説明

誘電率測定装置、誘電体測定方法、及び情報記録・再生装置

【課題】nm(ナノメートル)オーダーでの誘電体材料評価等に適した誘電率測定装置及び方法と、この技術を適用した高密度記録再生可能な記録・再生装置とを提供する。
【解決手段】誘電体の誘電率を測定する誘電率測定装置1は、梁状導電体11aの先端側面に微小の突起11bを有するカンチレバー11と、カンチレバーの周囲に設けられ接地された電極14と、カンチレバーが接触する誘電体の微小領域の容量(Cs)と共振回路を構成するように設けられたインダクタLと、共振回路に接続された発振器16と、発振器の発振周波数を復調するFM復調器17と、その復調信号から誘電率情報を検出する誘電率検出器18とを具備する。誘電体測定装置は、誘電体記録媒体を使用する情報記録・再生装置に利用可能である。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、誘電体の微小領域の誘電率を測定する誘電率測定装置及び方法と、この誘電率測定技術を適用した情報記録・再生装置との技術分野に関する。
【背景技術】
【0002】
近年、多くの種類の強誘電材料や圧電材料が開発され、超音波や光素子及びメモリ等に多く用いられている。それに伴い、強誘電材料の残留分極分布や圧電材料の局所異方性の計測が行える方法の開発が進められてきている。この技術分野における開発に関し本願発明者らは純電気的に材料の分極分布や局所異方性の検出が、表面に付着した自由電荷による遮蔽効果に妨げられることなく行える技術として走査型非線形誘電率顕微鏡(SNDM:Scanning Nonlinear Dielectric Microscopy)を開発してきた。
【0003】
SNDMは材料の非線形誘電率の分布計測から、分極の状態や局所的な異方性を検出する技術であって、これまで同軸共振器を用いた分布定数型プローブ、LC共振器を用いた小型の集中定数型プローブと順次開発が進められた。このようにSNDMは誘電体の分極分布において極めて微小な領域で非破壊計測が可能であり、他方、所定の電界を印加することにより分極を制御することができるものである。
【発明の開示】
【発明が解決しようとする課題】
【0004】
このようなSNDMを利用した方法では原理的に誘電体ドメイン(即ち、誘電体の微小領域)の静電容量変化を周波数変化に置き換えるため、誘電体の分極方向の分布の判別は容易であったが、誘電率を定量測定することにおいては課題があった。本願発明者らはこの問題点を解決し、誘電率の分布を測定するために、誘電体表面に対して垂直に配置されたタングステン針を使用し、電界研磨によって形成された探針先端形状を球として近似した解析モデルを使用すると共に、予め誘電率既知の誘電体サンプルの測定によって測定系の浮遊容量を求め、これに基づき浮遊容量の影響をキャンセルすることで誘電率の定量測定が可能になることを示した。しかしながら、この方法では測定系の分解能の限界から高々μmオーダーまでの粗い領域での計測にしか対応できなかった。
【0005】
従って本発明は前記問題点に鑑みなされたものであり、誘電体の微細領域の誘電率分布の測定を可能にし、nm(ナノメートル)オーダーでの誘電体材料、例えば半導体電子回路の構成部材としての微細領域での材料評価等に適した誘電率測定装置及び方法と、この技術を適用した高密度記録再生可能な記録・再生装置とを提供しようとするものである。
【課題を解決するための手段】
【0006】
本発明の誘電率測定装置は上記課題を解決するために、誘電体の誘電率を測定する誘電率測定装置であって、梁状導電体の先端側面に微小の突起を有する探針と、前記探針の周囲に設けられた所定電位とされる電極と、前記探針が接触する誘電体の微小領域の容量と共振回路を構成するように設けられたインダクタと、前記共振回路に接続された発振手段と、前記発振器の発振周波数を復調する復調手段と、前記復調手段の復調信号から誘電率情報を検出する検出手段とを具備する。
【0007】
本発明の誘電率測定装置によれば、誘電体の微小領域の誘電率をnmオーダーの分解能で、非破壊で定量的に測定することが可能となる。誘電率を測定するために微小領域に接する探針は、例えば所定の長さを有する梁状の導電体に、その先端側面に微小の突起を設けた構造の導電体(導電材料)である。この探針を以下において「カンチレバー」と称する。このカンチレバーは、その梁状導電部が有する可撓性により、最適接触力を得ることができる。従って、誘電体試料との接触性能力、トレース能力を向上させるものである。また、このカンチレバーは、先端側面の探針部分も含めて導電性を有する。
【0008】
カンチレバーは、好ましくは、その突起先端の曲率半径がnmのオーダーの球状に加工されたものが用いられる。これは、白金などの金属コーティングによって導電性を付与されたAFM(Atomic Force Mircoscope:原子間力顕微鏡)用のカンチレバー等を用いてよい。
【0009】
共振回路は測定すべき微小領域のカンチレバー直下の容量、外付けされるインダクタ、浮遊容量等で構成され、その共振周波数は1GHz程度になるようにインダクタンスが選定される。
【0010】
発振手段は上記共振回路に接続され、その共振周波数に基づいた周波数で発振する。従って、その発振周波数はカンチレバー直下の容量に依存することになり、容量の変化、即ち誘電体の測定部位の誘電率と直接的に関係してくる。この周波数の変化を検出することで逆に誘電率を測定することができる。尚、実際に共振回路にはカンチレバー直下の容量と並列に入る比較的大きな浮遊容量が加わる。しかしながら、後段で詳しく説明するように、それらの浮遊容量は既知の誘電体試料用いて求めたり、或いは公知の手法による算出手段で求めたりすることが可能であり、浮遊容量を含む全体の容量からカンチレバー直下の容量変化に対応する発振周波数の変化を分離して求めることができる。
【0011】
復調手段は、前記発振手段から出力される発振周波数を復調し、容量に対応するAM信号に変換する。上述したようにカンチレバー直下の容量によって発振周波数は変調されているが、これを復調し、容量を検出するために用いる。
【0012】
検出手段は前記復調手段から出力される復調信号からでカンチレバー直下の容量を定量的に検出する。この量は誘電体の微小領域の誘電率と密接に関係していて、結局、その誘電率を決定することが可能となる。また、その誘電率が記録情報に対応しているとすると誘電体を記録媒体とする情報記録・再生装置の構成が可能となる。
【0013】
本発明の誘電率測定装置の一態様では、前記検出手段は、前記探針を既知の誘電率分布を有する誘電体試料に接触させ、該誘電体試料の微小領域の容量に基づき前記発振手段を発振させて得られる前記誘電体の発振周波数のデータを使用して、該誘電体の誘電率を決定する算出手段を具備する。
【0014】
この態様によれば、誘電体の誘電率測定に影響を及ぼす容量には、カンチレバー先端部下の容量の他に、カンチレバーの梁状部及びその支持部分と誘電体試料との間で生じる容量、測定系全体の浮遊容量等がある。これが誘電体の誘電率測定を困難にするが、この態様によれば、誘電体の誘電率測定が容易になる。即ち、この態様によれば、既知の誘電率を有する誘電体を用いて発振周波数を予め測定し、この測定結果を発振周波数のデータとして使用する。例えば、発振周波数のデータは、誘電体試料に対する誘電率と発振周波数の関係を表すデータである。誘電体の誘電率を実際に測定する際には、発振周波数のデータを参照して測定を行う。この際、発振周波数のデータにより示される誘電体試料に対する誘電率及び発振周波数の間の関係と、実際に検出された発振周波数とに基づいて、誘電率の決定が可能となる。
【0015】
この態様では、前記算出手段は、(i)前記探針を異なる既知誘電率を有する複数の誘電体試料の各々に接触させ、該複数の誘電体試料の各々における微小領域の容量に基づき前記発振手段を発振させて得られる前記発振周波数のデータに基づいて作成された、複数の誘電体試料に対する誘電率と発振周波数との関係を示す検量線と、(ii)前記探針及びその支持部分が前記誘電体に対向する部分を含む範囲内において、その表面に微小な誘電率分布を有する前記誘電体に、前記探針を接触させた状態で、前記探針を静止させた場合に得られる前記発振周波数とに基づき、前記誘電体の平均誘電率を算出し、更に、前記誘電体に接触させた前記探針を相対的にスキャンすることで、前記誘電率分布に対応した前記発振周波数の変化から前記誘電率分布を決定するように構成してもよい。
【0016】
このような構成によれば、予め複数の誘電体試料を用いて、検量線を作成しておく。検量線には、測定系(即ち、当該誘電体率測定装置)の特性が反映される。その後、この検量線と、測定試料に探針を静止状態で接触させた際の発振周波数とから、この測定試料の平均誘電率を先ず算出する。そして、探針を測定試料上でスキャンすることで、発振周波数の変化から、誘電体試料における誘電率分布を決定する。従って、比較的簡単な構成で、誘電体試料における微細領域の誘電率分布を高品位に測定可能となる。
【0017】
本発明の誘電率測定装置の他の態様では、前記探針に印加する交流信号を生成する交流信号生成手段を更に具備する。
【0018】
この態様によれば、交流信号発生手段は、比較周波数の低い、例えば5Khz程度の周波数の交番電圧を発生し、カンチレバーに印加される。この周波数で誘電体はバイアスされ、復調手段からの出力にこの成分が含まれ、誘電率検出をするときの参照信号として利用する。
【0019】
本発明の誘電率測定装置の他の態様では、前記交流信号を前記発振手段に対して遮断する遮断手段を更に具備する。
【0020】
