説明

触媒劣化防止装置および低NOx燃焼装置

【課題】 触媒手段の性能低下を防止するとともに、低公害の効果を長期に亘って持続させることである。
【解決手段】 接触によりガスの化学的変化を生ずる触媒成分を含む触媒手段4の触媒劣化防止装置であって、前記ガス中に含まれ前記触媒成分に吸着,または当該触媒成分と化合物を形成する被毒物質を除去する被毒物質除去手段3が前記触媒手段4の一次側に備えられることを特徴とする。また、被毒物質除去手段3と前記触媒手段4とを互いに間隔を存して、それぞれを交換可能に設ける。被毒物質除去手段3の被毒物質を吸着,または当該被毒物質と化合物を形成する成分の担持体24,25と前記触媒手段3の触媒成分の担持体24,25とを一体的に構成し、交換可能に設ける。

【発明の詳細な説明】
【技術分野】
【0001】
この発明は、水管ボイラ,吸収式冷凍機の再生器などに適用される触媒劣化防止装置および低NOx燃焼装置に関する。
【背景技術】
【0002】
一般に、NOxの発生の抑制原理として、火炎(燃焼ガス)温度の抑制,高温燃焼ガスの滞留時間の短縮などが知られている。そして、これらの原理を応用した種々の低NOx化技術がある。たとえば、2段燃焼法,濃淡燃焼法,排ガス再循環燃焼法,水添加燃焼法,蒸気噴射燃焼法,水管群による火炎冷却燃焼法などが提案され実用化されている。
【0003】
ところで、水管ボイラなどの比較的容量の小さいNOx発生源についても環境への関心が高まり、一層の低NOx化が求められるようになってきている。この低NOx化においては、NOxの生成を低減するとCOの排出量が増加するので、NOxとCOを同時に削減することが難しい。
【0004】
その原因は、低NOx化と低CO化とが相反する技術的課題であることにある。すなわち、低NOxを推し進めるために燃焼ガス温度を急激に低下させ、900℃以下の低い温度に抑制すると、COが多量に発生すると共に発生したCOが酸化されないまま排出され、CO排出量が増大してしまう。逆に、COの排出量を少なくするために、燃焼ガス温度を高めに抑制すると、NOxの生成量の抑制が不十分となる。
【0005】
この課題を解決するために、出願人は、低NOx化に伴い発生するCO量をできるだけ少なくするように、また発生したCOが酸化するように燃焼ガス温度を抑制する低NOxおよび低CO技術を提案し、製品化している(特許文献1,2参照)。しかしながら、この特許文献1,2記載の低NOx化技術は、現実には生成NOx値が25ppm程度にとどまっていた。
【0006】
この課題の解決案として、出願人は、NOx発生の抑制を排出CO値の低減に優先するように燃焼ガス温度を抑制して生成NOx値を所定値以下とする低NOx化ステップを行い、その後に前記低NOx化ステップからの排出CO値を所定値以下とする低CO化ステップを行う低NOx燃焼方法を提案している(特許文献3,4参照)。この特許文献3,4記載の技術によれば、10ppmを下回る低NOx化が可能となるが、5ppmを下回る低NOx化を実現することは難しい。これは、燃焼の特性により、5ppm以上のNOxの生成が避けられないことによる。
【0007】
特許文献3,4記載の低NOx化技術は、空気比が1.38以上の所謂高空気比燃焼領域に属するものである。一方、1に近い低空気比の燃焼領域では窒素酸化物の発生量が増えて、低NOx化と低CO化との両立が困難であること,および空気比が1以下となるとバックファイヤーを起こすなど安定燃焼制御が困難なことから、低空気比燃焼の領域は、これまで殆ど研究開発の対象とされていなかった。
【0008】
一方において、省エネルギーとなる低空気比運転が求められるようになってきている。
【0009】
【特許文献1】特許第3221582号公報
【特許文献2】米国特許第5353748号明細書(特許文献1の対応米国特許)
【特許文献3】特開2004−125378号公報
【特許文献4】米国特許第6792895号明細書(特許文献2の対応米国特許)
【発明の開示】
【発明が解決しようとする課題】
【0010】
この出願の発明者らは、これまで殆ど研究が行われていなかった1に近い低空気比の燃焼領域において、窒素酸化物の排出量を低減でき、一酸化炭素排出量を許容範囲に低減できるとともに、低空気比による省エネルギーを実現できる燃焼方法および燃焼装置を求めて研究してきた。
【0011】
その結果、酸化還元触媒を用いて空気比をほぼ1としたときにNOxおよびCOを実質的に零とする省エネルギーで、超低公害の燃焼方法および燃焼装置を開発するに至った。この燃焼方法および燃焼装置に関しては、特願2005−30034および特願2006−184879などで出願済である。
【0012】
この発明は、これらの出願済みの発明の改良であって、この発明が解決しようとする主たる課題は、触媒手段の性能低下を防止することである。またこの発明の副次的な課題は、省エネルギーおよび低公害の効果を長期に亘って持続させることである。ここで、「性能低下を防止」とは、性能低下の遅延を含む概念である。また、「低公害」とは、NOxおよびCOが低減されていることを意味する。
【課題を解決するための手段】
【0013】
この発明は、前記課題を解決するためになされたもので、請求項1に記載の発明は、接触によりガスの化学的変化を生ずる触媒成分を含む触媒手段の触媒劣化防止装置であって、前記ガス中に含まれ前記触媒成分に吸着,または当該触媒成分と化合物を形成する被毒物質を除去する被毒物質除去手段が前記触媒手段の一次側に備えられることを特徴としている。
【0014】
請求項1に記載の発明によれば、前記被毒物質除去手段により被毒物質が吸着除去されるので、前記触媒手段の性能を長期に亘り保証することができる。
【0015】
請求項2に記載の発明は、請求項1において、前記被毒物質除去手段と前記触媒手段とを互いに間隔を存して、それぞれを交換可能に設けたことを特徴としている。
【0016】
請求項2に記載の発明によれば、請求項1に記載の発明による効果に加えて、前記被毒物質除去手段と前記触媒手段とを別個に交換可能に設けているので、前記被毒物質除去手段のみを交換することも可能となる。また、前記被毒物質除去手段と前記触媒手段とを間隔を存して設けているので、前縁効果により前記触媒手段の機能を向上させることができ、前記被毒物質除去手段と前記触媒手段との間でガスのミキシングが生じ、ガス成分を均一化することができるという効果を奏する。
【0017】
請求項3に記載の発明は、請求項1において、前記被毒物質除去手段の被毒物質を吸着,または当該触媒成分と化合物を形成する成分の担持体と前記触媒手段の触媒成分の担持体とを一体的に構成し、交換可能に設けたことを特徴としている。
【0018】
請求項3に記載の発明によれば、請求項1に記載の発明による効果に加えて、前記被毒物質除去手段と前記触媒手段とを一体的に形成しているので、装置への着脱などの取扱が容易となる効果を奏する。
【0019】
請求項4に記載の発明は、請求項1において、前記被毒物質除去手段に含まれる触媒成分の量を前記触媒手段のそれより少なく(零を含む)したことを特徴としている。
【0020】
請求項4に記載の発明によれば、請求項1に記載の発明による効果に加えて、触媒成分の使用量を少なくして安価に構成できるという効果を奏する。
【0021】
請求項5に記載の発明は、燃焼により酸素,窒素酸化物および一酸化炭素を含むガスを生成するバーナと、前記ガスから吸熱する吸熱手段と、この吸熱手段を通過後の前記ガスに含まれる一酸化炭素を酸素により酸化し窒素酸化物を一酸化炭素により還元する触媒成分を有する触媒手段と、前記触媒手段の一次側に設けられ、前記ガス中に含まれ前記触媒成分に吸着,または当該触媒成分と化合物を形成する少なくとも硫黄を含む被毒物質を除去する被毒物質除去手段と、前記バーナの空気比を検出するためのセンサと、このセンサの検出信号に基づき前記バーナの空気比を設定空気比に制御する空気比調整手段とを備え、前記バーナおよび前記吸熱手段は、前記空気比調整手段により前記空気比を前記設定空気比に調整したとき、前記触媒手段一次側のガス中の酸素,窒素酸化物および一酸化炭素の濃度比を、前記触媒手段二次側の窒素酸化物濃度が実質的に零または所定値以下に、一酸化炭素濃度が実質的に零または所定値以下となる所定濃度比に調整するように構成されることを特徴としている。
【0022】
請求項5に記載の発明によれば、前記被毒物質除去手段により硫黄などの被毒物質が除去されるので、前記触媒手段の性能を長期に亘り保証することができる。その結果、前記触媒手段によるNOx零低減効果およびCO低減効果を長期に亘り持続することができる。
【0023】
請求項6に記載の発明は、バーナと、このバーナにて生成されるガスから吸熱を行う吸熱手段と、この吸熱手段を通過後の前記ガスに含まれる一酸化炭素を酸素により酸化し窒素酸化物を一酸化炭素により還元する触媒成分を有する触媒手段と、前記触媒手段の一次側に設けられ、前記ガス中に含まれ前記触媒成分に吸着,または当該触媒成分と化合物を形成する少なくとも硫黄を含む被毒物質を吸着除去する被毒物質除去手段と、前記バーナの空気比を検出するためのセンサと、このセンサの検出信号に基づき前記バーナの空気比を設定空気比に制御する空気比調整手段とを備え、前記バーナおよび前記吸熱手段は、前記空気比調整手段により前記空気比を前記設定空気比に調整したとき、前記触媒手段一次側のガス中の酸素,窒素酸化物および一酸化炭素の濃度比Kを調整する濃度比調整を行うように構成され、前記濃度比調整は、下記の調整0,調整1,調整2のいずれかであることを特徴としている。
調整0:前記濃度比Kを前記触媒手段二次側の窒素酸化物濃度および一酸化炭素濃度を実質的に零とする基準所定濃度比K0に調整する。
調整1:前記濃度比Kを、前記触媒手段二次側の窒素酸化物濃度を実質的に零とするとともに一酸化炭素濃度を所定値以下とする第一所定濃度比K1に調整する。
調整2:前記濃度比Kを、前記触媒手段二次側の一酸化炭素濃度を実質的に零とするとともに窒素酸化物濃度を所定値以下とする第二所定濃度比K2に調整する。
【0024】
請求項7に記載の発明は、請求項6において、前記基準所定濃度比K0を判定する式を次式(1)とし、前記基準所定濃度比K0が次式(2)を満たし、前記第一所定濃度比K1を前記基準所定濃度比K0より小さく、前記第二所定濃度比K2を前記基準所定濃度比K0より大きくしたことを特徴としている。
([NOx]+2[O2])/[CO]=K …(1)
1.0≦K=K0≦2.0 …(2)
(式(1)において、[CO]、[NOx]および[O2]はそれぞれ一酸化炭素濃度、窒素酸化物濃度および酸素濃度を示し、[O2]>0の条件を満たす。)
【0025】
請求項6または請求項7に記載の発明によれば、前記被毒物質除去手段により硫黄などの被毒物質が除去されるので、前記触媒手段の性能を長期に亘り保証することができる。
その結果、前記触媒手段によるNOx低減効果およびCO低減効果を長期に亘り持続することができる。
【0026】
請求項8に記載の発明は、燃焼により酸素,窒素酸化物および一酸化炭素を含むガスを生成するバーナと、前記ガスから吸熱する吸熱手段と、この吸熱手段を通過後の前記ガスに含まれる一酸化炭素を酸素により酸化し窒素酸化物を一酸化炭素により還元する触媒成分を有する触媒手段と、前記触媒手段の一次側に設けられ、前記ガス中に含まれ前記触媒成分に吸着,または当該被毒物質と化合物を形成する少なくとも硫黄を含む被毒物質を除去する被毒物質除去手段と、前記バーナの空気比を検出するためのセンサと、 このセンサの検出信号に基づき前記バーナの空気比を設定空気比に制御する空気比調整手段とを備え、前記バーナおよび前記吸熱手段は、前記空気比調整手段により前記空気比を前記設定空気比に調整したとき、前記触媒の一次側の前記ガスの濃度比が次式(3)を満たすように構成されることを特徴としている。
([NOx]+2[O2])/[CO]≦2.0 …(3)
(式(3)において、[CO]、[NOx]および[O2]はそれぞれ一酸化炭素濃度、窒素酸化物濃度および酸素濃度を示し、[O2]>0の条件を満たす。)
【0027】
請求項8に記載の発明によれば、前記被毒物質除去手段により硫黄などの被毒物質が除去されるので、前記触媒手段の性能を長期に亘り保証することができる。その結果、前記触媒手段によるNOx低減効果およびCO低減効果を長期に亘り持続することができる。
【0028】
請求項9に記載の発明は、請求項5〜請求項8において、前記被毒物質除去手段と前記触媒手段とを互いに間隔を存して、それぞれを交換可能に設けたことを特徴としている。
【0029】
請求項9に記載の発明によれば、請求項5〜請求項8に記載の発明による効果に加えて、前記被毒物質除去手段と前記触媒手段とを別個に交換可能に設けているので、前記被毒物質除去手段のみを交換することも可能となる。また、前記被毒物質除去手段と前記触媒手段とを間隔を存して設けているので、前縁効果により前記触媒の機能を向上させることができ、前記被毒物質除去手段と前記触媒手段との間でガスのミキシングが生じ、ガス成分を均一化することができるという効果を奏する。
【0030】
請求項10に記載の発明は、請求項5〜請求項8において、前記被毒物質除去手段の被毒物質を吸着,または当該触媒成分と化合物を形成する成分の担持体と前記触媒手段の触媒成分の担持体とを一体的に構成し、交換可能に設けたことを特徴としている。
【0031】
