説明

複合材料

【課題】複合材料用フィラーとして好ましい物性を持ち、少量の添加にて、マトリックスの特性を損なわずに電気的特性、機械的特性、熱特性等の物理特性を改善できる新規な構造の炭素繊維構造体を含む複合材料を提供すること。
【解決手段】外径15〜100nmの炭素繊維から構成される3次元ネットワーク状を呈しており、前記炭素繊維構造体は、前記炭素繊維が複数延出する態様で、当該炭素繊維を互いに結合する粒状部を有しており、かつ当該粒状部は前記炭素繊維の成長過程において形成されてなるものであり、さらに、ホウ素が含有されているものである炭素繊維構造体を、全体の0.001〜30質量%の割合でマトリックス中に含有して複合材料とする。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、新規な複合材料に関するものである。詳しく述べると、本発明は、マトリックス中に柔軟で強度が高く、強靭な特殊構造を有し、さらにホウ素を含有する微細炭素繊維構造体を配合してなる複合材料に関する。
【背景技術】
【0002】
単独の素材では得られない特性を得るために素材の複合が行われている。従来、複合材料としては、ガラス繊維強化プラスチックが広く用いられていたが、炭素繊維が開発され、炭素繊維補強した繊維補強プラスチック(CFRP)が開発されてから、特に複合材料が一般的となった。
【0003】
これらの材料はスポーツ用品などに広く用いられると共に、航空機用の軽量かつ高強度・高弾性率の構造材料として注目されるようになった。その後、複合材料には、繊維補強材料のみならず、微粒子補強の材料も含まれるようになった。さらに、強度や耐熱性などが重要視される構造材料に加えて、電気・電子特性、光学特性、化学特性に着目する機能材料も複合材料として扱われている。
【0004】
一方、電子機器の普及に伴い、電子部品から発生するノイズが周辺機器に影響を与える電波障害や、静電気による誤動作等のトラブルが増大し、大きな問題となっている。これらの問題の解決のために、この分野では導電性や制動性に優れた材料が要求されている。
【0005】
従来より、導電性の乏しい高分子材料においては、導電性の高いフィラー等を配合することにより、導電性機能を付与させた導電性高分子材料が広く利用されている。導電性フィラーとしては、金属繊維及び金属粉末、カーボンブラック、炭素繊維などが一般に用いられているが、金属繊維及び金属粉末を導電性フィラーとして用いた場合、耐食性に劣り、また機械的強度が得にくいという欠点がある。一方、炭素繊維を導電性フィラーとして使用する場合、一般の補強用炭素繊維では、所望の強度、弾性率はある程度の量を配合することにより達成することができるが、導電性に関しては十分なものとはならず、所望の導電性を得ようとすると高充填を必要とするため、元の樹脂本来の物性を低下させてしまう。なお、炭素繊維では、繊維径が細かい方が同量の繊維を加えた場合にマトリックス樹脂と繊維との間の接触面積が大きくなるため導電性付与効果に優れることが期待される。
【0006】
炭素繊維は、現在、最終フィラメントにおいて炭素原子の異方性シートの良好な配向が確保されるように、注意深く維持した引張り力の下で前駆物質たる有機ポリマー、特にセルロース又はポリアクリロニトリルの連続フィラメントを制御下に熱分解することによって製造されており、炭化における重量損失や炭化速度が遅いなどのため高価になる。
【0007】
さらに、近年、炭素繊維に関する別のものとして、カーボンナノチューブ(以下、「CNT」とも記する。)に代表されるカーボンナノ構造体などの微細炭素繊維が注目されている。
【0008】
カーボンナノ構造体を構成するグラファイト層は、通常では規則正しい六員環配列構造を有し、その特異な電気的性質とともに、化学的、機械的および熱的に安定した性質を持つ物質である。従って、例えば、各種樹脂、セラミックス、金属等の固体材料、あるいは燃料油、潤滑剤等の液体材料中に、このような微細炭素繊維を分散配合することにより、前記したような物性を生かすことができれば、その添加剤としての用途が期待されることとなる。
【0009】
しかしながら、一方で、このような微細炭素繊維は、生成時点で既に塊になってしまい、これをそのまま使用すると、マトリックス中において分散が進まず性能不良をきたすおそれがある。従って、樹脂等のマトリックスに導電性等の所定の特性を発揮させようとする場合には、かなりの添加量を必要とするものであった。
【0010】
特許文献1には、3.5〜70nmの直径の炭素フィブリルが互いに絡み合った凝集体で、その最長径が0.25mm以下で、径が0.10〜0.25mmの凝集体を含有する樹脂組成物が開示されている。なお、特許文献1における実施例等の記載から明らかなように、この炭素フィブリル凝集体の最長径、直径等の数値は、樹脂へ配合する前の凝集体の特性値である。また、特許文献2には50〜5000nmの直径の炭素繊維の凝集体であって、その繊維同士の接点が炭素質物の炭化物によって固着された大きさが5μm〜500μmの構造体を主体とする炭素繊維材料をマトリックス中に配合してなる複合体が開示されている。この特許文献2においても、構造体の大きさ等の数値は、樹脂へ配合する前の特性値である。
【0011】
このような炭素繊維凝集体を用いることにより、樹脂マトリックスへの分散性の向上は、より大きな塊で混合した場合よりもある程度期待される。しかしながら、特許文献1に記載される凝集体は、例えば、炭素フィブリルを振動ボールミル等でせん断力をかけて分散処理することによって得られるものであるが、嵩密度は高いため、少量の添加にて効率良く、導電性等の特性を改善する添加剤としては、未だ満足のいくものではなかった。また、特許文献2において示される炭素繊維構造体においては、繊維同士の接触点の固着が、炭素繊維の製造後に、この炭素繊維集合体を圧縮成形して繊維同士の接触点と形成した状態において熱処理し、炭素繊維表面に残留するピッチ等の残留有機物あるいはバインダーとして添加された有機物を炭化することによって形成されるものであることから、接触点の固着力が弱く、また、その構造体自体の電気的特性はあまり良好なものとはいえないものであった。従って、樹脂等のマトリックス中に配合された場合に、容易にその接触点が解離してしまうためその構造体形状を保持できないものとなり、例えば、少量添加にて、良好な電気的特性を発揮する上での、良好な導電パスをマトリックス中に形成することが困難であった。さらに、接触点の固着のためにバインダー等を添加して炭化すると、その接触点の部位のみにバインダー等を付着させることが困難であり、繊維全体にも付着するため、得られる構造体においては、繊維径が全体として太くかつ表面特性に劣るようなものしか得られないこととなる虞れが高いものであった。
【0012】
ところで、炭素繊維を樹脂等のマトリックス中に配合することにより導電性を付与するに際し、当該炭素繊維の結晶内にホウ素を含有する技術が知られている(例えば特許文献3)。当該技術は、炭素繊維の結晶内にホウ素を含有せしめることにより、炭素繊維の結晶性を向上させるとともに、適度に欠陥を生じさせることで電子状態を制御し、導電特性を上げることがねらいである。
【0013】
しかしながら、前記で述べた理由と同様の理由により、特許文献3に開示されている炭素繊維では、必ずしも良好な導電パスをマトリックス中に形成することは困難であった。
【特許文献1】特許第2862578号公報
【特許文献2】特開2004−119386号公報
【特許文献3】特開2004−3097号公報
【発明の開示】
【発明が解決しようとする課題】
【0014】
本発明は、複合材料用フィラーとして好ましい物性を持ち、少量の添加にて、マトリックスの特性を損なわずに電気的特性、機械的特性、熱特性等の物理特性を改善できる新規な構造の炭素繊維構造体を含む複合材料を提供するものである。
【課題を解決するための手段】
【0015】
