説明

試料分析チップ、これを用いた試料分析装置及び試料分析方法

【課題】チップ上に形成されたウェルへ送液を行い、反応を行う試料分析チップにおいて、送液方法が簡易でかつ各ウェルの液量ばらつきがなく、低コストの試料分析チップを提供すること。
【解決手段】基材101に複数のウェル102と、各ウェルに繋がる流路と、流路に溶液を注入するための注入口とを有し、該基材を回転させてウェルに溶液を配液する試料分析チップであって、前記流路は、前記注入口と連絡し、前記ウェルより回転中心側に設けられた第一の液溜め部108と、連絡流路を介して第一の液溜め部と連絡し、各ウェルに対応する第二の液溜め部109と、第二の液溜め部とウェルとを連絡する支流路105と、を有することを特徴とする試料分析チップ。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、生化学反応の検出や分析等に用いる試料分析チップ及び試料分析方法に関する。
【背景技術】
【0002】
従来、例えばDNA反応、たんぱく質反応等の生化学反応の分野において、微量の溶液試料を処理する反応装置として、μ−TAS(Total Analysis System)やLab−on−Chipと呼ばれる技術が知られている。これは、1個のチップやカートリッジに複数の反応室(以下、ウェル)や流路を供えたものであり、複数の検体の解析、あるいは複数の反応を行うことができる。これらの技術はチップ及びカートリッジを小型化することで扱う薬品を少量にすることが出来、様々なメリットがあるとされてきた。
【0003】
そのメリットとは例えば従来使用していた強酸や強アルカリ薬品の分量が微量化することで人体への影響や環境への影響が格段に低くなること、また、生化学反応等に用いられる高額な試薬類の消費量が微量化することで分析、反応に費やすコストを低減できること、などが挙げられる。
【0004】
チップやカートリッジを用いて生化学反応を最も効率よく行うためには、複数のウェルにそれぞれ異なる種類の薬品や検体、酵素を配置し、これら薬品や検体、酵素と反応を起こす試薬を一本ないし数本の主導管からまとめてウェルに流し入れ、異なった複数の反応を生じさせる必要がある。
【0005】
この手法を用いれば、複数種の検体を同じ試薬で同時に処理をしたり、また逆に一種類の検体に同時に複数の処理を施したりすることが出来、従来かかっていた時間や手間を大幅に減らすことが可能である。
【0006】
この種の手法を用いる際、複数の反応場に等量のサンプルを送液する技術と、各ウェルの中身を混ざり合わないようにする技術が重要となる。このようなウェルへの送液を行うチップについての先行技術としては以下のものが挙げられる。
【0007】
特許文献1では、液溜めから遠心力を用いてウェルへの送液を行うチップにおいて、ウェルを独立させるために流路を変形、密封している。そのため流路を押しつぶす機構が必要であり、自動化が困難である。また、従来の遠心送液チップのように中央の液溜りから周囲のウェルに遠心送液を行うと、各ウェルへの送液量にばらつきが生じてしまう。
【0008】
特許文献2では、遠心方法を自転+公転を織り交ぜることで各ウェルへの送液量にばらつきを解決している。しかし、この手法もチップが自転+公転するための複雑な機構とスペースが必要となる。
【0009】
特許文献3では液体貯留部と遠心方向に伸びる流路を有するウェルを複数連結させた分析用媒体が公開されているが、この文献では液の配液性などには注視しておらず、逆にウェルに詰まった空気との押し合いで流体を制御するとある。この手法では液体貯留部と液体貯留部の間流路の液体は送液されない上、各ウェルに送液される液量は大きくバラつき、反応のたびに結果に差異が生じてしまう。
【先行技術文献】
【特許文献】
【0010】
【特許文献1】特表2004−502164号公報
【特許文献2】特許第3699721号公報
【特許文献3】特開2008−83017号公報
【発明の概要】
【発明が解決しようとする課題】
【0011】
以上のような従来技術の問題点を鑑みて、本発明はウェルへの送液を行う試料分析チップにおいて、送液方法が簡易でかつ各ウェルの液量ばらつきがない試料分析チップを提供することを課題とする。
【課題を解決するための手段】
【0012】
上記のような問題を解決するために為された本発明の請求項1に係る発明は、基材に複数のウェルと、各ウェルに繋がる流路と、流路に溶液を注入するための注入口とを有し、該基材を回転させてウェルに溶液を配液する試料分析チップであって、前記流路は、前記注入口と連絡し、前記ウェルより回転中心側に設けられた第一の液溜め部と、連絡流路を介して第一の液溜め部と連絡し、各ウェルに対応する第二の液溜め部と、第二の液溜め部とウェルとを連絡する支流路と、を有することを特徴とする試料分析チップである。
請求項2に係る発明は、前記第二の液溜め部は、隣り合う第二の液溜め部と連通していることを特徴とする請求項1に記載の試料分析チップである。
