説明

複数のショーケースを備えた冷凍・冷蔵設備の集中管理システム

【課題】制御方式がシンプルであり、夏期冬季を問わず、しかも他に比べ低温に維持しなければならないショーケースが混在していてもエネルギ消費の少ない圧縮機の運転が可能な複数のショーケースを備えた冷凍・冷蔵設備の集中管理システムを提供すること。
【解決手段】複数のショーケース1A,1Bにそれぞれ内蔵した蒸発器15A,15Bに対し共通の圧縮機5から吐出した冷媒を凝縮器7を介して供給する冷凍サイクルにおいて、複数のショーケース1A,1Bの個々の冷却状態を示す情報に基づき、圧縮機5の冷媒吸入圧力を設定する冷凍・冷蔵設備の集中管理システムであって、前記圧縮機の冷媒吸入圧力を、各ショーケース単位の運転状況情報、冷媒圧力、固有の圧力損失値に基づき設定して冷凍機の容量制御を行う。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、複数のショーケースにそれぞれ内蔵した蒸発器に対し共通の圧縮機から吐出した冷媒を凝縮器を介して供給する冷凍サイクルにおいて、複数のショーケースの個々の冷却状態を示す情報に基づき、圧縮機の冷媒吸入圧力を設定する冷凍・冷蔵設備の集中管理システムに関する。
【背景技術】
【0002】
従来、複数のショーケースにそれぞれ内蔵した蒸発器に対し共通の圧縮機から吐出した冷媒を凝縮器を介して供給する冷凍サイクルにおいて、ショーケース内に温度を一定の範囲内に保持するために、ショーケース内の循環冷気温度の測定値が上限設定値になると電磁弁が開いて冷媒を蒸発器側に流入させ、下限設定値になると電磁弁を閉じて蒸発器側への冷媒の流入を遮断するようにした冷凍・冷蔵設備が知られている。このような冷凍・冷蔵設備は、圧縮機による冷凍能力は、一般に夏期を基準にしているため、夏期以外では冷凍能力がショーケース負荷に比べ過大となり、無駄な電力消費が起こるので、電磁弁のオン、オフの運転率を各ショーケース毎に求め、運転率が高い場合には通常状態と判断し、運転率が低い場合には冷凍能力過剰運転と判断して、圧縮機の吸入冷媒圧力をシフトアップした技術が公知である。(例えば、特許文献1参照)。
【0003】
【特許文献1】特開2001−66032号公報(段落0015〜0018、図1,3)
【発明の開示】
【発明が解決しようとする課題】
【0004】
しかしながら、特許文献1にあっては、圧縮機の運転率を絶えず演算する負荷判定部が必要となり、制御方式が複雑化するだけでなく、負荷を高負荷と通常負荷との2段階で切り換えるので、通常運転における細かな冷凍機の省エネ運転は不可能であり、しかも複数のショーケースのうち庫内温度を比較的低温に維持しなければならないショーケースがいくつか存在する場合には、当該ショーケースを基準にして圧縮機の吸入冷媒圧力を設定するため、圧縮機の吸入冷媒圧力を大きくシフトアップして、エネルギ消費を少なくすることが困難であった。
【0005】
本発明は、このような問題点に着目してなされたもので、制御方式がシンプルであり、夏期冬季を問わず、しかも他に比べ低温に維持しなければならないショーケースが混在していてもエネルギー消費の少ない圧縮機の運転が可能な複数のショーケースを備えた冷凍・冷蔵設備の集中管理システムを提供することを目的とする。
【課題を解決するための手段】
【0006】
前記課題を解決するために、本発明の請求項1に記載の複数のショーケースを備えた冷凍・冷蔵設備の集中管理システムは、複数のショーケースにそれぞれ内蔵した蒸発器に対し共通の圧縮機から吐出した冷媒を凝縮器を介して供給する冷凍サイクルにおいて、前記複数のショーケースの個々の冷却状態を示す情報に基づき、前記圧縮機の冷媒吸入圧力を設定する冷凍・冷蔵設備の集中管理システムであって、前記圧縮機の冷媒吸入圧力を、各ショーケース単位の運転状況情報、冷媒圧力、固有の圧力損失値に基づき設定して冷凍機の容量制御を行うことを特徴としている。
この特徴によれば、各ショーケース単位の固有の圧力損失値情報を考慮して圧縮機の冷媒吸入圧力を設定することで、制御方式がシンプルとなり、かつ冷媒吸入圧力を低く設定し過ぎることがないので、冷凍機の運転エネルギー消費量を低く抑えることができる。