上記課題を解決するために、本発明者らは鋭意検討の結果、その添加量が少なくても十分な特性向上を発揮させるためには、可能な限り微細な炭素繊維を用い、さらにこれら炭素繊維が一本一本ばらばらになることなく互いに強固に結合し、疎な構造体でマトリックスに保持されるものであること、また炭素繊維自体の一本一本が極力欠陥の少ないものであることが有効であるとともに、ホウ素を含有せしめることで電子状態を変えることが有効であることを見出し、本発明に到達したものである。
【0016】
すなわち、上記課題を解決する本発明は、外径15〜100nmの炭素繊維から構成される3次元ネットワーク状を呈しており、前記炭素繊維構造体は、前記炭素繊維が複数延出する態様で、当該炭素繊維を互いに結合する粒状部を有しており、かつ当該粒状部は前記炭素繊維の成長過程において形成されてなるものであり、さらに、ホウ素が含有されているものである炭素繊維構造体を、全体の0.001〜30質量%の割合でマトリックス中に含有することを特徴する複合材料である。
【0017】
本発明はまた、前記ホウ素の含有量が、前記炭素繊維構造体に対して0.001〜2.1質量%であることを特徴とする上記複合材料を示すものである。
【0018】
本発明はまた、前記炭素繊維構造体は、面積基準の円相当平均径が50〜100μmであることを特徴とする上記複合材料を示すものである。
【0019】
本発明はさらに、前記炭素繊維構造体は、嵩密度が、0.0001〜0.05g/cmであることを特徴とする上記複合材料を示すものである。
【0020】
本発明はまた、前記炭素繊維構造体は、ラマン分光分析法で測定されるI/Iが0.2〜1.4であり、且つ、IG’/Iが0.25〜0.75であることを特徴とする上記複合材料を示すものである。
【0021】
本発明はまた、前記炭素繊維構造体は、空気中での燃焼開始温度が700℃以上であることを特徴とする上記複合材料を示すものである。
【0022】
本発明はまた、前記炭素繊維の結合箇所において、前記粒状部の粒径が、前記炭素繊維の外径よりも大きいことを特徴とする上記複合材料を示すものである。
【0023】
本発明はまた、前記炭素繊維構造体は、炭素源として、分解温度の異なる少なくとも2つ以上の炭素化合物を用いて、生成されたものである上記複合材料を示すものである。
【0024】
本発明はまた、マトリックスが有機ポリマーを含むものである上記複合材料を示すものである。
【0025】
本発明はまた、マトリックスが無機材料を含むものである上記複合材料を示すものである。
【0026】
本発明はまた、マトリックスが金属を含むものである上記複合材料を示すものである。
【0027】
本発明はまた、マトリックス中に、金属微粒子、シリカ、炭酸カルシウム、炭酸マグネシウム、カーボンブラック、ガラス繊維および炭素繊維からなる群から選ばれた少なくとも一種の充填剤をさらに含むことを特徴とする上記複合材料を示すものである。
【発明の効果】
【0028】
本発明においては、炭素繊維構造体が、上記したように3次元ネットワーク状に配された微細径の炭素繊維が、前記炭素繊維の成長過程において形成された粒状部によって互いに強固に結合され、該粒状部から前記炭素繊維が複数延出する形状を有するものであるために、樹脂等のマトリックス中に配合した場合に、当該炭素繊維構造体は、疎な構造を残したまま容易に分散し、少量の添加量においても、マトリックス中に、微細な炭素繊維を均一な広がりをもって配置することができる。
【0029】
さらに、本願発明においては、炭素繊維構造体にはホウ素が含有せしめられているので、当該炭素繊維一本一本及び粒状部を結晶性の高い炭素繊維とすることができるとともに、電子状態を変えることができる。
【0030】
また、ホウ素が含有せしめられていることで、触媒金属の除去が促進され、金属含有量が少なく不純物の少ない炭素繊維構造体を得ることができる。
【0031】
このように、本発明に係る複合材料においては、上述の炭素繊維構造体を比較的微量配することによっても、マトリックス全体に微細で結晶性の高い炭素繊維構造体が均一に分散分布されているため、例えば、電気的特性に関しては、マトリックス全体に良好な導電性パスが形成され、導電性向上させることができ、また機械的特性、熱特性等に関しても、マトリックス全体に微細炭素繊維からなるフィラーが満遍なく配されることで、特性向上が図れることとなるものである。このため、本発明により、電気伝導性、電波遮蔽性、熱伝導性等に優れた機能材料、強度の高い構造材料等として有用な複合材料が得られる。
【発明を実施するための最良の形態】
【0032】
以下、本発明を好ましい実施形態に基づき詳細に説明する。
【0033】
本発明の複合材料は、後述するような所定構造を有する3次元ネットワーク状の炭素繊維構造体を、全体の0.001〜30質量%の割合でマトリックス中に含有することを特徴するものである。
【0034】
本発明において用いられる炭素繊維構造体は、例えば、図3(a)および(b)に示すTEM写真に見られるように、外径15〜100nmの炭素繊維から構成される3次元ネットワーク状の炭素繊維構造体であって、前記炭素繊維構造体は、前記炭素繊維が複数延出する態様で、当該炭素繊維を互いに結合する粒状部を有している。そして、本発明において用いられる炭素繊維構造体は、図3(a)および(b)に示す炭素繊維構造体に、さらにホウ素が含有されていることを特徴とする炭素繊維構造体である。
【0035】
炭素繊維構造体を構成する炭素繊維の外径を、15〜100nmの範囲のものとするのは、外径が15nm未満であると、後述するように炭素繊維の断面が多角形状とならず、一方、炭素繊維の物性上直径が小さいほど単位量あたりの本数が増えるとともに、炭素繊維の軸方向への長さも長くなり、高い導電性が得られるため、100nmを越える外径を有することは、樹脂等のマトリックスへ改質剤、添加剤として配される炭素繊維構造体として適当でないためである。なお、炭素繊維の外径としては特に、20〜70nmの範囲内にあることが、より望ましい。この外径範囲のもので、筒状のグラフェンシートが軸直角方向に積層したもの、すなわち多層であるものは、曲がりにくく、弾性、すなわち変形後も元の形状に戻ろうとする性質が付与されるため、炭素繊維構造体が一旦圧縮された後においても、樹脂等のマトリックスに配された後において、疎な構造を採りやすくなる。
【0036】
なお、2400℃以上でアニール処理すると、積層したグラフェンシートの面間隔が狭まり真密度が1.89g/cmから2.1g/cmに増加するとともに、炭素繊維の軸直交断面が多角形状となり、この構造の炭素繊維は、積層方向および炭素繊維を構成する筒状のグラフェンシートの面方向の両方において緻密で欠陥の少ないものとなるため、曲げ剛性(EI)が向上する。
【0037】
加えて、該微細炭素繊維は、その外径が軸方向に沿って変化するものであることが望ましい。このように炭素繊維の外径が軸方向に沿って一定でなく、変化するものであると、樹脂等のマトリックス中において当該炭素繊維に一種のアンカー効果が生じるものと思われ、マトリックス中における移動が生じにくく分散安定性が高まるものとなる。
【0038】
そして本発明に係る炭素繊維構造体においては、このような所定外径を有する微細炭素繊維が3次元ネットワーク状に存在するが、これら炭素繊維は、当該炭素繊維の成長過程において形成された粒状部において互いに結合され、該粒状部から前記炭素繊維が複数延出する形状を呈しているものである。このように、微細炭素繊維同士が単に絡合しているものではなく、粒状部において相互に強固に結合されているものであることから、樹脂等のマトリックス中に配した場合に当該構造体が炭素繊維単体として分散されることなく、嵩高な構造体のままマトリックス中に分散配合されることができる。また、本発明に係る炭素繊維構造体においては、当該炭素繊維の成長過程において形成された粒状部によって炭素繊維同士が互いに結合されていることから、その構造体自体の電気的特性等も非常に優れたものであり、例えば、一定圧縮密度において測定した電気抵抗値は、微細炭素繊維の単なる絡合体、あるいは微細炭素繊維同士の接合点を当該炭素繊維合成後に炭素質物質ないしその炭化物によって付着させてなる構造体等の値と比較して、非常に低い値を示し、マトリックス中に分散配合された場合に、良好な導電パスを形成できることができる。