請求項3に係る発明は、前記隣り合う第二の液溜め部との連通箇所で、前記連絡通路が連絡していることを特徴とする請求項2記載の試料分析チップである。
請求項4に係る発明は、各前記連絡流路は、隣り合う二つの前記第二の液溜め部にそれぞれ連絡していることを特徴とする請求項1〜3のいずれかに記載の試料分析チップである。
請求項5に係る発明は、前記連絡流路の流路断面積が前記支流路の流路断面積よりも大きいことを特徴とする請求項1〜4のいずれかに記載の試料分析チップである。
請求項6に係る発明は、前記支流路は、回転中心方向に対して傾いて形成されていることを特徴とする請求項1〜5のいずれかに記載の試料分析チップである。
請求項7に係る発明は、前記ウェル及び前記第二の液溜め部が回転中心に対して円周状に配置されていることを特徴とする請求項1ないし6のいずれかに記載の試料分析チップである。
請求項8に係る発明は、前記試料分析チップは前記ウェル及び前記流路を形成した第一の基材と、該基材と貼り合わせた第二の基材とを有する請求項1ないし7のいずれかに記載の試料分析チップである。
請求項9に係る発明は、前記基材のいずれか一方が光透過性材料で形成されていることを特徴とする請求項8に記載の試料分析チップである。
請求項10に係る発明は、第一の基材が光透過性の樹脂材料であり、第二の基材が金属材料であることを特徴とする請求項9に記載の試料分析チップである。
請求項11に係る発明は、請求項1ないし10のいずれかに記載の試料分析チップを設置し、回転させる手段と、前記ウェルでの反応を検出するための検出測定手段と、を有する試料分析装置である。
請求項12に係る発明は、請求項1ないし11のいずれかに記載の試料分析チップの前記第一の液溜め部に溶液を注入する工程と、第一の回転速度で前記試料チップを回転させて前記第二の液溜め部に溶液を充填する工程と、第一の回転速度よりも大きい第二の回転速度で前記試料チップを回転させて溶液を前記各ウェルに配液する工程とを有する試料分析方法である。
請求項13に係る発明は、請求項12に記載の試料分析方法を用いたことを特徴とする遺伝子解析方法である。
【発明の効果】
【0013】
本発明による試料分析チップによれば、簡易で機能的、かつ安全安価な反応チップを実現することができる。さらに、1種類の検体に対して複数の処理を施すことができる。
【0014】
また、本発明による試料分析チップによれば、液体試料等の溶液が第一の液溜め部からウェルに遠心力によって送液された際、まずの第二の液溜め部で各ウェルへの配液量が均一に調整されてから、ウェルに配液されるため、ウェルごとのバラツキが少ない。
【図面の簡単な説明】
【0015】
【図1】本発明の試料分析チップの一様態の平面図及び断面図
【図2】本発明の試料分析チップの説明のための斜視図
【図3】本発明の試料分析チップの説明のための断面図
【図4】本発明の試料分析チップの説明のための平面図
【図5】本発明の試料分析チップの説明のための平面図
【図6】実施例における検出測定結果のグラフ
【図7】実施例におけるネガティブコントロール測定結果のグラフ
【図8】実施例におけるポジティブコントロール測定結果のグラフ
【発明を実施するための形態】
【0016】
本発明の試料分析チップを図面に基づいて説明する。
図1(A)は本発明の試料分析チップの一様態を示した平面図である。図1(B)は図1(A)の試料分析チップのI−I’での断面図である。本発明のチップは、基材101上に複数のウェル102と、ウェルに溶液、例えば液体試料(溶液)を送液するための流路を有している。
【0017】
本発明の試料分析チップは当該チップを回転させることにより生じる遠心力により、各ウェル102に配液するものであることから、中央部に回転軸の貫く点(以下、中心点)のある円盤形状であることが好ましいが、チップを貫く回転軸に対して回転可能に形成されて入れば特に制限はない。円盤形状であれば、その中心が回転軸となるようにして、その円盤形状のチップに同心円状になるようにウェルを配置することができるため、スペースが効率的である。均等にウェルに配液するには遠心力を均等に掛けることが重要であるが、チップを、溶液の注入口/出口107の領域を除き、中心点を軸とする回転対称性を持つように設計することで容易に実現することができる。すなわち、N個のウェルがあるとすると、N回対称となるようにすると、均等に遠心力を掛けることができる。即ち、本発明の試料分析チップでは、中心点から、一次液溜め108、一次液溜めと二次液溜め109を連絡する連絡流路110、二次液溜め、二次液溜めとウェルを連絡する支流路105、ウェルの順で同心円を描く様に配置することが好ましい。もちろん、各ウェルの配液量を異ならせる場合には、この限りではない。また同心円状にウェルや、流路が配置されていることにより、基材を回転させることによって、一箇所の検査領域で全てのウェルの分析が可能である。
【0018】