請求項10に記載の発明によれば、請求項5〜請求項8に記載の発明による効果に加えて、前記被毒物質除去手段と前記触媒手段とを一体的に形成しているので、装置への着脱などの取扱が容易となるという効果を奏する。
【0032】
請求項11に記載の発明は、請求項5〜請求項8において、前記被毒物質除去手段に含まれる触媒成分の量を前記触媒手段のそれより少なく(零を含む)したことを特徴としている。
【0033】
請求項11に記載の発明によれば、請求項5〜請求項8に記載の発明による効果に加えて、触媒成分の使用量を少なくして安価に構成できるという効果を奏する。
【発明の効果】
【0034】
この発明によれば、触媒手段の性能低下を防止することができる。
【発明を実施するための最良の形態】
【0035】
この発明の実施の形態を説明する前に、この出願において使用する用語について説明する。「ガス」とは、バーナから触媒を通過し終わるまでのガスをいい、触媒を通過した後のガスを「排ガス」という。したがって、ガスは、燃焼反応中(燃焼過程)のガスと燃焼反応が完結したガスとを含み、燃焼ガスと称することができる。ここにおいて、前記触媒がガスの流れに沿って多段に設けられている場合、「ガス」は、最終段の触媒を通過し終わるまでのガスをいい、「排ガス」は、最終段の触媒を通過した後のガスをいう。また、「燃料ガス」とは、燃焼空気と混合されるまえの可燃性ガスをいう。
【0036】
また、「触媒の一次側」とは、触媒に対しバーナが設けられている側であって、特に断らない限り、ガスがこの触媒を通過する直前をいい、「触媒の二次側」とは、触媒の一次側の反対側をいう。さらに、空気比mは、m=21/(21−[O2])と定義する。ただし、[O2]は、触媒二次側の排ガス中の酸素濃度を表すが、空気比を求める際に用いる[O2]は、酸素過剰領域では過剰酸素濃度を表し、燃料過剰領域では一酸化炭素などの未燃ガスを空気比m=1で燃焼させるのに必要な不足酸素濃度を負の値として表す。また、「炭化水素を含まない」とは、燃焼反応の過程で全く炭化水素が生成されないことを意味するのではなく、燃焼反応の過程では、若干の炭化水素が生成されるが、燃焼反応が終了する段階,すなわち前記触媒に流入するガス中に窒素酸化物を還元する炭化水素が実質的に含まれていない(測定限界以下である)ことを意味している。
【0037】
また、「触媒劣化」または「触媒作用の劣化」とは、触媒を作用なす触媒成分に被毒物質が吸着,または化学反応して触媒作用を阻害することを意味する。
【0038】
つぎに、この発明の実施の形態について説明する。この発明は、小型貫流ボイラなどの水管ボイラ,給湯器,吸収式冷凍機の再生器などの燃焼装置(熱機器または燃焼機器と称しても良い。)に適用される。
【0039】
(実施の形態1)
この発明の実施の形態1は、接触によりガスの化学的変化を生ずる触媒成分を含む触媒手段の触媒劣化防止装置であって、前記ガス中に含まれ前記触媒成分に吸着,または当該触媒成分と化合物を形成する被毒物質を除去する被毒物質除去手段が前記触媒手段の一次側に備えられることを特徴とする触媒劣化防止装置である。前記「触媒手段」は、「触媒」,「触媒本体」,「触媒体」,と称することができる。
【0040】
この実施の形態1は、燃焼装置に好適に実施されるが、これに限定されないものであり、ガスタービンなどの排ガス処理装置に実施される。
【0041】
この実施の形態1においては、まず、ガスが前記被毒物質除去手段と接触し、ガス中に含まれる被毒物質が前記被毒物質除去手段に吸着,または前記被毒物質除去手段と化合物を形成することにより、除去される。前記吸着には、物理的吸着と化学的吸着とを含む。この除去作用により、前記触媒手段へ流入するガス中には、被毒物質が含まれず、被毒物質が前記触媒成分へ吸着しないので、触媒作用の劣化が防止される。その結果、被毒物質により影響を受けることなく、前記触媒手段は所期の触媒性能(初期の性能)を発揮する。前記被毒物質除去手段には、被毒物質を吸着,または被毒物質と反応する被毒物質除去成分を含んでおり、この被毒物質除去成分による吸着,または反応が飽和状態(これ以上吸着、反応できない状態)となると、ガス中の被毒物質が前記触媒手段の触媒成分に吸着されるようになり、触媒性能が低下してくる。この性能低下率が所定値を越えると、前記被毒物質除去手段および前記触媒手段のメンテナンス,すなわち交換または性能復帰の処理を実施する。
【0042】
(実施の形態2)
前記実施の形態1は、つぎの低NOx燃焼装置の実施の形態2として実施される。この実施の形態2は、炭化水素含有燃料の燃焼により酸素,窒素酸化物および一酸化炭素を含み、炭化水素を含まないガスを生成するバーナと、前記ガスから吸熱する吸熱手段と、この吸熱手段を通過後の前記ガスに含まれる一酸化炭素を酸化し窒素酸化物を一酸化炭素により還元する触媒成分を有する触媒手段と、前記触媒手段の一次側に設けられ、前記ガス中に含まれ前記触媒成分に吸着,または当該触媒成分と化合物を形成する少なくとも硫黄を含む被毒物質を除去する被毒物質除去手段と、前記バーナの空気比を検出するためのセンサと、このセンサの検出信号に基づき前記バーナの空気比を設定空気比に制御する空気比調整手段とを備え、前記バーナおよび前記吸熱手段は、前記空気比調整手段により前記空気比を前記設定空気比に調整したとき、前記触媒手段一次側のガス中の酸素,窒素酸化物および一酸化炭素の濃度比を、前記触媒手段二次側の窒素酸化物濃度が実質的に零または所定値以下に、一酸化炭素濃度が実質的に零または所定値以下となる所定濃度比に調整するように構成されることを特徴とする低NOx燃焼装置である。
【0043】
前記設定空気比は、好ましくは、1.0以上で1.1以下、さらに好ましくは、1.0〜1.0005の設定空気比に制御する。この設定空気比は、好ましくは、前記触媒手段の二次側の空燃比により求めるが、前記触媒手段での反応の結果、1.0〜1.0005の設定空気比を満たし得る前記触媒の一次側の酸素濃度が所定濃度となるように空気比を制御するように構成することもできる。この出願の明細書においては、1.0〜1.0005の空気比およびこれに近い空気比を低空気比と称する。なお、上限値「1.0005」は、酸素濃度測定装置による二次側酸素濃度の測定限界がO2:0.01%であることから求めたものである。また、「前記空気比調整手段により前記設定空気比に調整したとき、前記触媒の二次側の窒素酸化物濃度を実質的に零とする前記触媒の一次側における酸素,窒素酸化物および一酸化炭素の濃度比を得ることができる」とは、前記設定空気比の全ての範囲に亘り、満たされることが望ましいが、全ての範囲において満たされる必要はないものである。
【0044】
この発明の実施の形態2においては、前記バーナは、前記空気比調整手段により前記設定空気比に制御されて燃焼する。燃焼により生成されるガス中には、酸素,窒素酸化物および一酸化炭素を含むとともに、前記触媒成分と反応して吸着される被毒物質を含んでいる。このガス中には、炭化水素を含んでいない。被毒物質としては、硫黄酸化物(SOx)としてガス中に存在する硫黄成分や酸化鉄微粒子としてガス中に存在する鉄成分が含まれる。前記硫黄成分としては、主として燃焼空気中に含まれる硫黄酸化物であるが、ガス燃料中に付臭剤(テトラヒドロチオフェン,t-ブチルメルカプタンなど)含まれていて、これを除去しない場合は、この付臭剤も含まれる。前記鉄成分は、前記吸熱手段や前記ガスの通路を鉄製とした場合に、錆としてガス中に含まれる。
【0045】
前記ガスは、前記吸熱手段にて吸熱作用を受けた後、まず前記被毒物質除去手段により被毒物質が吸着,または反応することで除去され、被毒物質を含まないガスが前記触媒手段へ流入する。そして、前記触媒手段において、ガスと触媒成分との接触により、一酸化炭素が酸化され、窒素酸化物が還元される。その結果、前記ガス中の窒素酸化物の排出量が実質的に零または所定値以下に低減される。また、一酸化炭素の排出量が実質的に零または所定値以下に低減される。
【0046】
ここで、窒素酸化物濃度が実質的に零とは、好ましくは、5ppm,さらに好ましくは、3ppm,さらに好ましくは、零である。一酸化炭素濃度が実質的に零とは、30ppm,さらに好ましくは、10ppmである。また、以下の説明で、酸素濃度が実質的に零とは、100ppm以下とするが、好ましくは、計測限界値以下とする。さらに、窒素酸化物濃度,一酸化炭素濃度が所定値以下とは、各国、各地域で定める排出基準濃度以下を意味するが、限りなく実質的に零に近い値に設定することが好ましいのはいうまでもない。このように
排出基準値という意味において、「所定値」以下を「許容値」,「排出基準値」と称することができる。
【0047】
そして、前記被毒物質除去手段への通過ガス量が所定量を超え、前記被毒物質の吸着,または反応が飽和状態となると、前記被毒物質除去手段から流出するガス中に被毒物質が洩れるようになり、前記触媒手段の触媒作用が低下してくる。前記触媒手段の二次側の窒素酸化物濃度を実質的に零にすることができなくなると、前記被毒物質除去手段を交換する。また、前記触媒手段についても必要な性能を満たさなければ交換する。
【0048】
この発明の実施の形態2によれば、前記被毒物質除去手段を設けているので、前記被毒物質除去手段による前記吸着または反応が飽和状態となるまで、前記触媒手段の初期性能を維持できる。
【0049】
この実施の形態2においては、前記空気比調整手段を前記設定空気比に制御することにより、前記触媒手段の二次側の窒素酸化物濃度を実質的に零とする前記触媒手段の一次側における酸素,窒素酸化物および一酸化炭素の濃度比が得られる。低空気比制御においては、安定的な空気比制御が難しいが、前記空気比調整手段に、前記空気比を安定的に制御する電気的制御手段および/または機械的制御手段を含ませることにより、安定した空気比制御を行うことができる。
【0050】
前記触媒手段の一次側の濃度比調整は、好ましくは、前記触媒手段の一次側の前記ガスにおける一酸化炭素濃度が一酸化炭素の酸化(第一反応)により前記触媒手段内で消費される一酸化炭素濃度と窒素酸化物の一酸化炭素による還元(第二反応)により前記触媒手段内で消費される一酸化炭素濃度とを加えた値とほぼ等しいか、それ以上となるように制御される。
【0051】
(実施の形態3)
前記実施の形態2は、つぎの実施の形態3にて表現できる。この実施の形態3は、炭化水素含有燃料の燃焼により酸素,窒素酸化物および一酸化炭素を含み、炭化水素を含まないガスを生成するバーナと、前記ガスから吸熱する吸熱手段と、この吸熱手段を通過後の前記ガスに含まれる一酸化炭素を酸化し窒素酸化物を一酸化炭素により還元する触媒成分を有する触媒手段と、前記触媒手段の一次側に設けられ、前記ガス中に含まれ前記触媒成分に吸着,または当該触媒成分と化合物を形成する少なくとも硫黄を含む被毒物質を除去する被毒物質除去手段と、前記バーナの空気比を検出するためのセンサと、このセンサの検出信号に基づき前記バーナの空気比を設定空気比に制御する空気比調整手段とを備え、前記バーナおよび前記吸熱手段は、前記空気比調整手段により前記空気比を前記設定空気比に調整したとき、前記触媒手段一次側のガス中の酸素,窒素酸化物および一酸化炭素の濃度比Kを調整する濃度比調整を行うように構成され、前記濃度比調整は、下記の調整0,調整1,調整2のいずれかである。
調整0:前記濃度比Kを前記触媒手段二次側の窒素酸化物濃度および一酸化炭素濃度を実質的に零とする基準所定濃度比K0に調整する。
調整1:前記濃度比Kを、前記触媒手段二次側の窒素酸化物濃度を実質的に零とするとともに一酸化炭素濃度を所定値以下とする第一所定濃度比K1に調整する。
調整2:前記濃度比Kを、前記触媒手段二次側の一酸化炭素濃度を実質的に零とするとともに窒素酸化物濃度を所定値以下とする第二所定濃度比K2に調整する。
【0052】
そして、前記触媒は、前記調整0を行うと、それぞれ前記触媒二次側の窒素酸化物濃度および一酸化炭素濃度を実質的に零とし、前記調整1を行うと前記触媒二次側の窒素酸化物濃度を実質的に零とするとともに一酸化炭素濃度を所定値以下とし、前記調整2を行うと前記触媒手段二次側の一酸化炭素濃度を実質的に零とするとともに窒素酸化物濃度を所
定値以下とする特性を有している。
【0053】
この実施の形態3において、濃度比とは、一酸化炭素濃度、窒素酸化物濃度および酸素濃度の相互の関係を意味する。前記調整0における基準所定濃度比K0は、好ましくは、次式(1)の判定式にて判定され、好ましくは、次式(2)を満たし、前記第一所定濃度比K1を前記基準所定濃度比より小さく、前記第二所定濃度比K2を前記基準所定濃度比より大きくするように設定される。
([NOx]+2[O2])/[CO]=K …(1)
1.0≦K=K0≦2.0 …(2)
(式(1)において、[CO]、[NOx]および[O2]はそれぞれ一酸化炭素濃度、窒素酸化物濃度および酸素濃度を示し、[O2]>0の条件を満たす。)
【0054】
前記基準所定濃度比K0は、前記触媒手段二次側の酸素濃度,窒素酸化物濃度および一酸化炭素濃度をそれぞれ実質的に零とする前記触媒手段の一次側の酸素,窒素酸化物および一酸化炭素の濃度比である。前記式(1)は、前記基準所定濃度比K0を判定するための判定式であり、式(2)は、前記触媒手段二次側の酸素濃度,窒素酸化物濃度および一酸化炭素濃度をそれぞれ実質的に零とする条件を示している。理論的には、K0=1.0の条件で、各濃度を零とすることができる。しかしながら、実験結果によると、前記式(2)の範囲で各濃度を実質的に零とすることが確認されているが、前記K0の上限2.0は、前記触媒の特性によっては、2.0より大きい値をとることが考えられる。