【0039】
当該粒状部は、上述するように炭素繊維の成長過程において形成されるものであるため、当該粒状部における炭素間結合は十分に発達したものとなり、正確には明らかではないが、sp結合およびsp結合の混合状態を含むと思われる。そして、生成後(後述する中間体および第一中間体)においては、粒状部と繊維部とが、炭素原子からなるパッチ状のシート片を貼り合せたような構造をもって連続しており、その後の高温熱処理後においては、図3(a)および(b)に示されるように、粒状部を構成するグラフェン層の少なくとも一部は、当該粒状部より延出する微細炭素繊維を構成するグラフェン層に連続するものとなる。本発明に係る炭素繊維構造体において、粒状部と微細炭素繊維との間は、上記したような粒状部を構成するグラフェン層が微細炭素繊維を構成するグラフェン層と連続していることに象徴されるように、炭素結晶構造的な結合によって(少なくともその一部が)繋がっているものであって、これによって粒状部と微細炭素繊維との間の強固な結合が形成されているものである。
【0040】
なお、本願明細書において、粒状部から炭素繊維が「延出する」するとは、粒状部と炭素繊維とが他の結着剤(炭素質のものを含む)によって、単に見かけ上で繋がっているような状態をさすものではなく、上記したように炭素結晶構造的な結合によって繋がっている状態を主として意味するものである。
【0041】
また、当該粒状部は、上述するように炭素繊維の成長過程において形成されるが、その痕跡として粒状部の内部には、少なくとも1つの触媒粒子、あるいはその触媒粒子がその後の熱処理工程において揮発除去されて生じる空孔を有している。この空孔(ないし触媒粒子)は、粒状部より延出している各微細炭素繊維の内部に形成される中空部とは、本質的に独立したものである(なお、ごく一部に、偶発的に中空部と連続してしまったものも観察される。)。
【0042】
この触媒粒子ないし空孔の数としては特に限定されるものではないが、粒状部1つ当りに1〜1000個程度、より望ましくは3〜500個程度存在する。このような範囲の数の触媒粒子の存在下で粒状部が形成されたことによって、後述するような所望の大きさの粒状部とすることができる。
【0043】
また、この粒状部中に存在する触媒粒子ないし空孔の1つ当りの大きさとしては、例えば、1〜100nm、より好ましくは2〜40nm、さらに好ましくは3〜15nmである。
【0044】
さらに、特に限定されるわけではないが、この粒状部の粒径は、図2に示すように、前記微細炭素繊維の外径よりも大きいことが望ましい。具体的には、例えば、前記微細炭素繊維の外径の1.3〜250倍、より好ましくは1.5〜100倍、さらに好ましくは2.0〜25倍である。なお、前記値は平均値である。このように炭素繊維相互の結合点である粒状部の粒径が微細炭素繊維外径の1.3倍以上と十分に大きなものであると、当該粒状部より延出する炭素繊維に対して高い結合力がもたらされ、樹脂等のマトリックス中に当該炭素繊維構造体を配した場合に、ある程度のせん弾力を加えた場合であっても、3次元ネットワーク構造を保持したままマトリックス中に分散させることができる。一方、粒状部の大きさが微細炭素繊維の外径の250倍を超える極端に大きなものとなると、炭素繊維構造体の繊維状の特性が損なわれる虞れがあり、例えば、各種マトリックス中への添加剤、配合剤として適当なものとならない虞れがあるために望ましくない。なお、本明細書でいう「粒状部の粒径」とは、炭素繊維相互の結合点である粒状部を1つの粒子とみなして測定した値である。
【0045】
その粒状部の具体的な粒径は、炭素繊維構造体の大きさ、炭素繊維構造体中の微細炭素繊維の外径にも左右されるが、例えば、平均値で20〜5000nm、より好ましくは25〜2000nm、さらに好ましくは30〜500nm程度である。
【0046】
さらにこの粒状部は、前記したように炭素繊維の成長過程において形成されるものであるため、比較的球状に近い形状を有しており、その円形度は、平均値で0.2〜<1、好ましくは0.5〜0.99、より好ましくは0.7〜0.98程度である。
【0047】
加えて、この粒状部は、前記したように炭素繊維の成長過程において形成されるものであって、例えば、微細炭素繊維同士の接合点を当該炭素繊維合成後に炭素質物質ないしその炭化物によって付着させてなる構造体等と比較して、当該粒状部における、炭素繊維同士の結合は非常に強固なものであり、炭素繊維構造体における炭素繊維の破断が生じるような条件下においても、この粒状部(結合部)は安定に保持される。具体的には例えば、後述する実施例において示すように、当該炭素繊維構造体を液状媒体中に分散させ、これに一定出力で所定周波数の超音波をかけて、炭素繊維の平均長がほぼ半減する程度の負荷条件としても、該粒状部の平均粒径の変化率は、10%未満、より好ましくは5%未満であって、粒状部、すなわち、繊維同士の結合部は、安定に保持されているものである。
【0048】
さらにまた、本発明に用いられる炭素繊維構造体にはホウ素が含有されているため、炭素繊維一本一本を結晶性の高い炭素繊維とすることができる。本発明において、「炭素繊維構造体にホウ素が含有されている」とは、炭素繊維構造体を構成する炭素繊維及び粒状部における炭素原子の一部がホウ素に置換されている状態のみならず、その表面にホウ素が付着した状態をも含むものをいう。
【0049】
炭素繊維構造体にホウ素を含有(ドーピング)する方法については、本発明は特に限定することはないが、例えば、低温(例えば1500℃以下)で熱処理されたのみで未だ結晶の発達していない状態の炭素繊維、さらには熱処理していない(アズグロウン)状態の炭素繊維とホウ素(ホウ素化合物を含む)とを混合し、その後、高温で黒鉛化処理(アニーリング処理)することにより、炭素繊維構造体にホウ素を含有せしめることができる。1600℃以上、さらには1800℃以上の温度でアニーリング処理された状態の炭素繊維にホウ素を含有せしめることも不可能ではないが、ホウ素をドーピングさせるためのエネルギーの面から考えれば好ましくなく、ホウ素は炭素繊維の結晶化を促進するための触媒としても作用し、また、アニーリングの際に触媒金属の除去に効果があることから、アニーリング処理の前段階でホウ素を含有せしめることが好適である。
【0050】
炭素繊維構造体に含有するホウ素としても、本発明は特に限定することはない。なおここで、本発明における「ホウ素」とは、元素状のホウ素のみならずホウ素化合物も包含する概念である。前記のように炭素繊維構造体にホウ素を含有せしめるにあっては、高温(例えば1600℃以上)でアニーリング処理を行う関係上、少なくとも1600℃に達する前に分解などによって蒸発しない状態のホウ素を用いることが必要である。この条件を満たすホウ素としては、例えば、元素状のホウ素、B,HBO,BC,BNなどを挙げることができる。
【0051】
ホウ素の含有量としては、炭素繊維構造体に対して0.001〜2.1質量%であることが好ましく、0.01〜1.8質量%であることが特に好ましい。ホウ素の含有量が0.001質量%未満の場合、ホウ素含有による効果、つまり炭素繊維の結晶性を向上せしめることが難しくなる。一方、含有量が2.1質量%を超えると、固溶限界を超えるため添加しても効果が少なく、処理コストが高くなるだけでなく、熱処理の段階で、溶融燒結し易く、固まったり、繊維表面をホウ素化合物が被覆してしまい、逆に導電性を悪化させる場合がある。
【0052】
また、本発明において用いられる炭素繊維構造体は、面積基準の円相当平均径が50〜100μm、より好ましくは60〜90μm程度程度であることが望ましい。ここで面積基準の円相当平均径とは、炭素繊維構造体の外形を電子顕微鏡などを用いて撮影し、この撮影画像において、各炭素繊維構造体の輪郭を、適当な画像解析ソフトウェア、例えばWinRoof(商品名、三谷商事株式会社製)を用いてなぞり、輪郭内の面積を求め、各繊維構造体の円相当径を計算し、これを平均化したものである。
