所定の架橋時間が各層毎に必要となるため、被覆線の製造効率が悪化するといった問題が生じていた。また、被覆層が複層構造の場合、被覆層を構成する各層の密着力不足が懸念されていた。
【0008】
したがって、本発明の目的は、被覆層における架橋時間の短縮及び密着力の向上を実現することができる被覆線及びその製造方法を提供することにある。
【課題を解決するための手段】
【0009】
本発明の一態様は、上記目的を達成するため、以下の被覆線及びその製造方法を提供する。
【0010】
[1]心線と、シラン架橋された絶縁性樹脂組成物から形成され、前記心線を被覆するとともに、外周に溝を有する1層又は2層以上の溝付き絶縁層と、前記溝付き絶縁層の最外層を被覆するシース層と、を備えた被覆線。
[2]前記溝付き絶縁層は、前記溝が前記心線の軸方向に沿って形成された前記[1]に記載の被覆線。
[3]前記溝付き絶縁層と前記シース層との間、又は前記心線と前記溝付き絶縁層との間に設けられ、シラン架橋された絶縁性樹脂組成物から形成され、外周に溝を有していない1層又は2層以上の溝無し絶縁層を、さらに備えた前記[1]又は[2]に記載の被覆線。
[4]前記溝付き絶縁層又は前記溝無し絶縁層を構成する前記絶縁性樹脂組成物は、非ハロゲン難燃性熱可塑性組成物である前記[1]乃至[3]のいずれかに記載の被覆線。
【0011】
[5]内面側に凸部を有するダイスが吐出口に配置された押出機から絶縁性樹脂組成物を押し出して心線を前記絶縁性樹脂組成物で被覆する押出工程と、前記心線を被覆するとともに、外周に前記心線の軸方向に沿って形成された溝をその外周に有する1層又は2層以上の溝付き絶縁層を形成する工程と、前記溝付き絶縁層に水分を付着させる水分付着工程とを1回又は2回以上行い、前記溝付き絶縁層の最外周を被覆するシース層を形成する工程と、を含む被覆線の製造方法。
[6]前記溝付き絶縁層を形成する工程の前、及び/又は後の工程において送り出された前記心線又は前記心線を被覆する層の外周に対して押出機から前記絶縁性樹脂組成物を押し出すことにより前記心線又は前記溝付き絶縁層を前記絶縁性樹脂組成物で被覆する押出工程と、前記絶縁性樹脂組成物に水分を付着させる水分付着工程とを1回又は2回以上行うことにより、前記心線又は前記溝付き絶縁層を被覆するとともに、外周に溝を有していない溝無し絶縁層を形成する工程を、さらに含む前記[5]に記載の被覆線の製造方法。[7]前記溝付き絶縁層又は前記溝無し絶縁層の内側層又は外側層に対する水分付着工程の実施が、前記溝付き絶縁層又は前記溝無し絶縁層に対するシラン架橋反応の促進となる前記[5]又は[6]に記載の被覆線の製造方法。
[8]前記水分付着工程は、水槽内への着水により前記水分の付着を行う前記[5]乃至[7]のいずれかに記載の被覆線の製造方法。
【発明の効果】
【0012】
本発明によれば、被覆層における製造時間(とくに架橋工程時間)の短縮及び密着力の向上を実現することができる。
【図面の簡単な説明】
【0013】
【図1】図1は、本発明の第1の実施の形態に係る被覆線の分解斜視図である。
【図2】図2は、図1に示す被覆線の横断面図である。
【図3】図3は、第1の実施の形態に係る製造装置の概略の構成を示す概念図である。
【図4】図4は、第1の実施の形態に係るダイスの一例を示す斜視図である。
【図5】図5は、図4に示すダイスの正面図である。
【図6】図6は、本発明の第2の実施の形態に係る被覆線の分解斜視図である。
【図7】図7は、図6に示す被覆線の横断面図である。
【図8】図8は、第2の実施の形態に係る製造装置の概略の構成を示す概念図である。
【図9】図9は、第2の実施の形態の変形例に係る製造装置の概略の構成を示す概念図である。
【図10】図10は、本発明の第3の実施の形態に係る被覆線の分解斜視図である。
【図11】図11は、図10に示す被覆線の横断面図である。
【図12】図12は、第3の実施の形態に係る製造装置の概略の構成を示す概念図である。
【図13】図13は、第3の実施の形態の変形例に係る製造装置の概略の構成を示す図である。
【図14】図14は、本発明の第4の実施の形態に係る被覆線の分解斜視図である。
【図15】図15は、図14に示す被覆線の横断面図である。
【図16】図16は、第4の実施の形態に係る製造装置の概略の構成を示す概念図である。
【図17】図17は、第4の実施の形態の変形例に係る製造装置の概略の構成を示す概念図である。
【図18】図18は、本発明の第5の実施の形態に係る被覆線の分解斜視図である。
【図19】図19(a)は、実施例1の溝付き絶縁層の押出工程に用いるダイスの正面図、図19(b)はダイスの凸部の拡大図である。
【図20】図20(a)は、実施例2の溝付き絶縁層の押出工程に用いるダイスの正面図、図20(b)はダイスの凸部の拡大図である。
【発明を実施するための形態】
【0014】
以下、本発明の実施の形態について図面を参照して説明する。なお、各図中、実質的に同一の機能を有する構成要素については、同一の符号を付してその重複した説明を省略する。
【0015】
[実施の形態の要約]
本実施の形態は、心線と、シラン架橋された絶縁性樹脂組成物から形成され、前記心線を被覆する1層又は2層以上の絶縁層と、前記絶縁層の最外層を被覆するシース層とを備えた被覆線において、前記1層又は2層以上の絶縁層は、外周に溝を有することを特徴とする被覆線。
【0016】
ここで、「心線」は、電気や信号を導く導体、及び光信号を導くコア及びクラッドからなる光ファイバを含む。また、「被覆線」は、導体を絶縁層で被覆し、絶縁層をさらにシース層で被覆した電線又はケーブル、複数本の電線を拠り合わせ、これらをシース層で被覆したケーブル、1本又は複数本の光ファイバを絶縁層で被覆し、絶縁層をさらにシース層で被覆した光ファイバケーブルを含む。導体は、単線でも撚り線でもよい。
【0017】
絶縁層の外周に溝を形成することで、絶縁層の外周の表面積が増大し、これにより水分付着法によるシラン架橋が促進され、製造時間(とくに架橋工程時間)が短縮する。また、溝を有する絶縁層とその外側の層とは、接触面積が増えるので、密着力が向上する。
【0018】
[第1の実施の形態]
図1は、本発明の第1の実施の形態に係る被覆線の分解斜視図、図2は、図1に示す被覆線の横断面図である。この被覆線10は、導体20と、導体20を被覆する溝付き絶縁層31と、溝付き絶縁層31を被覆するシース層40とを有する。本明細書において、溝付き絶縁層とは、外周に溝が形成された絶縁層を意味する。導体20は、心線の一例である。溝付き絶縁層31及びシース層40は、被覆層の一例である。
【0019】
(導体)
導体20は、電気又は信号を導く材料、例えば銅又は銅合金から構成されている。導体20は、本実施の形態では、断面円形の単線であるが、断面矩形などの断面円形以外の単線でもよい。
【0020】
(溝付き絶縁層の構造)
溝付き絶縁層31は、導体20に接するとともに、その外周に複数の溝31aを有する。これにより、溝付き絶縁層31の外周の表面積を溝31aが形成されていないものと比べて増大させることができる。なお、溝付き絶縁層31は、本実施の形態では、単層で構成されているが、2層以上の複数層で構成されていてもよい。
【0021】
溝付き絶縁層31の溝31aは、本実施の形態では、導体20の軸方向と平行な方向に沿って直線状に形成されているが、導体20の軸方向と所定の角度だけ傾斜した方向に形成されていてもよい。例えば、溝31aは、導体20の軸方向に進む螺旋形状やギザギザ形状など、導体20の軸方向に沿って伸びる形状でもよい。また、溝31aは、導体20の軸方向と平行な方向に沿って直線状に形成された形状に、導体20の軸方向に対して所定の角度だけ傾斜した方向に形成された形状(例えば螺旋形状)を加えたものでもよい。
【0022】
溝付き絶縁層31の溝31aの断面形状は、その溝31aが溝付き絶縁層31のクラックの起点となることを防止するため、本実施の形態では、半円形状としているが、滑らかな湾曲形状でもよい。ただし、溝付き絶縁層31の強度に余裕がある場合には、溝31aの断面形状は湾曲形状で形成される必要性はなく、例えば、三角形状や四角形状などの他の形状でもよい。
【0023】
溝付き絶縁層31の溝31aは、溝付き絶縁層31の外周の表面積を広くするためには、溝31aの1本でも良いが、本数は多いほど好ましい。また、溝31aの間隔は、特に限定されない。ただし、溝31aは、水分の均等配分の観点から、等間隔に形成されていることが好ましい。
【0024】
溝31aの幅及び深さについては、特に限定されない。ただし、溝31aの深さについては、電線規格によって従来の絶縁層の最低厚さが決められている。そのため、溝付き絶縁層31における内周から溝31aの底部までの厚さが従来の絶縁層の最低厚さ以上であれば良い。
【0025】
(シース層の構造)
シース層40は、溝付き絶縁層31の複数の溝31aに対応した複数の凸部40aを内周に有し、その外周は凹凸のない平滑な曲面状に形成されている。また、シース層40は、本実施の形態では、単層で構成されているが、2層以上の複数層で構成されていてもよい。