【0055】
前記基準所定濃度比K0の値を下回るように,すなわち式(1)のKがK0よりも小さい前記第一所定濃度比K1となるように前記触媒手段の一次側の濃度比Kを調整する(前記調整1)と、前記触媒手段二次側の酸素濃度および窒素酸化物濃度が実質的に零となるとともに一酸化炭素濃度が所定値以下となる。この一酸化炭素濃度の所定値は、好ましくは、排出基準値(この値は、国により異なるので、国ごとに変更することが可能である。)以下に設定する。この所定値を決めると、実験的に前記第一所定濃度比K1を定めることができる。前記濃度比Kの値がK0よりも小さい前記第一所定濃度比K1となるような濃度比Kの調整は、具体的には、前記触媒手段一次側の一酸化炭素濃度に対する酸素濃度の割合を、前記基準所定濃度比K0を満たす一酸化炭素濃度に対する酸素濃度の割合よりも少なくすることで実現可能である。
【0056】
また、前記濃度比KがK0よりも大きい前記第二所定濃度比K2となるように前記触媒手段の一次側の濃度比Kを調整する(前記調整2)と、前記触媒手段二次側の一酸化炭素濃度が実質的に零となるとともに窒素酸化物濃度が所定値以下となる。この場合、前記触媒手段の二次側の酸素濃度は、所定濃度となる。この窒素酸化物濃度の所定値は、一酸化炭素濃度の前記所定値とは異なる値であり、好ましくは、各国で定められる排出基準値以下とする。この所定値を決めると、実験的に前記第二濃度比K2を定めることができる。前記第二所定濃度比K2とするための濃度比Kの調整は、具体的には、前記触媒手段一次側の一酸化炭素濃度に対する酸素濃度の割合を、前記基準所定濃度比K0を満たす一酸化炭素濃度に対する酸素濃度の割合よりも多くすることで実現可能である。
【0057】
この実施の形態3においては、好ましくは、前記濃度比Kを前記各所定濃度比K0,K1,K2に一定に保持する濃度比一定制御を行うように構成する。
【0058】
この実施の形態3においては、前記実施の形態1と同様に前記被毒物質除去手段による被毒物質の除去が行われる。また、前記バーナが燃焼し、酸素と、窒素酸化物および一酸化炭素とを含み、炭化水素を含まないガスが生成される。そして、前記触媒の一次側の前記ガスにおける酸素,窒素酸化物および一酸化炭素の濃度比Kは、前記濃度比調整により、前記調整0,前記調整1,前記調整2のいずれかにより、それぞれ前記基準所定濃度比
K0,前記第一所定濃度比K1,前記第二所定濃度K2に調整される。そして、前記ガスが前記触媒と接触して前記ガス中の酸素により一酸化炭素が酸化され、一酸化炭素により窒素酸化物が還元される。前記調整0または前記調整1が行われた場合の有害物質低減作用における酸素の役割は、一酸化炭素濃度の調整,すなわち窒素酸化物を還元してその濃度を実質的に零とするのに必要な量以上に存在する一酸化炭素量を消費して低減するものである。この前記調整0,前記調整1後の有害物質低減作用により、前記ガス中の窒素酸化物の排出量が実質的に零に低減され、一酸化炭素の排出量が実質的に零または所定値以下に低減される。また、前記調整2後の有害物質低減作用により、前記ガス中の一酸化炭素の排出量が実質的に零とされ、窒素酸化物濃度が所定値以下に低減される。さらに、前記濃度比一定制御により、前記各所定濃度比K0,K1,K2の値の変動が抑制され、窒素酸化物排出量および一酸化炭素排出量の低減効果を確実にすることができる。特に、前記調整0において、窒素酸化物排出量を実質的に零とするには、前記濃度比一定制御が重要である。
【0059】
前記調整0の基準所定濃度比K0および前記調整1の第一所定濃度比K1は、次式(3)で包含して表現される。すなわち、式(3)を満たすと、前記触媒二次側の窒素酸化物濃度を実質的に零とし、一酸化炭素濃度を実質的に零とするか、低減する。一酸化炭素濃度の低減を前記所定値以下とするには、前記濃度比Kの値がK0よりも小さい値となるように前記触媒手段一次側の前記濃度比Kを調整し、前記第一所定濃度比K1とする。
([NOx]+2[O2])/[CO]=K≦2.0 …(3)
(式(3)において、[CO]、[NOx]および[O2]はそれぞれCO濃度、NOx濃度およびO2濃度を示し、[O2]>0の条件を満たす。)
【0060】
前記触媒手段による有害物質の低減作用についてさらに説明する。この低減作用は、つぎのようにして行われると考えられる。前記触媒手段では、主反応として、一酸化炭素を酸化させる第一反応と窒素酸化物を一酸化炭素により還元させる第二反応とが生じている。そして、前記触媒手段における反応(触媒反応)おいて、酸素存在下では、前記第一反応が前記第二反応よりも優位であり、前記第一反応に基づき一酸化炭素は、酸素により消費されて、濃度調整された後、前記第二反応により窒素酸化物を還元する。この説明は、簡略化したものである。実際は、前記第一反応は、前記第二反応と競合反応であるが、一酸化炭素と酸素との反応が酸素存在下において前記第二反応と比較し見かけ上速く起こるため、第一段階で一酸化炭素の酸化(第一反応)が行われ、第二段階で窒素酸化物が還元(第二反応)されると考えられる。
【0061】
要するに、前記触媒手段において、酸素の存在下では、CO+1/2O2→CO2なる前記第一反応により、酸素が消費され、残りのCOを用いて、2CO+2NO→N2+2CO2なる前記第二反応により、窒素酸化物を還元して、排出窒素酸化物濃度を低減する。
【0062】
ここで、前記式(2)における[NOx]は、一酸化窒素濃度:[NO]と二酸化窒素濃度:[NO2]との合計濃度である。前記の反応式の説明において、NOxを用いることなく、NOを用いているのは、高温度場での生成窒素酸化物の組成は、主成分がNOであり、NO2が数%に過ぎないので、近似的に説明することができるからである。NOは、存在してもNOと同様にCOにより還元されると考えられる。
【0063】
前記濃度比Kが1.0の場合は、理論上は、前記触媒から排出される酸素濃度,窒素酸化物濃度および一酸化炭素濃度を零とすることができる。しかしながら、実験上は、僅かに一酸化炭素が排出されることが分かっている。そして、([NOx]+2[O2])/[CO]=1は、実験結果を考慮して、前記第一反応および第二反応から理論的に導き出したものである。
【0064】
ここで、([NOx]+2[O2])/[CO]=1を如何にして導き出したかを説明する。この式は、前記基準所定濃度比K0を典型的に満足する式であるので、基準所定濃度充足式と称する。
前記触媒手段内では、前記第一反応(I)が主反応として起こることが知られている。
CO +1/2O2 → CO2 …(I)
また、Pt等の貴金属触媒を用いた前記触媒手段内では、酸素が存在しない雰囲気で前記第二反応(II)によるCOによるNO還元反応が進行する。
CO +NO → CO2 +1/2N2 …(II)
そこで、前記第一反応(I)、前記第二反応(II)の反応に寄与する物質の濃度に着目し、前記基準濃度充足式を導きだした。
すなわち、CO濃度,NO濃度,O2濃度をそれぞれ[CO]ppm,[NO]ppm,[O2]ppmとすると、前記式(I)よりCOにより除去できる酸素濃度は、次式(III)で表される。
2[O2]= [CO]…(III)
また、前記式(II)の反応を起こすためには、COがNO等量必要であり、次式(IV)の関係がいえる。
[CO]=[NO] …(IV)
前記式(I)、(II)の反応を前記触媒手段内で連続して起こす場合、前記式(III)と前記式(IV)を足し合わせることで得られる次式(V)の濃度関係が必要となる。
[CO] +[CO] =2[O2]+ [NO] ・…(V)
[CO]+[CO]は、同一成分であるため、前記触媒手段二次側のガス中のCO濃度として[CO]で表すことができる。
よって、前記基準所定濃度比充足式,
すなわち[CO]=2[O2]+[NO]の関係を導くことができる。
【0065】
前記濃度比Kの値が1.0よりも小さい場合は、一酸化炭素の濃度が前記窒素酸化物の還元に必要な濃度以上に存在するので、排出酸素濃度が零で、前記触媒手段通過後のガス中に一酸化炭素が残留する。
【0066】
また、前記濃度比Kの値の1.0を越える2.0は、実験的に得られた値であるが、つぎの理由によると考えられる。前記触媒手段中で生じている反応は、完全に解明されておらず、前記第一反応および前記第二反応の主反応以外に、副反応が生じていることが考えられる。この副反応の一つとして、蒸気と一酸化炭素との反応により水素が生じ、この水素により窒素酸化物および酸素が還元される反応が考えられる。
【0067】
つぎに、この発明の実施の形態1〜3の構成要素についてさらに説明する。前記バーナは、好ましくは、ガス燃料を予混合燃焼させる全一次空気式の予混合バーナとする。前記触媒手段にて、前記第一反応および前記第二反応を効果的に生じさせるには、酸素,窒素酸化物および一酸化炭素に関する前記(2),(3)式で示すような濃度比が重要である。前記バーナを予混合バーナとすることにより、低空気比領域で前記基準所定濃度比K0を比較的容易に得ることができる。しかしながら、前記触媒手段一次側のガス中における酸素,窒素酸化物および一酸化炭素が均一に混合され、それぞれの濃度を前記所定濃度とする制御が可能であれば、予混合バーナ以外の部分予混合バーナや先混合バーナとすることができる。
【0068】
また、前記バーナは、前記触媒手段流入前(前記触媒手段の一次側)のガスの酸素濃度が0%<O2≦1.00%となるように低空気比で炭化水素含有燃料を燃焼させることができるものとする。この酸素濃度を空気比の演算式(m=21/(21−O2)に代入すると、1.0〜1.05となる。前記式(2)(3)を満たすという条件下で前記触媒手段の一次側の酸素濃度が0%<O2≦1.00%では、前記触媒手段の二次側の酸素濃度
がほぼ0%であり、空気比はほぼ1となり、排出濃度が零に近い低NOxと低COに加えて省エネルギーが実現され、低公害で、省エネルギーの燃焼装置を提供することができる。
【0069】
また、前記吸熱手段は、燃焼装置がボイラの場合は、缶体を構成する水管群とし、再生器の場合は、吸収液濃縮管とする。この吸熱手段の形態としては、前記バーナの直近に燃焼空間を殆ど有さず、燃焼空間内に吸熱手段としての水管群を配置した第一の態様(前記特許文献1〜4に相当)と、前記バーナと水管群との間に燃焼空間を有する第二の態様とを含む。前記第一の態様では水管間の隙間で燃焼反応が進行する。前記水管群は、前記バーナからのガスと熱交換する複数の水管であるが、給湯器の水管のように1本の水管を蛇行させることで複数の水管を構成することができる。
【0070】
前記吸熱手段は、前記バーナにて生成されるガスから吸熱してその熱を利用するとともに、前記ガスの温度を前記触媒手段の活性化温度近くに制御し、かつ熱的な劣化を防止する温度以下に抑制する,すなわちガス温度を前記第一反応および前記第二反応を効果的に生じさせ、かつ温度による劣化を抑制し、耐久性を考慮した温度に制御する機能を持たせることができる。また、前記吸熱手段に前記ガスの温度が約900℃以上に上昇するのを抑制して一酸化炭素の酸化を抑制し、前記バーナからのガスの濃度比が変化しないための手段として機能させることができる。
【0071】
前記バーナによる濃度比調整と前記吸熱手段とによる前記濃度比調整は、実験的なデータに基づいて空気比―NOx・CO特性を求めることにより行われる。この濃度比調整は、前記触媒一次側の酸素,窒素酸化物および一酸化炭素の前記濃度比Kを、前記バーナおよび前記吸熱手段の濃度比特性に基づき、前記バーナの燃料量と燃焼空気量との割合を調整する空気比調整手段を用いて前記所定濃度比に制御することにより、前記触媒手段二次側の窒素酸化物濃度を実質的に零から所定値以下に、一酸化炭素濃度を実質的に零から所定値以下に調整するものである。そして、この濃度比調整は、前記触媒手段一次側の濃度比Kを前記基準所定濃度比K0,前記第一所定濃度比K1,前記第二所定濃度K2に調整するものであるが、つぎの第一,第二濃度比調整手段を用いて行うことができる。この第一,第二濃度比調整手段は、好ましくは、前記バーナへの燃焼量と燃焼空気量との割合を調整する前記空気比調整手段による濃度比の調整を行う。
【0072】
前記第一濃度比調整手段は、前記濃度比Kの調整を前記バーナの特性を利用するとともに、前記バーナおよび前記触媒手段の間に配置され前記ガスから吸熱する吸熱手段との特性を利用して、すなわち前記バーナおよび前記吸熱手段の濃度比特性を利用して行うものである。この濃度比特性とは、前記バーナを空気比を変化させて燃焼させることにより生成される前記吸熱手段の全部または一部を通過後の一酸化炭素濃度および窒素酸化物濃度が変化する特性である。また、この濃度比特性は、基本的には前記バーナによる濃度比特性により決まり、前記吸熱手段は、典型的には、前記バーナの濃度比特性を一部変化させるか、またはその濃度比特性を保持する機能を有する。前記吸熱手段を前記第一の態様とする場合は、燃焼反応中のガスの冷却により、一酸化炭素濃度の増加をもたらすとともに、窒素酸化物濃度を抑制する。前記吸熱手段を前記第二の態様とする場合は、典型的には、前記バーナによる濃度比特性を殆ど変更することなく、保持するものである。
【0073】