流路は、各ウェルに送液するために、少なくとも各ウェルと連絡する流路を有する。流路は、例えば図1のように中央部の池状の液溜め108に各ウェルに連絡する支流路105が連通する構成や、あるいはウェルより中心に設けられた主流路と、主流路の流路方向に順に連絡通路が接続する構成を挙げることができるが、本発明はこれに限られず、複数のウェルと、その内側(後述の回転中心側)に各ウェルにそれぞれ溶液を配液するための流路(後述の連絡通路、二次液溜め部109を含む)が一次液溜め部108に連通して設けられている構成であれば適用することができる。
【0019】
支流路105と異なり、液溜め及び主流路は、チップに溶液を注入した段階(回転前の段階)で、溶液が存在しているので、以下、液溜め及び主流路の形態を合わせて一次液溜め部108と呼ぶ。一次液溜め部108には溶液を注入するための注入口及び余剰溶液の排出口、空気の脱出口(空気孔)107を有する。なお排出孔、空気孔等の貫通孔は複数、一次液溜め部に設けても良い。例えば、池状の場合にはその中央部に注入口を形成し、周囲に空気抜きの貫通孔を配置することができる。主流路形状の場合には流路の一端に注入口を設け、他端に脱出口を設けることができる。
【0020】
一次液溜め部108は、連絡流路110との連結部を有する側の側面が、隣り合う前記連絡流路の間で回転中心方向に前記隣り合う連結部を谷として一つの山を持つ形状であることが好ましい。このような形状とすることによって、チップを回転した際に遠心力により自然に各連結部に溶液が移動することから、配液バラツキが少なくなる。一次液溜め部が流路形状の場合、流路の容積によって谷と谷の間の溶液量が決まるため、特に効果的である。
【0021】
一次液溜め部108は、二次液溜め部109と連通する連絡流路110に繋がっている。そしてチップを回転させていない状態では、二次液溜め部109には溶液が侵入しないようになっている。このため、連絡流路110の二次液溜め側に空気孔のような開放端を設けず、一次液溜め108と二次液溜め部109を連絡する連絡流路の開口(流路断面積)が溶液を通過させない程度の幅及び断面積であればよい。
【0022】
二次液溜め部109は、支流路105を介してウェル102に繋がっている。二次溜め部109の特徴は、各ウェル102に対応していることである。即ち、ウェルと同数の二次液溜めが形成されており、それぞれが支流路で一対一に連結されている。このような構成とすることで、二次液溜め部の容量によって、各ウェルに配液する溶液の量を制御することができる。熱を厳密にかける反応などは反応系が均一であるほうが望ましいので、ウェルに送液した際に支流路に残らないことが良い。よって、二次液溜め部の容量はウェルに等しくなるほうが望ましい。
【0023】
さらに、各二次液溜め部109は、隣り合う二次液溜め部と一部で連通している。図1の様態では、連絡流路110が隣り合う二つの二次液溜め部の間に配置され、連通領域と一致している。このような構成とすることにより、遠心により各二次液溜めに配液すると同時に、連通位置まで溶液が充填された段階で隣り合う二次液溜め部の溶液量を調整することができる。連通位置は、二次液溜め部の中心点に最も近い位置に設けられることが好ましい。ウェルに送液する際の連結箇所に起因するバラツキを低減することができる。
【0024】
また、二次液溜め部109の底部(ウェル側)は、基材上平面視で支流路105を口とする漏斗状であることが好ましい。また、二次液溜めの上部(中心点側)は、中心点方向から傾いて形成されていることが好ましい。チップ回転時の遠心力によって、溶液の残留を防ぐことができる。
【0025】
本発明の試料分析チップは、当該チップを回転させていない状態、及び二次液溜め部109に充填する段階のチップの回転による遠心力では、ウェル102には溶液が侵入しないようになっている。すなわち、ウェルと二次液留め部を連結する支流路105を通過させるために必要な圧力は、連絡通路110を通過させるために必要な圧力よりも大きいことが重要である。このため手段としては、例えば支流路の流路断面積を連絡通路の流路断面積よりも小さすることで、支流路の相対的な圧力損失を大きくすることができる。
【0026】
また図1の試料分析チップでは、支流路105は中心点方向から傾いて形成されている。このように側路を傾斜させて形成することにより、遠心力を掛けたときにウェル102の空気が支流路の内側に沿って主流路方向へ移動し、一方溶液は支流路の外側に沿ってウェル方向へ移動するため、スムーズにウェル内へ溶液を移動させることができる。傾斜させる角度としては、中心点の方向と支流路との為す角が10度から80度の間であることが好ましい。10度以下だとウェルからの排気とウェルへの溶液の浸入が干渉して溶液の浸入を阻んでしまう場合があり、80度を超えると、支流路のウェル方向への遠心力が弱く、溶液がウェルへ移動しない場合がある。
【0027】