【0053】
複合化される樹脂等のマトリックス材の種類によっても左右されるため、全ての場合において適用されるわけではないが、この円相当平均径は、樹脂等のマトリックス中に配合された場合における当該炭素繊維構造体の最長の長さを決める要因となるものであり、概して、円相当平均径が50μm未満であると、導電性が十分に発揮されないおそれがあり、一方、100μmを越えるものであると、例えば、マトリックス中へ混練等によって配合する際に大きな粘度上昇が起こり混合分散が困難あるいは成形性が劣化する虞れがあるためである。
【0054】
また、本発明において用いられる炭素繊維構造体は、上記したように、3次元ネットワーク状に存在する炭素繊維が粒状部において互いに結合され、該粒状部から前記炭素繊維が複数延出する形状を呈しているが、1つの炭素繊維構造体において、炭素繊維を結合する粒状部が複数個存在して3次元ネットワークを形成している場合、隣接する粒状部間の平均距離は、例えば、0.5μm〜300μm、より好ましくは0.5〜100μm、さらに好ましくは1〜50μm程度となる。なお、この隣接する粒状部間の距離は、1つの粒状体の中心部からこれに隣接する粒状部の中心部までの距離を測定したものである。粒状体間の平均距離が、0.5μm未満であると、炭素繊維が3次元ネットワーク状に十分に発展した形態とならないため、例えば、マトリックス中に分散配合された場合に、良好な導電パスを形成し得ないものとなる虞れがあり、一方、平均距離が300μmを越えるものであると、マトリックス中に分散配合させる際に、粘性を高くさせる要因となり、炭素繊維構造体のマトリックスに対する分散性が低下する虞れがあるためである。
【0055】
さらに、本発明において用いられる炭素繊維構造体は、上記したように、3次元ネットワーク状に存在する炭素繊維が粒状部において互いに結合され、該粒状部から前記炭素繊維が複数延出する形状を呈しており、このため当該構造体は炭素繊維が疎に存在した嵩高な構造を有するが、具体的には、例えば、その嵩密度が0.0001〜0.05g/cm、より好ましくは0.001〜0.02g/cmであることが望ましい。嵩密度が0.05g/cmを超えるものであると、少量添加によって、樹脂等のマトリックスの物性を改善することが難しくなるためである。
【0056】
また、本発明において用いられる炭素繊維構造体は、3次元ネットワーク状に存在する炭素繊維がその成長過程において形成された粒状部において互いに結合されていることから、上記したように構造体自体の電気的特性等も非常に優れたものであるが、例えば、一定圧縮密度0.8g/cmにおいて測定した粉体抵抗値が、0.02Ω・cm以下、より望ましくは、0.001〜0.010Ω・cmであることが好ましい。粉体抵抗値が0.02Ω・cmを超えるものであると、樹脂等のマトリックスに配合された際に、良好な導電パスを形成することが難しくなるためである。
【0057】
また、本発明において用いられる炭素繊維構造体は、高い強度および導電性を有する上から、炭素繊維を構成するグラフェンシート中にホウ素が含有されていることが望ましく、具体的には、例えば、ラマン分光分析法で測定されるI/I比が0.2〜1.4であり、且つ、IG’/Iが0.25〜0.75であることが望ましい。ここで、ラマン分光分析では、大きな単結晶の黒鉛では1580cm−1付近のピーク(Gバンド)しか現れない。結晶が有限の微小サイズであることや格子欠陥により、1360cm−1付近にピーク(Dバンド)が出現する。また、測定範囲を広げると、2700cm−1付近にG’バンドが出現する。このため、DバンドとGバンドの強度比(R=I1360/I1580=I/I)及びG’バンドとGバンドの強度比(I2700/I1580=IG’/I)が上記したように所定範囲であると、グラフェンシート中にホウ素が含有されていると考えられるからである。なお、ホウ素がグラフェンシート内に含有されるとラマン分光におけるGバンドの波形が非対称となり、高波数側に肩が認められるようになる。
【0058】
また、本発明において用いられる前記炭素繊維構造体は、空気中での燃焼開始温度が700℃以上、より好ましくは750〜900℃であることが望ましい。前記したように炭素繊維構造体のグラフェンシート中にホウ素を含有し、かつ炭素繊維が所期の外径を有するものであることから、このような高い熱的安定性を有するものとなる。
【0059】
上記したような所期の形状を有する炭素繊維構造体は、特に限定されるものではないが、例えば、次のようにして調製することができる。
【0060】
基本的には、遷移金属超微粒子を触媒として炭化水素等の有機化合物をCVD法で化学熱分解して繊維構造体(以下、中間体という)を得、これにホウ素またはホウ素化合物を混合した状態でさらに高温熱処理する。なお、ホウ素またはホウ素化合物は、炭化水素等の有機化合物に予め混合せしめておいてもよく(つまり中間体を得る前段階でホウ素を添加しておく)、さらには、高温熱処理後にホウ素を混合せしめることも可能である。
【0061】
原料有機化合物としては、ベンゼン、トルエン、キシレンなどの炭化水素、一酸化炭素(CO)、エタノール等のアルコール類などが使用できる。特に限定されるわけではないが、本発明において用いる繊維構造体を得る上においては、炭素源として、分解温度の異なる少なくとも2つ以上の炭素化合物を用いることが好ましい。なお、本明細書において述べる「少なくとも2つ以上の炭素化合物」とは、必ずしも原料有機化合物として2種以上のものを使用するというものではなく、原料有機化合物としては1種のものを使用した場合であっても、繊維構造体の合成反応過程において、例えば、トルエンやキシレンの水素脱アルキル化(hydrodealkylation)などのような反応を生じて、その後の熱分解反応系においては分解温度の異なる2つ以上の炭素化合物となっているような態様も含むものである。
【0062】
なお、熱分解反応系において炭素源としてこのように2種以上の炭素化合物を存在させた場合、それぞれの炭素化合物の分解温度は、炭素化合物の種類のみでなく、原料ガス中の各炭素化合物のガス分圧ないしモル比によっても変動するものであるため、原料ガス中における2種以上の炭素化合物の組成比を調整することにより、炭素化合物として比較的多くの組み合わせを用いることができる。
【0063】
例えば、メタン、エタン、プロパン類、ブタン類、ペンタン類、へキサン類、ヘプタン類、シクロプロパン、シクロヘキサンなどといったアルカンないしシクロアルカン、特に炭素数1〜7程度のアルカン;エチレン、プロピレン、ブチレン類、ペンテン類、ヘプテン類、シクロペンテンなどといったアルケンないしシクロオレフィン、特に炭素数1〜7程度のアルケン;アセチレン、プロピン等のアルキン、特に炭素数1〜7程度のアルキン;ベンゼン、トルエン、スチレン、キシレン、ナフタレン、メチルナフタレン、インデン、フェナントレン等の芳香族ないし複素芳香族炭化水素、特に炭素数6〜18程度の芳香族ないし複素芳香族炭化水素、メタノール、エタノール等のアルコール類、特に炭素数1〜7程度のアルコール類;その他、一酸化炭素、ケトン類、エーテル類等の中から選択した2種以上の炭素化合物を、所期の熱分解反応温度域において異なる分解温度を発揮できるようにガス分圧を調整し、組み合わせて用いること、および/または、所定の温度領域における滞留時間を調整することで可能であり、その混合比を最適化することで効率よく本発明に係る炭素繊維構造体を製造することができる。
【0064】