この第一濃度比調整手段を用いて前記濃度比Kの調整を行う場合には、前記バーナおよび前記吸熱手段以外に濃度比調整手段を必要としないので、装置の構成を簡素化できる。また、前記吸熱手段により前記ガスの温度を抑制することができ、前記触媒手段の耐久性を向上できるという効果を奏することができる。
【0074】
前記第二濃度比調整手段は、前記濃度比Kの調整が、前記バーナと、前記バーナおよび
前記触媒手段の間に配置され前記ガスから吸熱する吸熱手段との濃度比特性を利用するとともに、前記バーナおよび前記触媒手段の間に配置され補助調整手段を用いて行うものである。
【0075】
前記補助調整手段は、前記バーナと前記触媒手段との間(前記吸熱手段の途中を含む。)にあって、一酸化炭素を注入したり、酸素を吸着除去することにより、酸素濃度に対する一酸化炭素濃度の割合を増加させることにより前記調整を補助的に行う機能を有するものである。この補助調整手段としては、CO発生器や、排ガスの酸素またはCOの量を調整可能な補助的バーナとすることができる。
【0076】
この第二濃度比調整手段を用いて前記濃度比の調整を行う場合には、前記濃度比調整を前記バーナおよび前記吸熱手段の濃度比特性に加えて前記補助調整手段を利用して行うので、特定の構造のバーナに限定されることなく、前記バーナおよび前記吸熱手段の適用範囲を拡げることができる。
【0077】
前記濃度比調整手段による濃度比調整は、前記触媒手段の一次側の前記ガスにおける一酸化炭素濃度が一酸化炭素の酸化により前記触媒手段内で低減される一酸化炭素濃度と窒素酸化物の一酸化炭素による還元により前記触媒手段内で低減される一酸化炭素濃度とを加えた値とほぼ等しいか、それ以上とする調整と表現することができる。この濃度比調整が不可能な場合には、一酸化炭素の注入や酸素の注入による調整を行うように構成することができる。
【0078】
この濃度比において、空気比を実質的に1.0の低空気比に制御すれば、省エネルギーを達成するうえで好ましい。また、この濃度比調整は、好ましくは、燃焼温度の調整により窒素酸化物量および一酸化炭素量を所定量以下に抑制するとともに、ガス温度を保持して得られた一酸化炭素濃度を低減させないことにより行われる。一酸化炭素は、ガス温度が約900℃以上となると酸化されやすいので、好ましくは、前記触媒手段の一次側におけるガス温度が600℃以下に保持されるように前記バーナおよび前記吸熱手段とが構成される。
【0079】
前記触媒手段は、前記ガス中に炭化水素が含まれない状態で効率良く前記窒素酸化物を還元する機能を有する触媒手段で、前記吸熱手段の後流または前記吸熱手段の途中に設けられ、通気性を有する基材に触媒成分としての触媒活性物質を塗布した構成とする。前記基材としては、ステンレスなどの金属,セラミックが用いられ、排ガスとの接触面積を広くするような表面処理が施される。触媒活性物質としては、一般的に白金が用いられるが、実施に応じて、白金に代表される貴金属(Ag,Au,Rh,Ru,Pt,Pd)または金属酸化物を用いることができる。前記触媒手段を前記吸熱手段の途中に設ける場合は、複数の水管などの吸熱手段間の隙間に設けるか、前記吸熱手段を基材として、その表面に触媒活性物質を担持した構成とすることができる。
【0080】
前記被毒物質除去手段は、前記触媒成分に吸着される被毒物質を除去する被毒物質除去成分を通気性を有する基材に塗布した構成とする。要するに、前記触媒手段の上流で被毒物質を除去する機能を有すれば良いので、前記触媒手段と同じ構成のものを用いることができるが、前記触媒成分は一般的に高価である。よって、好ましくは、前記被毒物質除去手段には前記触媒成分を含まないようにするか、前記触媒成分を含ませる場合でもその量を前記触媒手段よりも少なくする,換言すれば、前記被毒物質除去手段の前記触媒成分の濃度を前記触媒手段のそれよりも低くする(前記触媒成分の濃度を零とする場合を含む。)。
【0081】
前記被毒物質除去成分は、公知の物質であるCeO2(セリア)などを用いることがで
きる。CeO2の場合は、ガス中の硫黄成分と反応してCe2(SO43となると考えられる。
【0082】
また、前記被毒物質除去手段は、前記触媒手段とを間隔を存して設け、それぞれを交換可能に設けることができる。このように、前記被毒物質除去手段と前記触媒手段とを別体構成とし、それぞれを交換可能に設けることにより、前記被毒物質除去手段のみを交換することができる。また、前記触媒手段には、ガスと接触する前縁が存在することになるので、所謂前縁効果により触媒の機能を向上させることができる。前記被毒物質除去手段および前記触媒手段は、それぞれガスの流れ方向に沿って複数に分割して設けることができる。こうすることで、前記被毒物質除去手段および前記触媒手段それぞれの前縁効果により性能を向上させることができる。
【0083】
さらに、前記被毒物質除去手段と前記触媒手段とを一体的に設けることができる。この場合、前記被毒物質除去手段の被毒物質を吸着する成分の担持体と前記触媒手段の触媒成分の担持体とを連続的に一体的に形成し、交換可能に設ける。また、前記両担持体を別体に設けて両者を互いに間隔を存することなく接触して設けて結合手段により一体的に形成することもできる。このように、前記被毒物質除去手段と前記触媒手段とを一体的に形成していることにより、ボイラなどの装置への着脱などの取扱(ハンドリング)が容易となる。また、前記被毒物質除去手段と前記触媒手段とを一体的に設けるとともに、前記被毒物質除去手段の前記触媒成分の濃度を前記触媒手段のそれよりも低くする場合には、前記被毒物質除去手段を前記触媒手段と同時にリサイクル処理することができる。
【0084】
前記空気比調整手段は、好ましくは、流量調整手段と、この流量調整手段を駆動するモータと、このモータを制御する制御手段とを含む。前記流量調整手段は、前記バーナの燃焼空気量および燃料量いずれか一方,または両方を変えることで両者の比率を変え、前記バーナの空気比を調整するための手段である。前記燃焼空気量を調整するものの場合、好ましくは、ダンパ(弁の意味を含む)とする。このダンパの構造としては、回転軸を中心に回転する弁体により流路の開度を変える回転タイプのもの、流路の断面開口に対してスライドすることにより流路の開度を変えるスライドタイプのものとすることができる。
【0085】
この流量調整手段を燃焼空気量を変えるものとする場合には、好ましくは、送風機と燃料供給手段との間の空気流路に設けるが、前記送風機の吸い込み口など前記送風機の吸い込み口側に設けることができる。
【0086】
前記モータは、好ましくは、前記流量調整手段を駆動する手段であり、前記流量調整手段の開度量を駆動量に応じて制御でき、かつ単位時間当たりの駆動量を調整できるモータとする。このモータは、この発明の空気比を安定的に制御する「機械的制御手段」の一部を構成する。この「開度量を駆動量に応じて制御できる」とは、駆動量が決まれば、前記流量調整弁の開度を特定の位置に停止制御できることを意味する。また、「単位時間当たりの駆動量を調整できる」とは、位置制御の応答性を調整できることを意味する。
【0087】
このモータは、好ましくは、ステッピングモータ(ステップモータと称することができる)とするが、ギアモータ(ギアドモータと称することができる。)やサーボモータなどとすることができる。前記ステッピングモータとした場合は、前記駆動量が駆動パルスにより決定され、前記駆動量が印可される駆動パルスであり、前記流量調整手段の開度位置を基準開度位置から駆動パルスの数に応じた量だけ開閉移動して任意の目的とする停止位置に制御できる。また、前記ギアモータまたは前記サーボモータとした場合は、前記駆動量が開閉駆動時間であり、前記流量調整手段の開度位置を基準開度位置から開閉駆動時間に応じた量だけ開閉移動して任意の目的とする停止位置に制御できる。
【0088】
前記センサは、前記バーナの空気比を検出することが可能なセンサであればよい。このセンサを用いて前記触媒手段の二次側において空気比1を挟んで(空気比1の前後で)空気比を制御する場合は、酸素濃度センサでは、空気比が1より小さい領域の空気比を演算できないので、空燃比センサを用いて空燃比を求めることができる。この空燃比センサとして、つぎのような機能を有する周知のセンサを用いることができる。すなわち、空気比1以上の領域では、酸素濃度を検出して空燃比に対応する検出値を電流または電圧で出力し、空気比1以下の領域では、酸素が存在しないので、一酸化炭素濃度を検出して空燃比に対応する検出値を電流または電圧で出力する。この検出値,すなわち空燃比に基づき前記モータを制御することができる。
【0089】
また、前記触媒手段の二次側の空気比を1より大きい範囲で制御する(空気比1を挟んで制御しない)場合には、前記空燃比センサでなく、酸素濃度センサにより酸素濃度を検出し、この値から空気比を演算することができるので、この空気比に基づき前記モータを制御することができる。
【0090】
また、前記センサとしては、酸素濃度センサと一酸化炭素濃度センサとを組み合わせたものとすることができる。さらに、前記センサとして、酸素濃度および一酸化炭素濃度を検出する前記空燃比に代えて、前記触媒手段の二次側において空気比1を挟んで空気比を制御可能なセンサを用いることができる。前記センサの取付位置は、好ましくは、前記触媒手段の二次側とするが、これに限定されるものではなく、前記触媒手段の一次側や、前記触媒手段の下流側に排熱回収器を設けた場合は、この下流側とすることができる。
【0091】
前記制御手段は、予め記憶した空気比制御プログラムに基づき、前記センサの検出値を入力して、前記モータの駆動量をフィードバック制御して、前記触媒手段の一次側の前記ガスにおける一酸化炭素濃度が前記酸化により前記触媒手段内で消費される一酸化炭素濃度と前記還元により前記触媒手段内で消費される一酸化炭素濃度とを加えた値とほぼ等しいか、それ以上となるように、または、前記式(3)を満たすように、前記空気比を1.0〜1.0005の設定空気比に制御する。
【0092】
前記空気比制御プログラムは、好ましくは、前記検出空気比と前記設定空気比との差に応じて前記モータの単位時間当たり駆動量(1駆動単位当たりの時間で表現することができる。)を変える第一制御帯と、この第一制御帯の外側において単位時間当たりの前記駆動量を固定の所定値とする第二制御帯とを設けて、前記モータの駆動量を制御するように構成する。この制御は、この発明の検出空気比が前記設定空気比を中心にした設定範囲内に収まるように制御する前記電気的制御手段を構成する。なお、この空気比制御プログラムは、この制御方式に限定されるものではなく、種々のPID制御とすることができる。
【0093】
前記第一制御帯における制御量は、検出空気比と設定空気比と設定ゲインとの積の式により制御することができる。こうした制御により、設定空気比に速やかに制御できるととともに、オーバーシュートおよびハンチングの少ない制御を行うことができるの効果を奏することができる。
【0094】
また、前記制御手段は、前記空気比制御プログラムのほかにメンテナンスプログラムを実行するように構成できる。このメンテナンスプログラムは、前記被毒物質除去手段の被毒物質の吸着が飽和状態となったことを報知手段にて報知するように構成される。報知時期は、前記被毒物質除去手段の吸着,または反応開始から吸着,または反応が飽和状態となるまでの時間に基づき設定することができる。こうした構成によれば、前記被毒物質除去手段の容量を変えることにより、前記触媒手段の所期の性能を発揮させる期間を任意に設定することができるという効果を奏する。
【0095】
前記実施の形態1〜3においては、燃料ガス中に前記付臭剤が含まれている場合には、この燃料ガス中の付臭剤(硫黄成分)を除去する硫黄吸着除去手段を設ける。この硫黄吸着除去手段としては、東ソー株式会社製のゼオラム(登録商標)などを用いることができる。
【0096】
この発明は、前記実施の形態1〜3に限定されるものではなく、つぎの実施の形態4〜5を含む。
【0097】
(実施の形態4)
この実施の形態4は、炭化水素含有燃料を燃焼させるバーナと、このバーナにて生成されるガスから吸熱を行う吸熱手段と、この吸熱手段を通過後の前記ガスと接触され、このガス中の酸素,窒素酸化物および一酸化炭素の濃度比がNOx・CO非低減領域のとき一酸化炭素を低減し、窒素酸化物を低減せず、前記濃度比がNOx・CO低減領域のとき、一酸化炭素および窒素酸化物を低減する触媒手段と、前記触媒手段の一次側に設けられ、前記ガス中に含まれ前記触媒手段の触媒成分に吸着,または当該成分と化学反応する少なくとも硫黄を含む被毒物質を吸着除去する被毒物質除去手段と、前記バーナへ供給する空気量および/または燃料量の割合を調整する空気比調整手段とを備え、前記空気比調整手段は、前記濃度比が前記NOx・CO低減領域となるように、空気量および/または燃料量の割合を調整することを特徴とする。
【0098】
この実施の形態4においては、前記実施の形態1と同様に前記被毒物質除去手段による被毒物質の除去が行われる。また、前記バーナの燃焼により生成されるガスは、前記吸熱手段にて吸熱作用を受け、所定濃度比で酸素,窒素酸化物および一酸化炭素を含むガスとなる。前記バーナの空気比を低空気比の領域で変化させると、前記触媒手段の一次側の酸素,窒素酸化物および一酸化炭素を含む前記ガスに関して前記触媒の一次側の空気比−NOx・CO特性(以下、一次特性という。)を得るとともに、この一次側の空気比−NOx・CO特性を有するガスを前記触媒手段と接触させることにより前記触媒手段の二次側の空気比−NOx・CO特性(以下、二次特性という。)が得られる。