【0007】
本発明の請求項2に記載の複数のショーケースを備えた冷凍・冷蔵設備の集中管理システムは、請求項1に記載の複数のショーケースを備えた冷凍・冷蔵設備の集中管理システムであって、前記圧縮機の冷媒吸入圧力は、運転されている各ショーケース側の個々の蒸発圧力からそれぞれのショーケースに基づく固有の圧力損失値を引いた値を所要時間毎に算出し、最も低い圧力値に基づいて所要時間毎に設定されることを特徴としている。
この特徴によれば、圧縮機の冷媒吸入圧力をショーケースに基づく固有の圧力損失値を考慮して、所要時間毎に最も低い圧力値に基づいて設定しているので、圧縮機の冷媒吸入圧力値を所要時間毎に絶えず選定することで、冷凍機のエネルギー消費を常に低い状態に維持できる。
【0008】
本発明の請求項3に記載の複数のショーケースを備えた冷凍・冷蔵設備の集中管理システムは、請求項2に記載の複数のショーケースを備えた冷凍・冷蔵設備の集中管理システムであって、前記圧縮機の冷媒吸入圧力は所要時間毎に算出した最も低い圧力値から所定のオフセット量低い圧力としたことを特徴としている。
この特徴によれば、最も低い圧力値からさらにオフセット量低くし圧力値を圧縮機の冷媒吸入圧力とすることにより、冷凍機の冷却能力に余裕を持たせることができる。
【0009】
本発明の請求項4に記載の複数のショーケースを備えた冷凍・冷蔵設備の集中管理システムは、請求項3に記載の複数のショーケースを備えた冷凍・冷蔵設備の集中管理システムであって、前記オフセット量低くした圧力値を上限値とし、該上限値より所定圧力更に低い圧力値を下限値とし、前記圧縮機の冷媒吸入圧力が前記上限値と下限値の範囲内に収まるように圧縮機が容量制御されることを特徴としている。
この特徴によれば、圧縮機の冷媒吸入圧力が上限値と下限値を有する一定のディファレンシャル差圧を有しているので、圧縮機の風量制御の追従性が良くなり、圧縮機の短時間での容量の反転動作(いわゆるハンチング)を防ぐことができる。
【0010】
本発明の請求項5に記載の複数のショーケースを備えた冷凍・冷蔵設備の集中管理システムは、請求項4に記載の複数のショーケースを備えた冷凍・冷蔵設備の集中管理システムであって、前記ショーケースの冷却運転がすべて停止し、圧縮機の冷媒吸入圧力が前記下限値より所定値低下した場合に、冷凍機の運転を停止することを特徴としている。
この特徴によれば、デフロストで全てのショーケースの冷却運転が停止した場合に、圧縮機の冷媒吸入圧力が真空化するのを事前に防ぎ、冷凍システムの保護を図ることができる。
【発明を実施するための最良の形態】
【0011】
本発明に係る複数のショーケースを備えた冷凍・冷蔵設備の集中管理システムを実施するための最良の形態を実施例に基づいて以下に説明する。
【実施例1】
【0012】
本発明の実施例1を図面に基づいて説明する。図1は、冷凍サイクルを説明するための本発明が適用される冷蔵又は冷凍ショーケースの一般的な構造説明図であり、図2は本発明の冷凍・冷蔵設備の集中管理システムの系統図であり、図3は制御管理ユニットの概略構成を示すブロック図であり、図4はショーケース単位の、種類や、圧力損失値等の各種情報を示した表であり、図5は、圧縮機の吸入圧力推移範囲を自動設定した場合のエコ運転状況を示す線図である。図1の符号1は、スーパーマーケットなどに設置されるオープンショーケースとして構成された冷蔵ショーケースであり、図1において1台しか示されていないが、冷凍ショーケースも含んで複数のショーケースが互いに間隔をおいて連設されており、これら複数のショーケースは一系統の冷凍機ユニット3により冷却制御されている。
【0013】
冷凍機ユニット3は、圧縮機5,凝縮器7、受液器9を備え、凝縮器7からの冷媒は矢印で示すように、受液器9を介して電磁弁11,膨張弁13を通り蒸発器15に供給され、ここで冷媒は蒸発してショーケース1内を冷却し、その後、圧縮機5に回収される。また、ショーケース1本体内には商品陳列棚17が多段に設けられていると共に、ショーケース1の内周部には内側の冷気循環通路19と外側の空気循環通路21の2つの通路が2重構造に形設されている。