この態様によれば、交流信号生成手段による交流信号の発振手段に対する影響を防止することが可能となる。遮断手段の構成は、例えば交流信号生成手段と発振手段の間に容量とインダクタとからなるローカットフィルタを用いて構成できる。
【0021】
本発明の誘電率測定装置の他の態様では、前記検出手段による誘電率情報の検出は、前記復調信号と前記交流信号生成手段による交流信号とによる同期検波で行われる構成を具備する。
【0022】
この態様によれば、交流信号によりバイアスされている復調信号を、その交流信号を参照して検出するので、ノイズの影響が少ない高品質の誘電率に関する情報が検出される。
【0023】
本発明の誘電率測定装置の他の態様では、複数の前記探針と複数の前記交流信号生成手段を具備しており、該複数の前記交流信号生成手段は、各々の探針に対して異なる個別の周波数の交流信号を供給する。
【0024】
この態様によれば、一度に複数箇所での誘電率を検出できる。また、カンチレバー各々に異なる周波数の交流信号を印加するので、この交流信号を参照することで復調信号から各々のカンチレバーが検出した信号を分離して再生ができる。
【0025】
本発明の誘電率測定装置の他の態様では、前記電極は、接地される。
【0026】
この態様によれば、誘電率の検出を安定的に行える。但し、電極は、所定電位としては、接地電位以外の電位で設定されてよい。
【0027】
本発明の誘電率測定装置の他の態様では、前記探針に対向配置されると共に前記誘電体が載せられるステージを更に備え、前記ステージは、接地される。
【0028】
この態様によれば、接地されたステージに載せられた誘電体に、探針を接触させることにより、誘電率の検出を安定的に行える。
【0029】
本発明の誘電率測定装置の他の態様では、前記誘電体は、強誘電体(ferroelectric substance)からなる。
【0030】
この態様によれば、通常の誘電体(dielectric substance)と比較して一層良好に、超微細領域の誘電率のみならず非線型誘電率分布の正負の符号も含めて高精度で測定可能となる。
【0031】
本発明の第1情報記録・再生装置は上記課題を解決するために、テープ状の誘電体記録媒体に情報を記録し再生する情報記録・再生装置であって、前記誘電体記録媒体を直線状に移動させる移動手段と、前記誘電体記録媒体に接触し情報を記録し読み出すための、梁状導電体の先端側面に微小の突起を有する探針と、前記探針の周囲に設けられた所定電位とされる電極と、前記情報に対応する信号を生成し、該信号を前記探針を介して記録し、記録されている情報を前記探針を介して読み出し再生する回路手段とを具備する。
【0032】
本発明の第1情報記録・再生装置によれば、カンチレバーを信号の記録再生用電極として用いるので、高密度、大容量のテープ状誘電体記録媒体を用いた記録・再生装置が構成できる。また、記録媒体はテープ状の導電基板にスパッタリング等の公知の技術を用いて誘電体を形成することで作成される。
【0033】
本発明の第1情報記録・再生装置の一態様では、、複数の前記探針と、各々の探針に対して異なる個別の周波数の交流信号を供給する複数の前記交流信号生成手段と、を具備する。
【0034】
この態様によれば、カンチレバーを複数本用いて同時に記録再生ができ、高速で大量データの記録再生が可能となる。また、カンチレバーの各々に異なる周波数の交流信号を印加するので、相互に干渉がない高品位な情報の抽出ができる。
【0035】
本発明の第1情報記録・再生装置の他の態様では、前記電極は、接地される。
【0036】
この態様によれば、接地された電極が周囲にある探針によって、誘電体記録媒体に対する情報記録再生を安定的に行える。但し、電極は、所定電位としては、接地電位以外の電位で設定されてよい。
【0037】
本発明の第1情報記録・再生装置の他の態様では、前記誘電体記録媒体を前記探針と挟んで設けられた導電性のベースを更に備える。
【0038】
この態様によれば、導電性のベース上における誘電体記録媒体に、探針を接触させることにより、情報記録再生を安定的に行える。
【0039】
尚、この導電性のベースは、接地されてもよいし、接地電位以外の所定電位とされてもよい。例えば、探針の周囲に設けられた電極と等しい又は異なる電位にされてもよい。導電性のベースを、接地電位或いは所定電位に落とすことで、情報記録を安定的に行える。
【0040】
本発明の第1情報記録・再生装置の他の態様では、前記誘電体記録媒体は、強誘電体からなる。
【0041】
この態様によれば、通常の誘電体を使用する場合と比較して一層良好に、強誘電体からなる記録媒体の微小領域に情報を高密度で書き込むことが可能となる。
【0042】
本発明の第2情報記録・再生装置は上記課題を解決するために、ディスク状の誘電体記録媒体に情報を記録し再生する情報記録・再生装置であって、前記誘電体記録媒体を回転させる回転手段と、前記誘電体記録媒体に接触し情報を記録し読み出すための、梁状導電体の先端側面に微小の突起を有する探針と、前記探針の周囲に設けられた所定電位とされる電極と、前記情報に対応する信号を生成し、該信号を前記探針を介して記録し、記録されている情報を前記探針を介して読み出し再生する回路手段と、前記探針をディスク状の誘電体記録媒体の半径方向に移動させる移動手段と、を具備する。
【0043】
本発明の第2情報記録・再生装置によれば、カンチレバーを信号の記録再生用電極として用いるので、高密度、大容量のディスク状誘電体記録媒体を用いた記録・再生装置が構成できる。また、記録媒体はディスク状の導電基板にスパッタリング等の公知の技術を用いて誘電体を形成することで作成される。
【0044】
本発明の第2情報記録・再生装置の一態様では、複数の前記探針と、各々の探針に対して異なる個別の周波数の交流信号を供給する複数の前記交流信号生成手段と、を具備する。
【0045】
この態様によれば、カンチレバーを複数本用いて同時に記録再生ができ、高速で大量データの記録再生が可能となる。また、カンチレバーの各々に異なる周波数の交流信号を印加するので、相互に干渉がない高品位な情報の抽出ができる。
【0046】
本発明の第2情報記録・再生装置の他の態様では、前記電極は、接地される。
【0047】
この態様によれば、接地された電極が周囲にある探針によって、誘電体記録媒体に対する情報記録再生を安定的に行える。但し、電極は、所定電位としては、接地電位以外の電位に設定されてよい。
【0048】
本発明の第2情報記録・再生装置の他の態様では、前記誘電体記録媒体を前記探針と挟んで設けられると共に前記回転手段により回転される導電性の回転ベースを更に備える。
【0049】
この態様によれば、導電性の回転ベース上における誘電体記録媒体に、探針を接触させることにより、情報記録再生を安定的に行える。
【0050】
尚、この導電性の回転ベースは接地されてもよいし、接地電位以外の所定電位とされてもよい。例えば、探針の周囲に設けられた電極と等しい又は異なる電位にされてもよい。導電性の回転ベースを、接地電位或いは所定電位に落とすことで、情報記録を安定的に行える。
【0051】
本発明の第2情報記録・再生装置の他の態様では、前記誘電体記録媒体は、強誘電体からなる。
【0052】
この態様によれば、通常の誘電体を使用する場合と比較して一層良好に、記録媒体の微小領域に情報を高密度で書き込むことが可能となる。
【0053】
本発明の誘電率測定方法は上記課題を解決するために、梁状導電体の先端側面に微小の突起を有する探針と、前記探針の周囲に設けられた所定電位とされる電極と、前記探針が接触する誘電体の微小領域の容量と共振回路を構成するように設けられたインダクタと、前記共振回路に接続された発振手段と、前記発振器の発振周波数を復調する復調手段と、前記復調手段の復調信号から誘電率情報を検出する検出手段と、を具備する誘電率測定装置によって前記誘電体の誘電率を測定する誘電率測定方法であって、前記探針を異なる既知誘電率を有する複数の誘電体試料の各々に接触させ、該複数の誘電体試料の各々における微小領域の容量に基づき前記発振手段を発振させて得られる前記発振周波数のデータに基づいて、複数の誘電体試料に対する誘電率と発振周波数との関係を示す検量線を作成する検量線作成工程と、前記探針及びその支持部分が前記誘電体に対向する部分を含む範囲内において、その表面に微小な誘電率分布を有する前記誘電体に、前記探針を接触させた状態で、前記探針を静止させた場合に得られる前記発振周波数と、前記検量線とに基づいて、平均誘電率を算出する算出工程と、前記測定試料に接触させた前記探針を相対的にスキャンすることで、前記誘電率分布に対応した前記発振周波数の変化から前記誘電率分布を決定する決定工程と、を備える。
【0054】
本発明の誘電率測定方法によれば、予め複数の誘電体試料を用いて、検量線を作成しておく。検量線には、測定系(即ち、当該方法が行われる誘電体率測定装置)の特性が反映される。その後、この検量線と、測定試料に探針を静止状態で接触させた際の発振周波数とから、この誘電体試料の平均誘電率を先ず算出する。そして、探針を測定試料上でスキャンすることで、発振周波数の変化から、誘電体試料における誘電率分布を決定する。従って、比較的簡単な構成で、誘電体試料における超微細領域の誘電率分布を高精度で測定可能となる。
【0055】
本発明の誘電率測定方法の一態様では、前記誘電体は、強誘電体からなる。
【0056】
この態様によれば、通常の誘電体と比較して一層良好に、超微細領域の誘電率分布を高精度で測定可能となる。
【0057】
本発明の本質、実用性、更に特徴は、簡単に後述される添付図面とともに読まれる、本発明の好適な実施の形態に関する次の詳細な説明から明白になるであろう。