【0099】
この二次特性においては、ガス中の酸素,窒素酸化物および一酸化炭素の濃度比がNOx・CO非低減領域のとき一酸化炭素を低減し、窒素酸化物を低減せず、前記濃度比がNOx・CO低減領域のとき、一酸化炭素および窒素酸化物を低減する。そして、前記二次特性のNOx濃度が前記一次特性のNOx濃度より低く、一酸化炭素濃度(CO濃度)が前記一次特性のCO濃度より低いNOx・CO低減領域である前記NOx・CO低減領域にて、前記設定空気比が設定されるので、前記触媒手段の酸化、還元作用により、窒素酸化物の排出量が低減されるとともに、一酸化炭素の排出量が低減される。
【0100】
この実施の形態4において、前記調整は、好ましくは、前記触媒手段の二次側の窒素酸化物濃度を実質的に零とするように構成する。また、前記調整は、好ましくは、前記触媒手段の二次側の酸素濃度を実質的に零とするように構成する。
【0101】
(実施の形態5)
前記実施の形態4は、つぎの実施の形態5にて表現できる。この実施の形態5は、炭化水素含有燃料を燃焼させるバーナと、このバーナにて生成されるガスから吸熱する吸熱手段と、この吸熱手段通過後の酸素,窒素酸化物および一酸化炭素を含むガスと接触される触媒手段と、前記触媒手段の一次側に設けられ、前記ガス中に含まれ前記触媒手段の触媒成分に吸着,または当該成分と化学反応する少なくとも硫黄を含む被毒物質を吸着除去する被毒物質除去手段と、前記バーナの燃焼空気と燃料との割合を調整する制御手段とを備え、前記触媒手段は、その二次側の窒素酸化物濃度および一酸化炭素濃度を実質的に零とする前記触媒手段の一次側のガス中の酸素,窒素酸化物および一酸化炭素の濃度比を基準
濃度比として、前記濃度比を前記基準濃度比とすると、前記触媒手段の二次側の窒素酸化物濃度および一酸化炭素濃度を実質的に零とし、前記基準濃度比に対応する基準酸素濃度よりも一次側酸素濃度を高くすると、前記触媒手段二次側において一次側酸素濃度と基準酸素濃度の差に応じた濃度の酸素が検出されるとともに、前記触媒手段の二次側の一酸化炭素濃度を実質的に零とし、窒素酸化物濃度を低減し、前記基準酸素濃度よりも一次側酸素濃度を低くすると、前記触媒手段の二次側において一次側酸素濃度と基準酸素濃度の差に応じた濃度の一酸化炭素が検出されるとともに前記触媒手段の二次側の窒素酸化物濃度実質的に零とし、一酸化炭素濃度を低減する特性を有し、前記制御手段は、前記触媒手段の二次側の酸素濃度に基づき前記バーナの燃焼空気量と燃料量との割合を調整することにより、前記触媒手段の一次側の酸素濃度を前記基準酸素濃度に対して調整して、前記触媒手段の二次側の窒素酸化物濃度および一酸化炭素濃度を低減することを特徴とする低NOx燃焼方法である。
【0102】
前記実施の形態4は、前記触媒手段の二次側の酸素濃度および/または一酸化炭素濃度などにより求められる空気比に対する前記バーナおよび吸熱手段の前記一次特性と前記二次特性とに基づいて表現したものである。これに対して、この実施の形態5は、前記触媒手段の一次側の酸素濃度に対する前記バーナおよび前記吸熱手段の前記一次特性と前記触媒手段の特性とに基づいて表現したものである。
【0103】
この触媒特性とは、つぎのような特性である。すなわち、図8の模式図に示すように、前記触媒手段一次側の前記濃度比の特性ラインL(二次側[NOx]=0,[CO]=0ライン)を有している。このラインL上に前記触媒手段一次側の前記濃度比が位置すると、前記触媒手段の二次側の窒素酸化物濃度および一酸化炭素濃度が実質的に零となる。このラインLは、理論的には前記式(3)の前記所定濃度比が1に対応し、図8では、この前記所定濃度比1の場合の式(3)を図示している。しかしながら、前述のように、実験的に前記所定濃度1.0を越える2.0までの範囲で、前記触媒手段の二次側の窒素酸化物濃度および一酸化炭素濃度を実質的に零とすることができることが確認されているので、前記特性ライン(二次側[NOx]=0,[CO]=0ライン)は、図8のラインLに限定されない。
【0104】
また、この発明は、前記の発明の実施の形態1〜5に限定されるものではなく、前記濃度比の調整を前記バーナのみで行うか、または主としてバーナにより行うように構成することができる。すなわち、前記バーナおよび前記吸熱手段による濃度比調整は、前記吸熱手段以外の前記バーナから前記触媒手段までのガス通路を構成する要素およびこのガス通路に含まれる要素によりおこなう形態を含むものである。
【0105】
また、前記機械的制御手段は、燃焼空気の給気通路を主通路とこれと並列の補助通路とから構成し、前記主通路に設けた弁体の作動で空気流量を粗調整し、前記補助通路に設けた弁体の作動で空気流量を微調整するように構成することができる。また、機械的制御手段は、燃料供給通路を主通路とこれと並列の補助通路とから構成し、前記主通路に設けた弁体の作動で空気流量を粗調整し、前記補助通路に設けた弁体の作動で空気流量を微調整するように構成することができる。
【0106】
さらに、前記空気比調整手段の流量調整手段は、送風機のモータをインバータにより制御するもととすることができる。このインバータは、周知の構成のものを利用できる。このインバータを用いる場合も、ダンパ制御に用いる前記空気比制御プログラムにより制御することができる。
【実施例1】
【0107】
ついで、この発明の燃焼装置を蒸気ボイラに適用した実施例1を図面に従い説明する。
図1は、本発明の原理を説明する図であり、図2は、本実施例1の蒸気ボイラの縦断面の説明図であり、図3は、図2のIII−III線に沿う断面図であり、図4は、図2および図3の被毒物質除去手段および触媒手段を排ガスの流れ方向から見た要部構成を示す図であり、図5は、本実施例1の空気比−NOx・CO特性を説明する図であり、図6は、同実施例1のダンパ位置調整装置の使用状態の一部断面の説明図であり、図7は、ダンパ位置調整装置の使用状態の一部断面の説明図であり、図8は、本実施例1のバーナおよび吸熱手段特性および触媒手段の特性を説明する模式図であり、図9は、本実施例1のセンサの出力特性を説明する図であり、図10は、本実施例1のモータ制御特性を説明する図であり、図11は、本実施例1のNOxおよびCO低減特性を説明する図である。
【0108】
まず、本実施例1の蒸気ボイラについて説明する。図1を参照して、蒸気ボイラは、燃焼により酸素,窒素酸化物および一酸化炭素を含むガスを生成するバーナ1と、このバーナ1にて生成されるガスから吸熱する吸熱手段2と、この吸熱手段2通過後の酸素,窒素酸化物および一酸化炭素をそれぞれ所定濃度比で含むとともに被毒物質を含むガスが接触して通過される被毒物質除去手段3と、この被毒物質除去手段3を通過後のガスと接触して、一酸化炭素を酸化させるとともに窒素酸化物を還元させる触媒手段(以下、単に「触媒」と称する。)4と、前記バーナ1へ燃料ガス(ガス燃料)を供給する燃料供給手段5と、前記バーナ1へ燃焼空気を供給する燃焼空気供給手段6と、前記燃料供給手段5および/または前記燃焼空気供給手段6を制御(この実施例1では前記燃焼空気供給手段6のみを制御)して前記バーナ1の空気比を調整する空気比調整手段7と、前記触媒手段4の下流(二次側)において酸素濃度を検出するセンサ8と、このセンサ8などの信号を入力して前記燃料供給手段5および前記燃焼空気供給手段6などを制御するボイラ制御器としての制御器9とを主要部として備えている。前記燃料供給手段5には、ガス燃料中に含まれる硫黄成分である付臭剤を除去する硫黄成分除去手段10を備えている。
【0109】
図2および図3を参照して前記バーナ1は、平面状の燃焼面(予混合気の噴出面)を有する完全予混合式バーナである。このバーナは、特許文献1に記載のバーナと同様の構成のバーナを用いている。
【0110】
前記吸熱手段2は、缶体であり、上部管寄せ11および下部管寄せ12を備え、この両管寄せ間に水管群13を構成する複数の内側水管14,14,…を配置して構成されている。そして、図3に示すように、前記吸熱手段(缶体)2の長手方向の両側部に外側水管15,15,…を連結部材16,16,…で連結して構成した一対の水管壁17,17を設け、この両水管壁17,17と前記上部管寄せ11および下管寄せ12との間に前記バーナ1からの燃焼反応中ガスおよび燃焼完結ガスがほぼ直線的に流通する第一ガス通路18を形成している。前記第一ガス通路18の一端には前記バーナ1が設けられ、他端の排ガス出口19には排ガスが流通する第二ガス通路(煙道)20が接続されている。この実施例1においては、前記バーナ1および前記缶体2は、公知のものを用いている。
【0111】
図2を参照して、前記排ガス通路20は水平部21と垂直部22とを含み、前記水平部21には、前記被毒物質除去手段3および前記触媒4がそれぞれ個別に着脱自在となるように装着されている。前記垂直部19には、前記触媒4の下流側に位置するように排熱回収器としての給水予熱器23が装着され、前記触媒4および前記給水予熱器23の間に前記センサ8が配置されている。
【0112】
前記バーナ1,前記水管群13を含む前記バーナ1から前記触媒4に至る構成要素(特にバーナ1と水管群2がその主要部)は、前記触媒4の一次側のガスにおける前記所定濃度比Kを前記所定濃度比K0,K1に調整する機能をなすものである。すなわち、後述する空気比調整手段7により設定空気比を調整(変化)したとき、図5に示す前記触媒4の一次側の空気比―NOx・CO特性が得られるように構成されている。この空気比―NOx
・CO特性は、前記空気比調整手段7を制御して、空気比を1.0の設定空気比に調整したとき、前記触媒4の二次側の窒素酸化物濃度を実質的に零とする前記触媒4の一次側の空気比―NOx・CO特性(以下、一次特性という。)である。そして、前記触媒4は、前記一次特性を有する前記ガスを前記触媒4に接触させることにより得られる前記触媒4の二次側空気比―NOx・CO特性(以下、二次特性という。)を有している。前記一次特性は、前記バーナ1から前記触媒4に至る構成要素による前記濃度比特性であり、前記二次特性は、前記触媒4による特性である。前記一次特性は、前記設定空気比を1.0に調整したとき、前記触媒4の二次側のNOx濃度および一酸化炭素濃度を実質的に零とする。このとき、前記触媒4の一次側のガスにおける基準所定濃度比K0は、特異基準濃度比K0Xとなる(図8参照)。
【0113】
この図5において、第一ライン(特性線)Eは、前記触媒4一次側のCO濃度を示し、第二ラインFは、同じく一次側のNOx濃度を示している。また、第三ラインJは、前記触媒4二次側のCO濃度を示し、空気比1.0以上でCO濃度が実質的に零となり、空気比が1.0より小さくなると、濃度が急激に増加する特性を有している。また、第四ラインKは、前記触媒4二次側のNOx濃度を示し、空気比1.0以下の所定の領域でNOx濃度が実質的に零となり、空気比が1.0を越えるに従い、実質的に零から濃度が増加し、やがて前記触媒4の一次側の濃度と等しくなる特性を有している。この前記触媒4の二次側NOx濃度が、一次側の濃度と等しくなる空気比以下の領域をNOx・CO低減領域と称する。このNOx・CO低減領域の下限は、前記触媒4の二次側のCO濃度が300ppm(日本のCO許容排出基準)となる空気比とすることができる。この空気比―NOx・CO特性は、これまで研究されてこなかった低空気比領域の新規な特性である。ここにおいて、低空気比とは、空気比1.1以下,好ましくは、1.05以下であり、この空気比の領域を低空気比領域と称する。
【0114】
前記触媒4は、炭化水素非存在下で前記水管群13を通過後の前記ガスに含まれる一酸化炭素を酸化する(第一反応)とともに窒素酸化物を還元する(第二反応)機能を有し、本実施例1では、触媒活性物質を白金とした触媒を用いている。前記「発明を実施するための最良の実施の形態」の欄で説明したように、実験結果に基づいて理論的に考察すると、前記式(3)の濃度比を満たす前記ガスと前記触媒4の触媒活性物質(触媒成分)との接触により、主に一酸化炭素を酸化させる第一反応と窒素酸化物を一酸化炭素により還元させる第二反応とが生じると考えられる。前記第一反応は、酸素濃度により反応が進行するか、しないかが決定され、この触媒4においては、前記第一反応が前記第二反応に対して優位であると考えられる。
【0115】
前記触媒4をより具体的に説明すると、この触媒は、図4に示すような構造のもので、たとえば,つぎのようにして形成される。前記基材としての共にステンレス製の平板24および波板25のそれぞれの表面に多数の微小凹凸を形成し、その表面に触媒活性材料(図示省略)を塗布する。ついで、所定幅の前記平板24および波板25を重ね合わせたうえで、螺旋状に巻回してロール状に形成する。このロール状のものを側板26にて包囲し固定して形成している。前記触媒活性材料としては、白金を用いている。なお、図3においては、前記平板24および前記波板25の一部のみを示している。
【0116】
この触媒4は、低温域で酸化活性を有し、前記第二ガス通路20の途中の水平部21であって、排ガス温度が約100℃〜350℃程度の位置に配置されている。そして、この触媒4は、性能が劣化した場合に交換可能なように、前記第二ガス通路20に対して着脱自在に装着されている。