ウェル102は、チップの回転によって最終的に溶液が充填されるため、流路の最外周に配置される。しかしこれは上記構成要素との比較であって、別の構成要素、例えば余剰溶液を廃棄するための廃棄チャンバをさらに外周に設けることを妨げるものではない。
【0028】
ウェル102の容積は1μl以上100μl以下であることが好ましい。1μlより小さいと、遠心力が十分に働かず、ウェルへの送液が行われ辛く、また100μlよりも大きいと、試薬の混合性が低下したり、ウェル内の温度の均一性が低下したりする、といった現象が生じる可能性がある。
【0029】
また、ウェル102内に空気を残留させないために、ウェルの中心点に最も距離が近い点で流路と連結することが好ましい。つまり、ウェル側の中心点に最も近い点で、支流路105とウェルとが接続するように形成することが好ましい。
【0030】
次に本発明の試料分析チップの製造方法について説明する。
【0031】
図2は本発明の試料分析チップの構造の一様態を示した斜視図である。
本発明の試料分析チップはウェル及び流路(各液溜め部及び流路を含む)を形成した第一の基材401に、第二の基材402を貼り合わせることで作製することができる。第一の基材及び第二の基材の少なくとも一方には試料分析装置の具備するチップ回転機構によってチップを回転させるための回転手段として、例えばチップ回転機構に固定するための担持部405を有する。また注入口及び空気の脱出口を兼ねた出口(INLET/OUTLET)のための貫通孔を第一の基材及び第二の基材の一方に、少なくとも一つ形成する。貫通孔は基材を貼り合わせたときに一次液溜め部108内の先に述べたような所定の位置に一致するようにする。以下では、説明の便宜上、蛍光反応等を検出、測定する際に測定する面に位置する基材側を「上側」、下側に位置する側を「下側」とする。
【0032】
基材としては、試料に影響を与えないものであれば特に制限はないが、特にポリプロピレン、ポリカーボネート、アクリルのいずれかを含む樹脂材料を用いれば、良好な可視光透過性を確保することができる。ポリプロピレンとしては、ホモポリプロピレンやポリプロピレンとポリエチレンとのランダム共重合体を使用することができる。また、アクリルとしては、ポリメタクリル酸メチル、または、メタクリル酸メチルとその他のメタクリル酸エステル、アクリル酸エステル、スチレンなどのモノマーとの共重合体を使用することができる。また、これらの樹脂材料を使用する場合、チップの耐熱性や強度を確保することもできる。樹脂材料以外としては、アルミニウム、銅、銀、ニッケル、真鍮、金等の金属材料を挙げることができる。金属材料を用いた場合、加えて熱伝導率及び封止性能に優れる。なお貼り合わせる基材のうち少なくとも上側基材のウェル底部を透明とすることで、蛍光等の検出・分析を外部から行うことができる。なお本発明における「透明」及び「光透過性」とは、検出光の波長領域での全平均透過率が70%以上であるものとする。可視光領域(波長350〜780nm)で光透過性材料の材料を用いれば、チップ内での試料状態の視認が容易であるが、これに限られるわけではない。
【0033】
ウェルや流路を形成する基材の加工方法としては、樹脂材料の場合には、射出成形、真空成形等の各種樹脂成形法や、機械切削などを用いることができる。金属材料の場合には、厚手の基材を用いた研削加工やエッチング、薄手の金属シートにプレス加工や絞り加工を施すことで形成することができる。
【0034】
また、第1の基材として特にポリプロピレン、ポリカーボネート、アクリルのいずれかを含む樹脂材料を用いた場合、良好な光透過性、耐熱性、強度を確保することができる。また、第1の基材の厚みが50μm〜3mmの範囲にある場合、良好な光透過性、耐熱
性、強度を確保でき、凹部の加工を確実に行うことができる。
【0035】
また、第2の基材の厚みが20μm〜300μmの範囲にある場合、第2の基材の熱伝導性及び封止性の双方を満足することができる。第2の基材の厚みが300μmよりも大きいと、熱容量が大きくなり、熱応答性が低下するおそれがある。
【0036】
図3に本発明の試料分析チップの断面図を示した。第一の基材401には、チップを貫通する溶液の注入口403と、注入液がチップに流れ込むための液溜め部となる溝108、109と、チップの外周部に延びた各ウェルと連通する支流路となる溝105と、チップの外周部のウェルとなる窪み102とが成形されている。なお図3の断面図は注入口からウェルまでの経路を模式的に示したものであり、主流路及び側路の形状はこれに限られない。注入される溶液をすべてのウェルに充満するためには、主流路の容積は、各ウェルの容積の合計より大きい必要がある。ただし、ウェルに試薬501が固定されている場合、その分反応ウェルに入れる液体試料の量が減るため、流れ込む流路の容積をその分減少してもよい。蛍光反応や測定のため、第一基材側で検出測定を行なう場合には、ウェルの凹部が光を散乱させない平滑な形状となっていることが好ましい。
【0037】