【0026】
(溝付き絶縁層及びシース層の材料)
溝付き絶縁層31及びシース層40は、いずれもシラン架橋された絶縁性樹脂組成物により構成されていることが好ましく、いずれも非ハロゲン難燃性熱可塑性組成物により構成されていることがより好ましい。非ハロゲン難燃性熱可塑性組成物は、主原料となる樹脂又はゴムをシラン架橋させた後に硬化させることにより得られる。なお、本実施の形態においては、シラン架橋法を行うことが前提であり、それが可能であれば、溝付き絶縁層31及びシース層40の材料を特に限定する趣旨ではない。
【0027】
(樹脂)
樹脂としては、例えば、ポリプロピレン、高密度ポリエチレン、低密度ポリエチレン(LDPE)、直鎖状低密度ポリエチレン、超低密度ポリエチレン、エチレン−ブテン−1共重合体、エチレン−ヘキセン−1共重合体、エチレン−オクテン−1共重合体、エチレン−酢酸ビニル共重合体、エチレン−エチルアクリレート共重合体、ポリブテン、ポリ−4−メチル−ペンテン−1、エチレン−ブテン−ヘキセン三元共重合体、エチレン−メチルメタクリレート共重合体、エチレン−メチルアクリレート共重合体、エチレン−グリシジルメタクリレート共重合体などが挙げられる。なお、樹脂は、2種以上を混合して用いてもよい。
【0028】
(ゴム)
ゴムとしては、例えば、エチレン−プロピレン−ジエン共重合体、エチレン−プロピレン共重合体、エチレン−ブテン−1−ジエン共重合体、エチレン−オクテン−1−ジエン共重合体、アクリロニトリルブタジエンゴム、アクリルゴム、スチレンブタジエンゴムやスチレンイソプレンゴムに代表されるスチレン−ジエン共重合体、スチレン−ブタジエン−スチレンゴムやスチレン−イソプレン−スチレンゴムに代表されるスチレン−ジエン−スチレン共重合体、又は、これらを水素添加して得られるスチレン系ゴムなどが挙げられる。なお、ゴムは、2種以上を混合して用いてもよい。
【0029】
(シラン化合物)
主原料の樹脂又はゴムに対してグラフト重合させるシラン化合物については、次に示すとおり、ポリマと反応可能な基とシラノール縮合により架橋を形成するアルコキシ基をともに有していることが要求される。
【0030】
シラン化合物としては、その一例として、ビニルトリメトキシシラン、ビニルトリエトキシシラン、ビニルトリス(β−メトキシエトキシ)シランなどのビニルシラン化合物、γ−アミノプロピルトリメトキシシラン、γ−アミノプロピルトリエトキシシラン、N−β−(アミノエチル)γ−アミノプロピルトリメトキシシラン、β−(アミノエチル)γ−アミノプロピルメチルジメトキシシラン、N−フェニル−γ−アミノプロピルトリメトキシシランなどのアミノシラン化合物、β−(3,4エポキシシクロヘキシル)エチルトリメトキシシラン、γ−グリシドキシプロピルトリメトキシシラン、γ−グリシドキシプロピルメチルジエトキシシランなどのエポキシシラン化合物、γ−メタクリロキシプロピルトリメトキシシランなどのアクリルシラン化合物、ビス(3−(トリエトキシシリル)プロピル)ジスルフィド、ビス(3−(トリエトキシシリル)プロピル)テトラスルフィドなどのポリスルフィドシラン化合物、3−メルカプトプロピルトリメトキシシラン、3−メルカプトプロピルトリエトキシシランなどのメルカプトシラン化合物などが挙げられる。
【0031】
(有機過酸化物)
主原料となる樹脂又はゴムとシラン化合物をグラフト重合させる有機過酸化物としては、次に示すものが好ましい。
【0032】
有機過酸化物としては、例えば、ジクミルパーオキサイド、ジ−t−ブチルパーオキサイド、t−ブチルクミルパーオキサイド、2,5−ジメチル−2,5−ジ−(t−ブチルパーオキシ)ヘキサン、2,5−ジメチル−2,5−ジ−(t−ブチルパーオキシ)ヘキシン−3、1,3−ビス(t−ブチルパーオキシイソプロピル)ベンゼンなどのジアルキルパーオキサイド類、ジメチルベンゾイルパーオキサイドなどのジアシルパーオキサイド類、n−ブチル−4,4−ビス(t−ブチルパーオキシ)バレレート、1,1−ビス(t−ブチルパーオキシ)シクロヘキサンなどのパーオキシケタール類が挙げられる。
【0033】
シラン化合物及び有機過酸化物の添加量は、特に限定されない。所望する非ハロゲン難燃性熱可塑性組成物の物性に応じて、その添加量を適宜決定することができる。
【0034】
(難燃剤)
非ハロゲン難燃性熱可塑性組成物に添加される難燃剤は、次に示す金属水酸化物が可能である。金属水酸化物としては、例えば、水酸化マグネシウム、水酸化アルミニウム、水酸化カルシウムなどが挙げられ、中でも難燃効果の最も高い水酸化マグネシウムが挙げられる。難燃剤の添加量は、特に限定されず、所望する非ハロゲン難燃性熱可塑性組成物の難燃性に応じて、その添加量を適宜決定することができる。また、金属水酸化物は、分散性の観点から表面処理されていることが好ましい。
【0035】
(表面処理剤)
金属水酸化物の表面処理については、以下に示す表面処理剤を用いることが好ましい。表面処理剤としては、例えば、シラン系カップリング剤、チタネート系カップリング剤、脂肪酸または脂肪酸金属塩などが挙げられる。特に、樹脂と金属水酸化物との密着性を高める観点から、以下に示すシラン系カップリング剤が好ましい。
【0036】
シラン系カップリング剤としては、例えば、ビニルトリメトキシシラン、ビニルトリエトキシシラン、ビニルトリス(β−メトキシエトキシ)シランなどのビニルシラン化合物、γ−アミノプロピルトリメトキシシラン、γ−アミノプロピルトリエトキシシラン、N−β−(アミノエチル)γ−アミノプロピルトリメトキシシラン、β−(アミノエチル)γ−アミノプロピルメチルジメトキシシラン、N−フェニル−γ−アミノプロピルトリメトキシシランなどのアミノシラン化合物、β−(3,4エポキシシクロヘキシル)エチルトリメトキシシラン、γ−グリシドキシプロピルトリメトキシシラン、γ−グリシドキシプロピルメチルジエトキシシランなどのエポキシシラン化合物、γ−メタクリロキシプロピルトリメトキシシランなどのアクリルシラン化合物、ビス(3−(トリエトキシシリル)プロピル)ジスルフィド、ビス(3−(トリエトキシシリル)プロピル)テトラスルフィドなどのポリスルフィドシラン化合物、3−メルカプトプロピルトリメトキシシラン、3−メルカプトプロピルトリエトキシシランなどのメルカプトシラン化合物が挙げられる。
【0037】
(シラノール縮合触媒)
主原料のグラフト重合後に混練させる触媒としては、以下に示すシラノール縮合触媒を用いることが好ましい。
【0038】
シラノール縮合触媒としては、例えば、ジブチル錫ジラウレート、ジブチル錫ジアセテート、ジブチル錫ジオクトエート、ジオクチル錫ジラウレート、酢酸第1錫、カプリル酸第1錫、カプリル酸亜鉛、ナフテン酸鉛、ナフテン酸コバルトなどが挙げられる。
【0039】
また、触媒の添加量としては、触媒の種類に依存する。シラノール縮合触媒であれば、シラン化合物100質量部当たり、0.001〜0.5質量部に設定されていることが好ましい。
【0040】
なぜなら、シラノール縮合触媒の添加量がシラン化合物100質量部に対して0.001質量部よりも少ない場合、触媒として十分に機能することができないからである。一方、シラノール縮合触媒の添加量がシラン化合物100質量部に対して0.5質量部よりも多い場合、絶縁性樹脂組成物を押出機により混練して導体20を被覆する際、早すぎる反応速度が原因となってその押出機内でスコーチが発生し、溝付き樹脂層31やシース層40の外観を悪化させてしまうからである。
【0041】
シラノール縮合触媒の添加方法としては、そのまま添加すればよい。他の方法としては、主原料となる樹脂又はゴムに予めシラノール縮合触媒を混ぜたマスターバッチを使用する方法などが挙げられる。
【0042】
(紫外線吸収剤)
絶縁性樹脂組成物に対して、必要に応じて、紫外線吸収剤を添加することが可能である。紫外線吸収剤としては、例えば、サリチル酸誘導体、ベンゾフェノン系化合物、ベンゾトリアゾール系化合物、シュウ酸アニリド誘導体、2−エチル・ヘキシル−2−シアノ−3,3−ジフェニル・アクリレート、又は、それらを2個以上組み合わせてなる化合物が挙げられる。
【0043】
また、サリチル酸誘導体としては、例えば、フェニル・サリシレート、p−第三−ブチルフェニル・サリシレートが挙げられる。
【0044】
ベンゾフェノン系化合物としては、例えば、2,4−ジヒドロキシ・ベンゾフェノン、2−ヒドロキシ−4−メトキシ・ベンゾフェノン、2,2'−ジヒドロキシ−4−メトキシ・ベンゾフェノン、2,2’−ジヒドロキシ−4,4'−ジメトキシ・ベンゾフェノン、2−ヒドロキシ−4−n−オクトキシ・ベンゾフェノン、2,2',4,4'−テトラヒドロキシ・ベンゾフェノン、4−ドデシロキシ−2−ヒドロキシ・ベンゾフェノン、3,5−ジ−第三ブチル−4−ヒドロキシベンゾイル酸、n−ヘキサデシルエステル、ビス(5−ベンゾイル−4−ヒドロキシ−2−メトキシフェニル)メタン、1,4−ビス(4−ベンゾイル−3−ヒドロキシフェノキシ)ブタン、1,6−ビス(4−ベンゾイル−3−ヒドロキシフェノキシ)ヘキサンが挙げられる。