このような2種以上の炭素化合物の組み合わせのうち、例えば、メタンとベンゼンとの組み合わせにおいては、メタン/ベンゼンのモル比が、>1〜600、より好ましくは1.1〜200、さらに好ましくは3〜100とすることが望ましい。なお、この値は、反応炉の入り口におけるガス組成比であり、例えば、炭素源の1つとしてトルエンを使用する場合には、反応炉内でトルエンが100%分解して、メタンおよびベンゼンが1:1で生じることを考慮して、不足分のメタンを別途供給するようにすれば良い。例えば、メタン/ベンゼンのモル比を3とする場合には、トルエン1モルに対し、メタン2モルを添加すれば良い。なお、このようなトルエンに対して添加するメタンとしては、必ずしも新鮮なメタンを別途用意する方法のみならず、当該反応炉より排出される排ガス中に含まれる未反応のメタンを循環使用することにより用いることも可能である。
【0065】
このような範囲内の組成比とすることで、炭素繊維部および粒状部のいずれもが十分を発達した構造を有する炭素繊維構造体を得ることが可能となる。
【0066】
なお、雰囲気ガスには、アルゴン、ヘリウム、キセノン等の不活性ガスや水素を用いることができる。
【0067】
また、触媒としては、鉄、コバルト、モリブデンなどの遷移金属あるいはフェロセン、酢酸金属塩などの遷移金属化合物と硫黄あるいはチオフェン、硫化鉄などの硫黄化合物の混合物を使用する。
【0068】
中間体の合成は、通常行われている炭化水素等のCVD法を用い、原料となる炭化水素および触媒の混合液を蒸発させ、水素ガス等をキャリアガスとして反応炉内に導入し、800〜1300℃の温度で熱分解する。これにより、外径が15〜100nmの繊維相互が、前記触媒の粒子を核として成長した粒状体によって結合した疎な三次元構造を有する炭素繊維構造体(中間体)が複数集まった数cmから数十センチの大きさの集合体を合成する。
【0069】
原料となる炭化水素の熱分解反応は、主として触媒粒子ないしこれを核として成長した粒状体表面において生じ、分解によって生じた炭素の再結晶化が当該触媒粒子ないし粒状体より一定方向に進むことで、繊維状に成長する。しかしながら、本発明に係る炭素繊維構造体を得る上においては、このような熱分解速度と成長速度とのバランスを意図的に変化させる、例えば上記したように炭素源として分解温度の異なる少なくとも2つ以上の炭素化合物を用いることで、一次元的方向にのみ炭素物質を成長させることなく、粒状体を中心として三次元的に炭素物質を成長させる。もちろん、このような三次元的な炭素繊維の成長は、熱分解速度と成長速度とのバランスにのみ依存するものではなく、触媒粒子の結晶面選択性、反応炉内における滞留時間、炉内温度分布等によっても影響を受け、また、前記熱分解反応と成長速度とのバランスは、上記したような炭素源の種類のみならず、反応温度およびガス温度等によっても影響受けるが、概して、上記したような熱分解速度よりも成長速度の方が速いと、炭素物質は繊維状に成長し、一方、成長速度よりも熱分解速度の方が速いと、炭素物質は触媒粒子の周面方向に成長する。従って、熱分解速度と成長速度とのバランスを意図的に変化させることで、上記したような炭素物質の成長方向を一定方向とすることなく、制御下に多方向として、本発明に係るような三次元構造を形成することができるものである。なお、生成する中間体において、繊維相互が粒状体により結合された前記したような三次元構造を容易に形成する上では、触媒等の組成、反応炉内における滞留時間、反応温度、およびガス温度等を最適化することが望ましい。
【0070】
なお、本発明に係る炭素繊維構造体を効率良く製造する方法としては、上記したような分解温度の異なる2つ以上の炭素化合物を最適な混合比にて用いるアプローチ以外に、反応炉に供給される原料ガスに、その供給口近傍において乱流を生じさせるアプローチを挙げることができる。ここでいう乱流とは、激しく乱れた流れであり、渦巻いて流れるような流れをいう。
【0071】
反応炉においては、原料ガスが、その供給口より反応炉内へ導入された直後において、原料混合ガス中の触媒としての遷移金属化合物の分解により金属触媒微粒子が形成されるが、これは、次のような段階を経てもたらされる。すなわち、まず、遷移金属化合物が分解され金属原子となり、次いで、複数個、例えば、約100原子程度の金属原子の衝突によりクラスター生成が起こる。この生成したクラスターの段階では、微細炭素繊維の触媒として作用せず、生成したクラスター同士が衝突により更に集合し、約3nm〜10nm程度の金属の結晶性粒子に成長して、微細炭素繊維の製造用の金属触媒微粒子として利用されることとなる。
【0072】
この触媒形成過程において、上記したように激しい乱流による渦流が存在すると、ブラウン運動のみの金属原子又はクラスター同士の衝突と比してより激しい衝突が可能となり、単位時間あたりの衝突回数の増加によって金属触媒微粒子が短時間に高収率で得られ、又、渦流によって濃度、温度等が均一化されることにより粒子のサイズの揃った金属触媒微粒子を得ることができる。さらに、金属触媒微粒子が形成される過程で、渦流による激しい衝突により金属の結晶性粒子が多数集合した金属触媒微粒子の集合体を形成する。このようにして金属触媒微粒子が速やかに生成されるため、炭素化合物の分解が促進されて、十分な炭素物質が供給されることになり、前記集合体の各々の金属触媒微粒子を核として放射状に微細炭素繊維が成長し、一方で、前記したように一部の炭素化合物の熱分解速度が炭素物質の成長速度よりも速いと、炭素物質は触媒粒子の周面方向にも成長し、前記集合体の周りに粒状部を形成し、所期の三次元構造を有する炭素繊維構造体を効率よく形成する。なお、前記金属触媒微粒子の集合体中には、他の触媒微粒子よりも活性の低いないしは反応途中で失活してしまった触媒微粒子も一部に含まれていることも考えられ、集合体として凝集するより以前にこのような触媒微粒子の表面に成長していた、あるいは集合体となった後にこのような触媒微粒子を核として成長した非繊維状ないしはごく短い繊維状の炭素物質層が、集合体の周縁位置に存在することで、本発明に係る炭素繊維構造体の粒状部を形成しているものとも思われる。
【0073】
反応炉の原料ガス供給口近傍において、原料ガスの流れに乱流を生じさせる具体的手段としては、特に限定されるものではなく、例えば、原料ガス供給口より反応炉内に導出される原料ガスの流れに干渉し得る位置に、何らかの衝突部を設ける等の手段を採ることができる。前記衝突部の形状としては、何ら限定されるものではなく、衝突部を起点として発生した渦流によって十分な乱流が反応炉内に形成されるものであれば良いが、例えば、各種形状の邪魔板、パドル、テーパ管、傘状体等を単独であるいは複数組み合わせて1ないし複数個配置するといった形態を採択することができる。
【0074】
このようにして、触媒および炭化水素の混合ガスを800〜1300℃の範囲の一定温度で加熱生成して得られた中間体は、炭素原子からなるパッチ状のシート片を貼り合わせたような(生焼け状態の、不完全な)構造を有し、ラマン分光分析をすると、Dバンドが非常に大きく、また、G’バンドが小さく、欠陥が多い。また、生成した中間体は、未反応原料、非繊維状炭化物、タール分および触媒金属を含んでいる。
【0075】
このような中間体からこれら残留物を除去し、欠陥が少ない所期の炭素繊維構造体を得るために、適切な方法で1600〜3000℃の高温熱処理する。
【0076】
すなわち、例えば、この中間体を800〜1200℃で加熱して未反応原料やタール分などの揮発分を除去した後、1600〜3000℃の高温でアニール処理することによって所期の構造体を調製し、同時に繊維に含まれる触媒金属を蒸発させて除去する。なお、この際、物質構造を保護するために不活性ガス雰囲気中に還元ガスや微量の一酸化炭素ガスを添加してもよい。
【0077】
前記中間体を1600〜3000℃の範囲の温度でアニール処理すると、炭素原子からなるパッチ状のシート片は、それぞれ結合して複数のグラフェンシート状の層を形成する。
【0078】