基材を貼り合わせる前に、ウェル102に反応用の試薬501を固定する。各ウェルで異なる試薬を用いることができる。各反応ウェルにそれぞれ異なる試薬を固定することによって、1つ検体(試料)に対して複数の処理を施すことができる。また、実際反応を行うための試薬の一部を各ウェルに固定し、残りの試薬は液体試料と一緒に導入するようにしてもよい。
【0038】
試薬501の固定方法としては、例えば第1の基材のウェル部分に液体試薬をピペット等で滴下し、第一の基材401を遠心装置で2000〜3000rpm、5分程度遠心することで適量の液体試薬が液面を平坦な状態で残存するようにして、これを乾燥させることでウェルに固定することができる。
【0039】
また、試薬をウェルに固定した後、ワックス502を滴下してもよい。具体的には、ワックスをホットプレート上に溶融させ、ピペットを用いて乾燥させた試薬を覆うように滴下する。このとき、ワックスは数秒で固化する。ワックスは、試薬をウェルの凹部に固定させる役割を有する。
【0040】
基材の貼り合わせ方法としては、一方の基材に接着層として樹脂コーティング層を設け、これを溶融させて両基材を接着する方法が挙げられる。樹脂コーティング層は、熱伝導率の高い金属材料基材に設けて溶融接着することが好ましい。樹脂コーティング層の材料の材料としては、 PETやポリアセタール、ポリエステルやポリプロピレン等の樹脂材料を用いることができる。
【0041】
この貼り合わせ方法においては、微細加工しやすく、蛍光測定に好適な光透過性の樹脂材料を第一の基材に用い、第二の材料としては熱伝導率が高く樹脂コーティング層を設けて溶融接着による貼り合わせが容易な金属材料を用いることが好ましい。また金属基材表面に樹脂コーティング層を形成することにより、材料を選定する際に金属基材自体の耐薬品性は考慮しなくて良い。
【0042】
また、基材表面に樹脂コーティング層を形成する際、樹脂コーティング層の下地としてアンカー層を形成することによりレーザを用いた融着が可能である。アンカー層にはレーザ波長光を吸収するカーボンブラック(光吸収性材料)が練り込まれており、レーザ光を照射することにより発熱して樹脂コーティング層を溶融接着することができる。あるいは、アンカー層にカーボンブラックを添加することに代えて、樹脂コーティング層にカーボンブラックを添加したり、樹脂コーティング層の表面を黒色に塗装したりしても良い。例えば波長900nm程度の赤外光フォトダイオードレーザーの光を照射することによっても樹脂コーティング層を効率良く溶融することができる。レーザ溶着は、熱溶着と異なり、チップを加熱する必要がないことから、チップやチップに固定されている試薬に殆ど影響を与えずに 基材の貼り合わせをすることができる。
【0043】
次に本発明の試料分析チップを用いた試料分析方法について説明する。
【0044】
本発明の試料分析チップは、例えば、DNA、たんぱく質等の試料において生化学物質の検出や分析に用いることができる。各ウェル102に試薬を固定し、液体試料を各ウェルに配液する。この場合には各ウェルで異なる試薬を用いることができる。
【0045】
次に第一の基材401と第二の基材402を貼り合わせた本発明の試料分析チップに対して、まず、注入口403(107)から試薬等の溶液を一次液溜め部108に注入する。この段階では、一次液溜め部のみが溶液で満たされ、前述のように二次液溜め部109及びウェル102には浸入していない。これは、溶液の表面張力と、ウェル側には空気の抜け穴がないことによりウェル側からの空気圧があるためである。試料分析方法に用いる試料分析装置にはこのような溶液注入手段を備えていてもよい。
【0046】
次に、試料分析方法に用いる試料分析装置には試料分析チップを回転させるためのチップ回転機構を有する。チップ回転機構には、公知一般の遠心装置を用いることができる。試料分析装置に試料分析チップを設置し、回転機構によりチップの中心点でチップの垂直方向を回転軸として、チップを回転させる。回転速度としては溶液に掛かる遠心力が前述の空気圧と表面張力に打ち勝って、ウェルに流入する回転速度が必要である。チップの形態にも寄るが、約500rpm以上であることが好ましい。チップの回転速度が約500rpmより小さいと、二次液溜め部109に溶液が流入せず、液量が一定にならないおそれがある。また、チップの回転速度はウェルに浸入しない程度の回転速度である必要がある。
【0047】
図4に示すように、まず第一の回転速度による遠心力により、各二次液溜め部109に一次液溜め部108に注入された溶液を充填する。次に、図5に示すように、第一の回転速度よりも大きい第二の回転速度により、二次液溜め部109からウェル102へと溶液を移動させる。
【0048】