【0045】
ベンゾトリアゾール系化合物としては、例えば、2−(2'−ヒドロキシ−5'−メチル−フェニル)ベンゾトリアゾール、2−(2'−ヒドロキシ−3',5'−ジ−第三ブチル−フェニル)ベンゾトリアゾール、2−(2'−ヒドロキシ−3'−ジ−第三ブチル−5'−メチル−フェニル)−5−クロロ・ベンゾトリアゾール、2−(2'−ヒドロキシ−3',5'−ジ−第三ブチル−フェニル)−5−クロロ・ベンゾトリアゾール、2−(2'−ヒドロキシ−5'−第三オクチルフェニル)ベンゾトリアゾール、2−(2'−ヒドロキシ−3',5'−ジ−第三アミルフェニル)ベンゾトリアゾール、2,2'−メチレンビス[4−(1,1,3,3−テトラメチルブチル)−6−(2H−ベンゾトリアゾール−2−イル)フェノール]、2−[2−ヒドロキシ−3,5−ビス(α,α−ジメチルベンジル)フェニル]−2H−ベンゾトリアゾール、その他ベンゾトリアゾール誘導体が挙げられる。
【0046】
(光安定剤)
絶縁性樹脂組成物に対して、必要に応じて、次に示す光安定剤を添加することが可能である。光安定剤としては、例えば、ヒンダードアミン系光安定剤が挙げられる。
【0047】
ヒンダードアミン系光安定剤としては、例えば、ポリ[[6−(1,1,3,3−テトラメチルブチル)イミノ−1,3,5−トリアジン−2,4−ジイル][(2,2,6,6−テトラメチル−4−ピペリジル)イミノ]ヘキサメチレン[(2,2,6,6−テトラメチル−4−ピペリジル)イミノ]]、ポリ[(6−モルホリノ−s−トリアジン−2,4−ジイル)[2,2,6,6−テトラメチル−4−ピペリジル]イミノ]−ヘキサメチレン[(2,2,6,6−テトラメチル−4−ピペリジル)イミノ]]、N、N'−ビス(3−アミノプロピル)エチレンジアミン・2,4−ビス[N−ブチル−N−(1,2,2,6,6−ペンタメチル−4−ピペリジル)アミノ]−6−クロロ−1,3,5−トリアジン縮合物、ジブチルアミン1,3,5−トリアジン・N,N'−ビス(2,2,6,6−テトラメチル−4−ピペリジル−1,6−ヘキサメチレンジアミン・N−(2,2,6,6−テトラメチル−4−ピペリジル)ブチルアミンの重縮合物、又は、それらを2個以上組み合わせてなる化合物が挙げられる。
【0048】
(その他の添加物)
なお、絶縁性樹脂組成物に対しては、上記の他にも必要に応じて、プロセス油、加工助剤、難燃助剤、架橋助剤、酸化防止剤、滑剤、無機充填剤、相溶化剤、安定剤、カーボンブラック、着色剤などの添加物を加えることも可能である。
【0049】
(第1の実施の形態の製造方法)
次に、第1の実施の形態に係る被覆線10の製造方法の一例を説明する。図3は、第1の実施の形態に係る製造装置の概略の構成を示す概念図である。図4は、第1の実施の形態に係るダイスの一例を示す斜視図、図5は、図4に示すダイスの正面図である。
【0050】
(製造装置)
第1の実施の形態に係る製造装置70は、図3に示すように、導体20を送出する送出機71、送出機71により送出された導体20を予熱する予熱機72と、導体20を被覆する絶縁性樹脂組成物を押し出す第1の押出機73Aと、第1の押出機73Aにより押し出された絶縁性樹脂組成物を、予熱された導体20の外周に溝付き絶縁層31として形成する第1のダイス74Aと、溝付き絶縁層31の外周に水分を付着させる水槽75と、溝付き絶縁層31を被覆する絶縁性樹脂組成物を押し出す第2の押出機73Bと、第2の押出機73Bにより押し出された絶縁性樹脂組成物を、溝付き絶縁層31の外周にシース層40として形成する第2のダイス74Bと、シース層40が形成された被覆線10を巻き取る巻取機76とを有して概略構成されている。
【0051】
第1の押出機73Aの吐出口には、図4及び図5に示す第1のダイス74Aが配置されている。第1のダイス74Aは、図4及び図5に示すように、凸部74aをその内面に有している(ダイスは一般に「ダイ」や「口金」とも称される。)。
【0052】
凸部74aの形状は、図5に示すように、溝付き絶縁層31の溝31aに対応する形状に形成されている。ここで、凸部74aは、同形状かつ複数設けられており、ダイスの中心を基準に一定角度毎に均等配置されていることが好ましい。被覆線10の屈曲時の強度や重量バランスの観点から、溝付き絶縁層31の溝31aに対して幾何学的な対称性を持たせるためである。
【0053】
第2の押出機73Bの吐出口には、シース層40の外形形状に対応して凸部を有していない通常の第2のダイス74Bが配置されている。
【0054】
本製造方法は、図3に示すように、少なくとも、導体送出工程、溝付き絶縁層形成工程及びシース層形成工程を含んでいる。また、本製造方法は、導体予熱工程及び巻取工程を含むことが好ましい
【0055】
(1)導体送出工程
導体送出工程においては、リールに巻かれた上記の導体20が送出機71により送り出される。
【0056】
(2)導体予熱工程
導体予熱工程においては、送出機71により送り出された導体20が予熱機72により予熱される。
【0057】
(3)溝付き絶縁層形成工程
溝付き絶縁層形成工程は、押出工程及びシラン架橋工程を含んでいる。この溝付き絶縁層形成工程については、溝付き絶縁層31の層数に応じて行う回数が決定される。第1の実施の形態の被覆線10においては、溝付き絶縁層31は単層であるため、溝付き絶縁層形成工程は1回行われる。
【0058】
(3−1)押出工程
押出工程においては、第1の押出機73Aからスクリュー730の回転によって絶縁性樹脂組成物が押し出されることにより、送出機71により送り出された導体20の外周上に絶縁性樹脂組成物が押出形成される。この押出工程においては以下に示す溝加工法が用いられるため、溝付き絶縁層31の外周に導体20の軸方向に沿って図1、図2に示した溝31aが形成される。
【0059】
(ダイスによる溝加工法)
上記の第1の押出機73Aから吐出口を介して絶縁性樹脂組成物が押し出されると、第1のダイス74Aの凸部74aによって絶縁性樹脂組成物の流れが阻害されるため、第1のダイス74Aの凸部74aに沿った溝31aが溝付き絶縁層31の外周面上に形成される。
【0060】
(ダイス以外による溝加工法)
溝付き絶縁層31の押出形成後における機械的切削やレーザー照射による局所溶融(変形)など、種々の溝加工法が選択可能である。これらの種々の溝加工法については、単独採用であってもよいし、ダイスによる溝加工法を含めた他の溝加工法との複合採用であってもよい。
【0061】
(3−2)水分付着工程
水分付着工程においては、図3に示すように、水槽75内の水分に着水させることにより、溝付き絶縁層31の外周に水分を付着させる。これにより、溝付き絶縁層31表面に付着した水分が溝付き絶縁層31を構成する絶縁性樹脂組成物に浸透していき、徐々に該絶縁性組成物の加水分解反応が進み、シラン架橋される。水分の付着法としては、上記のように水槽75内に着水させたり、水蒸気をあてて水分を付着させる、あるいは大気中に含まれる水分を利用して自然付着させたりするなど種々の方法を採用することができる。架橋速度を考慮する場合、水分の付着法としては、上記のように水槽75内への着水が好ましい。
実施例においては、水槽に満たした冷却水に着水することで、水分を付着させたが、付着させる水分は水に限らず、50℃〜60℃程度のお湯であっても良い。また、水又はお湯を水槽に満たしておくだけでなく、水やお湯が所定の量、温度となるように水槽内を循環させるような機構を設けても良い。
【0062】
(4)シース層形成工程
シース層形成工程においては、導体20を被覆する溝付き絶縁層31を被覆するシース層40が形成される。第2の押出機73Bからスクリュー730の回転によって絶縁性樹脂組成物を押し出すと、第2のダイス74Bは、第2の押出機73Bから押し出された絶縁性樹脂組成物を、溝付き絶縁層31の外周にシース層40として押出形成する。
【0063】
なお、シース層40のシラン架橋については、上記の水分の付着法を採用することができる。そこで、本実施の形態においては、以下の巻取工程後における被覆線10の大気中での保管により、大気中の水分が被覆線10の最外層であるシース層40に自然付着し、シース層40のシラン架橋を自然に進行させるようにしている。
【0064】
(5)巻取工程
シース層40の形成後、巻取機76により完成した被覆線10がリール等に巻き取られる。この完成した被覆線10については、所望の温度及び湿度に設定された保管庫において保管されることにより、大気中の水分が自然に上記したシース層40等の表面に付着し、内部に浸透していき、シラン架橋が進行するようになっている。
【0065】
(第1の実施の形態の効果)
上述した第1の実施の形態によれば、以下の効果を奏する。
【0066】