なお、当該高温熱処理をする段階において、前記中間体とホウ素とを混合しておくことにより、炭素繊維構造体にホウ素を含有せしめる(ドーピングする)ことができる。ここで、炭素繊維構造体にホウ素を効率良く含有せしめるためには、中間体とホウ素とをよく混合し、これらが均一に接触するようにすることが必要である。そのためには、ホウ素(またはホウ素化合物)の粒子はできるだけ粒径の小さいものを使用することが好ましい。粒子が大きいと部分的に高濃度領域が発生することになり、固結化の原因になりかねない。具体的にはホウ素の粒度は平均粒径で100μm以下、好ましくは50μm以下、より好ましくは20μm以下とする。また、ホウ素源として硼酸等を用いる場合は、溶液添加し、予め溶剤を蒸発させる方法や加熱過程で溶剤を蒸発する方法も用いることができる。溶液を均一に混合すれば溶剤蒸発後はホウ素化合物を繊維表面に均一に付着させることができる。
【0079】
また、このような高温熱処理前もしくは処理後において、炭素繊維構造体の円相当平均径を数cmに解砕処理する工程と、解砕処理された炭素繊維構造体の円相当平均径を50〜100μmに粉砕処理する工程とを経ることで、所望の円相当平均径を有する炭素繊維構造体を得る。なお、解砕処理を経ることなく、粉砕処理を行っても良い。また、本発明に係る炭素繊維構造体を複数有する集合体を、使いやすい形、大きさ、嵩密度に造粒する処理を行っても良い。さらに好ましくは、反応時に形成された上記構造を有効に活用するために、嵩密度が低い状態(極力繊維が伸びきった状態でかつ空隙率が大きい状態)で、アニール処理するとさらに樹脂への導電性付与に効果的である。
【0080】
本発明において用いられる微細炭素繊維構造体は、
A)嵩密度が低い、
B)樹脂等のマトリックスに対する分散性が良い、
C)導電性が高い、
D)熱伝導性が高い、
E)摺動性が良い、
F)化学的安定性が良い、
G)熱的安定性が高い、
などの特性があり、これらを活かして後述するような樹脂、セラミックス、金属等の固体材料に対する複合材料用フィラーとして広い範囲に利用でき、本発明に係る複合材料とすることができる。
【0081】
次に、本発明の複合材料において、前述のごとき炭素繊維構造体を分散させるマトリックスとしては、有機ポリマー、無機材料、金属等が好ましく使用することができ、有機ポリマーが最も好ましい。
【0082】
有機ポリマーとして、例えばポリプロピレン、ポリエチレン、ポリスチレン、ポリ塩化ビニル、ポリアセタール、ポリエチレンテレフタレート、ポリカーボネート、ポリビニルアセテート、ポリアミド、ポリアミドイミド、ポリエーテルイミド、ポリエーテルエーテルケトン、ポリビニルアルコール、ポリフェニレンエーテル、ポリ(メタ)アクリレート及び液晶ポリマー等の各種熱可塑性樹脂、エポキシ樹脂、ビニルエステル樹脂、フェノール樹脂、不飽和ポリエステル樹脂、フラン樹脂、イミド樹脂、ウレタン樹脂、メラミン樹脂、シリコーン樹脂およびユリア樹脂等の各種熱硬化性樹脂、天然ゴム、スチレン・ブタジエンゴム(SBR)、ブタジエンゴム(BR)、イソプレンゴム(IR)、エチレン・プロピレンゴム(EPDM)、ニトリルゴム(NBR)、クロロプレンゴム(CR)、ブチルゴム(IIR)、ウレタンゴム、シリコーンゴム、フッ素ゴム、アクリルゴム(ACM)、エピクロロヒドリンゴム、エチレンアクリルゴム、ノルボルネンゴム及び熱可塑性エラストマー等の各種エラストマーが挙げられる。
【0083】
また、有機ポリマーは、接着剤、繊維、塗料、インキ等の各種組成物の形態であってもよい。
【0084】
すなわち、マトリックスが、例えば、エポキシ系接着剤、アクリル系接着剤、ウレタン系接着剤、フェノール系接着剤、ポリエステル系接着剤、塩化ビニル系接着剤、ユリア系接着剤、メラミン系接着剤、オレフィン系接着剤、酢酸ビニル系接着剤、ホットメルト系接着剤、シアノアクリレート系接着剤、ゴム系接着剤及びセルロース系接着剤等の接着剤、アクリル繊維、アセテート繊維、アラミド繊維、ナイロン繊維、ノボロイド繊維、セルロース繊維、ビスコースレーヨン繊維、ビニリデン繊維、ビニロン繊維、フッ素繊維、ポリアセタール繊維、ポリウレタン繊維、ポリエステル繊維、ポリエチレン繊維、ポリ塩化ビニル繊維及びポリプロピレン繊維等の繊維、さらにフェノール樹脂系塗料、アルキド樹脂系塗料エポキシ樹脂系塗料、アクリル樹脂系塗料、不飽和ポリエステル系塗料、ポリウレタン系塗料、シリコーン系塗料、フッ素樹脂系塗料、合成樹脂エマルジョン系塗料等の塗料であってよい。
【0085】
無機材料としては、例えばセラミック材料又は無機酸化物ポリマーからなる。好ましい具体例としては、カーボンカーボンコンポジットなどの炭素材料、ガラス、ガラス繊維、板ガラス及び他の成形ガラス、ケイ酸塩セラミクス並びに他の耐火性セラミクス、例えば酸化アルミニウム、炭化ケイ素、酸化マグネシウム、窒化ケイ素、窒化ホウ素及び酸化ジルコニウムが挙げられる。
【0086】
また、マトリクスが金属である場合、適切な金属としては、アルミニウム、マグネシウム、鉛、銅、タングステン、チタン、ニオブ、ハフニウム、バナジウム、並びにこれらの合金及び混合物が挙げられる。
【0087】
さらに、本発明の複合材料には、上述した炭素繊維構造体に加えて他の充填剤を含んでいてもよく、そのような充填剤としては例えば、金属微粒子、シリカ、炭酸カルシウム、炭酸マグネシウム、カーボンブラック、ガラス繊維、炭素繊維などが挙げられ、これらを一種または二種以上組み合わせて用いることができる。
【0088】
本発明の複合材料は、前記のようなマトリックスに前述の炭素繊維構造体を有効量含む。
その量は、複合材料の用途やマトリックスによって異なるが、凡そ0.001%〜30%である。0.001%未満では、構造材としての強度の補強効果が小さかったり、電気導電性も十分でない。30%より多くなると、逆に強度が低下し、塗料、接着剤等の接着性も悪くなる。本発明の複合材料においては、このようにフィラーとしての炭素繊維構造体の配合量が比較的低いものであっても、マトリックス中に、微細な炭素繊維を均一な広がりをもって配置することができ、上述したように電気伝導性、電波遮蔽性、熱伝導性等に優れた機能材料、強度の高い構造材料等として有用な複合材料となるものである。
【0089】
さらに、本発明に係る複合材料に関して、これを、配合される炭素繊維構造体の機能別に具体例を示すと、次のようなものが例示されるが、もちろん、これらに何ら限定されるものではない。
【0090】
1)導電性を利用するもの
樹脂に混合することによる、導電性樹脂及び導電性樹脂成型体として,例えば包装材、ガスケット、容器、抵抗体、導電性繊維、電線、接着剤、インク、塗料等に好適に用いられる。また、樹脂との複合材に加え、無機材料、特にセラミックス、金属等の材料に添加した複合材においても同様の効果が期待できる。
【0091】
2)熱伝導性を利用するもの
上記導電性の利用の場合と同様の用い方ができる。
【0092】
3)電磁波遮蔽性を利用するもの
樹脂に混合することにより、電磁波遮蔽性塗料や成形して電磁波遮蔽材等として好適である。
【0093】
4)物理的特性を利用するもの
摺動性を高めるために樹脂、金属に混合してロール、ブレーキ部品、タイヤ、ベアリング、潤滑油、歯車、パンタグラフ等に利用する。
【0094】
また、軽量で強靭な特性を活かして電線、家電・車輌・飛行機等のボディ、機械のハウジングに利用できる。
【0095】
このほか、従来の炭素繊維、ビーズの代替としても使用でき、例えば電池の極材、スイッチ、防振材に応用する。
【0096】
5)フィラー特性を利用するもの
炭素繊維構造体の有する微細繊維は優れた強度を持ち、柔軟性があり、網目構造を構成するフィラー特性が優れている。この特性を利用することによって、リチウムイオン2次電池、鉛蓄電池、キャパシター、燃料電池等のエネルギーディバイスの電極の強化とサイクル特性の向上に寄与できる。
【実施例】
【0097】
以下、実施例により本発明を更に詳しく説明するが、本発明は下記の実施例に何ら限定されるものではない。
【0098】
なお、以下において、本発明に用いられる炭素繊維構造体の各物性値は次のようにして測定した。
【0099】