【発明を実施するための最良の形態】
【0058】
以下、本発明の好適な実施の形態についてそれぞれ図を参照して説明する。
【0059】
(第1実施形態)
まず、第1実施形態の誘電率測定装置について図1から図5を参照して説明する。ここで図1はカンチレバーのモデルと各種容量、及び誘電率検出の構成について示す図であり、図2はカンチレバーの誘電体試料に対するトレースと接触性について示す図である。また、図3は容量変化と共振周波数変化の関係について説明するための図であり、図4は誘電率変化の標準試料の測定結果を示す図であり、また、図5は容量変化と共振周波数変化について、複数の標準試料に基づく検量線を示す図である。
【0060】
図1に示すように、誘電率測定装置1の構成は、カンチレバー11と、電極14と、発振器16と、FM復調器17と、誘電率検出器18とを具備して構成される。さらに誘電体試料12の誘電率測定部位の容量Csを含めた全容量と共振回路を構成するインダクタLが設けられている。
【0061】
次に各々の構成要素の動作、作用について説明する。
【0062】
カンチレバー11は、誘電体試料12の誘電率測定のために用いられ、導電体部材から成る梁状部11aとその先端側面部に設けられた突起部11bで構成されている。突起部11bが誘電体試料12の誘電率測定部位に当接され、誘電体試料12の測定微小領域に発振器16からの高周波電界を印加する。誘電体試料12はステージ13の上に載置される。
【0063】
電極14はカンチレバー11の周囲に設けられ接地される電極である。この電極14は後述する発振器16の発振信号がカンチレバー11に伝えられ、その高周波電界が誘電体試料12の微小領域の容量を通過して接地側に戻るようにするために設けられるものであって、同様の働きをする電極であればその形状は問わない。
【0064】
発振器16は誘電体試料12の微小領域の容量Csに対応した周波数で発振する発振器である。より具体的には、インダクタLとカンチレバー11の突起部11bの直下の容量Csを含む回路の共振に係わる容量で共振回路が形成され、発振器16はこの共振回路の共振周波数に応じた周波数で発振する。この周波数は1GHz程度である。詳しくは後述するが、この微小領域の容量Csは誘電体の誘電率と密接な関係を有し、この容量Csの変動が他の容量とは切り離されて発振周波数の変動分として抽出される。
【0065】
また、測定精度の向上のために発振器16の発振周波数はさらに高くすることが望ましい。その場合共振回路の定数もそれに対応して選定される必要がある。
【0066】
FM復調器17は発振器16の発振出力を復調するものであって、容量Csの変動により受けた周波数変調をAM信号に復調する。FM復調器17として汎用のFM検波回路が用いられる。
【0067】
誘電率検出器18は、FM復調器17で復調された信号から誘電率を検出するための信号処理と演算処理を行うための回路を備える。また、演算処理の回路は得られた情報について所定の演算と、データ校正等の処理が行われ誘電率が決定される。
【0068】
次に、カンチレバー型の探針を用いた場合の操作性の利点について説明する。図2(a)は当初設定した状態のカンチレバー11の固定部材19と誘電体試料12との位置関係を示し、その距離は、図2(a)に示すように、d1に保たれた状態である。固定部材19の位置設定は、図示しない所定の垂直方向位置決め装置によって行われる。このときカンチレバー11の根元は、梁状部11aが固定部材19に若干の撓みをもつように固定される。梁状部11aが有する弾性により、突起部11bは誘電体試料12に適度の接触圧で当接することになる。
【0069】
図2(b)は誘電体試料12の表面がd2だけ凹となり、ヘッド側固定部材19との距離がd1+d2となった状態である。SNDMはサブnmオーダーの表面状態を観察できるものであり、従って逆に原子レベルの凹凸が操作上影響してくることは避けられない。一方、誘電体試料12の表面は原子レベルの凹凸があることは避けられなく、また、温度による厚み方向の変化も考慮する必要がある。このような状態で、その表面が凹となっても梁状部11aの弾性により適度な接触圧は保持される。但し、梁状部11aの撓みが若干緩むことによって突起部11bが最適な状態でこの表面に当接することが可能である。
【0070】
一方、図2(c)は誘電体試料12の表面がd3だけ凸となり、ヘッド側固定部材19との距離がd1−d3となった状態である。この場合は梁状部11aの撓みが若干増し、突起部11bの接触圧は増すものの適度な接触性は保たれる。
【0071】
カンチレバー11の探針の先端である突起部11bは、nmオーダーの曲率で超微細加工されており、これにより、nmオーダーの分解能を実現可能となる。
【0072】
このように探針としてカンチレバータイプを採用することで、誘電体試料12の表面の若干の凹凸に対して、その都度探針の高さ方向の調節をする必要はなく操作性と追随性、トレース能力が格段に向上する。同時に、このようなカンチレバータイプの探針の先端を超微細加工するので、高分解能で誘電体試料12の表面の探索が可能となる。この利点はこの技術を後述の如く情報記録・再生装置に適用した場合に特に顕著になり、長時間連続して記録再生を行うことを可能ならしめる。従来からの垂直に立てるプローブタイプの探針では誘電体試料12の表面の凹凸に対応するために所定の調整動作が必要であったり、そのための機構が必要であった。
【0073】
次に、誘電率の定量測定について図1、図3〜図5を参照して説明する。
【0074】
ここで用いる探針はカンチレバー型であり、図1に示すように、先端部11b直下の誘電体の容量をCs、カンチレバー11と誘電体試料12との間の容量をC01、装置の浮遊容量C0とする。容量C01、は装置の構成形態によって決まり、容量Csは誘電体の誘電率によって決まる量である。また、容量C01、と容量Csはその機構構成上、並列に入ることになる。
【0075】
この状態で外付けされたインダクタLとの関係における共振周波数について検討する。図3(a)はカンチレバー11の先端が半径aの球であるとしたもので、誘電体試料12から離れている状態であり、容量Csは共振周波数に関与しない状態である。この状態ではインダクタLと容量Cによって共振回路を構成し、その周波数f0
[数1]f0=1/2π√(LC
である。次に図3(b)に示すように、カンチレバー11が誘電体試料12に当接され、共振回路の容量Cに容量C01と容量Csが並列に加わったとする。この合成容量をC=C+C01+Csとするが、CsはC01より十分に小さいので(1:1000程度)、近似的にC=C+C01とする。このとき共振周波数fsは
[数2]fs=1/2π√{L(C+C01)}
となる。従って数1、数2より、数3、数4が導かれる。
【0076】
[数3]f0/fs=√{(C+C01)/C
[数4]1/(C+C01)=(fs/f02/C
次にカンチレバー11が移動し、その直下の容量CsがCs+ΔCsとなり、発振周波数fsがfs+Δfsになったとする。このときΔfsは
[数5]Δfs=−fsΔCs/{2(C+C01)}
となる。これは数6より示される。即ち、
[数6]fs+Δfs=1/2π√{L(C+C01+Cs+ΔCs)}
≒1/2π√{L(C+C01+ΔCs)}
さらにテーラー展開により
=〔1−ΔCs/{2(C+C01)}〕
/2π√{L(C+C01)}
一方、カンチレバー11の直下の容量変化ΔCsは数7で示される。
【0077】
[数7]ΔCs=4πεa〔1/{b(1−b)}
−ln{1/(1−b)}/b〕〔2Δε/(ε+1)
=4πεa×2KΔε
但し、
[数8]K=〔1/{b(1−b)}−ln{1/(1−b)}/b
〔2/(ε+1)
[数9]b=(ε−1)/(ε+1)
である。また、εは誘電体試料12の平均比誘電率であり、Δεはカンチレバー11直下の比誘電率がεになったとしたときのΔε=ε−εである。尚、数7の導出は既知のものであり、ここでの説明は省略する。
【0078】
従って、周波数変化Δfsは、数5、数6、数7、数8より
[数10]Δfs=−fsΔCs/{2(C+C01)}
=−fs×4πεa×2KΔε/{2(C+C01)}
=−4πεfsKΔε{a/(C+C01)}
=−4πε(a/C)(fs/f0)KΔε
数10においてKは既知の誘電体試料の平均比誘電率εを測定することでわかり、従って、Δfs、Δεがわかればa/C(プローブ定数と称する)を決定することができる。即ち、a/Cが決定できればΔfsは測定できるのでΔεを求めることが可能となる。
【0079】
次に、Δfs、Δεの決定について説明する。比誘電率が既知の誘電体試料12であるとする。即ち、図3Bに示すように、その比誘電率ε、εが、誘電体試料12に対向するカンチレバー11及びその支持部分(図示せず)を含む範囲内において交互に分布しているとする。比誘電率ε、εは容量Cを形成する。また、この試料を用いて発振させたときの発振周波数をfa、fbとする。平均比誘電率がεの場合の周波数はfsであり、周波数fsがfb(=fs+Δfb)になったとき、εはε(=fs+Δfb)、また、周波数fsがfa(=fs+Δfa)になったとき、εはεであるとする。よって、Δfs=Δfbであり、Δε=ε−εである。従って、数10において、a/Cのみが装置固有の未知数となる。しかしながら、これは上述したようにプローブ定数として誘電率が既知の試料を用いて決定することが可能である。
【0080】