(a)溝付き絶縁層31に溝31aを形成することにより、溝付き絶縁層31の外周の表面積が広くなり、架橋に必要な水分の表面吸着や内部浸透量が増大するので、溝付き絶縁層31の架橋が促進され、架橋時間の短縮を実現することができる。
【0067】
例えば、溝付き絶縁層31の外周面の表面積が30%増加すると、水分の表面吸着量も30%増加する。この水分によって絶縁性樹脂組成物に含まれるアルコキシシランが加水分解し、その後の脱水縮合に繋げることができる。理論式に基づくと、脱水縮合によって水分子を1個得るためには、少なくとも2個のアルコキシシランを加水分解させる必要がある。そのため、初期の表面吸着量を増やす対策は架橋速度の向上の観点から有効である。
【0068】
また、溝付き絶縁層31の表面吸着量が増大すると、フィックの法則に基づき、溝付き絶縁層31の内部において水分が拡散しやすくなる。そのため、溝付き絶縁層31の内部浸透量が増加するので、溝付き絶縁層31の内部におけるアルコキシシランの加水分解が促進される。
【0069】
なお、シース層40は大気中での露出時間が長いため、その表面に溝を作ってまでその架橋速度を早める必要は現状ではない。つまり、被覆線10の外観には従来からの変更はなく、被覆線10の取扱上の変更点もないため、被覆線10の使用者に従来以上の保管負担を負わせることもない。
【0070】
(b)溝付き絶縁層31に溝31aを形成することにより、その溝31aに応じて突出変形したシース層40の凸部40aがその溝31aに係り合う。この係り合いによりアンカー効果が生じるため、溝付き絶縁層31とシース層40との密着力を向上させることができる。
【0071】
(c)ダイスによる押出形成により溝付き絶縁層31を形成しているので、溝の形成のための機械的切削等の手間を省き、従来の製造方法と大差のない製造負担で本実施の形態の被覆線10を製造することができる。
【0072】
[第2の実施の形態]
図6は、本発明の第2の実施の形態に係る被覆線の分解斜視図、図7は、図6に示す被覆線の横断面図である。本実施の形態は、第1の実施の形態において、溝付き絶縁層31とシース層との間に溝無し絶縁層32を形成したものであり、他は第1の実施の形態と同様に構成されている。すなわち、本実施の形態の被覆線10は、導体20と、導体20を被覆する溝付き絶縁層31と、溝付き絶縁層31を被覆する溝無し絶縁層32と、溝無し絶縁層32を被覆するシース層50とを有する。溝付き絶縁層31、溝無し絶縁層32及びシース層50は、被覆層の一例である。
【0073】
溝無し絶縁層32は、溝付き絶縁層31とシース層50との間に介在している。溝無し絶縁層32は、溝付き絶縁層31の複数の溝31aに対応した複数の凸部32aを内周に有し、その外周は凹凸のない平滑な曲面状に形成されている。また、溝無し絶縁層32は、本実施の形態では、単層で構成されているが、2層以上の複数層で構成されていてもよい。
【0074】
溝無し絶縁層32は、溝付き絶縁層31と同様に、シラン架橋された絶縁性樹脂組成物
により構成されていることが好ましく、非ハロゲン難燃性熱可塑性組成物により構成されていることがより好ましい。
【0075】
シース層50は、その内周は凹凸のない平滑な曲面状に形成され、その外周も凹凸のない平滑な曲面状に形成されている。また、シース層50は、本実施の形態では、単層で構成されているが、2層以上の複数層で構成されていてもよい。シース層50は、溝付き絶縁層31と同様に、シラン架橋された絶縁性樹脂組成物により構成されていることが好ましく、非ハロゲン難燃性熱可塑性組成物により構成されていることがより好ましい。
【0076】
(第2の実施の形態の製造方法)
次に、第2の実施に形態に係る被覆線の製造方法の一例を説明する。図8は、第2の実施の形態に係る製造装置の概略の構成を示す概念図である。
【0077】
第2の実施の形態に係る製造装置70は、図8に示すように、第1の実施の形態の製造装置70に対し、第1の押出機73Aと第2の押出機73Bとの間に第3の押出機73C及び水槽75を配置したものであり、他は第1の実施の形態の製造装置70と同様に構成されている。
【0078】
第3の押出機73Cは、溝付き絶縁層31の外周に溝無し絶縁層32を形成するためのものであり、第3の押出機73Cの吐出口には、溝無し絶縁層32の外形形状に対応して内面に凸部を有していない通常の第3のダイス74Cが配置されている。
【0079】
本実施の形態は、(1)導体送出工程、(2)導体予熱工程、(3)溝付き絶縁層形成工程、(4)溝無し絶縁層形成工程、(5)シース層形成工程、及び(6)巻取工程を有する。(1)導体送出工程、(2)導体予熱工程、(3)溝付き絶縁層形成工程、(5)シース層形成工程、及び(6)巻取工程は、第1の実施の形態と同様であるので、説明を省略する。
【0080】
第1の実施の形態と同様に、(1)導体送出工程、(2)導体予熱工程、(3)溝付き絶縁層形成工程を行って、導体20の外周に溝付き絶縁層31を形成する。
【0081】
(4)溝無し絶縁層形成工程
次の溝無し絶縁層形成工程は、押出工程及び水分付着工程を含んでいる。この溝無し絶縁層形成工程については、溝無し絶縁層32の層数に応じて行う回数が決定されている。本実施の形態では、溝無し絶縁層32が単層であるため、溝無し絶縁層形成工程は1回行われる。
【0082】
(4−1)押出工程
この押出工程は、第3の押出機73Cからスクリュー730の回転によって絶縁性樹脂組成物を押し出すと、第3のダイス74Cは、第3の押出機73Cから押し出された絶縁性樹脂組成物を、溝付き絶縁層31の外周上に、溝無し絶縁層32として押出形成する。
【0083】
(4−2)水分付着工程
水分付着工程においては、図8に示すように、溝無し絶縁層32を水槽75内の水分(冷却水やお湯等)に着水等させることにより、溝無し絶縁層32の外周に水分を付着させ、溝無し絶縁層32内部へ水分が浸透し、溝無し絶縁層32を構成する組成物の加水分解反応が進み、徐々に該組成物がシラン架橋していく。また、水槽内で水分を付着させる方法の他、水蒸気をあてる、または大気中に放置する等して水分を付着させても良い。
【0084】
その後は、第1の実施の形態と同様に、(5)シース層形成工程、(6)巻取工程が行われる。
【0085】
(第2の実施の形態の効果)
本実施の形態の効果は、第1の実施の形態の効果の他に、以下の効果を奏する。
【0086】
(a)溝付き絶縁層31及び溝無し絶縁層32の順に積層された2層の絶縁層を導体20とシース層50との間に配置したので、内側に配置された溝付き絶縁層31の架橋を促進させつつ、溝無し絶縁層32及びシース層50の被覆を速やかに行うことが可能となるので、製造に要する総期間を短縮することができる。
【0087】
(b)電線規格に基づき定められた絶縁層の最低厚さを溝付き絶縁層31及び溝無し絶縁層32の合計厚さによって満たせばよいので、溝付き絶縁層31における内周から溝31aの底部までの厚さを従来の絶縁層の最低厚さ以下に設定することができる。
【0088】
[第2の実施の形態の変形例]
図9は、第2の実施の形態の変形例に係る製造装置の概略の構成を示す概念図である。この変形例に係る製造装置70は、図8に示す製造装置70において、第3の押出機73Cと第2の押出機73Bとの間の水槽75を第2の押出機73Bの後段に移動したものであり、他は図8に示す製造装置70と同様に構成されている。すなわち、この製造装置70による製造工程は、溝無し絶縁層32を形成した直後、シース層50を形成し、その後にまとめて水分付着工程を設けるものである。
【0089】
(4−1)押出工程
この押出工程では、図8と同様に、第3の押出機73C及び第3のダイス74Cによって溝付き絶縁層31の外周上に、溝無し絶縁層32を形成する。続いて、溝無し絶縁層32の外周に第2の押出機73B及び第2のダイス74Bによってシース層50を形成する。
【0090】
(4−2)水分付着工程
水分付着工程においては、図9に示すように、シース層形成工程の後に水槽75内に着水等して、シース層50の外周に水分を付着させる。
【0091】
ここで、溝付き絶縁層31の外周に付着した水分が溝無し絶縁層32の内周に供給されるとともに、シース層50の外周からその内部に浸透した水分が溝無し絶縁層32の外周に供給される。これにより、溝付き絶縁層31及びシース層50に付着した水分が溝無し絶縁層32に供給され、溝付き絶縁層31、溝無し絶縁層32及びシース層50が架橋される。
【0092】
なお、上記第2の実施の形態の変形例では、溝無し絶縁層32を押出形成した後、シース層50を押出形成したが、図9に示すような工程を採用する場合、溝無し絶縁層32及びシース層50を同時に形成する押出工程を採用してもよい。
【0093】
(第2の実施の形態の変形例の効果)
図9に示す変形例によれば、溝無し絶縁層32の内側層である溝付き絶縁層31及び溝無し絶縁層32の外側層であるシース層50に対する各水分付着工程の実施が溝無し絶縁層32に対する水分付着工程の実施となるため、1回分の水分付着工程を減らすことができる。