<面積基準の円相当平均径>
まず、粉砕品の写真をSEMで撮影する。得られたSEM写真において、炭素繊維構造体の輪郭が明瞭なもののみを対象とし、炭素繊維構造体が崩れているようなものは輪郭が不明瞭であるために対象としなかった。1視野で対象とできる炭素繊維構造体(60〜80個程度)はすべて用い、3視野で約200個の炭素繊維構造体を対象とした。対象とされた各炭素繊維構造体の輪郭を、画像解析ソフトウェア WinRoof(商品名、三谷商事株式会社製)を用いてなぞり、輪郭内の面積を求め、各繊維構造体の円相当径を計算し、これを平均化した。
【0100】
<嵩密度の測定>
内径70mmで分散板付透明円筒に1g粉体を充填し、圧力0.1Mpa、容量1.3リットルの空気を分散板下部から送り粉体を吹出し、自然沈降させる。5回吹出した時点で沈降後の粉体層の高さを測定する。このとき測定箇所は6箇所とることとし、6箇所の平均を求めた後、嵩密度を算出した。
【0101】
<ラマン分光分析>
堀場ジョバンイボン製LabRam800を用い、アルゴンレーザーの514nmの波長を用いて測定した。
【0102】
<TG燃焼温度>
マックサイエンス製TG−DTAを用い、空気を0.1L/分の流速で流通させながら、10℃/分の速度で昇温し、燃焼挙動を測定した。燃焼時にTGは減量を示し、DTAは発熱ピークを示すので、発熱ピークのトップ位置を燃焼開始温度と定義した。
【0103】
<粉体抵抗および復元性>
CNT粉体1gを秤取り、樹脂製ダイス(内寸40L、10W、80Hmm)に充填圧縮し、変位および荷重を読み取る。4端子法で定電流を流して、そのときの電圧を測定し、0.9g/cmの密度まで測定したら、圧力を解除し復元後の密度を測定した。粉体抵抗については、0.5、0.8および0.9g/cmに圧縮したときの抵抗を測定することとする。
【0104】
<粒状部の平均粒径、円形度、微細炭素繊維との比>
面積基準の円相当平均径の測定と同様に、まず、炭素繊維構造体の写真をSEMで撮影する。得られたSEM写真において、炭素繊維構造体の輪郭が明瞭なもののみを対象とし、炭素繊維構造体が崩れているようなものは輪郭が不明瞭であるために対象としなかった。1視野で対象とできる炭素繊維構造体(60〜80個程度)はすべて用い、3視野で約200個の炭素繊維構造体を対象とした。
【0105】
対象とされた各炭素繊維構造体において、炭素繊維相互の結合点である粒状部を1つの粒子とみなして、その輪郭を、画像解析ソフトウェア WinRoof(商品名、三谷商事株式会社製)を用いてなぞり、輪郭内の面積を求め、各粒状部の円相当径を計算し、これを平均化して粒状部の平均粒径とした。また、円形度(R)は、前記画像解析ソフトウェアを用いて測定した輪郭内の面積(A)と、各粒状部の実測の輪郭長さ(L)より、次式により各粒状部の円形度を求めこれを平均化した。
【0106】
R=A×4π/L2
さらに、対象とされた各炭素繊維構造体における微細炭素繊維の外径を求め、これと前記各炭素繊維構造体の粒状部の円相当径から、各炭素繊維構造体における粒状部の大きさを微細炭素繊維との比として求め、これを平均化した。
【0107】
<粒状部の間の平均距離>
面積基準の円相当平均径の測定と同様に、まず、炭素繊維構造体の写真をSEMで撮影する。得られたSEM写真において、炭素繊維構造体の輪郭が明瞭なもののみを対象とし、炭素繊維構造体が崩れているようなものは輪郭が不明瞭であるために対象としなかった。1視野で対象とできる炭素繊維構造体(60〜80個程度)はすべて用い、3視野で約200個の炭素繊維構造体を対象とした。
【0108】
対象とされた各炭素繊維構造体において、粒状部が微細炭素繊維によって結ばれている箇所を全て探し出し、このように微細炭素繊維によって結ばれる隣接する粒状部間の距離(一端の粒状体の中心部から他端の粒状体の中心部までを含めた微細炭素繊維の長さ)をそれぞれ測定し、これを平均化した。
【0109】
<炭素繊維構造体の破壊試験>
蓋付バイアル瓶中に入れられたトルエン100mlに、30μg/mlの割合で炭素繊維構造体を添加し、炭素繊維構造体の分散液試料を調製した。
【0110】
このようにして得られた炭素繊維構造体の分散液試料に対し、発信周波数38kHz、出力150wの超音波洗浄器((株)エスエヌディ製、商品名:USK-3)を用いて、超音波を照射し、分散液試料中の炭素繊維構造体の変化を経時的に観察した。
【0111】
まず超音波を照射し、30分経過後において、瓶中から一定量2mlの分散液試料を抜き取り、この分散液中の炭素繊維構造体の写真をSEMで撮影する。得られたSEM写真の炭素繊維構造体中における微細炭素繊維(少なくとも一端部が粒状部に結合している微細炭素繊維)をランダムに200本を選出し、選出された各微細炭素繊維の長さを測定し、D50平均値を求め、これを初期平均繊維長とした。
【0112】
一方、得られたSEM写真の炭素繊維構造体中における炭素繊維相互の結合点である粒状部をランダムに200個を選出し、選出された各粒状部をそれぞれ1つの粒子とみなしてその輪郭を、画像解析ソフトウェア WinRoof(商品名、三谷商事株式会社製)を用いてなぞり、輪郭内の面積を求め、各粒状部の円相当径を計算し、このD50平均値を求めた。そして得られたD50平均値を粒状部の初期平均径とした。
【0113】
その後、一定時間毎に、前記と同様に瓶中から一定量2mlの分散液試料を抜き取り、この分散液中の炭素繊維構造体の写真をSEMで撮影し、この得られたSEM写真の炭素繊維構造体中における微細炭素繊維のD50平均長さおよび粒状部のD50平均径を前記と同様にして求めた。
【0114】
そして、算出される微細炭素繊維のD50平均長さが、初期平均繊維長の約半分となった時点(本実施例においては超音波を照射し、500分経過後)における、粒状部のD50平均径を、初期平均径と対比しその変動割合(%)を調べた。
【0115】
<導電性>
複合材料の試験片を、四探針式低抵抗率計(ロレスタGP、三菱化学製)を用いて塗膜表面9箇所の抵抗(Ω)を測定し、同抵抗計により体積抵抗率(Ω・cm)に換算し、平均値を算出した。
【0116】
<熱伝導率>
試験片所定の形状に切り出し、レーザーフラッシュ法にて熱伝導率(W/mK)を測定した。
【0117】
(実施例1)
i)炭素繊維構造体の合成
CVD法によって、トルエンを原料として炭素繊維構造体を合成した。
【0118】
触媒としてフェロセン及びチオフェンの混合物を使用し、水素ガスの還元雰囲気で行った。トルエン、触媒を水素ガスとともに380℃に加熱し、生成炉に供給し、1250℃で熱分解して、炭素繊維構造体(第一中間体)を得た。
【0119】
なお、この炭素繊維構造体(第一中間体)を製造する際に用いられた生成炉の概略構成を図6に示す。図6に示すように、生成炉1は、その上端部に、上記したようなトルエン、触媒および水素ガスからなる原料混合ガスを生成炉1内へ導入する導入ノズル2を有しているが、さらにこの導入ノズル2の外側方には、円筒状の衝突部3が設けられている。この衝突部3は、導入ノズル2の下端に位置する原料ガス供給口4より反応炉内に導出される原料ガスの流れに干渉し得るものとされている。なお、この実施例において用いられた生成炉1では、導入ノズル2の内径a、生成炉1の内径b、筒状の衝突部3の内径c、生成炉1の上端から原料混合ガス導入口4までの距離d、原料混合ガス導入口4から衝突部3の下端までの距離e、原料混合ガス導入口4から生成炉1の下端までの距離をfとすると、各々の寸法比は、おおよそa:b:c:d:e:f=1.0:3.6:1.8:3.2:2.0:21.0に形成されていた。また、反応炉への原料ガス導入速度は、1850NL/min、圧力は1.03atmとした。
【0120】
上記のようにして合成された中間体を窒素中で900℃で焼成して、タールなどの炭化水素を分離し、第二中間体を得た。この第二中間体のラマン分光測定のR値は0.98であった。また、この第一中間体をトルエン中に分散して電子顕微鏡用試料調製後に観察したSEMおよびTEM写真を図1、2に示す。