次に、誘電体試料12を図3(c)に示すようにこの測定装置で測定しようとする。比誘電率ε´、ε´が交互に並んでいるとし、測定状態での平均比誘電率をε´とする。この平均比誘電率をε´の決定方法は後段で図5を用いて詳述する。このときの全容量をC´=C+C01´+Cs´≒C´=C+C01´とすると、発振周波数fs´は数11に示すように、
[数11]fs=1/2π√(LC´)
=1/2π√{L(C+C01´)}
となる。従って、数4と同様に
[数12]1/(C+C01´)=(fs´/f02/C
となり、同様にして、周波数変化Δfs´は数13、カンチレバー11直下の容量変化ΔCs´は数14で表せる。
【0081】
[数13]Δfs´=−fs´ΔCs´/{2(C+C01´)}
[数14]ΔCs´=4πεa〔1/{b´(1−b´)}
−ln{1/(1−b´)}/b´
〔2Δε´/(ε´+1)
=4πεa×2K´Δε´
但し、
[数15]K´=〔1/{b´(1−b´)}
−ln{1/(1−b´)}/b´
〔2/(ε´+1)
[数16]b´=(ε´−1)/(ε´+1)
従って、周波数変化Δfs´は数13、数14、数15より、
[数17]Δfs=−fs´ΔCs´/{2(C+C01´)}
=−fs´×4πεa×2K´Δε´
/{2(C+C01´)}
=−4πεfsK´Δε´{a/(C+C01´)}
=−4πε(a/C)(fs´/f0)K´Δε´
となる。従って、プローブ定数a/Cは前述した既知の試料のテストから知られ、f0、fs´、K´即ちb´は測定で得られるので、波数変化fs´が分かれば比誘電率の変化Δε´が分かることになる。ここで、カンチレバー11直下の実際の比誘電率ε´+Δε´となる。
【0082】
図5は、実際の標準試料に対する測定結果に基づく、誘電体の比誘電率と周波数偏移の関係の一例を示す。この例では、複数の標準試料が、LiTaO、LiNbO、BaTiO、サファイア等である場合に、1本の検量線として得られる理論曲線を示している。誘電率分布を持つ試料として、周期的分極反転構造を有するLiTaOを測定した場合、図5では、図4に示したような平均周波数(fs)の位置が、比誘電率36.3に対応している。また、検量線を規定する複数の標準試料に対応する点が×印で当該検量線上に記されている。このようにカンチレバー11等を含む固有の測定系における検量線を予め求めておけば、上述した方法で、線形の誘電率を定量計測することができる。即ち、予め検量線として理論曲線が既知である固有の測定系で、測定対象たる試料の測定における周波数偏移が分かれば、この理路曲線上に当てはめることで容易に比誘電率εを決定することが可能となる。尚、このような検量線は、標準試料の厚さが、カンチレバー11の先端で電界が印加される微小領域の深さと比べて十分に厚ければ(例えば50〜100μm程度以上あれば)、標準試料の厚さによらない。更に、測定対象たる試料についても、この程度の厚みがあれば、比較的高精度で比誘電率εを決定できる
(第1変形形態)
次に、上述した第1実施形態の第1変形形態について図6及び図7を参照して説明する。ここで図6はカンチレバーのモデルと各種容量、及び誘電率検出の構成について示す図であり、図7は誘電体の分極状態と出力電圧の関係を説明するための図である。また、図1で示したのと同様の構成要素には同様の参照符号を付し、それらの説明は適宜省略する。
【0083】
第1変形形態は、上述した第1実施形態における、誘電体の微小領域の分極状態を変化させることにより、情報を再生又は記録、若しくは記録及び再生することができ、特に上述した特徴を有するカンチレバーをピックアップ手段として用いることで、高密度に情報を記録する情報記録・再生装置の基本構造に応用するものである。この情報記録・再生装置の基本構造を用いた、より具体的な装置構成及び動作については、後に第2及び第3変形形態並びに第2及び第3実施形態として説明する。ここでは特に、第1変形形態における誘電率検出の基本原理は、上述した第1実施形態の場合と殆ど同様である。
【0084】
即ち図6に示すように、誘電体記録・再生装置1'は、カンチレバー11と、電極14と、交流信号発生器15と、発振器16と、FM復調器17と、誘電率検出器18とを具備して構成される。さらに交流信号発生器15からの信号が発振器16に干渉することを防止するためのインダクタLa及び容量Caからなるローカットフィルタと、誘電体試料12の誘電率測定部位の容量Csを含めた全容量とともに共振回路を構成するインダクタLとが設けられている。
【0085】
次に各々の構成要素の動作、作用について説明する。
【0086】
交流信号発生器15は、インダクタLaを介してカンチレバー11に供給する低周波信号を発生する。この信号は、5KHz程度の周波数を有する交流信号であり、突起部11bから交番電界として誘電体試料12の微小領域に印加される。また、インダクタLaと容量Caによって構成されるローカットフィルタによって交流信号発生器15の交流信号が発振器16に伝わって干渉を起こすことを防止する。その遮断周波数はf=1/2π√(LaCa)である。交流信号発生器15の交流信号の周波数は5Khz程度であり、発振器16の発振周波数は1Ghz程度であるので、1次のLCフィルタで分離は十分に行われる。さらに次数の高いフィルタを用いてもよいが素子数が多くなるので装置が大きくなる虞がある。ここでローカットフィルタのために挿入される容量Caの発振に対する影響については、容量Cs、浮遊容量C等は容量Caと比較して十分に小さく、また、直列接続になっているので容量Caの影響は無視できる。
【0087】
また、測定精度の向上のために交流信号発生器15と発振器16の発振周波数はさらに高くすることが望ましい。その場合フィルタの定数もそれに対応して選定される必要がある。
【0088】
誘電率検出器18は、FM復調器17で復調された信号から誘電率を検出するための信号処理と演算処理を行うための回路を備える。上述した交流信号発生器15の交流信号を受信し、復調信号をこの信号と参照して同期検波し、高品位の誘電率に関する情報が抽出される。この同期検波として例えばロックインアンプを用いる。ロックインアンプの構成と動作については後段で詳しく説明する。尚、他の位相検波手段を用いてもよいことは当然である。また、演算処理の回路は得られた情報について所定の演算と、データ校正等の処理が行われ誘電率が決定される。
【0089】
次に、誘電体試料の分極状態と検出電圧について図7を参照して説明する。
【0090】
図7に示すように誘電体試料12の測定用微小領域の分極が矢印Pで示される方向になっているとする。カンチレバー11から加えられる交番電界の方向と対応する微小領域の分極P方向の関係から3次の誘電率εの正負が決まり、従ってこれに対応する容量Csa〜Csnの値が変化する。詳しくは後述するが、発振器16はこの容量Csa〜Csnの値に基づいて発振周波数が変化し、これを復調、検波することで誘電率の情報の読み出しが可能となる。
【0091】
図6に示した第1変形形態では好ましくは、カンチレバー11を複数用いて同時に情報の記録或いは再生を行う。この際、複数の交流信号発生器15及び複数のインダクタLaを情報記録・再生装置に配置し、各カンチレバー11に対し、各交流信号発生器15が、各インダクタLaを介して固有の異なる周波数の交番電圧を供給するように構成すれば、この各交流信号の周波数を参照信号として、各カンチレバーで検出する信号を弁別可能となる。その周波数は、5Khz程度を中心としたものであり、各カンチレバー11とステージ13との間の誘電体薄膜12の各微小領域に交番電界を印加することになる。
【0092】
従って、記録しながら記録状態が正常に行えているか否かを確認するための記録情報の再生を伴わない純粋な記録動作を行う際には、このような各カンチレバー11で検出する信号を弁別するための交番電界を印加する必要はなく、当該交番電界の印加は、専ら信号再生用に行われるものである。このため、記録時には、直流電圧或いはパルスを各カンチレバー11に夫々印加すればよい。他方、再生時には、例えばキャリア周波数より十分低くカンチレバー11の数ほど周波数の異なる交流信号を各交流信号発生器15により印加すればよい。そして、このような各交流信号発生器15により交番電界を印加するか否かは、記録時と再生時にスイッチにより切り替えればよい。
【0093】
(第2変形形態)
次に、図8を参照し、カンチレバーを用いた上記誘電率測定の技術を応用した情報再生装置2について説明する。微小領域の分極状態の変化として、情報を誘電体の微小領域に高密度記録することができ、上述した特徴を有するカンチレバーをピックアップ手段として用いることで高密度に記録された情報を読み出すことが可能である。
【0094】
情報再生装置2は、誘電体22と基板23からなる誘電体記録媒体21と、カンチレバー24と、電極25と、交流信号発生装置26と、発振器27と、FM復調器28と、信号検出器29と、インダクタLと、インダクタLaと、容量Caとを備える。ここで上述した浮遊容量等については所定の手法により決定されるものとして以下の説明には導入しない。
【0095】
誘電体記録媒体21の誘電体22の表面微小領域に記録する情報に対応して分極状態が決められ、それに応じて容量Csが決定される。カンチレバー24が当接した微小領域の容量CsとインダクタLとを構成要素として共振回路が形成され、発振器27はその共振周波数に基づいて発振する。その発振回路中に容量Caが直列に挿入されているがCsに対してきわめて大きいので、容量Csが共振周波数の支配的要素である。
【0096】
電極25は発振器27で発振した高周波信号がカンチレバー24に印加され、更に誘電体22の微小領域に印加されるときに、高周波電界が接地に戻るための電極である。