溶液試料の配液後、試料・試薬の反応を阻害しないオイルを同様の工程で各ウェルに配液してもよい。オイルの注入によって、反応中に液の蒸発を防ぐことができる。オイルには先に配液した溶液よりも比重が軽いものを用いる必要がある。チップを回転させ、遠心力によって配液した際に、側路側で各ウェルの栓の役割をするためである。オイルの種類としては、試料・試薬の反応を阻害しないものであれば特に制限はないが、ミネラルオイルやシリコンオイルを好適に用いることができる。
【0049】
ワックス502を試薬の固定に用いる場合には、試料分析装置に電熱線等からなるヒータやペルチェ素子を用いた温度制御手段を備えていてもよい。ワックスの融点以上にチップを加熱することでワックスを溶融させ、ウェル内で試薬と溶液(試料)を混合させることができる。また当該温度制御手段は、例えばPCR反応等の試薬の反応制御にも用いることができる。
【0050】
その後、ウェルで試薬及び試料を混合し、反応状態を蛍光検出等の手法によって分析することができる。試料分析装置は、試料分析チップの基材上側のウェルの位置で測定を行なうための検出測定手段を有する。回転機構によりチップを回転させて、所定のウェルを測定することができる。本発明の試料分析チップでは基材の上側を透明とすることで、チップの外部から光学的測定を行なうことが可能である。
【0051】
以上のように各工程で試料分析チップに作用させる機構を備えることで、省スペースかつ試料分析の容易な試料分析装置とすることができる。
【0052】
次に本発明の試料分析方法の例を説明する
【0053】
遺伝子解析の1例としては、例えば体細胞変異の検出や、生殖細胞変異の検出が挙げられる。遺伝子型の違いによって、発現するタンパク質の種類等が異なるため、例えば薬の代謝酵素の働きの違いを生み、結果として薬の最適投与量や副作用の出やすさ等に個人差が生じる。この事を医療現場で利用し、各患者の“遺伝子型”を調べる事で、オーダーメイド医療を行うことが出来る。
【0054】
・SNPsの検出
ヒトゲノムの中には、その約0.1%に個人特有の塩基配列の違いが存在し、SNP(Single Nucleotide Polymorphism)と呼ばれおり、生殖細胞変異のひとつである。SNPの特定方法の一つとして、例えば蛍光を用いたPCR‐PHFA(PCR−Preferential Homoduplex Formation Assay)法が利用されている。PCR‐PHFA法は検出変異部位を増幅するPCR工程と、増幅断片と対応プローブによる競合的鎖置換反応工程から成り立っている。当該方法によれば、蛍光試薬の発光差によって変異を検出するが、本発明の試料分析チップを用いることで、各ウェルの配液バラツキが少ないため、正確なSNPs検出を行うことが出来る。また上記以外のSNP検出方法としてインベーダー法(登録商標)、Taqman PCR法等についても同様に本発明の試料分析チップを用いることが可能である。
【0055】
以下に、本発明を用いてワルファリン(抗血液凝固剤。心臓病や高血圧用の薬として用いられる)に対する副作用に関与するSNPついてPCR‐PHFA法を使った解析例を説明する。
【0056】
血液などから得られる検体核酸を精製して、溶液試料とする。本発明の試料分析チップに注入前または注入後配液前に、検体核酸の増幅を行なう。なお、ワルファリンに関与するSNPの検出にはVKORC1やCYP2C9内のSNPが議論されることが多く、CYP2C9*2やCYP2C9*3などが有名である。検体からこれらのSNPを含む遺伝子断片をマルチプレックスPCRにて増幅する。
【0057】
上記の検出方法では、一つのSNPを判定するために2つの検出用のウェルが必要となるので1検体試料につき10個以上のウェルが形成された試料分析チップを使用すると良く、それぞれのウェルに競合的鎖置換反応を行うためのSNP検出用の試薬を固定する。
【0058】
上記PCRにより核酸が増幅された試料を、各ウェルに配液充填する。各ウェルを温調し、前記試薬に混入された蛍光試薬の発光差によって変異を検出する。一つのSNPに対し2つのウェルのうち一つのみ陽性反応ならばホモ、二つ陽性ならヘテロと判定することができる。
【0059】
・K‐ras遺伝子変異の検出
上がん細胞に特徴的な変異、また分子標的薬に抵抗性を示す変異はそのほとんどが体細胞変異である.生殖細胞変異(SNPなど)の場合、どの細胞でも共通の変異が見られるのに対し、体細胞変異では変異を起こした細胞でのみ変異がみられ、変異を起こしていない細胞(通常は正常細胞)では変異は見られない.
【0060】
つまり、試料のうちの多くは正常細胞で一部変異細胞が含まれる場合、多くの正常な遺伝子中に存在するわずかな変異遺伝子を検出しなければならず、この点が生殖細胞における変異検出と異なる点で、体細胞の遺伝子変異検出をより困難にしている点である.
【0061】
K‐ras遺伝子は変異ががん細胞に存在すると分子標的薬がほとんどの患者群で奏効しないことが示された遺伝子であり、この遺伝子を簡便、迅速、安価、高精度に検出することが希望されつつある。
【0062】
以下に、K‐ras遺伝子のPCR‐PHFA法での解析例を説明する.
