Notice: Undefined variable: fterm_desc_sub in /mnt/www/biblio_conv.php on line 353
質量分析装置およびこれを用いる計測システム
説明

質量分析装置およびこれを用いる計測システム

【課題】実用的なプロテオーム解析用質量分析装置を提供する。
【解決手段】直交加速型イオントラップ結合飛行時間型質量分析計において、イオントラップから射出されたイオンの速度分布を縮小する手段を設けることにより、一度に分析できる質量対電荷比範囲を拡大する。
【効果】プロテオーム解析におけるタンパク同定の効率が向上される。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、イオントラップを結合した飛行時間型質量分析計、特にプロテオーム解析用の質量分析計に関する。
【背景技術】
【0002】
プロテオーム解析の分野では、細胞から抽出したタンパク混合物を消化酵素により分解し、得られたペプチド断片を液体クロマトグラフで分離した後、質量分析計内において1種類のペプチドを選定してこれを衝突誘起解離(CID)により分解し、分解生成物の質量スペクトルから各断片の分子量を決定し、ゲノムデータベースと照合して元のタンパクを同定する、いわゆるショットガン法が広く行われている。質量分析計内部で1種類のイオンを選定して分解し、分解生成物を質量分析する手法は一般にMS/MS分析と呼ばれる。質量分析計の種類によってはMS/MS分析で生じる分解生成物のうちの1種類を選定してこれをさらに分解して質量分析することが可能である。このようなシーケンスをn回繰り返すことも可能であり、一般にMSn分析と呼ばれる。
【0003】
四重極イオントラップ型質量分析計(ITMS)はn=3以上のMSn分析が可能であり、またイオントラップにイオンを溜め込んでからCIDを行うため高感度かつ高効率であるという特長がある。しかしプロテオーム解析では3000程度までの質量対電荷比範囲と5000程度以上の質量分解能が望まれるのに対し、イオントラップ型質量分析計は質量対電荷比範囲および質量分解能が通常いずれも2000程度であり、さらに質量精度も低いために適用範囲に限界があり、タンパクの同定効率が低い。公知例1(B.M.Chien,S.M.Michael and D.M.Lubman,Rapid Commun.Mass Spectrom.7(1993)837.)には、四重極イオントラップと飛行時間型質量分析計(TOFMS)とを同軸に結合した質量分析装置が開示されている。本装置を用いればn=3以上のMSn分析を、高質量対電荷比範囲で高質量精度かつ高質量分解能のTOFMSを用いて行うことが可能である。
【0004】
しかしながら、本装置ではイオントラップとTOFMSとが同軸に結合されており、イオントラップがTOFMSの加速部を兼ねているため、加速途中でイオンとCID用の中性ガスとの衝突が頻発する。そのためイオンが散乱し、結果的に高分解能を得ることが困難である。加速電圧を高くすればイオンを短時間で射出できるため散乱が減少し分解能は改善されるが、衝突エネルギーが大きくなるためにイオンが分解し易くなる問題がある。加速途中で分解されたイオンはケミカルノイズとなり検出下限の低下を招く。公知例2(U.S.Patent 6011259)に開示された質量分析装置では、多極イオンガイド中でCIDを行い、イオンガイドからイオンを排出して直交加速型のTOFMSにより分析が行われる。直交加速部は高真空部に配置可能なため、加速途中での中性ガスとの衝突は殆ど無視できる。一般に多極イオンガイドでのCID効率はイオントラップに比べて低いが、イオンガイドを2次元イオントラップ(またはリニアトラップと呼ばれる)として機能させることにより、CIDの効率をある程度向上できる。しかし、イオンガイドの軸方向に関するイオンの空間分布およびエネルギー分布が大きいため、加速されたイオンが発散し、結果的に検出感度が低い問題があった。また四重極イオントラップとは異なり、リニアトラップではn=3以上のMSnが不可能である。
【0005】
公知例3(C. Marinach, A. Brunot, C. Beaugrand, G. Bolbach, J. -C. Tabet, Proceedings of the 49th ASMS Conference on Mass Spectrometry and Allied Topics, Chicago, Illinois, May 27-31,2001)には四重極イオントラップとTOFMSとを非同軸に結合した質量分析装置が開示されている。本装置では、イオントラップからイオンを一旦射出した後、イオントラップの軸とは直角方向にイオンを加速してTOFMS分析する。本装置では、イオントラップの中心部に空間的に収束したイオンを、イオントラップから直交加速部まで輸送する間に軸方向に関してできるだけ空間的に分散させて実質的に連続イオン流を形成させる一方で、加速電圧パルスを一定周期で連続的に印加して多数回TOFMS分析する。イオントラップ内部で空間的・エネルギー的に収束されたイオンを連続イオン流に変換しているために、結果的に公知例2の装置と同様の問題がある。
【先行技術文献】
【非特許文献】
【0006】
【非特許文献1】B.M.Chien,S.M.Michael and D.M.Lubman,Rapid Commun.Mass Spectrom.7(1993)837.)