【0097】
交流信号発生装置26はカンチレバー24に印加する交流信号を発生し、誘電体22の微小領域に交番電界を印加する。この交番電界の方向と分極の方向とから誘電率の違い、即ちそれに対応する容量Csの違いが検出され、発振器27の発振周波数を変調することになる。
【0098】
インダクタLaと容量Caは交流信号発生装置26の交流信号が発振器27に漏れこみ、干渉を起こすことを防止するために設けられたローカットフィルタを構成している。発振器27の発振周波数は1GHz程度であり、交流信号発生装置26の交流信号の周波数は5KHz程度であり、1次のLCフィルタで十分分離は可能である。
【0099】
FM復調器28は周波数変調された発振器27の発振信号を復調する。これは通常のFM検波手段が用いられる。信号検出器29はFM復調器28で復調された信号から、交流信号発生器26の交流信号を同期信号として同期検波を行い、記録されていた情報を再生する。
【0100】
カンチレバー24は複数本用いてもよく、その場合、その各々に固有の個別な交流信号を印加し、情報の弁別に使用される。
【0101】
以上説明したように、カンチレバーを探針電極として用いる誘電率測定装置1の技術を適用することで、高密度の情報再生装置が構成できる。
【0102】
(第3変形形態)
次に、図9を参照し、カンチレバーを用いた上記誘電率測定の技術を応用した情報記録装置について説明する。誘電体の微小領域の分極状態を変化させて情報を記録することができ、上述した特徴を有するカンチレバーをピックアップ手段として用いることで高密度に情報を記録することが可能である。
【0103】
情報記録装置3は、誘電体32と基板33からなる誘電体記録媒体31と、カンチレバー34と、電極35と、交流信号発生装置36と、記録信号発生器37と、加算器38と、発振器39と、FM復調器40と、信号検出器41と、インダクタLと、インダクタLaと、容量Caとを備える。
【0104】
誘電体記録媒体31の誘電体32の表面微小領域に記録する情報に対応して分極状態が決められ、それに応じた容量Csがある。カンチレバー34が当接した微小領域の容量CsとインダクタLとを構成要素として共振回路が形成され、発振器39はその共振周波数に基づいて発振する。その発振回路中に容量Caが直列に挿入されているがCsに対してきわめて大きいので、容量Csが共振周波数の支配的要素であることは上述したとおりである。
【0105】
電極35は発振器39で発振した高周波信号がカンチレバー34に印加され、更に誘電体32の微小領域に印加されるときに、高周波電界が接地に戻るための電極である。
【0106】
交流信号発生装置36はカンチレバー34に印加する交流信号を発生し、誘電体32の微小領域に交番電解を印加し、記録信号発生器37からの記録信号にバイアスをかけ、分極状態を制御して情報を記録する。分極状態に対応する容量Csの違いに基づいて発振器39の発振周波数を変調させ、これを復調することで正しい記録動作が行われているかモニターすることが可能となる。
【0107】
インダクタLaと容量Caは交流信号発生装置36の交流信号が発振器39に漏れこみ、干渉を起こすことを防止するために設けられたローカットフィルタを構成している。発振器39の発振周波数は1GHz程度であり、交流信号発生装置36の交流信号の周波数は5KHz程度であり、1次のLCフィルタで十分分離は可能である。さらに周波数を高めることはデータ転送レート上有利であり、その場合はそれに適合したフィルター定数を選定すればよい。
【0108】
FM復調器40は周波数変調された発振器39の発振信号を復調する。これは通常のFM検波手段が用いられる。信号検出器41はFM復調器40で復調された信号から、交流信号発生器36の交流信号を同期信号として同期検波を行い、記録されていた情報を再生する。
【0109】
カンチレバー34は複数本用いてもよく、その場合、その各々に固有の個別な交流信号を印加し、情報の弁別に使用される。
【0110】
以上説明したように、カンチレバーを探針電極として用いる誘電率測定装置1の技術を適用することで、高密度の誘電体記録装置が構成できる。
【0111】
次に、誘電率検出器又は信号検出器(18、29、41)の同期検波に供されるロックインアンプについて、図10を参照して説明する。同期検波に用いられる手段はこのロックインアンプに限ることはないことは前述したとおりである。
【0112】
ロックインアンプ5は、図10に示すように、入力端子T1、T2と、増幅器51と、波形整形器52と、同相分配器53、54と、90度移相器55と、乗算器である混合器56、57と、低域通過フィルタ58、59と、出力端子T3、T4とによって構成される。
【0113】
増幅器51は、入力端子T1を介して入力される復調信号を増幅して同相分配器53に出力する。同相分配器53は、増幅された復調信号を同相分配して混合器56と混合器57に出力する。一方、波形整形器52は、入力端子T2を介して入力された基準信号(図1の交流信号)を方形波に整形して同相分配器54に出力する。同相分配器54は、波形整形器52から出力される基準信号を同相で分配して混合器57と90度移相器55に出力する。90度移相器55は、基準信号を基準信号の周波数において90度だけ移相して混合器56に出力する。混合器56は、復調信号と90度だけ移相された基準信号を乗算して混合し、前記復調信号の周波数と前記基準信号の周波数の和と差の周波数を有する信号に変換して低域通過フィルタ58に出力する。低域通過フィルタ58は、入力される混合後の信号のうちの直流信号のみを通過させて出力端子T3に出力電圧Va1を出力する。混合器57は、基準信号と復調信号とを乗算して混合し、前記復調信号の周波数と前記基準信号の周波数の和と差の周波数を有する信号に変換して、低域通過フィルタ59に出力する。低域通過フィルタ59は、入力される混合後の信号のうちの直流信号のみを通過させて出力端子T4に出力電圧Va2を出力する。
【0114】
入力端子T1に入力される復調信号と入力端子T2に入力される基準信号との間の位相差をφとし、また前記復調信号と前記基準信号(方形波)が同相(即ち、φ=0)で掛算されるときの低域ろ波された後の電圧の絶対値を|Va|とすると、|Va|は基準信号が90度だけ移相されて復調信号と混合されるので、数18で表される。また同様に、低域通過フィルタ59から出力される電圧Va2は、数19で表される。
【0115】
[数18]Va1=|Va|・sinφ
[数19]Va2=|Va|・cosφ
次に、ここで上述したように構成されたロックインアンプ等の基本回路を備える誘電体情報装置において、誘電体の微小領域に印加する交番電界と誘電率及び発振周波数との関係について説明する。
【0116】
図9に示すように交流信号発生器(15、26、36)によって探針(即ち、カンチレバー11、24又は34)と電極(即ち、ステージ13又は基板23、33)の間の微小領域に周波数fpの正弦波である交流電圧Vpを印加すると、微小領域に前記交流電圧Vpの振幅に比例する、即ち、周波数fpを有する正弦波の交番電界Epを発生する。交流電圧Vpと交番電界Epは、数20で表される角周波数ωpを用いて数21と数22で表すことができる。ここでVp0は交流電圧Vpの振幅であり、Ep0は交番電界Epの振幅である。
【0117】
[数20]ωp=2πfp
[数21]Vp=Vp0cosωp
[数22]Ep=Ep0cosωp
また、交流電圧Vpを印加したときの微小領域の誘電率εtは、公知のように、交番電界Epと2次の誘電率εと3次の誘電率εと4次の誘電率εを用いると次の数23で表される。
【0118】
[数23]εt=ε+εEp+(1/2)εEp
ここで、数23は以下のように導くことができる。誘電体に電界を印加したときの誘電体の電束密度と電界をそれぞれD、Eとして、誘電体の単位体積当たりに蓄えられる内部エネルギーと、電気的エンタルピーをそれぞれU、Hとして、前記電束密度Dと電界Eと内部エネルギーUと電気的エンタルピーHの微分をそれぞれdD、dE、dU、dHとすると、次の数24と数25の関係が成り立つ。
【0119】
[数24]dU=EdD
[数25] H=U−ED
以上の数24と数25から微分dHは、次の数26で表される。従って、電束密度Dは数27で表される。
【0120】
[数26]dH=−DdE
[数27]D=−∂H/∂E
次に、電気エンタルピーHを電界Eの関数として原点で4次の項までテーラー展開すると、電気的エンタルピーHは次の数28で与えられる。
【0121】
[数28]H=(1/2)(∂2H/∂E2)02+(1/6)(∂3H/∂E3)03
+(1/24)(∂4H/∂E4)04
ここで、0次の項は、電界E=0で場に蓄えられるエネルギーを0とすることにより0とした。また、1次の項は、電界E=0で電束密度D=0になることと数10とから0になる。また、数27と数28から電束密度Dは、次の数29で表される。
【0122】
[数29]D=−(∂2H/∂E2)0E−(1/2)(∂3H/∂E3)02
−(1/6)(∂4H/∂E4)03
=ε2E+(1/2)ε32+(1/6)ε43
ここで、
[数30]−(∂2H/∂E2)0=ε2
[数31]−(∂3H/∂E3)0=ε3
[数32]−(∂4H/∂E4)0=ε4
としている。以上のことから、電気的エンタルピーHをテーラー展開したときの、2次の展開係数に対応したε2を2次の誘電率と呼び、3次の展開係数に対応したε3を3次の誘電率と呼び、4次の展開係数に対応したε4を4次の誘電率と呼んでいる。さらに、数29において、交番電界Epに発振信号に対応した微小電界ΔEが重畳している場合を考える。このとき前記交番電界Epに対応した電束密度をDpとして、前記微小電界ΔEに対応した微小電束密度をΔDとすると、数29は次の数33のように表わすことができる。