【0063】
上記遺伝子変異の検出用のウェルにはプローブ核酸を含む試薬が固定される。K‐ras遺伝子の検出は野生型と13種類の変異があるので少なくとも14のウェルが形成された本発明の試料分析チップを使用し、当該ウェルのそれぞれに対応した試薬が固定化されていることが好ましい。
【0064】
大腸癌などのがん細胞を採取し、検体核酸を精製して、溶液試料とする。本発明の試料分析チップに注入前または注入後配液前に、検体核酸の増幅を行なう。
【0065】
上記PCRにより核酸が増幅された試料を、各ウェルに配液充填する。ウェルを温調し、前記試薬に混入された蛍光試薬の発光差によって変異を検出することができる。
【実施例1】
【0066】
以下に本発明の試料分析チップの試料の配液バラツキの精度を調べるために以下の実験を行なった。
【0067】
本発明の試料分析チップの第一の基材401として、ポリプロピレン樹脂を用いて、図4に示すような円盤状の外形を持ち、同心円上に一次液溜め部108、二次液溜め109を連絡する連絡流路110、二次液溜め、二次液溜めとウェル102を連絡する支流路105、ウェルを有するチップを、アクリル樹脂をφ6mmからφ0.4mmまでのエンドミルによって機械切削加工することで形成した。基材にはそれぞれ一次液溜め部、24個のウェル及び二次液溜め部と、これに対応する流路が形成されている。各ウェルの内容積は12μlであり、これに対応する各二次液溜め部の容積も12μl、一次液溜めの容積は12×24μlとなるように設計した。
【0068】
上記ポリプロピレン基材と貼り合わせる第二の基材402として、樹脂コーティング層としてポリプロピレン樹脂がコーティングされたアルミシート基材を用いた。樹脂コーティング層には、厚みが約0.07mmのものを使用した。樹脂コーティング層は融点が120度前後であり、アルミニウム側に熱を与えれば溶融するように該アルミ基材にコーティングされている。
【0069】
該ポリプロピレン基材と該アルミ基材を重ね合わせ、アルミ基材側に130度以上の熱を加えることで、該樹脂コーティング層が溶融させて該ポリプロピレン基材とアルミ基材を溶着した。
【0070】
さらに比較例として、二次液溜めを持たず、一次液溜め部108と、ウェル102を連絡する支流路105とが直接連絡した試料分析チップを、アクリル樹脂をφ6mmからφ0.4mmまでのエンドミルによって機械切削加工し、実施例と同様に基材を貼り合わせて形成した。
【0071】
この実施例と比較例の両チップにブロモフェノールブルーで適度に着色した水溶液の溶液試料を340μl、ピペットにて送液した。いずれのチップも、一次液溜め部のみに溶液試料が送液された。
【0072】
送液後、チップ中心を軸として両チップを回転させた。チップに遠心力を与える手段として、化学、生物反応における試薬の分離などに用いられる卓上小型遠心機を利用した簡易な遠心装置を作成し、これを用いた。遠心時の回転数は回転数測定器にて測定して調整した。
【0073】
まず、1000rpmの回転速度で両チップをそれぞれ回転させたところ、実施例のチップでは、ウェル側には溶液は侵入せず、各二次液溜め部109にほぼ均等量と思われる容量が充填された。一方比較例のチップでは、ウェル側に溶液は侵入せず、一次液溜め部に留まったままであった。
【0074】
次に、4000rpmの回転速度で両チップをそれぞれ回転させたところ、それぞれチップの各ウェルに溶液試料が送液された。実施例のチップでは各ウェルが溶液試料によって完全に満たされ、さらに支流路の一部を満たした。比較例のチップでは、いくつかのウェルで試料溶液が不十分で完全には満たされていなかった。
【0075】
配液のバラツキ量を調べるため、各ウェルに充填された溶液試料の量を、マイクロピペッターで測定したところ、実施例の試料分析チップの各ウェルに充填された溶液試料の量は13.3μl〜14.9μlであり、比較例では10.3μl〜17.5μlであった。このことから、本発明の試料分析チップでは二次液溜めにより配液バラツキが大きく改善されていることが確認できた。
【実施例2】
【0076】
次に、本発明の試料分析チップおよびこれを用いた分析方法の一例として、SNPs解析チップの実施例を示す。
【0077】
実施例1と同様に、図4に示したような本発明の試料分析チップを作製した。流路等を形成した第一の基材401と第二の基材402を貼り合わせる前に、ウェル102にインベーダー反応用プローブ試薬とDNAポリメラーゼ、クリベースといった酵素類をピペットで滴下し乾燥固定させた。その後、第一の基材と、第二の基材を貼り合わせて実施例2に係る本発明の試料分析チップを完成させた。それ以外のチップ製造工程は、実施例1と同様である。
【0078】
上記の工程で作製したチップに、精製されたゲノムを加えたバッファ溶液を溶液試料としてピペットにて送液し、一次液溜め部108に充填した。
【0079】
なお上記各試薬類は下記表1に記載した分量で用いた。
【0080】
【表1】

【0081】
送液後、1000rpmの回転速度でチップ中心を軸としてチップを回転させ、二次液溜め部109に溶液試料を充填した。さらに4000rpmで各ウェルに溶液試料を配液した。
【0082】
続いて、反応に阻害の無い試薬類表(表1)記載のミネラルオイルを同様の手法で送液したところ、試料溶液はウェルを満たし、残った溶液で側路の半分程度を満たし、ミネラルオイルは支流路と完全に満たし、さらに二次液溜め部109の一部を満たした。
【0083】