【0014】
送風機23によりショーケース1内を循環する空気は、蒸発器15のところで冷却され、冷気となって内側の冷気循環通路19を経由してショーケース1の前面開口に導かれ、冷気エアーカーテン25を形成する。一方、送風機23によりショーケース1内を循環する空気は、冷気循環通路19の外側に設けた空気循環通路21を通り冷気エアーカーテン25の外側に保護エアーカーテン28を形成する。
【0015】
また、ショーケース1内には庫内温度を計測する温度センサー29が設置され、この温度センサー29からの信号は図示しないコントローラに入力される。コントローラは温度センサー29で計測した温度が予め設定した上下限値と比較し、上限値より高くなれば電磁弁11を開放して冷却を図り、下限値より低くなれば電磁弁11を閉鎖して冷却を停止し、ショーケース1の庫内温度が設定温度範囲内になるように制御している。
【0016】
次に、図2に基づきは本発明の冷凍・冷蔵設備の集中管理システムについて説明する。冷凍機ユニット3は複数のショーケース1A、1B・・・に冷媒を循環供給している。即ち、冷凍機ユニット3に圧縮機5から凝縮器7、受液器9を介して各ショーケース1A、1B・・・の電磁弁11A,11B・・・、膨張弁13A,13B・・・を通り蒸発器15A,15B・・・に供給された冷媒は、蒸発して各ショーケース1A,1B・・・内を冷却し、その後、再び圧縮機5に戻される。
【0017】
各ショーケース1A,1B・・・内での温度制御は、先に説明したように、温度センサー29A,29B・・・からの信号に基づき各コントローラ31A,31B・・・からの出力信号で電磁弁11A,11B・・・を開閉制御することで行う。制御管理ユニット33は、各ショーケース1A,1B・・・の各コントローラ31A,31B・・・から運転状況情報や庫内温度情報を、また、電磁弁11A,11B・・・と膨張弁13A,13B・・・間の冷媒配管に設けた冷媒の入り口温度センサー35A,35B・・・で計測した蒸発器入り口温度からの計測情報、圧縮機5の冷媒吸入圧力を計測する圧力センサー37からの情報に基づき、最適な圧縮機の冷媒吸入圧力が得られるよう圧縮機制御部39に出力して圧縮機の運転制御を行って、冷凍・冷蔵設備の集中管理をする。
【0018】
運転状況情報は冷媒が蒸発器15A,15B・・・内を流通しているかどうかを判断するものであり、電磁弁11A,11B・・・の開(オン),閉(オフ)で判断している。また、冷媒の入り口温度センサー35A,35B・・・で計測した温度は、制御管理ユニット33において各ショーケース1A,1B・・・の冷媒蒸発圧力(以下単に冷媒圧力という)に変換される。
【0019】
図3に示すように、制御管理ユニット33は、制御部33a、外部信号入力部33b、制御信号出力部33c、記憶部33d、表示部33eを備え、外部信号入力部33bには各コントローラ31A,31B・・・から所属の電磁弁11A,11B・・・のオン、オフ情報と、各ショーケース1A,1B・・・毎の蒸発器の入り口温度情報と、圧縮機5の冷媒吸入圧力情報とを受け取ると共に、操作端末を介し各種設定情報を入力することができる。
【0020】
制御部33aでは電磁弁11A,11B・・・のオン、オフ情報により各ショーケース1A,1B・・・毎に運転状態にあるか否かを判定すると共に、各ショーケース1A,1B・・・毎の蒸発器の入り口温度情報より冷媒の蒸発温度を換算し、そのときの冷媒の蒸発圧力を演算して、記憶部33dに運転状態や演算結果を記憶保存する。また記憶部に33dにはメモリカード等の外部記憶媒体33d’に各種情報を記憶させて取り出すことができると共に、外部記憶媒体33d’に記憶した各種設定情報を記憶部33dに取り込むこともできる。
【0021】