【発明の概要】
【発明が解決しようとする課題】
【0007】
上記の通り、従来の質量分析装置においては、広い質量対電荷比範囲および高い質量分解能と、十分な検出感度とを両立することが難しいという問題があった。
【課題を解決するための手段】
【0008】
本発明では、イオントラップと直交加速型のTOFMSを組み合わせて質量分析装置を構成することにより課題を解決する。本発明に係る質量分析装置で、イオントラップから射出されたイオンを直交加速型部へ輸送し、イオンの進行方向に対して横方向に加速電圧を印可する。本発明では、イオントラップからイオンを射出してから加速電圧パルスを印加するまでの時間を所定値に設定することにより質量対電荷比範囲を制御する。
【0009】
イオントラップからイオンを射出する手段として、イオン蓄積用のRF電圧の印加を停止してからイオントラップ内部に加速電場を形成してもよい。RF電圧を印加したままで加速電場を形成すると、イオントラップ内部でのイオンの空間分布、イオントラップ内部でのイオンの運動エネルギー分布、および中性ガスとの衝突散乱に起因する加速領域でのイオンの空間的分散が増大するが、本方法を用いればそのような増大効果を生じない。イオントラップ内部でイオンはある程度の空間分布をもつため、上述したイオン射出手段を設けた場合であっても、イオンの初期位置の違いによってイオンが射出される際の初期電位が異なる。出口から遠い側のイオンは出口に近い側のイオンよりも遅れて射出されるが、その速度は出口に近い側のイオンよりも大きいためにある位置でこれを追い越す。この位置は空間収束位置と呼ばれる。イオントラップ出口から直交加速部までの間にイオンの進行方向にイオンを加速するための電場を形成しておくことにより、良く知られた多段加速の原理によって空間収束位置を調整することができる。この原理により空間収束位置を最適化することにより、加速領域端部に存在するイオンの検出効率を向上することができる。
【0010】
また、イオントラップから直交加速部へイオンを輸送する間に、イオンの速度分布を小さくする手段を設けても良い。該イオンの速度分布を小さくする手段はイオントラップ内部に設けても良いし、外部に設けても良い。イオントラップから射出されたイオンはその質量数対電荷比(m/z)に応じた時間差を生じて直交加速部に到達するが、直交加速部で加速されるイオン、即ち検出器に送り出されるイオンは加速電圧が印加される時点において加速領域内に存在するイオンのみである。つまり、イオントラップに蓄積されるイオンの質量対電荷比範囲は、直交加速部の長さや検出器の長さ等により制限を受け、従って、一度に分析可能な質量対電荷比範囲に物理的な制約がある。直交加速部を長くすることによっても質量対電荷比範囲を拡大できるが、加速領域内でのイオンビームの広がりが大きくなり、全領域に渡って高分解能を実現することが困難になる。また加速領域の長さに対応して検出器を大型化する必要があるが、検出器は高価であり価格のサイズ依存性も大きい。
【0011】
よって、速度分布幅を小さくする手段を設けることにより、イオントラップに蓄積される1回のイオン蓄積で分析可能な質量対電荷比範囲を拡大することができる。このような質量対電荷比範囲を拡大は、特にプロテオーム解析において有用である。イオンの速度分布を小さくする手段の具体例としては、(1)イオントラップからイオンが射出されるまでの間にイオントラップ内部の加速電場を大きくするか、または(2)イオントラップからイオンが射出された後にイオントラップ出口と直交加速部入口の間またはその一部の領域の電場を変化させる、ことにより軸方向のイオンの速度分布を縮小する、といった手段がある。
【0012】