【0123】
[数33]Dp+ΔD=ε2(Ep+ΔE)+(1/2)ε3(Ep+ΔE)2
+(1/6)ε4(Ep+ΔE)3
ここで、電束密度Dpは、次の数34で表され、また交番電界Epに比較して微小電界ΔEは十分小さいので、(ΔE)2と(ΔE)3を含む項は0と近似することができ、数34の第2項のΔDは数35のように表わすことができる。
【0124】
[数34]Dp=ε2Ep+(1/2)ε3Ep2+(1/6)ε4Ep3
[数35]ΔD=ε2ΔE+ε3EpΔE+(1/2)ε4Ep2ΔE
={ε2+ε3Ep+(1/2)ε4Ep2}ΔE
=εtΔE
数35から明らかなように、微小電界ΔEと、微小電界ΔEによって発生する微小電束密度ΔDの間の比例係数εtとして数23を導くことができる。また、3次の誘電率ε3は、特に交番電界Epの向きと分極Pの向きが同じ向き場合と、交番電界Epの向きと分極Pの向きが逆の向き場合とで、正負が反転する。また数23において4次の誘電率ε4よりも高次の誘電率は無視しているが、前記高次の誘電率は2次,3次,及び4次の誘電率に比較して十分小さいので、以下の説明において高次の誘電率を無視したことの影響は無い。また、以下の説明において、数式は、誘電体の厚み方向の1次元に限定して表示している。また、前記探針(即ち、カンチレバー11、24又は34)と電極(即ち、ステージ13又は基板23、33)とによって挟設された前記微小領域が構成するキャパシタンスCsは、誘電率εtに比例するので、誘電体の厚さdと探針(即ち、カンチレバー11、24又は34)の先端部の面積と誘電体によって決まる正の定数Ceと数23を用いて次の数36のように表すことができる。
【0125】
[数36]Cs=Ce(1/d){ε2+ε3Ep+(1/2)ε4Ep2
また、数36で表されるキャパシタンスCsは、次の数37で表されるキャパシタンスC0と次の数38で表されるキャパシタンス変化量△Cを用いると数39のように表すことができる。ここで、キャパシタンスCは、交流電圧Vpが印加されていないときの探針(即ち、カンチレバー11、24又は34)と電極(即ち、ステージ13又は基板23、33)と、探針(即ち、カンチレバー11、24又は34)と電極(即ち、ステージ13又は基板23、33)とによって挟設された前記微小領域が構成するキャパシタンスであり、キャパシタンス変化量△Cは、交流電圧Vpを印加したときのキャパシタンスC0からのキャパシタンス変化量である。
【0126】
[数37]C0=Ce(1/d)ε
[数38]△C=Ce(1/d){ε3Ep+(1/2)ε4Ep2
[数39]Cs=C0+△C
数22で表される交番電界Epを数30の右辺に代入して、さらに数40で表される三角関数の公式を用いて変形すると、△Cは数41のように表すことができる。
【0127】
[数40]cos2(ωp・t)={1+cos(2ωp・t)}/2
[数41]△C=Ce(1/d){ε4Ep0/4+ε3Ep0cos(ωp・t)
+(ε4Ep02/4)cos(2ωp・t)}
更に、数41は、次の数42と数43と数44で表されるキャパシタンス変化量△C2、△C3、△C4を用いて数45のように書き換えることができる。ここで、キャパシタンス変化量△C2は、4次の誘電率ε4と交番電界Epの振幅Ep0の2乗に比例して時間的には変化しない変化量であって、キャパシタンス変化量△C3は、3次の誘電率ε3と交番電界Epの振幅Ep0に比例する振幅を有しかつ角周波数ωpを有して交番的に変化するキャパシタンス変化量である。また、キャパシタンス変化量△C4は、4次の誘電率ε4と交番電界Epの振幅Ep0の2乗に比例する振幅を有しかつ角周波数2ωpを有して交番的に変化するキャパシタンス変化量である。
【0128】
[数42]△C2=Ce(1/d)(ε4Ep02/4)
[数43]△C3=Ce(1/d)ε3Ep0cos(ωp・t)
[数44]△C=Ce(1/d)(ε4Ep02/4)cos(2ωp・t)
[数45]△C=△C2+△C3+△C4
一方、容量CsとインダクタLは上述のようにLC共振回路を構成し、前記LC共振回路の共振周波数fLCは、公知のように次の数46で表される。
【0129】
[数46]fLC=1/{2π√(L・Cs)}
=1/[2π√{L・(C0+ΔC)}]
また、数43におけるε3Ep0と数36におけるε4Ep02/4は、2次の誘電率ε2比べて十分小さいので、数37数38よりC0≫ΔCが成り立つ。従って、数46を数47で表される近似式を用いて書き換えると、前記キャパシタンス変化量△Cと共振周波数変化量△fLCの関係は、数48のように表わすことができる。
【0130】
[数47]√(1+△C/C0)=(1+△C/C0)−1/2≒1−(1/2)(△C/C0)
[数48]△C/C0=−2△fLC/fLC
以上のように、前記LC共振回路の共振周波数fLCは、前記キャパシタンスCsのキャパシタンス変化量△Cに比例して共振周波数変化量△fLCだけ変化する。従って、発振器20は、前記共振周波数fLCと同じ周波数である発振周波数fOSCを有する発振信号を発振して発生してFM復調器21に出力する。ここで、上述のように前記LC共振回路の共振周波数fLCは、前記キャパシタンスCsのキャパシタンス変化量△Cに比例して共振周波数変化量△fLCだけ変化するので、前記発振周波数fOSCも同様に、前記キャパシタンスCsのキャパシタンス変化量△Cに比例して変化する。また、上述のようにキャパシタンス変化量△Cは、3次の誘電率ε3と交番電界Epの振幅Ep0に比例する振幅を有しかつ角周波数ωpを有して交番的に変化するキャパシタンス変化量△C3と、4次の誘電率ε4と交番電界Epの振幅Ep0の2乗に比例する振幅を有しかつ角周波数2ωpを有して交番的に変化するキャパシタンス変化量△C4を含むので、前記発振信号は、3次の誘電率ε3と交番電界Epの振幅Ep0に比例する振幅を有しかつ角周波数ωpすなわち周波数fpを有する信号S3と、4次の誘電率ε4と交番電界Epの振幅Ep0の2乗に比例する振幅を有しかつ角周波数2ωpすなわち周波数2fpを有する信号S4によって周波数変調された発振信号である。このとき、前記周波数変調された発振信号の周波数偏移は、信号S3の振幅と、信号S4の振幅に比例する。
【0131】
前記FM復調器21は、前記発振信号をFM復調処理して、3次の誘電率ε3と交番電界Epの振幅Ep0に比例する振幅を有しかつ周波数fpを有する信号S3と、4次の誘電率ε4と交番電界Epの振幅Ep0の2乗に比例する振幅を有しかつ周波数2fpを有する信号S4を含む復調信号をロックインアンプ5の端子T1に出力する。
【0132】
ロックインアンプ5において、混合器56は、増幅された後に同相分配された一方の復調信号と、波形整形され、且つ90度移相された基準信号とを乗算して混合し、前記復調信号の周波数と前記基準信号の周波数の和と差の周波数を有する信号に変換して低域通過フィルタ58に出力し、低域通過フィルタ58は、混合後の信号のうち直流成分である出力電圧|Va|sinφのみを端子T3に出力する。一方、混合器57は、同相分配された他方の復調信号と波形整形された基準信号とを乗算して混合し、前記復調信号の周波数と前記基準信号の周波数の和と差の周波数を有する信号に変換して、低域通過フィルタ59に出力し、低域通過フィルタ59は、混合後の信号のうちの直流成分である出力電圧|Va|cosφのみを端子T4に出力する。
【0133】
ここで、信号S3は前記基準信号の周波数fpを有する信号であるので、前記混合器58と前記混合器57はそれぞれ、前記基準信号と周波数fpを有する信号S3とを乗算して混合したときに発生する直流信号である出力電圧|Va|sinφと出力電圧|Va|cosφを出力する。すなわち出力電圧Va1と出力電圧Va2は位相差φと3次の誘電率ε3に対応した電圧になる。ここで特に、3次の誘電率ε3が実数であってかつ正の値のときには、数34から明らかなように、キャパシタンス変化量ΔC3と交番電界Epは同相で変化する。また、数39から明らかなように、前記キャパシタンス変化量ΔC3は、共振周波数変化量ΔfLCと逆相で変化する。以上のことから、3次の誘電率ε3が実数であってかつ正の値のときには、共振周波数変化量ΔfLCは交番電界Epと逆相で変化する。さらに、交番電界Epと交流電圧Vpは同相で変化するので、3次の誘電率ε3が実数であってかつ正の値のときには、前記基準信号と前記信号S3の位相差はπになる。また同様に3次の誘電率ε3が実数であってかつ負の値のときには、前記基準信号と前記信号S3の位相差は0になる。
【0134】
以上説明したように、3次の誘電率ε3が実数のときには、前記基準信号と前記信号S3の位相差は0かπの値をとり、出力電圧Va1は、0となり、出力電圧Va2のみが出力される。また、3次の誘電率ε3が正のときには、位相差φはπになって出力電圧Va2はマイナスの値で出力されて、3次の誘電率ε3が負のときには、位相差は0になって出力電圧Va2はプラスの値で出力される。
【0135】
従って、3次の誘電率ε3の正負によって出力が変化し、正負の程度によって出力のレベルも変化する。このようにして微小領域の分極状態を検出することができる。
【0136】
(第2実施形態)
図11を参照して、テープ状に形成した誘電体記録媒体を用いる情報記録・再生装置6について説明する。
【0137】
まず、記録媒体となる誘電体は導電性のテープ状基板の上に誘電体からなる誘電体膜を、例えばスパッタリング等の公知の方法によって形成する。