表示部33eは操作端末を介し各種設定情報を入力するときの情報を表示したり、あるいはショーケースの各種冷却情報(庫内温度等)を表示させるための信号変換部であり、制御部33a上にあるいは独立した表示パネル(図示せず)に各種冷却情報を表示させることができる。そして制御信号出力部33cでは、各種冷却情報に基づき制御部33aで演算した最適な圧縮機5の冷媒吸入圧力を得るために圧縮機制御部39に出力信号を送信する。圧縮機制御部39では圧縮機5の冷媒吸入圧力が制御部33aで演算した値になるように、インバータにより圧縮機5の回転数が可変制御される。
【0022】
圧縮機を駆動するためのエネルギー消費を極力抑えた効率の良いエコ運転するためには、圧縮機5の冷媒吸入圧力の最適値を見いださなければならない。即ち、圧縮機の消費電力量は、圧縮機の吐出圧力から吸入圧力を引いた圧力差に左右されるため、圧縮機5の冷媒吸入圧力が高い圧力値で運転することが望ましいが、運転状態にある各ショーケース1A,1B・・・の蒸発器15A,15B・・・に冷媒を確実に循環供給するためには、刻々と変動する各ショーケース単位の冷媒圧力と、各ショーケース1A,1B・・・有する固有の圧力損失値を求める必要がある。ここで言う固有の圧力損失値とは各ショーケース1A,1B・・・に内蔵した個々の蒸発器15A,15B・・が有する冷媒の流路抵抗と、各ショーケース1A,1B・・・が配置された位置から圧縮機5までの冷媒管路抵抗を圧力の損失値として換算したもので、各ショーケース1A,1B・・・毎に実測して求め、その実測値を制御部33aの記憶部33dに予め記憶させておく。
【0023】
図4は、庫内温度を2〜15°Cに保つ青果用ショーケース、−2〜2°Cに保つ精肉鮮魚用ショーケースが含まれる複数のショーケース毎の、ショーケースの種類、圧縮機からショーケースまでの距離、圧力損失値、圧縮機の冷媒吸入圧力を0.14MPaで吸引したある時点での運転状態にあるショーケースにおける冷媒の蒸発圧力を一部省略して示したものであり、ショーケースは圧縮機から一番近いもので5m離れ、一番遠いものでは12m以上離れた状態で設置してある。
【0024】
そして図4に示すように、ショーケース1Aについて言えば、蒸発圧力(A)0.29MPaからショーケース1Aの固有の圧力損失値(R)0.015MPaを引いた値、即ち、(A)−(R)=0.29―0.015=0.275MPaより低い吸入圧で吸引しなければ流路抵抗により冷媒の流れが停止してしまうことになる。同様にショーケース1Bでは(A)−(R)=0.28―0.018=0.262MPa以下の吸入圧で吸引する必要がある。このようにして運転されているショーケース全てに冷媒を循環供給するためには、(A)−(R)の値が最も小さな値となるショーケース1Dの0.234MPaが基準となり、圧縮機吸引圧が0.234MPa以下で運転されればよいことになるが、実際には圧縮機の冷媒吸入圧力が0.14MPaで運転されているので問題はない。しかし、圧縮機の冷媒吸入圧力が0.14MPaになるように運転するには圧縮機のインバータ制御による回転数の増減を絶えず行わなければならないので、制御特性の安定性から一般には、ディファレンシャル差圧として本実施例1では0.03MPaだけ幅を持たせて運転するようになっている。
【0025】
図4に示した各ショーケースの蒸発圧力(A)の値は、ある時点での値であり、次の瞬間にはオフになっていた電磁弁が開放してショーケースが運転状態に入ったり、逆に今まで運転状態にあったショーケースがデフロスト状態に入ることもあり、時々刻々と各ショーケース単位で(A)−(R)の値が変化している。従って(A)−(R)の値の最も小さな値は絶えず変化しそのたびに最適な圧縮機の冷媒吸入圧力の設定範囲を変化させる必要がある。
【0026】
図5は本発明の冷凍・冷蔵設備の集中管理システムのエコ運転の状況を示した線図であり、最適な圧縮機の冷媒吸入圧力の設定範囲が自動設定されている。図5における線分Xは制御管理ユニット33の制御部33aで運転中のショーケースの蒸発圧力値(A)から圧力損失値(R)を引いた値(A)−(R)を設定値毎に演算し、その最低値を各秒ごとに14秒間プロットしたものである。圧縮機の冷媒吸入圧力のロードアップ圧PU(線分Y)は、線分Xよりも0.03MPaのオフセット圧だけ低く設定して冷凍能力に余裕を持たせている。そして前記ようにロードアップ圧PUとロードダウン圧PD(線分Z)の差圧であるディファレンシャル差圧を0.03MPaとすることで、圧縮機の風量制御の追従性が良くすると共に、圧縮機の短時間での容量の反転動作(いわゆるハンチング)を防ぎ、制御特性の安定化を図っている。