また、イオンの速度分布を小さくする以外の質量対電荷比範囲を拡大する手段としては、(3)分析したい質量対電荷比範囲を複数に分割し、各領域を順次分析してデータをつなぎ合わせる、(4)イオントラップに蓄積したイオンのうち、低質量対電荷比範囲のイオンに関してはイオントラップ型質量分析法を用いて分析し、残りのイオンに関しては直交加速型TOFMSにより分析する等の手法が考えられ、イオントラップおよび直交加速型のTOFMSと組み合わせることにより、更に質量対電荷比範囲を拡大することが可能である。
【発明の効果】
【0013】
高分解能で高感度なMSn装置としての直交加速型イオントラップ結合飛行時間型質量分析計において、1度のイオン蓄積により分析可能な質量対電荷比範囲を拡大することにより、プロテオーム解析における実用性が向上され、その結果タンパク同定の効率が向上された。
【図面の簡単な説明】
【0014】
【図1】本発明の質量分析装置の構成。
【図2】本発明の質量分析装置における電圧シーケンス。
【図3】本発明に好適な平板型四重極イオントラップの構成図
【図4】イオンの速度分布を縮小可能な第一のイオントラップ制御方法。
【図5】イオンの速度分布縮小による質量対電荷比範囲拡大効果を示す模式図。
【図6】イオンの速度分布を縮小可能な第二のイオントラップ制御方法。
【図7】イオンの速度分布を縮小可能な電極構成と制御方法。
【図8】質量対電荷比範囲拡大効果を示す計算結果。
【図9】本発明のセグメント方式の説明図。
【図10】本発明のハイブリッド装置の構成。
【図11】本発明の別の質量分析装置の構成。
【発明を実施するための形態】
【0015】
(実施例1)
図1は本発明の質量分析装置およびこれを用いた計測システムの構成を示す。本装置および計測システムについてプロテオーム解析を例にして説明する。本解析例はゲノム解読が完了した生物種に関するプロテオーム解析例であり、いわゆるショットガン法と呼ばれるものである。ショットガン法では、タンパクの部分断片の分子量を質量分析法により決定し、ゲノム塩基配列から翻訳されるアミノ酸配列データベースと照合することにより元のタンパクを同定する。まず、細胞から抽出したタンパク混合物を消化酵素等により分解してペプチド混合物を生成する。生成したペプチド混合物を含む試料溶液を液体クロマトグラフ(LC)60のインジェクタに装填し、LC流路に注入する。試料中のペプチド混合物は分離カラムを通過する間に分子量に応じて分離し、試料注入後数分程度から数時間程度にわたって順次LC流路端に接続されたエレクトロスプレー(ESI)イオン源1に到達する。なお、イオン源はESIに限定されない。イオン源は常時動作状態にありイオン源に到達したペプチド断片から順にイオン化される。
【0016】
生成したイオンは細孔2を通って質量分析計内に導入され、ゲート電極4を通過して、第一の真空部内に設けられたイオントラップ5に入射される。51,52はゲート電極に接続された電源である。イオントラップはリング電極15と2個のエンドキャップ電極16および17で構成される。リング電極15には直流電源43および高周波電源が、エンドキャップ電極16,17には直流電源41、42,44,45がスイッチ48を介して接続されており、スイッチ48のオン・オフのタイミングは制御装置14により制御される。図1にはガス供給管6が図示されているが、原理的には不要である。イオンを溜め込む際にはリング電極に高周波電圧を印加し、2個のエンドキャップ電極は接地電位とする。これによりイオントラップ内部に四重極電場が形成され、入射するイオンのうち高周波電圧の振幅に対応する質量数対電荷比(m/z)以上のイオンを捕捉することができる。このようにして1〜100ms程度の間イオンを溜め込んだ後、ゲート電極の電圧を変化させてイオンの入射を止める。この状態で0〜10ms程度の間、捕捉したイオンを安定化させる。
【0017】