【0121】
次に、この第二中間体と、これに対し0.1質量%のB(Wako Chemical Company 製)とを、20分間エタノール中に超音波(KUBOTA UP50H)を用いて均一分散せしめた。その後、24時間減圧乾燥した。
【0122】
このホウ素を添加した第二中間体をアルゴン中で2300℃で高温熱処理し、得られた炭素繊維構造体の集合体を気流粉砕機にて粉砕し、本発明において用いられる炭素繊維構造体を得た。
【0123】
得られた炭素繊維構造体をトルエン中に超音波で分散して電子顕微鏡用試料調製後に観察したSEM写真を図4に示す。
【0124】
また、得られた炭素繊維構造体をそのまま電子顕微鏡用試料ホルダーに載置して観察したSEM写真を図5に、またその粒度分布を表1に示した。
【0125】
また、得られた炭素繊維構造体の円相当平均径は、75.8μm、嵩密度は0.0035g/cm、ラマンI/I比値は0.68、IG’/I比値は0.44、TG燃焼温度は818℃、粉体抵抗値は0.0048Ω・cm、復元後の密度は0.33g/cmであった。
【0126】
さらに炭素繊維構造体における粒状部の粒径は平均で、452nm(SD208nm)であり、炭素繊維構造体における微細炭素繊維の外径の7.38倍となる大きさであった。また粒状部の円形度は、平均値で0.68(SD0.14)であった。
【0127】
また、前記した手順によって炭素繊維構造体の破壊試験を行ったところ、超音波印加30分後の初期平均繊維長(D50)は、13.0μmであったが、超音波印加500分後の平均繊維長(D50)は、6.8μmとほぼ半分の長さとなり、炭素繊維構造体において微細炭素繊維に多くの切断が生じたことが示された。しかしながら、超音波印加500分後の粒状部の平均径(D50)を、超音波印加30分後の初期初期平均径(D50)と対比したところ、その変動(減少)割合は、わずか4.7%であり、測定誤差等を考慮すると、微細炭素繊維に多くの切断が生じた負荷条件下でも、切断粒状部自体はほとんど破壊されることなく、繊維相互の結合点として機能していることが明らかとなった。
【0128】
なお、実施例1で合成した炭素繊維構造体の各種物性値を表2にまとめた。
【0129】
【表1】

【0130】
【表2】

ii)複合材料の生成
上記i)で合成した実施例1の炭素繊維構造体をマトリックス中に含有する、本発明の複合材料を生成した。
【0131】
具体的には、下記表3に示す配合にて、上記i)にて合成した炭素繊維構造体を、エポキシ樹脂(アデカレジン、旭電化工業(株)製)、硬化剤(アデカハードナー、旭電化工業(株)製)に配合し、自転−公転型遠心力撹拌機(あわとり練太郎AR−250、シンキー製)にて10分間混練し、エポキシ系接着剤組成物を製造した。
【0132】
ここで得られたエポキシ系接着剤組成物を、ガラス板上に、塗布幅100mm、間隙200μmのアプリケータにて塗布し、170℃で30分間保持し、硬化塗膜を作製した。
【0133】
作製した塗膜を50mm角に切り出し、試験片を得た。この試験片を用いて体積抵抗率及び熱伝導率を測定した。その結果を表3に示す。
【0134】
また、炭素繊維構造体の含有量が0.5質量%となるようにして、同様にエポキシ樹脂被膜を製膜した。
【0135】
(比較例1)
ii)複合材料の生成
炭素繊維構造体に代えて、市販されているカーボンブラックをマトリクス中に含有する、比較例1の複合材料を生成した。
【0136】
具体的な方法は、炭素繊維構造体の代わりにカーボンブラックを用いた点以外は、上記実施例1における複合材料の生成と同様である。
【0137】
比較例1の複合材料の試験片を用いて体積抵抗率及び熱伝導率を測定した。その結果を上記実施例1のそれと併記して表3に示す。
【0138】
【表3】

P-4100E:旭電化工業(株)製、アデカレジンEP-4100E;ビスフェノールA型エポキシ樹脂、エポキシ当量190
上記表1からも明らかなように、複合材料を構成する炭素繊維構造体にホウ素を含有せしめることにより、体積抵抗率および熱伝導率を向上することができる。
【図面の簡単な説明】
【0139】
【図1】本発明の複合材料に用いる炭素繊維構造体の中間体のSEM写真である。
【図2】本発明の複合材料に用いる炭素繊維構造体の中間体のTEM写真である。
【図3】(a)(b)は、それぞれ本発明の複合材料に用いる炭素繊維構造体の中間体のTEM写真である。
【図4】本発明の複合材料に用いる炭素繊維構造体のSEM写真である。
【図5】本発明の複合材料に用いる炭素繊維構造体のSEM写真である。
【図6】本発明の実施例において炭素繊維構造体の製造に用いた生成炉の概略構成を示す図面である。
【符号の説明】
【0140】
1 生成炉
2 導入ノズル
3 衝突部
4 原料ガス供給口
a 導入ノズルの内径
b 生成炉の内径
c 衝突部の内径
d 生成炉の上端から原料混合ガス導入口までの距離
e 原料混合ガス導入口から衝突部の下端までの距離
f 原料混合ガス導入口から生成炉の下端までの距離

【特許請求の範囲】
【請求項1】
外径15〜100nmの炭素繊維から構成される3次元ネットワーク状を呈しており、前記炭素繊維が複数延出する態様で、当該炭素繊維を互いに結合する粒状部を有しており、かつ、当該粒状部は前記炭素繊維の成長過程において形成されてなるものであり、さらに、ホウ素が含有されているものである炭素繊維構造体を、全体の0.001〜30質量%の割合でマトリックス中に含有することを特徴する複合材料。
【請求項2】
前記ホウ素の含有量が、前記炭素繊維構造体に対して0.001〜2.1質量%であることを特徴とする請求項1に記載の複合材料。
【請求項3】
前記炭素繊維構造体は、面積基準の円相当平均径が50〜100μmであることを特徴とする請求項1または2に記載の複合材料。
【請求項4】
前記炭素繊維構造体は、嵩密度が、0.0001〜0.05g/cmであることを特徴とする請求項1〜3のいずれか1つに記載の複合材料。
【請求項5】
前記炭素繊維構造体は、ラマン分光分析法で測定されるI/Iが0.2〜1.4であり、且つ、IG’/Iが0.25〜0.75であることを特徴とする請求項1〜4のいずれか1つに記載の複合材料。
【請求項6】
前記炭素繊維構造体は、空気中での燃焼開始温度が700℃以上であることを特徴とする請求項1〜5のいずれか1つに記載の複合材料。
【請求項7】
前記炭素繊維の結合箇所において、前記粒状部の粒径が、前記炭素繊維の外径よりも大きいことを特徴とする請求項1〜6のいずれか1つに記載の複合材料。
【請求項8】
前記炭素繊維構造体は、炭素源として、分解温度の異なる少なくとも2つ以上の炭素化合物を用いて、生成されたものである請求項1〜7のいずれか1つに記載の複合材料。
【請求項9】
マトリックスが有機ポリマーを含むものである請求項1〜8のいずれか1つに記載の複合材料。
【請求項10】
マトリックスが無機材料を含むものである請求項1〜8のいずれか1つに記載の複合材料。
【請求項11】
マトリックスが金属を含むものである請求項1〜8のいずれか1つに記載の複合材料。
【請求項12】
マトリックス中に、金属微粒子、シリカ、炭酸カルシウム、炭酸マグネシウム、カーボンブラック、ガラス繊維および炭素繊維からなる群から選ばれた少なくとも一種の充填剤をさらに含むことを特徴とする請求項1〜11のいずれか1つに記載の複合材料。

【図6】
image rotate

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate


【公開番号】特開2007−119647(P2007−119647A)
【公開日】平成19年5月17日(2007.5.17)
【国際特許分類】
【出願番号】特願2005−315310(P2005−315310)
【出願日】平成17年10月28日(2005.10.28)
【出願人】(502205145)株式会社物産ナノテク研究所 (101)
【Fターム(参考)】