【0027】
最適な圧縮機の冷媒吸入圧力の自動設定について詳述すると、線分Xに対しオフセット圧である0.03MPa低い、線分Xと平行な線分Yがロードアップ線分となり、線分Yより更にディファレンシャル差圧である0.03MPa低い線分がロードダウン線分Z となる。従って、圧縮機5の冷媒吸入圧は1秒ごとに線分Yと線分Z間で線分Xに対し追従推移するようにフィードバック制御される。
【0028】
自動調節の方法は圧縮機5の冷媒吸入圧力を圧力センサー37で設定値毎に計測し、その計測値を制御管理ユニット33の外部信号入力部33bに取り込み、制御部33aで計測値がロードアップ圧PUとロードダウン圧PDの範囲内にあるように、制御信号出力部33cより圧縮機制御部39に出力する。圧縮機5の冷媒吸入圧力がロードアップ圧PUより高くなろうとする時はインバータ制御により圧縮機5の回転速度を上げ出力容量を増加させ、逆にロードダウン圧PDより低くなろうとする時は圧縮機5の回転速度を下げて出力容量を減少させる制御を行っている。これにより、圧縮機5の冷媒吸入圧力が常にロードアップ圧PUとロードダウン圧PDの範囲内にある。
【0029】
しかし、デフロストが一斉に入り全てのショーケースの電磁弁が閉止すると冷媒が流れなくなり、圧縮機5の冷媒吸入圧力がロードアップ圧PUとロードダウン圧PDの範囲内にとどまらず低下していくので、ロードダウン圧PDより低い所定圧になった時、制御信号出力部33cより圧縮機制御部39に停止指令信号を出して圧縮機の運転を止め冷凍システムの保護を図るようになっている。
【0030】
このように、圧縮機の冷媒吸入圧力は、冷媒の流れ抵抗と、圧縮機の制御上の安定性を考慮した上で極力高い吸入圧を選択しているので、圧縮機の運転に要するエネルギー消費を低く維持でき、設定値に余裕を持たせて低く設定していた従来の圧縮機駆動制御に比べ省エネ運転が実現できる。
【実施例2】
【0031】
本発明の実施例2を図6に基づいて説明する。図6は、圧縮機の吸入圧力推移範囲を手設定した場合のエコ運転状況を示す線図である。
【0032】
本実施例では、運転中のショーケースの蒸発圧力値(A)から圧力損失値(R)を引いた値(A)−(R)を設定値毎に演算し、その最低値を各秒ごとに記憶しある期間統計を取り、各最低値のうちで最も低い値を基準にしてその値よりオフセット圧引いた値をロードアップ圧とし、更にその値よりディファレンシャル差圧引いた値をロードダウン圧とし、ロードアップ圧とロードダウン圧範囲を固定してこの範囲内で圧縮機の吸入圧力推移させている。
【0033】
図6に示すように、最も低い基準圧が0.17MPaであり、オフセット圧の0.03MPaを考慮してロードアップ圧が0.14MPa、ロードダウン圧をディファレンシャル差圧(0.03MPa)分低い0.11MPaとしたものであり、ショーケースの蒸発圧力値(A)から圧力損失値(R)を引いた値(A)−(R)の最低値を各秒ごとにプロットした線分Xが高い圧を示しても、圧縮機の吸入圧力推移範囲は不変である。したがって、実施例1に比べ、圧縮機の吸入圧力推移範囲が線分Xに追従しない分だけ、線分Xの値が大きいときにエネルギー消費が多少多くなるが、冷媒の流れ抵抗と、圧縮機の制御上の安定性を考慮した上で極力高い吸入圧を手動選択しているので、従来の圧縮機駆動に比べ省エネ運転が実現できる。
【0034】
以上、本発明の実施例を図面により説明してきたが、具体的な構成はこれら実施例に限られるものではなく、本発明の要旨を逸脱しない範囲における変更や追加があっても本発明に含まれる。
【0035】
例えば、実施例では、冷媒の蒸発温度情報よりそのときの冷媒の蒸発圧力を演算して求めているが、直接冷媒の蒸発圧力をセンサーで検出するようにしても良い。また、実施例では、オフセット圧を0.03MPa、ディファレンシャル差圧を0.03MPaとして固定しているが、ショーケースの数や、用途、圧縮機の性能、使用時節等によって適宜その値を変えることができる。