次にリング電極への高周波電圧の印加を停止し、直後にリング電極および2個のエンドキャップ電極に0〜100V程度の直流電圧(立ち上がり10〜100ns程度)を印加してイオントラップ内部に加速電場を形成する。加速されたイオンはイオントラップから排出され、接地電位であるピンホール7を通過する。ピンホールを通過した後のイオントラップの軸方向に関する運動エネルギーはイオントラップ中心部の電位Vtrapで決まり、イオンの質量数には依存しない。ピンホールを通過したイオンはM/z・v2=2eVtrapで決まる速度vで飛行し直交加速部18を通過する。ここでMはイオンの質量、zはイオンの価数、eは電気素量である。従ってm/zの小さいイオンほど早く加速部に到達する。直交加速部18は2枚の平行平板電極9および10で構成され、第二の真空部8内に設けられている。直交加速部18にイオンが充填される間、2枚の電極は接地電位であり、イオンが充填された時点で加速電極9に高電圧パルス(立ち上がり10〜100ns)を印加する。電極10はイオンを通過させるためにメッシュ状であるが、外周部は板状であり、全体の外形は電極9とほぼ等しい。そのため加速電極9に加速電圧が印加された後に直交加速部に進入するイオンは直ちに加速されて電極10の外周部に衝突し検出器には到達しない。電極10のメッシュ部を通過したイオンは無電場のドリフト空間11を飛行してリフレクトロン12に入射し、リフレクトロン内部で反転して再びドリフト空間を飛行してMCP検出器13に入射する。リフレクトロンの使用により直交加速部におけるイオンの空間拡がり(加速方向に関する)に起因する時間拡がりが収束されて分解能が向上する利点と装置が小型化する利点がある。直交加速部を二段の加速電場に分割し、いわゆる二段加速法の原理を用いて空間収束位置を調整することにより、リフレクトロンによる収束効果を最適化できる。
【0018】
ドリフト空間に入射したイオンの飛行方向は加速電場の方向に対してある角度αをもつ。イオンの飛行角度αは、Vtrapと直交加速部内での初期電位Vaccとの比で決まりm/zには依存しない。従って加速された全イオンを検出するために検出器は加速領域の長さと同等以上のものが使用される。VtrapおよびVaccの大きさは、例えばそれぞれ20Vおよび7.5kVであり、このときα=約3度である。このとき、静電レンズ32を用いてイオン軌道を収束させると検出器を小型化できる。同時に、イオントラップ出口とピンホールとの間に静電レンズ30を配置することにより、ピンホールを通過するイオン量を増加して検出感度を向上できると同時に、イオンビームの拡がりを抑えることができるため分解能が向上する。制御部14は、スイッチ48、49および52を切り替えることにより、ゲート電極、リング電極、エンドキャップ電極、直交加速部への印加電圧の大きさおよびタイミングを制御する。
【0019】
イオントラップからイオンを射出してから直交加速部にパルス電圧を印加するまでの時間は、制御部14内に設けられた遅延回路により制御される。遅延時間と検出されるイオンのm/z範囲との関係は、イオントラップから直交加速部までの電極配置とイオントラップから直交加速部までイオンを輸送するときの各電極電圧とによって定まる。従って検出すべきイオンのm/z範囲に応じて、予め遅延時間が決定される。制御部62は、制御部14の更に上位の制御装置であり、検出部の測定開始のタイミングや制御部14による直交加速部の動作制御などを連携させる。
【0020】
図2は通常のMS分析を行う場合の各電極に印加する電圧シーケンスを示す。イオントラップからイオンを射出した後にはイオントラップを構成する各電極の電圧を、加速電場を形成するための直流電圧から、四重極電場を形成するための電圧に切り替える。その直後(1μs程度後)にゲート電圧を変化させてイオントラップへのイオンの注入を再開する。その後、直交加速部へ加速電圧パルスを印加する。加速電圧パルスのパルス幅は加速領域に存在するイオンが全てドリフト空間に入射するまでの時間よりもやや長めに設定される。この時間は加速領域に存在するイオンの質量対電荷比範囲に依存する。この質量対電荷比範囲(以下、マスウィンドウ)はイオントラップ内部に加速電場を形成した直後から加速電圧パルスを印加するまでの時間(図中のTacc)に依存する。マスウィンドウは測定者が決定しコンピュータのキーボードから入力する。マスウィンドウの最大値Mmaxと最小値Mminとの比Mmax/MminはVtrapに依存せず一定である。従って測定者はMmin(またはMmax)のみを入力すればよい。あるいはパソコンの画面上などに予め適当なマスウィンドウを複数用意しておき、測定者が選択する方式でもよい。加速パルスの印加タイミングおよび加速パルス幅はソフトウェアにより自動的に計算される。