【0117】
前記被毒物質除去手段3は、前記触媒4の触媒成分と反応して被毒物質としての硫黄成分や鉄成分を除去する機能を有し、図4に示す前記触媒4と同じ構造を有している。すな
わち、被毒物質除去成分としてCeO2を通気性を有する前記基材に塗布した構成とする。この被毒物質除去手段3において、前記触媒4と異なるのは、前記触媒成分の含有率を零としている点である。この被毒物質除去手段3は、前記触媒4とを間隔を存して設け、前記触媒4と独立して着脱自在として交換可能に設けている。
【0118】
前記燃料供給手段5は、ガス燃料供給管27と、このガス燃料供給管27に設けた燃料流量の調整用の流量調整弁28とを含んで構成されている。前記流量調整弁28は、燃料供給量を高燃焼用流量と低燃焼用流量とに制御する機能を有する。
【0119】
この燃料供給手段5のガス燃料供給管27には、燃料中に含まれる付臭剤中の硫黄成分を吸着除去する硫黄成分除去手段10を備えている。この実施例1では、東ソー株式会社製のゼオラム(登録商標)を用いている。
【0120】
前記燃焼空気供給手段6は、送風機29と、この送風機29から前記バーナ1へ燃焼用空気を供給する給気通路30を含んで構成されている。前記給気通路30内へは、前記ガス燃料供給管27が燃料ガスを噴出するように接続されている。
【0121】
前記空気比調整手段7は、前記給気通路30の開度(流路断面積)を調整する流量調整手段としてのダンパ31と、このダンパ31の開度位置を調整するためのダンパ位置調整装置32(図6,7参照)と、このダンパ位置調整装置32の作動を制御する前記制御器9とを含んで構成されている。
【0122】
前記ダンパ位置調整装置32は、図6に示すように、前記ダンパ31の回転軸33に着脱自在に連結される駆動軸34を備え、この駆動軸34は、減速機35を介してモータ36にて回転可能である。このモータ36としては、回転停止位置を任意に調整可能なモータが使用される。本実施例1ではステッピングモータ(パルスモータ)が使用される。
【0123】
前記駆動軸34は、前記ダンパ31の回転軸33と、カップリング37を介して連結されることで、同一軸線上で一体回転可能とされる。前記カップリング37は、段付き円柱形状とされ、その中央部には軸方向に貫通して段付き穴38,39が形成されている。その小径穴38には前記駆動軸34が挿入され、この駆動軸34は取付ネジ40にて前記カップリング37と一体化される。一方、大径穴39には前記ダンパ31の回転軸33が挿入可能とされ、この回転軸33はキー41にて前記カップリング37と一体回転可能とされる。そのために、前記回転軸33および前記カップリング37の大径穴39には、それぞれキー溝42,43が形成されている。
【0124】
このようなカップリング37は、一端部に前記駆動軸34が挿入された状態で、他端部が軸受44を介して前記ダンパ位置調整装置32の外ケース45に回転可能に保持される。この外ケース45には、一端部に前記減速機35および前記モータ36が保持され、他端部に前記カップリング37のキー溝43付きの大径穴39を露出した状態で、前記カップリング37や回転異常検出手段46を内部に密閉する構造である。
【0125】
回転異常検出手段46は、被検出板47と検出器48とを備える。前記被検出板47は、前記カップリング37の軸方向中央部の段付き部に、半径方向外側へ延出して固定される。この被検出板47は、前記カップリング37や前記駆動軸34と同心に設けられる。前記被検出板47の外周部の一部には、周方向等間隔に多数のスリット49,49…を形成したスリット形成領域50が設けられる。本実施例1では、四分の一(90度)の円弧分だけ、スリット形成領域50が設けられる。このスリット形成領域50に形成される各スリット49は、同一の形状および大きさである。本実施例1では、前記被検出板47の半径方向に沿った細長い矩形状の溝が、周方向に沿って等間隔に打ち抜き形成されている

【0126】
前記スリット49を検出するための検出器48は、前記外ケース45に固定される。この検出器48は、透過型フォトインタラプタからなり、発光素子51と受光素子52との間に前記被検出板47の外周部が介在された状態に取り付けられる。前記検出器48の発光素子51と受光素子52との間に前記被検出板47を介在させることで、前記検出器48と対応した位置(前記発光素子51から前記受光素子52への光路と対応した位置)に前記被検出板47のスリット49が配置されるか否かにより、前記受光素子52における前記発光素子51からの受光の有無が切り替えられる。これにより、前記検出器48は、前記被検出板47に形成したスリット49の検出が可能とされる。
【0127】
前記ダンパ位置調整装置32は、図7において前記スリット形成領域50の時計方向の端部スリット53が、前記検出器48と対応した位置に配置された状態で、前記ダンパ31が前記給気通路路30を全閉状態とするように位置決めされて、前記ダンパ31の回転軸33に取り付けられる。
【0128】
そして、前記スリット形成領域50は、前記被検出板47に90度分だけ形成しているので、このスリット形成領域50の時計方向の端部スリット53が、前記検出器48と対応した位置に配置された状態では、上述したように前記ダンパ31が前記給気通路29を全閉する一方、前記スリット形成領域50の反時計方向の端部スリット54が、前記検出器48と対応した位置に配置された状態では、前記ダンパ31が前記給気通路30を全開することになる。
【0129】
前記ダンパ位置調整装置32は、前記モータ36と前記検出器48とが前記制御器9と接続され、前記ダンパ31の回転異常を監視しつつ、前記モータ36の回転を制御することができるように構成されている。すなわち、前記モータ36を制御するために、前記制御器9は、前記モータ36への駆動パルスを含む制御信号の作成回路を有し、その作成した制御信号を前記モータ36へ出力可能である。これにより、前記モータ36は、正転または逆転と、駆動量,すなわち駆動パルスの数に対応してその回転角が任意に制御される。また、駆動パルスの間隔(送り速度)を変えることで、回転速度を制御可能に構成されている。
【0130】
実際に前記ダンパ31を開閉制御するに際し、前記制御器9は、まず前記ダンパ31全閉位置を原点とするために原点検出動作を行う。まず図7において、反時計方向へ前記被検出板47を回転させる。いま、この被検出板47のスリット形成領域50内に前記検出器48が配置されているとすれば、前記被検出板47の回転に伴い前記検出器48は定期的に前記スリット49を検出するので、その検出パルスが検出信号として前記制御器9へ入力される。そして、前記検出器48が前記スリット形成領域50外に配置されるまで前記被検出板47が回転されると、パルスが検出されなくなる。所定時間パルスが検出されないと、前記制御器9は、前記検出器48が前記スリット形成領域50外にあると認識し、回転方向を逆方向へ切り替える。すなわち、本実施例1では、前記被検出板47を時計方向へ逆転させ、最初にパルス(時計方向の端部スリット53)が検出された位置を原点とする。この時計方向への回転による原点確認は、回転方向切替え前の反時計方向の回転よりも微速でなされる。
【0131】
このようにして検出された原点は、前記ダンパ31の全閉位置と対応しているので、この状態を基準として、前記制御器9は、前記モータ36へ駆動信号を出力し、前記ダンパ31を開閉制御することができる。前記制御器9は、前記ダンパ31の開閉のために前記モータ36を駆動すれば、それに伴い前記検出器48から前記スリット49の検出信号がパルスとして取得される。従って、前記制御器9は、前記検出器47からの検出信号を前
記モータ36への制御信号と比較して、前記ダンパ31の回転異常を監視することができる。具体的には、前記モータ36への駆動パルスからなる制御信号と、前記検出器48による前記スリット49の検出パルスからなる検出信号とを比較し、回転異常の有無を監視する。
【0132】
たとえば、前記モータ36へ駆動パルスを送ったのに、前記検出器47から検出パルスが検出されない場合に、前記制御器9は、回転異常と判定する。この際、前記検出器47からの検出パルスは、前記モータ36への駆動パルスの周波数と異なるのが通常であるから、この相違を考慮して制御する。たとえば、駆動信号の所定パルス分の時間が経過しても、なお検出信号のパルスが一つも検出されない場合に、はじめて回転異常と判断するよう制御する。前記制御器9は、回転異常と判定した場合、異常の報知や燃焼を停止させるなどの処置を行う。また逆に、前記モータ36へ駆動パルスを送っていないのに、前記検出器48からパルスが検出された場合にも、回転異常を検知することができる。
【0133】
前記制御器9は、予め記憶した空気比制御プログラムにより、前記センサ8の検出信号に基づき、前記バーナの空気比が設定空気比となるように(第一制御条件)、かつこの設定空気比において前記触媒4への流入前の前記ガスの濃度比が次式(3)を満たすように(第二制御条件)、前記モータ34を制御するように構成されている。
([NOx]+2[O2])/[CO]≦2.0 …(3)
(式(3)において、[CO]、[NOx]および[O2]はそれぞれ一酸化炭素濃度、窒素酸化物濃度および酸素濃度を示し、[O2]>0の条件を満たす。)
【0134】
この実施例1においては、直接制御しているのは、前記第一制御条件であり、この第一制御条件を満たすことにより、自動的に前記第二制御条件が満たされる。この点を図5および図8に基づき以下に説明する。
【0135】
図5の空気比―NOx・CO特性は、前記バーナ1および前記水管群2を含む構成要素の前記一次特性と前記二次特性とに基づいて表現したものであるが、図8は、これを前記触媒4一次側の酸素濃度に対する前記構成要素の前記一次特性と前記触媒4の特性とに基づいて表現したものである。
【0136】
前記触媒4の特性は、図8に示すように、前記触媒4一次側の前記濃度比に関する第五ラインL(二次側[NOx][CO]零ライン)にてその特徴を表している。この第五ラインLは、そのライン上に前記触媒4一次側の前記濃度比が位置する(載る)と、前記触媒4の二次側の窒素酸化物濃度および一酸化炭素濃度を実質的に零とするラインである。この第五ラインLは、前記式(3)の前記所定濃度比が1の場合に対応している。すなわち、この第五ラインLは、次式(3A)を表したラインである。
[NOx]+2[O2]=[CO] …(3A)
【0137】
ここで、[NOx]は、図11に示すように[CO]の1/50〜1/30程度であるので、図8においては、酸素濃度に対するNOx濃度特性を省略するとともに、式(3A)における[NOx]を無視している。この第五ラインLにおいて、一次側酸素濃度をX1とした場合、一次側一酸化炭素濃度Y1は、Y1=2X1+[NOx]となる。なお、前記所定濃度比の値が1.0を越える2.0までの範囲で、前記触媒4の二次側の窒素酸化物濃度および一酸化炭素濃度を実質的に零とすることができることが確認されているので、前記第五ラインLは、図示のラインLに限定されず、前記式(3)を満たすラインとすることができる。
【0138】
そして、前記バーナ1および前記水管群13の前記一次特性曲線を表す第六ラインMと、前記第五ラインLとの交点における酸素,窒素酸化物および一酸化炭素の濃度比を基準
濃度比と称する。前記触媒4は、その一次側の前記濃度比を前記基準濃度比とした場合、前記触媒4の二次側の窒素酸化物濃度および一酸化炭素濃度を実質的に零とする特性を有している。
【0139】
そして、前記触媒4は、前記基準濃度比に対応する基準酸素濃度SKよりも一次側酸素濃度を高くすると前記触媒4二次側において一次側酸素濃度と基準酸素濃度の差に応じた濃度の酸素が検出されるとともに、前記触媒4の二次側の一酸化炭素濃度を実質的に零とし、前記触媒4の二次側の窒素酸化物濃度を還元反応により一次側の窒素酸化物濃度よりも低減する特性を有している。この前記触媒4二次側において酸素が検出されるとともに、一次側の窒素酸化物濃度よりも低減する特性の領域を二次側NOx漏れ領域R1と称する。この二次側NOx漏れ領域R1は、前記調整2を実現する領域であり、前記バーナ1の空気比は、1.0を越える。
【0140】
また、前記基準酸素濃度SKよりも一次側酸素濃度を低くすると前記触媒4の二次側において一次側酸素濃度と基準酸素濃度SKとの差に応じた濃度の一酸化炭素が検出されるとともに、所定の範囲で前記触媒4の二次側の窒素酸化物濃度を実質的に零とする特性を有している。この前記触媒4二次側において一酸化炭素が検出されるとともに、窒素酸化物濃度を実質的に零とする特性の領域を二次側CO漏れ領域R2と称する。この二次側CO漏れ領域R2は、前記調整0および前記調整1を実現する領域であり、前記バーナ1の空気比が1.0以下である。前記バーナ1の空気比は、1.0未満に設定される場合でも、前記触媒4の一次側で、炭化水素を含まず、酸素を含む範囲で設定される。前記二次側NOx漏れ領域R1と前記二次側CO漏れ領域R2とを合わせた領域をNOx・CO低減領域R3と称する。
【0141】
こうした図8に示す触媒4の特性は、図5に示す空気比―NOx・CO特性に符合するものである。この図8から明らかなように、前記触媒4の二次側の酸素濃度および/または一酸化炭素濃度を検出し、この酸素濃度および/または一酸化炭素濃度が零となるように前記空気比調整手段7を制御すると、前記触媒4の一次側における前記濃度比が前記基準濃度比に制御され、前記触媒4の二次側の窒素酸化物濃度および一酸化炭素濃度を実質的に零に制御できる。こうして、前記第一条件制御条件を満たすと前記第二制御条件が満たされることになる。