【0094】
[第3の実施の形態]
図10は、本発明の第3の実施の形態に係る被覆線の分解斜視図、図11は、図10に示す被覆線の横断面図である。本実施の形態は、第1の実施の形態において、導体20と溝付き絶縁層31との間に溝無し絶縁層33を形成したものであり、他は第1の実施の形態と同様に構成されている。すなわち、本実施の形態の被覆線10は、導体20と、導体20を被覆する溝無し絶縁層33と、溝無し絶縁層33を被覆する溝付き絶縁層31と、溝付き絶縁層31を被覆するシース層40とを有する。溝無し絶縁層33、溝付き絶縁層31及びシース層40は、被覆層の一例である。
【0095】
溝無し絶縁層33は、その内周及び外周は凹凸のない平滑な曲面状に形成されている。また、溝無し絶縁層33は、本実施の形態では、単層で構成されているが、2層以上の複数層で構成されていてもよい。
【0096】
溝無し絶縁層33は、溝付き絶縁層31と同様に、シラン架橋された絶縁性樹脂組成物により構成されていることが好ましく、非ハロゲン難燃性熱可塑性組成物により構成されていることがより好ましい。
【0097】
(第3の実施の形態の製造方法)
次に、第3の実施に形態に係る被覆線の製造方法の一例を説明する。図12は、第3の実施の形態に係る製造装置の概略の構成を示す概念図である。
【0098】
第3の実施の形態の製造装置70は、図12に示すように、図3に示す第1の実施の形態の製造装置70において、第1の押出機73Aの前段に第4の押出機73Dと水槽75を配置したものであり、他は第1の実施の形態と同様に構成されている。
【0099】
第4の押出機73Dは、導体20の外周に溝無し絶縁層33を形成するためのものであり、第4の押出機73Dの吐出口には、溝無し絶縁層33の外形形状に対応して内面に凸部を有していない通常の第4のダイス74Dが配置されている。
【0100】
本実施の形態は、図12に示すように、(1)導体送出工程、(2)導体予熱工程、(3)溝無し絶縁層形成工程、(4)溝付き絶縁層形成工程、(5)シース層形成工程、及び(6)巻取工程を有する。(1)導体送出工程、(2)導体予熱工程、(4)溝付き絶縁層形成工程、(5)シース層形成工程、及び(6)巻取工程は、第1の実施の形態と同様であるので、説明を省略する。
【0101】
(3)溝無し絶縁層形成工程
溝無し絶縁層形成工程は、押出工程及び水分付着工程を含んでいる。この溝無し絶縁層形成工程については、溝無し絶縁層33の層数に応じて行う回数が決定されている。第3の実施の形態では、溝無し絶縁層33が単層であるため、溝無し絶縁層形成工程は1回行われる。
【0102】
(3−1)押出工程
第4の押出機73Dからスクリュー730の回転によって絶縁性樹脂組成物が押し出されることにより、送出機71により送り出された導体20の外周上に、溝無し絶縁層33として押出形成される。
【0103】
(3−2)水分付着工程
水分付着工程においては、図12に示すように、溝付き絶縁層31の形成前において水槽75内に着水等させ、その後溝付き絶縁層31の形成後、さらにもう一度水槽75内に着水等させる。溝無し絶縁層33及び溝付き絶縁層31の押出工程後、それぞれ水分付着工程を設けることで、加水分解を起こすための水分を十分に吸着させることができる。
また、水槽内で着水させる方法の他、水蒸気をあてる、または大気中に放置する等して水分を付着させても良い。
【0104】
(第3の実施の形態の効果)
第3の実施の形態によれば、第1の実施の形態の効果の他に、以下の効果を奏する。
【0105】
(a)溝無し絶縁層33とシース層40との間に、溝付き絶縁層31を配置したので、溝付き絶縁層31の架橋を促進させつつ、シース層40の被覆を速やかに行うことが可能となるので、製造に要する総期間を短縮することができる。
【0106】
(b)溝無し絶縁層33及び溝付き絶縁層31の2層により絶縁層を構成しているので、溝付き絶縁層31における内周から溝31aの底部までの厚さを従来の絶縁層の最低厚さ以下に設定することができる。
【0107】
[第3の実施の形態の変形例]
図13は、第3の実施の形態の変形例に係る製造装置の概略の構成を示す図である。この変形例に係る製造装置70は、図12に示す製造装置70において、第4の押出機73Dと第1の押出機73Aとの間の水槽75を省略したものであり、他は図12に示す製造装置70と同様に構成されている。
【0108】
導体20の外周に溝無し絶縁層33を形成し、溝無し絶縁層33の外周に溝付き絶縁層
31を形成した後、水分付着工程を設ける。ここで、溝付き絶縁層31の外周からその内部に水分が浸透し、その水分が溝無し絶縁層33の外周にも供給され、溝無し絶縁層33の架橋反応も促進される。
【0109】
なお、上記第3の実施の形態の変形例では、溝無し絶縁層33を押出形成した後、溝付き絶縁層31を押出形成したが、図13に示すような工程を採用する場合、溝無し絶縁層33及び溝付き絶縁層31を同時に形成される押出工程を採用してもよい。
【0110】
(第3の実施の形態の変形例の効果)
図13に示す変形例によれば、溝付き絶縁層31に対する水分付着工程の実施が溝無し絶縁層33に対する水分付着の役割も果たすため、1回分の水分付着工程を減らすことができる。
【0111】
[第4の実施の形態]
図14は、本発明の第4の実施の形態に係る被覆線の分解斜視図、図15は、図14に示す被覆線の横断面図である。本実施の形態は、第1の実施の形態において、1層の溝付き絶縁層31を2層の第1及び第2の溝付き絶縁層31A、31Bとしたものであり、他は第1の実施の形態と同様に構成されている。すなわち、本実施の形態の被覆線10は、導体20と、導体20を被覆する第1の溝付き絶縁層31Aと、第1の溝付き絶縁層31Aを被覆する第2の溝付き絶縁層31Bと、第2の溝付き絶縁層31Bを被覆するシース層40とを有する。第1の溝付き絶縁層31A、第2の溝付き絶縁層31B及びシース層40は、被覆層の一例である。
【0112】
第1の溝付き絶縁層31Aは、第1の実施の形態の溝付き絶縁層31Aと同様に、導体20に接するとともに、外周に複数の溝31aを有する。
【0113】
第2の溝付き絶縁層31Bは、第1の溝付き絶縁層31の複数の溝31aに対応した複数の凸部31cを内周に有し、その外周に複数の溝31bを有する。
【0114】
第1及び第2の溝付き絶縁層31A、31Bは、第1の実施の形態の溝付き絶縁層31と同様に、シラン架橋された絶縁性樹脂組成物により構成されていることが好ましく、非ハロゲン難燃性熱可塑性組成物により構成されていることがより好ましい。また、溝付き絶縁層31A、31Bは、本実施の形態では、2層で構成されているが、3層以上の複数層で構成されていてもよい。
【0115】
(第4の実施の形態の製造方法)
次に、第4の実施の形態に係る被覆線10の製造方法の一例を説明する。図16は、第4の実施の形態に係る製造装置の概略の構成を示す図である。図17は、第4の実施の形態の変形例に係る被覆線10の製造装置の概略の構成を示す概念図である。
【0116】
第4の実施の形態の製造装置70は、図16に示すように、図3に示す第1の実施の形態の製造装置70において、第1の押出機73Aと第2の押出機73Bとの間に第5の押出機73E及び水槽75を配置したものである。
【0117】
第1の押出機73Aの吐出口には、図4及び図5に示す第1のダイス74Aが配置されている。第1のダイス74Aは、第1の溝付き絶縁層31Aの溝31aに対応した凸部74aを内周に有する。
【0118】
第5の押出機73Eの吐出口には、第5のダイス74Eが配置されている。第5のダイス74Eは、第2の溝付き絶縁層31Bの溝31bに対応した凸部を内周に有する。
【0119】
本実施の形態は、図16に示すように、(1)導体送出工程、(2)導体予熱工程、(3)溝付き絶縁層形成工程、(4)シース層形成工程、及び(5)巻取工程を有する。(1)導体送出工程、(2)導体予熱工程、(4)シース層形成工程、及び(5)巻取工程は、第1の実施の形態と同様であるので、説明を省略する。
【0120】
(3)溝付き絶縁層形成工程
溝付き絶縁層形成工程は、第1の実施の形態と同様、押出工程及びシラン架橋工程を含んでいる。この溝付き絶縁層形成工程については、溝付き絶縁層31の層数に応じて行う回数が決定されている。第4の実施の形態では、溝付き絶縁層31が内側の第1の溝付き絶縁層31A及び外側の第2の溝付き絶縁層31Bの2層構造であるため、溝付き絶縁層形成工程は2回行われる。
【0121】
(3−1)第1の溝付き絶縁層31Aの押出工程
第1の溝付き絶縁層31Aの押出工程においては、図16に示すように、第1の押出機73Aから絶縁性樹脂組成物が押し出されることにより、送出機71により送り出された導体20の外周上に、第1の溝付き絶縁層31Aが押出形成される。第1の押出機73Aの吐出口には、内周に凸部74aを有する第1のダイス74Aが配置されているので、第1の溝付き絶縁層31Aの外周には溝31aが形成される。