【0021】
通常、マススペクトル分析は10〜1000回程度繰り返し行い積算スペクトルを求める。次に、このようにして得られたMSスペクトルのうちから最も強度の強いピークを選定しMS/MS分析を行う。この選定はソフトウェアにより自動で行われる。MS/MS分析では先ず、MS分析の場合と同様にしてイオントラップにイオンを蓄積する。次に選定したピークに対応するイオン(これを親イオンと呼ぶ)以外のイオンをイオントラップから排除し、親イオンをCIDにより分解する。親イオンが分解して生成される断片イオン(これを娘イオンと呼ぶ)の全部または一部はイオントラップ内部に捕捉・蓄積される。次に、図2と同様のシーケンスを用いて娘イオンをイオントラップから射出してTOFMS分析する。以上のシーケンスを通常は10〜100回程度繰り返し、得られたMS/MSスペクトルデータを記録媒体に保存する。試料溶液の分析が完了した後、得られたMS/MSスペクトルを積算し娘イオンの分子量を計算する。ESI法では特に多価イオンが生成されやすいため、まずイオンの価数を決定する必要がある。タンパクは炭素を多数含むため、断片イオンの価数は炭素安定同位体によるアイソトープピークの間隔から決定できる。次にアイソトープピークの強度比と価数から娘イオンの平均分子量を求める。得られた分子量をデータベースと照合し元のタンパクを同定する。
【0022】
次に、MSスペクトルのうちから2番目に強度の強いピークを選定し、同様にしてMS/MS分析を行う。以下、n番目に強度の強いピークのMS/MS分析までを行う。nは通常1〜5程度で予め測定者が設定する。試料溶液の分析が完了するまでの間、質量分析計では以上の一連の測定を繰り返し行う。通常、1回のMSスペクトル測定および1回のMS/MSスペクトル測定にはそれぞれ0.1〜数秒間を費やし、一連の測定では合計で数秒から十数秒を要する。これに対しLCから溶出する各ペプチド断片はそれぞれ数十秒〜数分にわたって質量分析計に導入される。従って、1種類のペプチド断片について数回から数十回の一連の測定が繰り返される。
【0023】
図3に、本発明の質量分析計に適した四重極イオントラップの構成を示す。本イオントラップは4枚の平行平板電極21〜24で構成され、両端の2枚はエンドキャップ電極21および24、中間の2枚はリング電極22および23である。イオンを蓄積する場合には2枚のリング電極22および23には振幅、周波数、位相が同一の高周波電圧を印加し、2枚のエンドキャップ電極は接地する。イオンを射出する場合には4枚の電極に適当な直流電圧を印加して加速電場を形成する。平板型の四重極イオントラップを用いると均一な加速電場を形成できるため、(1)イオンビームの拡がりが小さい、(2)二段加速による空間収束位置の制御が容易であり、(3)空間収束効果も良好である利点がある。二段加速による空間収束位置を検出位置またはその近傍に設定することにより、検出面内でのイオンの拡がりが低減し、質量対電荷比範囲端部での検出感度の低下を低減できる。
【0024】