【0142】
前記第一条件は、これが満たされないと、炭化水素などの未燃分が生成される。そうなると、エネルギーのロスとなるとともに、前記触媒4におけるNOx低減が効果的に行われないことになる。
【0143】
前記第二条件は、排出窒素酸化物濃度をほぼ零とするために必要な条件である。前記触媒4二次側の窒素酸化物濃度,一酸化炭素濃度を零とするには、前記第一反応と前記第二反応とから、[NOx]+2[O2])/[CO]なる濃度比をほぼ1とすればよいことを実験および理論的考察により見出した。しかしながら、前記濃度比が1以上の1〜2.0でも排出窒素酸化物濃度をほぼ零とすることができることが確認されている。
【0144】
前記センサ8として、O2分解能が50ppmで応答時間2sec以下の応答答性の良好なジルコニア式空燃比センサを用いている。このセンサ8の出力特性は、図9に示すように、出力が正側で酸素濃度に関係する出力となり、負側で一酸化炭素濃度に関係する出力となる。
【0145】
そして、前記空気比制御プログラムは、前記センサ8の検出信号に基づき、前記バーナ1の空気比が設定空気比になるように制御するものであるが、具体的には、つぎのように構成されている。すなわち、図10に示すように、前記センサ8からの出力値(酸素濃度
信号および一酸化炭素濃度で表される検出空燃比)に基づき、この検出空燃比と設定空気比に対応する設定値との差に応じて前記モータ36の送り速度V(単位時間当たりの駆動量)を変える第一制御帯C1と、この第一制御帯C1の外側において送り速度Vをそれぞれ第一設定値V2,第二設定値V1とする第二制御帯C2A,C2Bとを設けて、前記モータ36の駆動量を制御する制御手順が含まれている。図10において、P1は、ダンパ開領域,P2は、ダンパ閉領域を示す。
【0146】
前記第一制御帯C1の設定範囲は、酸素濃度N1(たとえば100ppm)と一酸化炭素濃度N2(たとえば50ppm)とで設定され、空気比を実質的に1とすべく前記設定酸素濃度および前記設定一酸化炭素濃度で規定される設定範囲に収まるように制御される。
【0147】
前記第一制御帯C1における送り速度Vは、次式(4)で計算される。前記送り速度Vは、単位時間当たりの駆動量に相当する。本実施例のモータ36の1ステップによる回転角度は、0.075度で、O2に換算すると約30ppmの変動に相当する。
V=K×△X …(4)
(但し、Kはゲインであり、△Xは、(前記センサ8の検出空燃比−前記設定空燃比)なる偏差である。)
【0148】
また、前記制御器9は、予め記憶したメンテナンスプログラムにより、前記被毒物質除去手段3と被毒物質の反応が飽和状態となったことを報知器55にて報知するように構成している。このメンテナンスプログラムは、前記被毒物質除去手段3および前記触媒4の交換時期を低燃焼換算の運転時間が設定時間T(たとえば1200時間)となると、前記報知器55にて交換を報知するように構成される。これを可能とするために、前記設定時間Tだけ前記被毒物質除去手段3にガスを流すとこの被毒物質除去手段3の反応が飽和状態となるように、前記被毒物質除去手段3の容量を設定している。
【0149】
換言すれば、前記被毒物質除去手段3および前記触媒4のメンテナンス時期を前記被毒物質除去手段3の反応の開始から飽和状態となるまでの時間Tに基づき設定するように構成している。前記被毒物質除去手段3の容量は、燃焼空気中に含まれる硫黄成分および鉄成分の量を測定したうえで、実験により求める。前記設定時間Tは、手動により調整可能として、前記制御器9に内臓のタイマー(図示省略)により計測するように構成している。
【0150】
前記報知器55による報知は、視覚または聴覚を利用して報知するように構成するが、前記報知器55を蒸気ボイラから離れた位置にある管理装置や携帯電話とすることができる。
【0151】
(実施例1の動作)
つぎに、以上の構成の前記蒸気ボイラの動作を説明する。図2を参照して、まず、基本的的動作について説明するに、前記送風機29から供給される燃焼空気(外気)は、前記ガス燃料供給管27ら供給される燃料ガスと前記給気通路30内において予混合される。この予混合気は前記バーナ1から前記缶体2内の第一ガス通路18へ向けて噴出される。予混合気は、着火手段(図示しない)により着火され、燃焼する。この燃焼は、前記のように低空気比にて行われる。
【0152】
この燃焼に伴い生ずる燃焼反応中ガスは、上流側の水管群13と交叉して冷却された後、ほぼ燃焼が完結したガスとなり下流側の水管群13と熱交換して吸熱されて約100℃〜350℃のガスとなる。
【0153】
前記ガス中には、炭化水素を含まず、酸素,窒素酸化物および一酸化炭素を含むととも
に、前記触媒成分と反応して吸着される被毒物質を含んでいる。前記燃料供給管27に備えた被毒物質除去手段10によりガス燃料中の付臭剤材の硫黄成分が除去されているので、被毒物質としては、硫黄酸化物微粒子として燃焼空気中に存在する硫黄酸化物からなる硫黄成分と酸化鉄としてガス中に存在する鉄成分とが含まれている。
【0154】
前記ガスは、前記被毒物質除去手段3により被毒物質が吸着除去され、被毒物質を含まないガスが前記触媒4へ流入する。そして、前記触媒4において、ガスと触媒成分との接触により、一酸化炭素が酸化され、窒素酸化物が還元される。その結果、後で詳述するように、前記ガス中の窒素酸化物および一酸化炭素の排出量が実質的に零に低減され、排ガスとして前記第二ガス通路20から大気中へ排出される。
【0155】
そして、前記被毒物質除去手段3への通過ガス量が所定量を超え、前記被毒物質吸成分による被毒物質の吸着が飽和状態となると、前記被毒物質除去手段3から流出するガス中に被毒物質が洩れるようになり、前記触媒4の触媒作用が低下してくる。そうすると、前記触媒手段の二次側の窒素酸化物濃度が実質的に零にすることができなくなるので、前記制御器9は、前記報知器55に前記被毒物質除去手段3の交換が必要なことを報知する。この実施例1においては、前記触媒4を前記被毒物質除去手段3と同時に交換するように構成しているが、前記触媒4が必要とする所期の性能を発揮しなくなるタイミングで前記触媒4を交換するように構成することができる。この交換のタイミングは、前記被毒物質除去手段3の交換のタイミングよりも長い時間として、タイマーやNOx,CO濃度を検出するセンサにより設定することができる。
【0156】
前記報知器55による報知を受けた管理者またはメンテナンス員は、前記被毒物質除去手段3を取り外して、新しい被毒物質除去手段3を装着し、ボイラの運転を再開する。この再開の際に、前記タイマーによる前記設定時間Tのカウントをリセットしておく。交換した前記被毒物質除去手段3は、コストがかかるので、リサイクルすることなく廃棄するが、低コストのリサイクルが可能であれば、リサイクルする。
【0157】
このように、前記被毒物質除去手段3を備えていることにより、前記設定時間Tの間、排出される窒素酸化物および一酸化炭素の量を実質的に零とする超低公害化を持続して行うことができる。また、前記被毒物質除去手段3の交換により、短時間のボイラ運転の中断だけで済ますことができる。
【0158】
つぎに、前記空気比調整手段32による空気比制御について説明する。本実施例のボイラは、高燃焼と低燃焼とを切り替えて運転する。そのために、前記ダンパ31は、高燃焼風量位置と低燃焼風量位置のいずれかを選択して位置決めされる。
【0159】
このダンパ31の位置調整は、前記制御器9からの指令により前記ダンパ位置調整装置32により行う。すなわち、前記制御器9は、高燃焼か低燃焼かの選択信号と、前記センサ8の検出空燃比を入力して、前記モータ36の駆動信号を出力して、前記ダンパ31を移動させる。前記制御器9は、高燃焼時と低燃焼時の設定空燃比となる前記ダンパ31の設定回転位置を原点からのパルス数でそれぞれ初期値として記憶している。
【0160】
まず、高燃焼時の制御について説明する。前記制御器9は、現在の前記ダンパ31の回転位置が前記設定回転位置に対して開放側(閉じる方向へ制御しなければいけない側)か、閉鎖側(開く方向へ制御しなければいけない側)かを判定するとともに、前記モータ36の駆動パルス数を演算する。併せて、前記検出値が図10において、前記第一制御帯および前記第二制御帯A,Bのいずれに属するかを判定する。
【0161】
前記第二制御帯C2Aに属する場合には、第一設定送り速度V2で、かつ演算された駆
動パルスで前記モータ36を駆動し、早い速度で前記ダンパ31を閉じる。前記第二制御帯C2Bに属する場合には、第二設定送り速度V1で、かつ演算された駆動パルスで前記モータ36を駆動し、早い速度で前記ダンパ31を開く。こうして、前記設定空燃比から比較的離れている場合は、早い速度で前記検出空燃比を前記設定空燃比に近づける制御を行うので、応答性の良い空気比制御を行うことができる。
【0162】
また、前記第一制御帯C1に属する場合は、回転方向を判定したうえで、前記式(4)に基づいて、前記モータ36の送り速度を演算し、演算した送り速度と演算した駆動パルスで前記モータ36を駆動する。この第一制御帯における制御は、前記設定空燃比から遠ざかるにつれて送り速度を早くする。こうした制御により、目標とする前記設定空燃比に速やかに近づけることができる。また、回転位置制御を確実に行えるステッピングモータにより行っていることと、前記検出空燃比が前記設定空燃比に近づくにつれて送り速度を遅くする制御としていることとにより、前記設定空燃比の近傍における空気比のオーバーシュートおよびハンチングを抑制することができる。
【0163】
こうした空気比制御により、前記バーナ1の空気比を1に近い低空気比とし、かつ前記触媒4の一次側のガスの濃度比変化幅が少なく制御され、前記式(3)を安定的に満たすことができる。その結果、前記触媒4の二次側の窒素酸化物濃度をほぼ零にするとともに、一酸化炭素濃度を実用範囲の値に低減することができる。
【0164】
(実験例1)
単位時間当たり蒸発量を800kgの缶体2(出願人が製造の型式:SQ―800と称される缶体)で,燃焼量45.2m3N/hの予混合バーナ1で燃焼させた実験結果について説明する。前記設定空気比を1.0005以下とした場合、前記触媒1の一次側(前記触媒4通過前)の一酸化炭素濃度,窒素酸化物濃度,酸素濃度がそれぞれ10分間の平均値で2295ppm,94ppm,1655ppmに調整され、前記触媒1の二次側(前記触媒1通過後)のそれぞれの濃度が10分間の平均値で13ppm,0.3ppm,100ppm未満となった。ここで、前記触媒1の二次側の酸素濃度100ppmは、酸素濃度の測定限界である。前記触媒4の前後でのガスの温度は、それぞれ、約302℃,327℃であった。本実験例1および以下の実験例2,3においては、前記触媒4を前記給水予熱器20のやや上流に配置し、その前後に測定装置を配置し、前記触媒4の通過後の各濃度は、株式会社堀場製作所製PG−250を用い、通過前の各濃度は、株式会社堀場製作所製COPA−2000を用いて計測した。勿論、前記触媒4を図1に示す位置に配置しても測定濃度値は殆ど変わらないと考えられる。
【0165】
(実験例2)
実験例1と同じバーナ1および缶体2を用い、燃焼量を実験例1と同じとし、触媒活性物質として内径360mmのPdを用いた触媒とした場合の一酸化炭素濃度,窒素酸化物濃度,酸素濃度の各濃度比における値を図11に示す。ここで、触媒通過後の酸素濃度を実験例1と同様の酸素濃度センサを用いて測定したので、実際は100ppm以下の値であっても100ppmで示した。前記触媒4の前後でのガスの温度は、それぞれ、約323〜325℃,約344℃〜346℃であった。
【0166】
前記実施例1によれば、燃焼空気と燃料の割合を調整するダンパ位置調整手段(空気比調整手段)30により、前記触媒4の一次側の酸素,窒素酸化物および一酸化炭素の濃度比Kを前記特異基準濃度比K0Xに制御(前記調整0)することができ、排出NOx濃度および排出CO濃度を低減できる。したがって、水/蒸気添加による低NOx化技術や、脱硝剤の投入による低NOx化技術と比較して、空気比調整手段と触媒を用いた簡易な構成にて低NOxおよび低COを実現できる。
【0167】
また、空気比を実質的に1.0としているので、省エネ運転を行える。ちなみに、通常のボイラにおける酸素濃度4%(空気比約1.235)の運転と、酸素濃度0%(空気比約1.0)の運転とを比較すると、ボイラ効率約1〜2%アップを達成することができる。地球温暖化対策が叫ばれている昨今において、このボイラ効率アップ達成は、産業的価値が多大である。
【0168】
さらに、前記触媒4の二次側に前記センサ7を設けて、空気比を制御しているので、前記触媒4の一次側にセンサを設けて制御するものと比較して制御を安定化することができる。また、酸素濃度100ppm以下の分解能で空気比を制御しているので、空気比制御を応答性よく、安定的に行うことができる。
【実施例2】
【0169】
この発明の他の実施例2を図12および図13に従い説明する。この実施例2は、酸素濃度を検出するセンサ8を前記触媒4の二次側でなく、一次側に設けたものである。このセンサ8は酸素濃度のみを検出するセンサとしている。そして、このセンサ8に基づく前記モータ36の制御特性を図13に示す。以下、前記実施例1と異なるところのみを説明し、共通箇所は説明を省略する。