【0122】
(3−2)第1の溝付き絶縁層31Aの水分付着工程
第1の溝付き絶縁層31Aの水分付着工程においては、図16に示すように、第1の溝付き絶縁層31Aの押出工程の後であって、第2の溝付き絶縁層31Bの押出工程の前において水槽75内に着水等させることにより、第1の溝付き絶縁層31Aの外周に水分を付着させ、溝付き絶縁層31Aが加水分解するための十分な水分を表面に付着させ、シラン架橋の促進を図る。
【0123】
(3−3)第2の溝付き絶縁層31Bの押出工程
第2の溝付き絶縁層31Bの押出工程は、第5の押出機73Eから絶縁性樹脂組成物が押し出されることにより、第1の溝付き絶縁層31Aの外周上に、第2の溝付き絶縁層31Bが押出形成される。第5の押出機73Eの吐出口には、内周面に凸部を有する第5のダイス74Eが配置されているので、第2の溝付き絶縁層31Bの外周には溝31bが形成される。
【0124】
(3−4)第2の溝付き絶縁層31Bの水分付着工程
水分付着工程においては、図16に示すように、第2の溝付き絶縁層31Bの形成後であってシース層形成工程の前において水槽75内に着水等させることにより、第2の溝付き絶縁層31Bの外周に水分を付着させ、溝付き絶縁層31Bが加水分解するための十分な水分を表面に付着させ、シラン架橋の促進を図る。
また、第1の溝付き絶縁層31A、第2の溝付き絶縁層31Bの水分付着工程は、水槽内で着水させる方法の他、水蒸気をあてる、または大気中に放置する等して水分を付着させても良い。
【0125】
(第4の実施の形態の効果)
第4の実施の形態によれば、第1の実施の形態の効果の他に、以下の効果を奏する。
【0126】
(a)2層の溝付き絶縁層31A、31Bを導体20とシース層40との間に配置したので、2層の絶縁層31A、31Bの架橋速度を促進させつつ、シース層40の被覆を速やかに行うことが可能となるので、製造に要する総期間を短縮することができる。(b)溝付き絶縁層31A、31Bを形成することにより、溝31aに応じて突出変形した溝付き絶縁層31Bの凸部31cが溝31aに、溝31bに応じて突出変形したシース層40の凸部40aが溝31bにそれぞれ係り合うため、溝付き絶縁層31A、溝付き絶縁層31B、シース層40からなる被覆層同士の密着性が良好なものとなる。
【0127】
[第4の実施の形態の変形例]
図17は、第4の実施の形態の変形例に係る製造装置の概略の構成を示す概念図である。この変形例に係る製造装置70は、第5の押出機73Eと第2の押出機73Bとの間の水槽75を第2の押出機73Bの後段に移動したものである。
【0128】
(3−4)第2の溝付き絶縁層31Bの水分付着工程
水分付着工程は、図17に示すように、図16に示した第2の溝付き絶縁層31Bの形成後であってシース層形成工程の前において水槽75内に着水等させる工程を省き、第2の溝付き絶縁層31B及びシース層40に対する水分付着工程を兼用している。
【0129】
ここで、第1の溝付き絶縁層31Aの外周に付着した水分が第2の溝付き絶縁層31Bの内周に供給されると共に、シース層40の外周からその内部に浸透した水分が第2の溝付き絶縁層31Bの外周に供給される。
【0130】
なお、上記第4の実施の形態の変形例では、第2の溝付き絶縁層31Bを押出形成した後、シース層40を押出形成したが、図17に示すような工程を採用する場合、第2の溝付き絶縁層31B及びシース層40を同時に形成される押出工程を採用してもよい。
【0131】
(第4の実施の形態の変形例の効果)
この変形例によれば、シース層40に対する水分付着工程の実施が第2の溝付き絶縁層31Bの水分付着の役割も果たすため、1回分の水分付着工程を減らすことができる。
【0132】
[第5の実施の形態]
図18は、本発明の第5の実施の形態に係る被覆線の分解斜視図である。この被覆線10は、光ファイバ21と、光ファイバ21を被覆する溝付き絶縁層31と、溝付き絶縁層31を被覆するシース層40とを有する光ファイバケーブルである。光ファイバ21は、心線の一例であり、光信号を導くコア22と、コア22の周囲に形成されたクラッド23、樹脂による被覆層24とを備える。
【0133】
本実施の形態の被覆線10は、第1の実施の形態と同様に製造することができる。また、本実施の形態の被覆層は、第2乃至第4の実施の形態の構造を採用することができる。なお、複数の光ファイバを、樹脂にて一括被覆したもの、あるいはチューブ内に挿入したもの、ファイバを収納するための溝を有する線状または柱状体を併用したものを使用してもよい。また、ファイバと絶縁層31の間に介在の層を設けても良い。
【0134】
以下、本発明の更に具体的な実施の形態として、表1〜表10を参照しながら、実施例及び比較例の被覆線を詳細に説明する。なお、この実施例にあっては本発明の被覆線の典型的な一例を挙げており、本発明がこれらの実施例に限定されるものではない。
【実施例1】
【0135】
実施例1の被覆線は、第1の実施の形態に対応するものである。図19(a)は、実施例1の溝付き絶縁層の押出工程に用いるダイスの正面図、図19(b)はダイスの凸部の拡大図である。図19に示したダイス77は、18個の凸部77aを内周に有し、最大内径(凸部77aの無い所)は13mmである。凸部77aの形状は半球状である。その凸部77aの直径は約1.14mmであり、その高さは直径の半分の大きさとなる0.57mmである。また、18個の凸部77aは、ダイス77の中心を基準に10度毎に均等配置されている。凸部77aの配置間隔は、直径と同等の約1.14mmである。
【0136】
実施例1の被覆線は、導体20として、公称断面積60mm2、外径9.2mmの円形断面の銅線を用い、導体20の外周に溝付き絶縁層31を形成し、溝付き絶縁層31の外周にシース層40を形成して被覆線の外径を16.0mmとしたものである。溝付き絶縁層31及びシース層40の合計の厚さは、3.4mmとした。溝付き絶縁層31の最大厚さは1.9mm、シース層40の最小厚さ(凸部40aが形成されていない部分の厚さ)は、1.5mmとした。
【0137】
実施例1の溝付き絶縁層の外周の表面積は、その溝付き絶縁層と同等の外径を有する溝無し絶縁層と比較して、約28.5%拡大した。実施例1の被覆線は、シース層の形成後、室温及び湿度50%に設定された保管庫で保管した。
【実施例2】
【0138】
図20(a)は、実施例2の溝付き絶縁層の押出工程に用いる第1のダイスの正面図、図20(b)は第1のダイスの凸部の拡大図である。図20に示したダイス78の最大内径は、実施例1と同様、13mmである。凸部78aの形状は矩形状である。その凸部78aの幅は約0.3mmであり、その高さは0.5mmである。また、18個の凸部78aはダイス78の中心を基準に10度毎に均等配置されている。凸部78aの配置間隔は約0.94mmである。
【0139】
実施例2は、溝がない同一外径の溝無し絶縁層の円周が40.8mmであるのに対し、溝付き絶縁層の円周は1.44倍の56.8mmとなった。これにより、溝付き絶縁層の外周の表面積は、溝無し絶縁層と比較して、約44%拡大した。
【0140】
実施例2の被覆線は、シース層の形成後、室温及び湿度50%に設定された保管庫において保管した。
【実施例3】
【0141】
実施例3の被覆線は、保管状態の違いを除き、実施例1の被覆線と同様の条件にて製造された。実施例3の被覆線におけるシース層の形成後、温度70℃及び湿度50%に設定された保管庫において保管した。
【0142】
(比較例1)
比較例1の被覆線は、導体20として、実施例1と同一のものを用い、導体20の外周に厚さ1.9mmの溝無し絶縁層を形成し、溝無し絶縁層の外周に厚さ1.5mmのシース層を形成した。比較例1の被覆線は、シース層の形成後、室温及び湿度50%に設定された保管庫で保管した。
【0143】
(比較例2)
比較例2の被覆線は、保管状態の違いを除き、比較例1と同様の構成である。比較例2の被覆線は、シース層の形成後、温度70℃及び湿度95%に設定された恒温槽において保管した。
【0144】
上記実施例1、2、3及び比較例1、2の被覆線は、シース層の形成後、上記室温及び上記湿度に設定された保管庫又は恒温槽において保管し、保管時間の経過に対する溝付き絶縁層及び溝無し絶縁層のゲル分率及びホットセットの変化を調べた。
【0145】
溝付き絶縁層、溝無し絶縁層及びシース層を構成する非ハロゲン難燃性熱可塑性組成物については、実施例及び比較例の比較を容易にするため、全て同一の組成物を使用した。表1〜 表3は、主剤及び触媒マスターバッチ(以下、「触媒MB」という。)の配合並びにそれら2種類の材料の配合比率を示す。なお、LDPE(Low Density Polyethylene)は低密度ポリエチレンを意味し、MFR(Melt flow rate)は流動性指数を意味し、DCP(Dicumyl peroxide)はジクミルパーオキサイドを意味する。
【0146】
【表1】