親イオン以外の不要イオンをイオントラップから排除するための手段としては共鳴放出が用いられる。共鳴放出では一対のエンドキャップ電極間に周波数fの交流電圧を印加する。このとき周波数fに対応するm/zを有するイオンの軌道は急速に拡大しイオントラップから排除される。この周波数fを親イオンのm/zに対応する周波数f0の近傍を除く所定の周波数領域で走査することにより、親イオン以外のイオンはイオントラップから排除される。この共鳴放出は、イオントラップへのイオンの捕捉・蓄積と同時に行うこともできる。この場合、イオン蓄積と不要イオンの排除とを同時に行うため、分析の繰り返し周期が短くなり結果的に感度が向上する。周波数fを走査するのではなく、周波数f0およびその近傍を除く所望の周波数成分を重畳して同時に印加することによっても、不要イオンを排除することが可能である。この方式を用いれば周波数の走査が不要であるため、不要イオンを排除するのに必要な時間を短縮できる利点がある。不要イオンを排除する方法としては、他にリング電極に直流電圧と高周波電圧を重畳させる方法などを用いることができるが、電圧操作が煩雑であり、共鳴放出を用いる方法のほうが実用的である。
【0025】
図4に、イオンの速度分布を縮小可能なイオントラップ制御方法の一例を示す。イオントラップにイオンを蓄積した後、高周波電圧の印加を停止し、次に2個のエンドキャップ電極およびリング電極に直流電圧を印加してイオントラップ内部に加速電場を形成する。このとき各電極電圧を接地電位から徐々に変化させることにより、加速電場の傾斜を増加させる。電極電圧の徐々に変化することは、直流電源に備えられた電圧走査回路により行なう。電圧走査回路は最大電圧値(絶対値)および最大電圧値に到達するまでの時間を設定することにより、任意の電圧走査を実現するものである。
一定の加速電場でイオンを射出する場合には、イオントラップから射出されたイオンの運動エネルギーは一定である。射出されたイオンの速度vは、v=√(2・z/M・eV)で決まる。ここでMはイオンの質量、Vはイオントラップ中心部の電位である。すなわち加速電場を増加させた場合には、射出されたイオンの運動エネルギーはm/zが大きいほど大きい。すなわちm/zが大きいほど上記速度式におけるVが大きい。加速電場の増加量および増加速度を適切に設定することにより、1度に分析できる質量対電荷比範囲を拡大すると同時に、検出器を小型化することができる。
【0026】
図5に、(a)加速電場を増加しない場合および(b)加速電場を適切に増加させた場合におけるイオン軌道の模式図を示す。同様の効果は加速電場を段階的に増加することによっても実現できる。
【0027】
図6は、加速電場をステップ状に変化させるイオントラップ制御方法を示す。ステップ状に加速電場を増加する方法ではターンアラウンドタイムによるイオンの空間広がりを抑えることができる利点がある。
【0028】
図7に、イオンの速度分布を縮小可能な装置構成と制御方法の一例を示す。イオントラップ5と直交加速部18との間に電極65が配置されている。電極65は、通常はイオントラップ出口側との間に減速電場が形成されるような電位に設定されている。リング電極へのRF電圧の印加を停止し、イオントラップ内部に加速電場を形成してイオントラップに蓄積したイオンを射出する。射出したイオンが減速電場を通過する最中に電極65の電位を変化させ、図に示した様に(a)減速電場の傾斜を減少させる、(b)減速電場を消滅させる、あるいは(c)加速電場を形成する。減速電場の変化量および変化のタイミングを最適化することにより図5に示した効果と同様の効果を実現できる。最適条件は定式化されて計測ソフトウェアに書き込まれており、測定者は最低質量(または最高質量)を指定するだけでよい。
【0029】