【0138】
誘電体材料は、例えば以下に示す材料が使用される。
【0139】
(a)PbTiO3−PbZrO3の固溶体であるPZT材料。
【0140】
(b)PbTiO3で表されるチタン酸鉛。
【0141】
(c)PbZrO3で表されるジルコン酸鉛。
【0142】
(d)BaTiO3で表されるチタン酸バリウム。
【0143】
(e)LiNbO3で表されるニオブ酸リチウム。
【0144】
(f)鉛(Pb),ランタン(La),ジルコニウム(Zr),チタン(Ti)系の固溶体であるPLZT材料。
【0145】
(g)ビスマス(Bi),ナトリウム(Na),鉛(Pb),バリウム(Ba)系の固溶体であるBNPB材料などの誘電体材料。
【0146】
前記材料は、セラミックス,単結晶又は薄膜形成されたもののいずれの材料も使用可能である。また、ポリフッ化ビニリデン(PVDF)、フッ化ビニリデンと三フッ化エチレンの共重合体、フッ化ビニリデンと四フッ化エチレンの共重合体、シアノビニリデンと酢酸ビニルの共重合体などの圧電高分子材料なども使用することができる。またさらに、前記材料を複数個組み合わせた材料も使用できる。
【0147】
まず、情報記録・再生装置6の構成の概略は、導電性の薄膜基板61とその上に所定の方法で形成された記録部を形成する誘電体薄膜62からなるテープ状の誘電体記録媒体63、巻き取り軸64、65、該巻き取り軸64、65を駆動するモータ66、67、誘電体記録媒体63の薄膜基板61を接地する手段であるベース68、カンチレバー69、制御回路70、操作入力部71、動作状態表示部72、ヘッド73、記録再生回路74、電極75、その他テープの走行、記録再生に必要な公知の機構を備える。
【0148】
次に動作について説明する。誘電体記録媒体63はベース68とカンチレバー69に接触した状態で矢印Xの方向に、巻き取り軸64、65により巻き取られ、または送り出されて走行する。巻き取り軸64、65はそれぞれ制御回路70の制御信号により回転するモータ66、67に結合されていて、これによりそれぞれR1、R2の方向に回転して巻き取り、送り出しを行う。制御回路70は上記モータ66、67の回転制御に限らず、装置全体の動作をコントロールする。装置の必要な部位に配置された図示しない各種センサからのデータが入力され、プログラムされたCPUによって記録・再生装置6が正常に作動するように制御する。
【0149】
また、制御回路70には操作入力部71から入力される操作指示の信号を受け、その指示に従って情報記録・再生装置6を動作させ、また、動作状態表示部72に動作状態を表示させる。入力する指示としては例えば記録、再生の選択、スタート、ストップ、早送り、巻き戻し等、従来の磁気テープを用いた装置の指示と同様のものがある。また、表示させる動作状態としては、例えば記録中であるか再生中であるか、早送りか巻き戻しか、現在の記録再生部位のアドレス等、やはり従来の磁気テープを用いた装置の動作表示と同様のものがある。
【0150】
次に、ヘッド73はカンチレバー69を有し、これに情報を印加し、或いは読み取る回路を備えている。カンチレバー69は図11の紙面の垂直方向に複数本設けられている。ヘッド73に搭載する各回路は、例えば図9に示す発振器39、インダクタL、容量Ca等を含む。ヘッド73へ供給する記録情報、読み取った再生情報は記録再生回路74で処理される。この記録再生回路74には、例えば図9に示す交流信号発生器36、記録信号発生器37、FM復調器40、信号検出器41等を備えている。電極75はカンチレバー69から放射される高周波電界を接地に導くためのものである。尚、これら各構成要素の構成と動作は第1実施形態等で説明したことと同様である。
【0151】
記録する情報としてはテレビ、ラジオ等の映像信号や音声信号、コンピュータ用データが有り、再生出力はスピーカ、表示装置で音声出力、映像出力され、また、コンピュータのプログラムやデータとして供される。
【0152】
尚、テープ状媒体記録・再生装置として、記録再生機能を併せ持つ装置について述べたが、記録機能だけのテープ状媒体記録装置、再生機能だけのテープ状媒体再生装置についても、それに関する機能を取り上げて構成されるものである。
【0153】
(第3実施形態)
図12を参照して、ディスク状に形成した誘電体記録媒体を用いる情報記録・再生装置7について説明する。誘電体材料は前述したものを用いることが可能である。
【0154】
まず、情報記録・再生装置7の構成の概略は、導電性の基板81とその上に所定の方法で形成された記録部を形成する誘電体薄膜82からなるディスク状の誘電体記録媒体83、ディスクを回転させるモータ84、誘電体記録媒体83の基板81を接地する手段である回転ベース85、制御回路86、操作入力部87、動作状態表示部88、ヘッド89、カンチレバー90、ヘッド89をディスク半径方向(紙面に垂直方向)に移動するモータ91、スクリュー92、ヘッドをガイドする軸93、記録再生回路94、電極95、その他ディスクの回転、記録再生に必要な公知の機構を備える。
【0155】
次に動作について説明する。誘電体記録媒体83は回転ベース85に乗せられ、電気的接続を得ながら、制御回路86に制御されたモータ84によりR1方向に回転する。回転する回転ベース85を接地接続する方法としてスリップリング等の公知の技術を用いることが可能である。制御回路86は装置全体の動作をコントロールする。装置の必要な部位に配置された図示しない各種センサからのデータが入力され、プログラムされたCPUによって記録・再生装置7が正常に作動するように制御する。
【0156】
また、制御回路86は操作入力部87から入力される操作指示の信号を受け、その指示に従って情報記録・再生装置7を動作させ、また、動作状態表示部88に動作状態を表示させる。入力する指示としては例えば記録、再生の選択、スタート、ストップ、ヘッド89の移動等、従来のディスクを用いた装置の指示と同様のものがある。また、表示させる動作状態としては、例えば記録中であるか再生中であるか、ヘッドの位置、現在の記録再生部位のアドレス等、やはり従来のディスクを用いた装置の動作表示と同様のものがある。
【0157】
次に、ヘッド89は誘電体記録媒体83の半径方向(紙面垂直方向)に、モータ91によりスクリュー92を回転して移動する。軸93はスクリュー92と対を成し、ヘッド89の移動がスムーズに行えるように支持する。このヘッド89は複数のカンチレバー90を有し、このカンチレバー90に情報を印加し、或いは読み取る先端部の回路を備えている。各回路は、例えば図9に示す発振器39、インダクタL、容量Ca〜Cn等を含む。
【0158】
ヘッド89で読み取った再生情報は記録再生回路94で処理される。この記録再生回路94は、例えば図9に示す、交流信号発生器36、記録信号発生器37FM復調器40、信号検出器41等を備えている。電極95はカンチレバー90から放射される高周波電界を接地に導くためのものである。尚、これら各構成要素の構成と動作は第1実施形態等で説明したことと同様である。
【0159】
記録する情報としてはテレビ、ラジオ等の映像信号や音声信号、コンピュータ用データが有り、再生出力はスピーカ、表示装置で音声出力、映像出力され、また、コンピュータのプログラムやデータとして供される。
【0160】
尚、ディスク状媒体記録・再生装置として、記録再生機能を併せ持つ装置について述べたが、記録機能だけのディスク状媒体記録装置、再生機能だけのディスク状媒体再生装置についても、それに関する機能を取り上げて構成されるものである。
【0161】
以上詳細に説明したように、上述した2つの記録・再生装置6,7は本発明の著しい特徴として、カンチレバー型のトレース能力が極めて高い複数の探針を用いることと、これら複数の探針が1つの発振器に取り付けられていて作動することである。誘電体薄膜の一方の面に設けられた共通の接地される電極と、前記誘電体の微小領域に接触(或いは微小ギャップを介して接触)するように形成された前記複数の探針からなる電極との間に、探針側から各々異なる周波数の低周波交番電界を印加して媒体に記録された情報を同時に読み出すことを可能としている。さらに前記低周波交番電界に記録用の信号を重畳して同時に記録することを可能としている。
【0162】
また、低周波電圧印加回路と、LC共振器を含む発振器の高周波回路をL、Cによって相互の分離しているため、共振器相互の干渉がなく、十分に分離された信号を記録し、再生することが可能となる。
【0163】
さらに、低周波交番電界印加用の電源は、それぞれ異なる単一周波数で発振可能であればよいため、単純で集積化も簡単である。一方の高周波用の発振器は1個を複数の探針で共用できる構成としたため、超小型の超高密度誘電体記録・再生装置への実現が可能となる。
【0164】
尚、以上説明した各実施形態では、誘電体記録媒体21、31、63及び83を構成する誘電体は、好ましくは強誘電体からなる。これにより、一層良好に、強誘電体の微小領域に情報を高密度で書き込むことが可能となる。
【0165】
(産業上の利用可能性)
本発明の誘電率測定装置及び誘電率測定方法は、誘電体記録媒体を用いた情報記録及び/又は再生装置に利用可能である。情報記録及び/又は再生装置は、映像信号、音声信号、コンピュータプログラムデータ等の情報を高密度で記録し、且つ/或いは、記録された情報を再生するために使用される。
【図面の簡単な説明】
【0166】
【図1】本発明の実施形態における、カンチレバーのモデルと各種容量、及び誘電率検出の構成について示す図である。
【図2】カンチレバーの誘電体試料に対する接触性について示す図である。