【0147】
【表2】

【0148】
【表3】

【0149】
(押出機及び押出条件)
上記使用材料を用いて被覆線の試作品を作製するため、以下の条件を満たす単軸押出機及び長さ5mの水槽を用いた。
【0150】
主剤及び触媒MBに係る押出機の各口径は60mm、押出機の口径比(L/D=押出機のシリンダ長さ(L)/押出機のシリンダ断面直径(D))は25である。上記の単軸押出機を用いて主剤及び触媒MBを混練し、それをペレット化したものを用いた。
【0151】
(シラン架橋条件)
溝付き絶縁層及び溝無し絶縁層が水槽内の冷却水に着水している時間を、15秒に設定した。そのため、絶縁層の押出速度を20m/minに設定した。溝付き絶縁層を押出形成して水槽内に着水させた後、図示しないエアーワイパにより溝付き絶縁層の外周面の水切りを十分に行った。
【0152】
(評価方法及び評価基準)
評価方法及び評価基準は、以下の2つを用いた
【0153】
(1)ゲル分率評価
完成した被覆線から溝付き絶縁層又は溝無し絶縁層を取り出して得た樹脂組成物を#40メッシュの真鍮製の網で包み込んだ後、110℃のキシレン中で24時間抽出を行った。次に、キシレンから取り出して脱水(風乾)した後、80℃で真空乾燥を4時間行った。その抽出前後の重量から以下の数式1に基づいてゲル分率を算出した。ゲル分率は架橋の進み具合の指標となるため、ゲル分率60%以上を合格とした。ゲル分率は、次の式から求められる。
ゲル分率(%)=100×(抽出後の残存樹脂量)/(抽出前の樹脂量)
【0154】
(2)ホットセット試験
絶縁層の機械的な耐熱性を比較するため、完成した被覆線から取り出した溝付き絶縁層又は溝無し絶縁層から試料片を作製し、JIS C 3660−2−1に準拠したホットセット試験を行った。試験条件は、試験温度200℃、荷重20N/cm2、荷重時間15分である。荷重時の伸びが100%以下、かつ、試験片冷却後の永久伸びが25%以下を合格とした。
【0155】
(評価結果)
(1)ゲル分率
表4は、実施例1〜3、及び比較例1、2の経過時間に対する溝付き絶縁層又は溝無し絶縁層のゲル分率の評価結果を示している。ゲル分率が60%以下の場合には×で示し、ゲル分率が60%以上となった場合には○で示した。
【0156】
【表4】