図8は、本方法による質量対電荷比範囲拡大効果に関する計算結果の一例を示す。電極構成および電圧制御方法は図中(a)に示した通りである。イオントラップとしては平板型を用い、空間収束位置を最適化するための多段加速法を用いている。多段加速部の出口の後段に電極を配置し、多段加速部出口(接地電位)と電極との間に減速電場を形成し、イオンが通過する途中のあるタイミングで電極を接地電位に変化して減速電場を消滅させた。図中(b)は本方法を用いた場合、(c)は本方法を用いない場合、すなわち電極が常時接地電位である場合の計算結果である。各図の第一の縦軸は直交加速部に加速パルスを印加するタイミングにおけるイオンの位置を示す。ここで位置0mmは加速部の入口、位置50mmは加速部の出口に対応する。図から、本方法を用いる場合には、加速パルス印加の時点でm/z500〜3100のイオンが加速領域に存在することがわかる。最高質量と最低質量の比(Mmax/Mmin)は6.2である。一方、本方法を用いない場合には加速領域に存在するイオンはm/z600〜1600であり、Mmax/Mmin=2.7である。すなわちマスウィンドウは約2.3倍に拡大される。各図の第二の縦軸は直交加速部におけるイオンの運動エネルギーを示す。本計算によって得られた位置および運動エネルギーを初期条件としたときのTOF部におけるイオン軌道を、イオン軌道解析ソフト「SIMION」を用いて計算したところ、本方法を用いる場合には、検出器の検出面におけるイオンの空間分布は13mm以内に収まることがわかった。本方法を用いない場合の検出面における空間分布は、前述したように加速領域の長さに等しく50mmであるので、検出器を1/3程度に小型化できる。
【0030】
本方法の代案として、イオントラップ出口側エンドキャップと電極との間をイオンが通過する最中に出口側エンドキャップ電極の電位を変化させる方法を用いても同様の効果を得ることが可能である。あるいは出口側エンドキャップと電極の電位を両方変化させても良い。要するに両電極間を飛行するイオンのうち先行するイオンと後続するイオンの運動エネルギーの比が小さくなるように両電極間の電場を変化させればよい。ただし、イオンビームの広がりを低減するには、後続イオンを加速させるよりも先行イオンを減速させる方法の方が好ましい。
【0031】
本方法は、リニアトラップ(2次元イオントラップ)を用いる直交加速型TOFMSにおいても有効である。またイオンの速度分布を縮小する手段としては、電場以外に磁場を用いることも可能である。イオントラップからイオンを射出する手段として、イオン蓄積用のRF電圧の印加を停止してからイオントラップ内部に加速電場を形成する方法を用いる。RF電圧を印加したままで加速電場を形成すると、イオントラップ内部でのイオンの空間分布、イオントラップ内部でのイオンの運動エネルギー分布、および中性ガスとの衝突散乱に起因する加速領域でのイオンの空間的分散が増大するが、本方法を用いればそのような増大効果を生じない。
【0032】
イオントラップ内部でイオンはある程度の空間分布をもつため、上述したイオン射出手段を設けた場合であっても、イオンの初期位置の違いによってイオンが射出される際の初期電位が異なる。出口から遠い側のイオンは出口に近い側のイオンよりも遅れて射出されるが、その速度は出口に近い側のイオンよりも大きいためにある位置でこれを追い越す。この位置は空間収束位置と呼ばれる。イオントラップ出口から直交加速部までの間にイオンの進行方向にイオンを加速するための電場を形成しておくことにより、良く知られた多段加速の原理によって空間収束位置を調整することができる。この原理により空間収束位置を最適化することにより、加速領域端部に存在するイオンの検出効率を向上することができる。
【0033】
(実施例2)
図9は、本発明のセグメント方式による分析シーケンスの一例を示す。セグメント方式では分析したい質量対電荷比範囲を数度に分けて分析する。ここではMmax/Mmin=2の装置を用いてm/z300〜3000までを分析する場合について例示した。この場合、全質量対電荷比範囲を300〜600(マスウィンドウ1)、550〜1100(マスウィンドウ2)、1000〜2000(マスウィンドウ3)、1600〜3200(マスウィンドウ4)に分割する。マスウィンドウ端部における感度低下を考慮して各マスウィンドウの端部は適当な量だけ重ね合わされる。質量スペクトルをつなぎ合わせる際には、重畳する質量領域については各ウィンドウのスペクトルのうちで強度の大きい方を採用する。