【0036】
更に、前記実施例では、一系統30台のショーケースを1台の冷凍機ユニットで冷媒を循環供給して、圧縮機の運転を制御管理ユニットで制御しているが、ショーケースの数は30台に限定されるものではなく、また、冷凍機ユニットを複数用意し複数台のショーケースを有するグループ毎に冷凍機ユニットを設けて多グループ化し、これらを制御管理ユニットで管理制御することも可能である。また、圧縮機はインバータ式圧縮機に限らず容量制御により吸入圧が可変にできるものであれば他の形式の圧縮機を使用しても良い。
【図面の簡単な説明】
【0037】
【図1】冷凍サイクルを説明するための本発明が適用される冷蔵又は冷凍ショーケースの一般的な構造説明図である。
【図2】本発明の第1実施例に係わる冷凍・冷蔵設備の集中管理システムの系統図である。
【図3】制御管理ユニットの概略構成を示すブロック図である。
【図4】ショーケース単位の、種類や、圧力損失値等の各種情報を示した表である。
【図5】圧縮機の吸入圧力推移範囲を自動設定した場合のエコ運転状況を示す線図である。
【図6】圧縮機の吸入圧力推移範囲を手動設定した場合のエコ運転状況を示す線図である。
【符号の説明】
【0038】
1,1A,1B キャビネット
3 冷凍機ユニット
5 圧縮機
7 凝縮器
9 受液器
11,11A,11B 電磁弁
13,13A,13B 膨張弁
15,15A,15B 蒸発器
17 商品陳列棚
19 冷気循環通路
21 空気循環通路
23 送風機
25 冷気エアーカーテン
28 保護エアーカーテン
29 温度センサー
31A,31B コントローラ
33 制御管理ユニット
33a 制御部
33b 外部信号入力部
33c 制御信号出力部
33d 記憶部
33d’ 外部記憶媒体
33e 表示部
35A、35B 冷媒の入り口温度センサー
37 圧力センサー
39 圧縮機制御部

【特許請求の範囲】
【請求項1】
複数のショーケースにそれぞれ内蔵した蒸発器に対し共通の圧縮機から吐出した冷媒を凝縮器を介して供給する冷凍サイクルにおいて、前記複数のショーケースの個々の冷却状態を示す情報に基づき、前記圧縮機の冷媒吸入圧力を設定する冷凍・冷蔵設備の集中管理システムであって、前記圧縮機の冷媒吸入圧力を、各ショーケース単位の運転状況情報、冷媒圧力、固有の圧力損失値に基づき設定して冷凍機の容量制御を行うことを特徴とする冷凍・冷蔵設備の集中管理システム。
【請求項2】
前記圧縮機の冷媒吸入圧力は、運転されている各ショーケース側の個々の蒸発圧力からそれぞれのショーケースに基づく固有の圧力損失値を引いた値を所要時間毎に算出し、最も低い圧力値に基づいて所要時間毎に設定される請求項1に記載の冷凍・冷蔵設備の集中管理システム。
【請求項3】
前記圧縮機の冷媒吸入圧力は所要時間毎に算出した最も低い圧力値から所定のオフセット量低い圧力とした請求項2に記載の冷凍・冷蔵設備の集中管理システム。
【請求項4】
前記オフセット量低くした圧力値を上限値とし、該上限値より所定圧力更に低い圧力値を下限値とし、前記圧縮機の冷媒吸入圧力が前記上限値と下限値の範囲内に収まるように圧縮機が容量制御される請求項3に記載の冷凍・冷蔵設備の集中管理システム。
【請求項5】
前記ショーケースの冷却運転がすべて停止し、圧縮機の冷媒吸入圧力が前記下限値より所定値低下した場合に、冷凍機の運転を停止する請求項4に記載の冷凍・冷蔵設備の集中管理システム。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate


【公開番号】特開2007−147184(P2007−147184A)
【公開日】平成19年6月14日(2007.6.14)
【国際特許分類】
【出願番号】特願2005−343599(P2005−343599)
【出願日】平成17年11月29日(2005.11.29)
【出願人】(000000561)株式会社岡村製作所 (1,415)
【Fターム(参考)】