【図3】容量変化と共振周波数変化の関係について説明するための図である。
【図4】誘電率変化の標準試料の測定結果を示す図である。
【図5】容量変化と共振周波数変化について、複数の標準試料に基づく検量線を示す図である。
【図6】第1変形形態における、カンチレバーのモデルと各種容量、及び誘電率検出の構成について示す図である。
【図7】第1変形形態における誘電体の分極状態と出力電圧の関係を説明するための図である。
【図8】第2変形形態における交流信号をカンチレバーに印加して誘電率を検出する構成を示す図である。
【図9】第3変形形態における交流信号と記録信号により誘電体の微小領域の分極を変化させるための構成を示す図である。
【図10】信号の検出に用いられるロックインアンプの構成と信号検出の動作について説明するための図である。
【図11】本発明の第2実施形態における、テープ状の誘電体記録媒体を用いる記録・再生装置の構成を示すブロック図である。
【図12】本発明の第3実施形態における、ディスク状の誘電体記録媒体を用いる記録・再生装置の構成を示すブロック図である。
【符号の説明】
【0167】
1・・・誘電率測定装置
2・・・誘電体再生装置
3・・・誘電体記録装置
5・・・ロックインアンプ
6・・・テープ状媒体記録・再生装置
7・・・ディスク状媒体記録・再生装置
11,24,34,69,90・・・カンチレバー
14,25,35,75,95・・・電極
15,26,36・・・交流信号発生器
16,26,36・・・発振器
17,28,40・・・FM復調器
18・・・誘電率検出器
29,41・・・信号検出器
51・・・増幅器
52・・・波形整形器
53,54・・・同相分配器
55・・・90度移相器
56,57・・・混合器
58,59・・・LPF
63,83・・・誘電体記録媒体
70,86・・・制御回路
71,87・・・操作入力部
72,88・・・動作状態表示部
73,89・・・ヘッド
74,94・・・記録再生回路

【特許請求の範囲】
【請求項1】
誘電体の誘電率を測定する誘電率測定装置であって、
梁状導電体の先端側面に微小の突起を有する探針と、
前記探針の周囲に設けられた所定電位とされる電極と、
前記探針が接触する誘電体の微小領域の容量と共振回路を構成するように設けられたインダクタと、
前記共振回路に接続された発振手段と、
前記発振器の発振周波数を復調する復調手段と、
前記復調手段の復調信号から誘電率情報を検出する検出手段と、
を具備することを特徴とする誘電率測定装置。
【請求項2】
前記検出手段は、前記探針を既知の誘電率分布を有する誘電体試料に接触させ、該誘電体試料の微小領域の容量に基づき前記発振手段を発振させて得られる前記誘電体の発振周波数のデータを使用して、該誘電体の誘電率を決定する算出手段を具備すること
を特徴とする請求項1に記載の誘電率測定装置。
【請求項3】
前記算出手段は、
(i)前記探針を異なる既知誘電率を有する複数の誘電体試料の各々に接触させ、該複数の誘電体試料の各々における微小領域の容量に基づき前記発振手段を発振させて得られる前記発振周波数のデータに基づいて作成された、複数の誘電体試料に対する誘電率と発振周波数との関係を示す検量線と、
(ii)前記探針及びその支持部分が前記誘電体に対向する部分を含む範囲内において、その表面に微小な誘電率分布を有する前記誘電体に、前記探針を接触させた状態で、前記探針を静止させた場合に得られる前記発振周波数と
に基づき、前記誘電体の平均誘電率を算出し、
更に、前記誘電体に接触させた前記探針を相対的にスキャンすることで、前記誘電率分布に対応した前記発振周波数の変化から前記誘電率分布を決定することを特徴とする請求項2に記載の誘電率測定装置。
【請求項4】
前記探針に印加する交流信号を生成する交流信号生成手段を更に具備すること
を特徴とする請求項1に記載の誘電率測定装置。
【請求項5】
前記交流信号を前記発振手段に対して遮断する遮断手段を更に具備すること
を特徴とする請求項4に記載の誘電率測定装置。
【請求項6】
前記検出手段による誘電率情報の検出は、前記復調信号と前記交流信号とによる同期検波で行われること
を特徴とする請求項4に記載の誘電率測定装置。
【請求項7】
複数の前記探針と複数の前記交流信号生成手段を具備しており、該複数の前記交流信号生成手段は、各々の探針に対して異なる個別の周波数の交流信号を供給すること
を特徴とする請求項1から6のいずれか一項に記載の誘電率測定装置。
【請求項8】
前記電極は、接地されることを特徴とする請求項1から6のいずれか一項に記載の誘電率測定装置。
【請求項9】
接地され、前記探針に対向配置されると共に前記誘電体が載せられるステージを更に備えたことを特徴とする請求項1から6のいずれか一項に記載の誘電率測定装置。
【請求項10】
前記誘電体は、強誘電体からなることを特徴とする請求項1から6のいずれか一項に記載の誘電率測定装置。
【請求項11】
テープ状の誘電体記録媒体に情報を記録し再生する情報記録・再生装置であって、
前記誘電体記録媒体を直線状に移動させる移動手段と、
前記誘電体記録媒体に接触し情報を記録し読み出すための、梁状導電体の先端側面に微小の突起を有する探針と、
前記探針の周囲に設けられた所定電位とされる電極と、
前記情報に対応する信号を生成し、該信号を前記探針を介して記録し、記録されている情報を前記探針を介して読み出し再生する回路手段と、
を具備することを特徴とする情報記録・再生装置。
【請求項12】
複数の前記探針と、各々の探針に対して異なる個別の周波数の交流信号を供給する複数の前記交流信号生成手段と、
を具備することを特徴とする請求項11に記載の情報記録・再生装置。
【請求項13】
前記電極は、接地されることを特徴とする請求項11又は12に記載の情報記録・再生装置。
【請求項14】
前記誘電体記録媒体を前記探針と挟んで設けられた導電性のベースを更に備えたことを特徴とする請求項11又は12に記載の情報記録・再生装置。
【請求項15】
前記誘電体記録媒体は、強誘電体からなることを特徴とする請求項11又は12に記載の情報記録・再生装置。
【請求項16】
ディスク状の誘電体記録媒体に情報を記録し再生する情報記録・再生装置であって、
前記誘電体記録媒体を回転させる回転手段と、
前記誘電体記録媒体に接触し情報を記録し読み出すための、梁状導電体の先端側面に微小の突起を有する探針と、
前記探針の周囲に設けられた所定電位とされる電極と、
前記情報に対応する信号を生成し、該信号を前記探針を介して記録し、記録されている情報を前記探針を介して読み出し再生する回路手段と、
前記探針をディスク状の誘電体記録媒体の半径方向に移動させる移動手段と、
を具備することを特徴とする情報記録・再生装置。
【請求項17】
複数の前記探針と、各々の探針に対して異なる個別の周波数の交流信号を供給する複数の前記交流信号生成手段と、
を具備することを特徴とする請求項16に記載の情報記録・再生装置。
【請求項18】
前記電極は、接地されることを特徴とする請求項16又は17に記載の情報記録・再生装置。
【請求項19】
前記誘電体記録媒体を前記探針と挟んで設けられると共に前記回転手段により回転される導電性の回転ベースを更に備えたことを特徴とする請求項16又は17に記載の情報記録・再生装置。
【請求項20】
前記誘電体記録媒体は、強誘電体からなることを特徴とする請求項16又は17に記載の情報記録・再生装置。
【請求項21】
梁状導電体の先端側面に微小の突起を有する探針と、前記探針の周囲に設けられた所定電位とされる電極と、前記探針が接触する誘電体の微小領域の容量と共振回路を構成するように設けられたインダクタと、前記共振回路に接続された発振手段と、前記発振器の発振周波数を復調する復調手段と、前記復調手段の復調信号から誘電率情報を検出する検出手段と、を具備する誘電率測定装置によって前記誘電体の誘電率を測定する誘電率測定方法であって、
前記探針を異なる既知誘電率を有する複数の誘電体試料の各々に接触させ、該複数の誘電体試料の各々における微小領域の容量に基づき前記発振手段を発振させて得られる前記発振周波数のデータに基づいて、複数の誘電体試料に対する誘電率と発振周波数との関係を示す検量線を作成する検量線作成工程と、
前記探針及びその支持部分が前記誘電体に対向する部分を含む範囲内において、その表面に微小な誘電率分布を有する前記誘電体に、前記探針を接触させた状態で、前記探針を静止させた場合に得られる前記発振周波数と、前記検量線とに基づいて、平均誘電率を算出する算出工程と、
前記測定試料に接触させた前記探針を相対的にスキャンすることで、前記誘電率分布に対応した前記発振周波数の変化から前記誘電率分布を決定する決定工程と、
を備えたことを特徴とする誘電率測定方法。
【請求項22】
前記誘電体は、強誘電体からなることを特徴とする請求項21に記載の誘電率測定方法。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate

【図11】
image rotate

【図12】
image rotate


【公開番号】特開2008−46138(P2008−46138A)
【公開日】平成20年2月28日(2008.2.28)
【国際特許分類】
【出願番号】特願2007−242937(P2007−242937)
【出願日】平成19年9月19日(2007.9.19)
【分割の表示】特願2003−527434(P2003−527434)の分割
【原出願日】平成14年9月10日(2002.9.10)
【出願人】(000005016)パイオニア株式会社 (3,620)
【出願人】(501077767)
【Fターム(参考)】