【0157】
また、表5は、ゲル分率が基準値(60%以上)に到達するまでの基準達成時間を示し
ている。
【表5】

【0158】
実施例1、2、及び比較例1の被覆線は、いずれも室温に設定された保管庫にて保管さ
れた。ここで、比較例1は架橋が進行せず、3ヶ月(90日)を経過してもゲル分率の基準値(60%以上)に達しない。一方、実施例1は72時間(3日)経過でゲル分率が基準値に達し、実施例2は12時間でゲル分率が基準値に達した。また、実施例1及び2のいずれについても、最終的にはゲル分率が70%まで達した。
【0159】
実施例3及び比較例2の被覆線は、いずれも70℃に設定された恒温槽で保管した。実施例3及び比較例2は、いずれも急速に架橋が進み、最終的にはゲル分率が80%以上を示した。しかし、実施例3と比較例2とではその基準到達時間に大きな差がある。実施例3は僅か3時間で達成するのに対し、比較例2は12時間を要することが明らかとなった。
【0160】
(2−1)ホットセット試験による荷重時の伸び
表6は、実施例1〜3、及び比較例1、2の荷重時の伸びの評価結果を示している。荷重時の伸びが100%超の場合には×で示し、荷重時の伸びが100%以下となった場合には○で示した。
【0161】
【表6】

【0162】
また、表7は、荷重時の伸びが100%以下に到達するまでの基準達成時間を示している。
【表7】

【0163】
実施例1及び2、及び比較例1の被覆線は、いずれも室温に設定された保管庫にて保管された。ここで、比較例1は架橋が進行せず、3ヶ月(90日)を経過しても荷重時の伸びの基準値(100%以下)に達しない。一方、実施例1は72時間(3日)経過で荷重時の伸びの基準値に達し、実施例2は12時間で荷重時の伸びの基準値に達した。
【0164】
実施例3及び比較例2の被覆線は、いずれも70℃に設定された恒温槽にて保管された。実施例3は僅か3時間で達成するのに対し、比較例2は12時間を要することが明らかとなった。
【0165】
(2−2)ホットセット試験による冷却時の永久伸び
表8は、実施例1〜3、及び比較例1、2の冷却時の永久伸び(%)の評価結果を示している。冷却時の永久伸びが25%超の場合には×で示し、冷却時の永久伸びが25%以下となった場合には○で示した。
【0166】
【表8】

【0167】
また、表9は、冷却時の永久伸びが25%以下に到達するまでの基準達成時間を示している。
【表9】

【0168】
実施例1、2、及び比較例1の被覆線は、いずれも室温に設定された保管庫にて保管された。比較例1においては架橋が進行せず、3ヶ月(90日)を経過しても冷却時の永久伸びの基準値(25%以下)に達しない。一方、実施例1は168時間(7日)経過で冷却時の永久伸びの基準値に達し、実施例2は24時間(1日)で冷却時の永久伸びの基準値に達した。
【0169】
実施例3及び比較例2の被覆線は、いずれも70℃に設定された恒温槽にて保管された。実施例3は僅か6時間で達成するのに対し、比較例2は24時間(1日)を要することが明らかとなった。
【0170】
(全体評価)
表10は、実施例1〜3、及び比較例1、2の合格基準到達時間を示している。
【表10】

【0171】
実施例1、2、及び比較例1の被覆線は、いずれも室温に設定された保管庫にて保管された。比較例1は3ヶ月(90日)を経過しても実用に耐える耐熱性を得ることができなかった。一方、実施例1は168時間(7日)を経過し、実施例2は24時間(1日)を経過することで実用的に耐え得る物性を得ることができた。
【0172】
実施例3及び比較例2の被覆線は、いずれも70℃に設定された恒温槽にて保管された。実施例3は僅か6時間で達成するのに対し、比較例2は24時間(1日)を要することが明らかとなった。
【0173】
以上のことから、実施例1〜3のいずれについても架橋速度が大幅に向上したことが明らかとなった。特に、実施例3は、被覆線の製造に要するリードタイムの短縮や消費エネルギー量の削減に顕著な効果を奏することが確認できた。
【0174】
すなわち、本発明に係る実施例の被覆線は、被覆層における架橋時間の短縮及び密着性の向上に寄与することが実証された。
【0175】
なお、本発明は、上記実施の形態、上記変形例、及び上記実施例に限定されず、発明の要旨を変更しない範囲内で種々に変形実施が可能である。例えば、各実施の形態及び各変形例の構成要素を発明の要旨を変更しない範囲内で任意に組み合わせることは可能である。また、上記実施の形態及び上記変形例で説明した製造工程は、一例に過ぎず、発明の容易を変更しない範囲内で、工程の入替、削除、追加、変更等は可能である。
【符号の説明】
【0176】
10…被覆線、20…導体、21…光ファイバ、22…コア、23…クラッド、24…樹脂被覆層、31…溝付き絶縁層、31a…溝、31A…第1の溝付き絶縁層、31B…第2の溝付き絶縁層、31b…溝、31c…凸部、32…溝無し絶縁層、32a…凸部、33…溝無し絶縁層、40…シース層、40a…凸部、50…シース層、70…製造装置、71…送出機、72…予熱機、73A…第1の押出機、73B…第2の押出機、73C…第3の押出機、73D…第4の押出機、73E…第5の押出機、74A…第1のダイス、74a…凸部、74B…第2のダイス、74C…第3のダイス、74D…第4のダイス、74E…第5のダイス、75…水槽、76…巻取機、77…ダイス、77a…凸部、78…ダイス、78a…凸部

【特許請求の範囲】
【請求項1】
心線と、
シラン架橋された絶縁性樹脂組成物から形成され、前記心線を被覆するとともに、外周に溝を有する1層又は2層以上の溝付き絶縁層と、
前記溝付き絶縁層の最外層を被覆するシース層と、
を備えた被覆線。
【請求項2】
前記溝付き絶縁層は、前記溝が前記心線の軸方向に沿って形成された請求項1に記載の被覆線。
【請求項3】
前記溝付き絶縁層と前記シース層との間、又は前記心線と前記溝付き絶縁層との間に設けられ、シラン架橋された絶縁性樹脂組成物から形成され、外周に溝を有していない1層又は2層以上の溝無し絶縁層を、さらに備えた請求項1又は2に記載の被覆線。
【請求項4】
前記溝付き絶縁層又は前記溝無し絶縁層を構成する前記絶縁性樹脂組成物は、非ハロゲン難燃性熱可塑性組成物である請求項1乃至3のいずれか1項に記載の被覆線。
【請求項5】
内面側に凸部を有するダイスが吐出口に配置された押出機から絶縁性樹脂組成物を押し出して心線を前記絶縁性樹脂組成物で被覆する押出工程と、前記心線を被覆するとともに、外周に前記心線の軸方向に沿って形成された溝をその外周に有する1層又は2層以上の溝付き絶縁層を形成する工程と、前記溝付き絶縁層に水分を付着させる水分付着工程とを1回又は2回以上行い、
前記溝付き絶縁層の最外周を被覆するシース層を形成する工程と、を含む被覆線の製造方法。
【請求項6】
前記溝付き絶縁層を形成する工程の前、及び/又は後の工程において送り出された前記
心線又は前記心線を被覆する層の外周に対して押出機から前記絶縁性樹脂組成物を押し出すことにより前記心線又は前記溝付き絶縁層を前記絶縁性樹脂組成物で被覆する押出工程と、前記絶縁性樹脂組成物に水分を付着させる水分付着工程とを1回又は2回以上行うことにより、前記心線又は前記溝付き絶縁層を被覆するとともに、外周に溝を有していない溝無し絶縁層を形成する工程を、さらに含む請求項5に記載の被覆線の製造方法。
【請求項7】
前記溝付き絶縁層又は前記溝無し絶縁層の内側層又は外側層に対する水分付着工程の実施が、前記溝付き絶縁層又は前記溝無し絶縁層に対するシラン架橋反応の促進となる請求項5又は6に記載の被覆線の製造方法。
【請求項8】
前記水分付着工程は、水槽内への着水により前記水分の付着を行う請求項5乃至7のいずれか1項に記載の被覆線の製造方法。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate

【図11】
image rotate

【図12】
image rotate

【図13】
image rotate

【図14】
image rotate

【図15】
image rotate

【図16】
image rotate

【図17】
image rotate

【図18】
image rotate

【図19】
image rotate

【図20】
image rotate


【公開番号】特開2013−65553(P2013−65553A)
【公開日】平成25年4月11日(2013.4.11)
【国際特許分類】
【出願番号】特願2012−188425(P2012−188425)
【出願日】平成24年8月29日(2012.8.29)
【出願人】(000005120)日立電線株式会社 (3,358)
【Fターム(参考)】