【0170】
この実施例2では、設定空気比を1(前記触媒4の二次側の酸素濃度を零)とするように、前記センサ8により、前記触媒4の一次側の酸素濃度を検出して間接的に空気比を制御するものである。種々の実験結果に基づき、前記触媒4の一次側の酸素濃度を0を越える1%までの値に制御すると、前記式(3)を満たして、前記触媒4の二次側の酸素濃度をほぼ零にする,すなわち空気比をほぼ1.0にすることが可能であることが分かっている。
【0171】
そこで、この実施例2の空気比制御プログラムには、図13に示すように、前記センサ8からの検出値(酸素濃度信号)に基づき、この検出値と設定酸素濃度の設定値との差に応じて前記モータ36の送り速度V(単位時間当たりの駆動量)を変える第一制御帯C1と、この第一制御帯C1の外側において送り速度Vをそれぞれ第一設定値V2,第二設定値V1とする第二制御帯C2A,C2Bとを設けて、前記モータ36の駆動量を制御する制御手順が含まれている。
【0172】
前記第一制御帯C1の設定範囲は、酸素濃度N1と酸素濃度N2とで設定される範囲に収まるように制御される。前記第一制御帯C1における送り速度Vは、前記実施例1と同様に、前記式(4)で計算される。
【実施例3】
【0173】
この実施例3は、前記設定空気比を、図14に示すように、前記二次特性におけるNOx濃度が実質的に零を越え、前記一次特性におけるNOx濃度より低くなる値に設定した例である。この値は、前記設定空気比が、実質的に1.0を越える前記二次特性の二次側NOx漏れ領域R1の空気比である。この実施例3における濃度比Kの調整は、前記調整2である。
【0174】
この実施例3における前記第一制御帯C1は、制御範囲の中心(目標空気比)が空気比1.005(O2濃度:約1000ppm)、左端が実質的に空気比1.0、右端が空気比1.01(O2濃度:約2000ppm)である。この実施例3では、前記左端の空気比は、空気比1.0よりも低い領域に設定されている。これを図8にて説明すると、前記触媒4一次側の酸素濃度が前記基準酸素濃度SKよりも高い前記二次側NOx漏れ領域(前記調整2を実現する領域)R1にて空気比制御を行うことになる。
【0175】
(実験例3)
この実施例3において、前記実験例1と同じ条件(設定空気比を除く)で実験した場合、前記触媒1の一次側(前記触媒4通過前)のCO濃度,NOx濃度,O2濃度がそれぞれ10分間の平均値で1878ppm,78ppm,3192ppmに調整され、前記触媒1の二次側(前記触媒1通過後)のそれぞれの濃度が10分間の平均値で0ppm,42ppm,1413ppmとなった。
【0176】
この実験例3から明らかなように、実施例3の空気比制御によれば、前記触媒4の還元作用により、排出NOx濃度は、前記一次特性のNOx濃度よりも低い値に低減されるとともに、排出CO濃度は、零に低減されることになる。
【0177】
この実施例3においては、前記第一制御帯C1を前記二次側NOx漏れ領域R1の範囲で自由に設定することができる。前記第一制御帯C1を空気比1に近づけるほど、NOxの低減効果および省エネ効果が大きくなる。しかしながら、処理するCO濃度が高い(勾配が急な場合もある)ので、COが漏れやすく、制御が難しく、触媒量を多く必要とする。そこで、前記第一制御帯C1を空気比1から離れるように右側に設定すると、制御が容易となるとともに、前記触媒4の量を少なくすることができる。
【0178】
具体的には、前第一制御帯C1の左端を前記実施例3が空気比1.0以下とする(図14)のではなく、空気比1.0とすることができる。また、前記第一制御帯C1の左端を空気比1を越える値に設定することも可能である。
【実施例4】
【0179】
この実施例4は、図15に示すように、前記実施例1において、前記ガス燃料供給管27にて供給されるガス燃料に付臭剤が含まれていない場合の実施例である。前記実施例1と異なるのは、前記硫黄成分除去手段10を省略した点である。その他の構成は、前記実施例1と同様であるので、その説明を省略する。
【0180】
この発明は、前記実施例1〜4に限定されるものではない。たとえば、図5および図14に示す空気比−NOx・CO特性は、燃焼装置の前記バーナ1および前記缶体3の構造に応じて曲線および濃度値が異なるので、異なった特性を用いることができる。また、前記実施例1〜4では、設定空気比を1.0以上としているが、燃焼性を損なわず、炭化水素を生成しない範囲で、空気比1.0より低い値とすることができる。
【0181】
また、前記実施例2において、前記センサ7をO2濃度センサとしているが、CO濃度センサとすることができる。また、前記ダンパ位置調整装置32の構造は、種々変形可能である。また、前記モータ36は、ステッピングモータ以外の、たとえばギヤモータ(図示省略)とすることができる。さらに、前記ダンパ位置調整装置30を単一の制御器(ボイラ制御用の制御器)9にて制御しているが、この制御器9と別に前記ダンパ位置調整装置32用の別の制御器(図示省略)を設け、この制御器と前記センサ8,前記制御器9を接続して、空気比制御を行うように構成することができる。さらに、前記空気比調整手段7は、前記送風機29の駆動用のモータ(図示省略)をインバータにより制御することで構成することができる。
【図面の簡単な説明】
【0182】
【図1】本実施例1の原理的構成の説明図である。
【図2】本実施例1の蒸気ボイラの縦断面の説明図である。
【図3】図1のII−II線に沿う断面図である。
【図4】図2の触媒を排ガスの流れ方向から見た要部構成を示す図である。
【図5】本実施例1の空気比−NOx・CO特性を用いた空気比制御を説明する模式図である。
【図6】本実施例1のダンパ位置調整装置の使用状態の一部断面の説明図である。
【図7】同ダンパ位置調整装置の要部の断面説明図である。
【図8】本実施例1のバーナおよび吸熱手段の特性および触媒の特性を説明する模式図である。
【図9】本実施例1のセンサの出力特性を説明する図である。
【図10】本実施例1のモータ制御特性を説明する図である。
【図11】本実施例1のNOxおよびCO低減特性を説明する図である。
【図12】本実施例2の蒸気ボイラの縦断面の説明図である。
【図13】本実施例2のモータ制御特性を説明する図である。
【図14】本実施例3の空気比−NOx・CO特性を用いた空気比制御を説明する図である。
【図15】本実施例4の蒸気ボイラの縦断面の説明図である。
【符号の説明】
【0183】
1 バーナ
3 被毒物質除去手段
4 触媒(触媒手段)
7 空気比調整手段
8 センサ
9 制御器(制御手段)

【特許請求の範囲】
【請求項1】
接触によりガスの化学的変化を生ずる触媒成分を含む触媒手段の触媒劣化防止装置であって、
前記ガス中に含まれ前記触媒成分に吸着,または当該触媒成分と化合物を形成する被毒物質を除去する被毒物質除去手段が前記触媒手段の一次側に備えられることを特徴とする触媒劣化防止装置。
【請求項2】
前記被毒物質除去手段と前記触媒手段とを互いに間隔を存して、それぞれを交換可能に設けたことを特徴とする請求項1に記載の触媒劣化防止装置。
【請求項3】
前記被毒物質除去手段の被毒物質を吸着,または当該被毒物質と化合物を形成する成分の担持体と前記触媒手段の触媒成分の担持体とを一体的に構成し、交換可能に設けたことを特徴とする請求項1に記載の触媒劣化防止装置。
【請求項4】
前記被毒物質除去手段に含まれる触媒成分の量を前記触媒手段のそれより少なく(零を含む)したことを特徴とする請求項1に記載の触媒劣化防止装置。
【請求項5】
燃焼により酸素,窒素酸化物および一酸化炭素を含むガスを生成するバーナと、
前記ガスから吸熱する吸熱手段と、
この吸熱手段を通過後の前記ガスに含まれる一酸化炭素を酸素により酸化し窒素酸化物を一酸化炭素により還元する触媒成分を有する触媒手段と、
前記触媒手段の一次側に設けられ、前記ガス中に含まれ前記触媒成分に吸着,または当該被毒物質と化合物を形成する少なくとも硫黄を含む被毒物質を除去する被毒物質除去手段と、
前記バーナの空気比を検出するためのセンサと、
このセンサの検出信号に基づき前記バーナの空気比を設定空気比に制御する空気比調整手段とを備え、
前記バーナおよび前記吸熱手段は、前記空気比調整手段により前記空気比を前記設定空気比に調整したとき、前記触媒手段一次側のガス中の酸素,窒素酸化物および一酸化炭素の濃度比を、前記触媒手段二次側の窒素酸化物濃度が実質的に零または所定値以下に、一酸化炭素濃度が実質的に零または所定値以下となる所定濃度比に調整するように構成されることを特徴とする低NOx燃焼装置。
【請求項6】
燃焼により酸素,窒素酸化物および一酸化炭素を含むガスを生成するバーナと、
前記ガスから吸熱する吸熱手段と、
この吸熱手段を通過後の前記ガスに含まれる一酸化炭素を酸素により酸化し窒素酸化物を一酸化炭素により還元する触媒成分を有する触媒手段と、
前記触媒手段の一次側に設けられ、前記ガス中に含まれ前記触媒成分に吸着,または当該被毒物質と化合物を形成する少なくとも硫黄を含む被毒物質を除去する被毒物質除去手段と、
前記バーナの空気比を検出するためのセンサと、
このセンサの検出信号に基づき前記バーナの空気比を設定空気比に制御する空気比調整手段とを備え、
前記バーナおよび前記吸熱手段は、前記空気比調整手段により前記空気比を前記設定空気比に調整したとき、前記触媒手段一次側のガス中の酸素,窒素酸化物および一酸化炭素の濃度比Kを調整する濃度比調整を行うように構成され、
前記濃度比調整は、下記の調整0,調整1,調整2のいずれかであることを特徴とする低NOx燃焼装置。
調整0:前記濃度比Kを前記触媒手段二次側の窒素酸化物濃度および一酸化炭素濃度を
実質的に零とする基準所定濃度比K0に調整する。
調整1:前記濃度比Kを、前記触媒手段二次側の窒素酸化物濃度を実質的に零とするとともに一酸化炭素濃度を所定値以下とする第一所定濃度比K1に調整する。
調整2:前記濃度比Kを、前記触媒手段二次側の一酸化炭素濃度を実質的に零とするとともに窒素酸化物濃度を所定値以下とする第二所定濃度比K2に調整する。
【請求項7】
前記基準所定濃度比K0を判定する式を次式(1)とし、前記基準所定濃度比K0が次式(2)を満たし、前記第一所定濃度比K1を前記基準所定濃度比K0より小さく、前記第二所定濃度比K2を前記基準所定濃度比K0より大きくしたことを特徴とする請求項6に記載の低NOx燃焼装置。
([NOx]+2[O2])/[CO]=K …(1)
1.0≦K=K0≦2.0 …(2)
(式(1)において、[CO]、[NOx]および[O2]はそれぞれ一酸化炭素濃度、窒素酸化物濃度および酸素濃度を示し、[O2]>0の条件を満たす。)
【請求項8】
燃焼により酸素,窒素酸化物および一酸化炭素を含むガスを生成するバーナと、
前記ガスから吸熱する吸熱手段と、
この吸熱手段を通過後の前記ガスに含まれる一酸化炭素を酸素により酸化し窒素酸化物を一酸化炭素により還元する触媒成分を有する触媒手段と、
前記触媒手段の一次側に設けられ、前記ガス中に含まれ前記触媒成分に吸着,または当該被毒物質と化合物を形成する少なくとも硫黄を含む被毒物質を除去する被毒物質除去手段と、
前記バーナの空気比を検出するためのセンサと、
このセンサの検出信号に基づき前記バーナの空気比を設定空気比に制御する空気比調整手段とを備え、
前記バーナおよび前記吸熱手段は、前記空気比調整手段により前記空気比を前記設定空気比に調整したとき、前記触媒の一次側の前記ガスの濃度比が次式(3)を満たすように構成されることを特徴とする低NOx燃焼装置。
([NOx]+2[O2])/[CO]≦2.0 …(3)
(式(3)において、[CO]、[NOx]および[O2]はそれぞれ一酸化炭素濃度、窒素酸化物濃度および酸素濃度を示し、[O2]>0の条件を満たす。)
【請求項9】
前記被毒物質除去手段と前記触媒手段とを互いに間隔を存して、それぞれを交換可能に設けたことを特徴とする請求項5〜請求項8のいずれか1項に記載の低NOx燃焼装置。
【請求項10】
前記被毒物質除去手段の被毒物質を吸着する成分の担持体と前記触媒手段の触媒成分の担持体とを一体的に構成し、交換可能に設けたことを特徴とする請求項5〜請求項8のいずれか1項に記載の低NOx燃焼装置。
【請求項11】
前記被毒物質除去手段に含まれる触媒成分の量を前記触媒手段のそれより少なく(零を含む)したことを特徴とする請求項5〜請求項8のいずれか1項に記載の低NOx燃焼装置。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate

【図11】
image rotate

【図12】
image rotate

【図13】
image rotate

【図14】
image rotate

【図15】
image rotate


【公開番号】特開2008−253976(P2008−253976A)
【公開日】平成20年10月23日(2008.10.23)
【国際特許分類】
【出願番号】特願2007−130789(P2007−130789)
【出願日】平成19年5月16日(2007.5.16)
【出願人】(000175272)三浦工業株式会社 (1,055)
【出願人】(504143522)株式会社三浦プロテック (488)
【Fターム(参考)】