なお、本実施例はウェル22箇所に反応用試薬としてインベーダー反応用プローブを固定した。また、反応結果の成否を判定するために、コンタミネーションの有無の確認としてネガティブコントロールを1箇所に設定し、1枚のチップ上で反応試験を行った。
【0084】
該反応容器がオイルによって独立した状態の試料分析チップに95℃と68℃を交互に35サイクルかけ、PCR反応によってサンプルのゲノムを増幅する。続いて、63℃で30min温調することにより、酵素反応によりウェル内で蛍光検出反応を生じる。
【0085】
また、このときチップのポリプロピレン基材側は透明であることから、蛍光検出をポリプロピレン基材を通して外部から行った。本実施例では光電子増倍管と光ファイバを組み合わせた蛍光検出装置によって上記蛍光反応を測定した。
【0086】
図6及び7は本実施例によって検出された蛍光反応によるSNPsの解析結果のグラフである。各グラフの縦軸は検出された光の強度であり、蛍光の強度を示す。横軸は時間軸である。
【0087】
図6は反応を行った1つのウェルの結果であり、所定の時間内に混合した試薬類による蛍光検出反応が生じていることが確認された。
【0088】
図7は試薬類をあらかじめ固定していないウェルのため、蛍光反応は検出されなかった。これにより両隣からのコンタミネーションは生じていないことが確認された。
【0089】
また、図8はポリプロピレン製のチューブにて一般的な手法で最適の分量比で試薬類とサンプルを混合して得られた検出データである(ポジティブコントロール)。図6と図8を比較すると、図6が示す本実施例によるチップ内の反応は図8の反応とほぼ一致していることから、本実施例では最適な分量比による反応であることが確認できる。これにより、所望した量のサンプルを正確に配液できていることが分かる。
【産業上の利用可能性】
【0090】
本発明の反応チップは、例えば核酸等の試料において生化学物質の検出や分析に用いることができる。特にSNPの変異を検出できることから、がんなどの遺伝子、生殖細胞や体細胞遺伝子の変異を検出する手法へ利用することができる。また、複数の溶液を混合する容器、反応容器として利用することが可能である。
【符号の説明】
【0091】
101・・・基材
102・・・ウェル
105・・・支流路
107・・・注入口/出口
108・・・一次液溜め部
109・・・二次液溜め部
110・・・連絡流路
401・・・第一の基材
402・・・第二の基材
403・・・注入口/出口(貫通孔)
405・・・担持部
501・・・固定試薬類
502・・・ワックス

【特許請求の範囲】
【請求項1】
基材に複数のウェルと、各ウェルに繋がる流路と、流路に溶液を注入するための注入口とを有し、該基材を回転させてウェルに溶液を配液する試料分析チップであって、
前記流路は、前記注入口と連絡し、前記ウェルより回転中心側に設けられた第一の液溜め部と、
連絡流路を介して第一の液溜め部と連絡し、各ウェルに対応する第二の液溜め部と、
第二の液溜め部とウェルとを連絡する支流路と、
を有することを特徴とする試料分析チップ。
【請求項2】
前記第二の液溜め部は、隣り合う第二の液溜め部と連通していることを特徴とする請求項1に記載の試料分析チップ。
【請求項3】
前記隣り合う第二の液溜め部との連通箇所で、前記連絡通路が連絡していることを特徴とする請求項2記載の試料分析チップ。
【請求項4】
各前記連絡流路は、隣り合う二つの前記第二の液溜め部にそれぞれ連絡していることを特徴とする請求項1〜3のいずれかに記載の試料分析チップ
【請求項5】
前記連絡流路の流路断面積が前記支流路の流路断面積よりも大きいことを特徴とする請求項1〜4のいずれかに記載の試料分析チップ。
【請求項6】
前記支流路は、回転中心方向に対して傾いて形成されていることを特徴とする請求項1〜5のいずれかに記載の試料分析チップ。
【請求項7】
前記ウェル及び前記第二の液溜め部が回転中心に対して円周状に配置されていることを特徴とする請求項1ないし6のいずれかに記載の試料分析チップ。
【請求項8】
前記試料分析チップは前記ウェル及び前記流路を形成した第一の基材と、該基材と貼り合わせた第二の基材とを有する請求項1ないし7のいずれかに記載の試料分析チップ。
【請求項9】
前記基材のいずれか一方が光透過性材料で形成されていることを特徴とする請求項8に記載の試料分析チップ。
【請求項10】
第一の基材が光透過性の樹脂材料であり、第二の基材が金属材料であることを特徴とする請求項9に記載の試料分析チップ。
【請求項11】
請求項1ないし10のいずれかに記載の試料分析チップを設置し、回転させる手段と、
前記ウェルでの反応を検出するための検出測定手段と、を有する試料分析装置。
【請求項12】
請求項1ないし11のいずれかに記載の試料分析チップの前記第一の液溜め部に溶液を注入する工程と、
第一の回転速度で前記試料チップを回転させて前記第二の液溜め部に溶液を充填する工程と、
第一の回転速度よりも大きい第二の回転速度で前記試料チップを回転させて溶液を前記各ウェルに配液する工程と、
を有する試料分析方法。
【請求項13】
請求項12に記載の試料分析方法を用いたことを特徴とする遺伝子解析方法。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate


【公開番号】特開2011−64475(P2011−64475A)
【公開日】平成23年3月31日(2011.3.31)
【国際特許分類】
【出願番号】特願2009−213035(P2009−213035)
【出願日】平成21年9月15日(2009.9.15)
【出願人】(000003193)凸版印刷株式会社 (10,630)
【Fターム(参考)】