まずイオントラップにイオンを蓄積した後、イオントラップからイオンを射出し、加速パルスを印加してマスウィンドウ1を分析する。引き続いて第二の加速パルスを印加してマスウィンドウ3を分析する。次に再度イオンを蓄積し、同様にしてマスウィンドウ2および4を分析する。マスウィンドウの数がさらに増えた場合でも、1回のイオン蓄積で印加する加速パルスの回数を増すことにより2回のイオン蓄積で全領域を分析することが可能である。なお、測定者は分析したい質量対電荷比範囲を設定するだけでよく、マスウィンドウの設定と加速パルスのタイミングはソフトウェアにより自動計算される。
【0034】
娘イオンピークが親イオンピークに重なる確率は低いため、MS/MS分析では親イオンピーク近傍の領域を分析する必要性は少ない。またイオントラップでは親イオンの1/3以下および3倍以上のm/zをもつ娘イオンはイオントラップに蓄積されない。そのため、Mmax/Mmin=3程度の装置を用いれば親イオンピークの近傍を除いた前後の2領域を1度のイオン蓄積により分析すればよい。
【0035】
(実施例3)
図10は、本発明の、イオントラップ型質量分析計と直交加速型のイオントラップ結合飛行時間型質量分析計とのハイブリッド装置の構成を示す。本装置は、直交加速型イオントラップ結合飛行時間型質量分析計の装置構成中に、偏向電極66および67および偏向電極によって偏向されたイオンを検出するための検出器68を配置することにより構成される。イオントラップ型質量分析法では高周波電圧の振幅を走査してm/zの小さいイオンから順にイオントラップから排出して検出することにより質量スペクトルを取得する。本ハイブリッド装置では、偏向電極の2枚の電極間に電位差を与えてから高周波電圧を走査し、排出されたイオンを偏向させて検出器に導く。2枚の偏向電極のうちイオンが通過する側の電極はメッシュ状である。メッシュ状電極の替わりに検出器の入射面との間に電位差を設けてイオンを偏向することもできる。この検出器は直交加速部の後段に配置してもよい。この場合には偏向電極は不要であるため装置構成が単純である。ただし途中にピンホールが存在するため感度が犠牲となる。次に高周波電圧の振幅を適当な値に固定し、0〜10ms程度の間イオントラップに残されたイオンを安定化し、その間に偏向電極の機能を停止した後、TOFMS分析する。本方法では、Mmax/Mmin=2程度の装置であっても、例えばm/z100〜1500までをイオントラップ型質量分析法により分析し、m/z1500〜3000をTOFMSにより分析することにより、1回のイオン蓄積で100〜3000までの広い領域を分析可能である。イオン速度分布を縮小してマスウィンドウを拡大する方法との併用が可能であり、これによりより広い質量対電荷比範囲を高分解能測定できる。ショットガン法を用いたプロテオーム解析では、娘イオンの価数を決定する際には質量分解能が高いほど有利である。しかし親イオンを選定する場合には娘イオンの場合ほどの分解能は必要でなく、むしろ検出感度のほうが重要である。また一般にMS測定よりもMS/MS測定の方が高感度である。これは、MS/MS測定では目的とする親イオン専用にイオン蓄積条件を設定できること、アイソレーションの過程で他のイオンやケミカルノイズを大幅に低減できること、親イオンが分解して低分子量化することによりアイソトープピークの数が減少して1本あたりのピーク強度が大きくなること、による。ITMSと直交加速型IT−TOFMSとを比較すると、測定条件や装置構成によっては、ITMSのほうが高感度である場合がある。本ハイブリッド装置を用いれば、MSスペクトル測定にはITMSを用い、MS/MSスペクトル測定にはTOFMSを用いることが可能である。これにより親イオンの選定効率が向上し、結果的にタンパク同定効率が向上する。
【0036】
(実施例4)
図11には、本発明の質量分析装置の更に別の構成例を示す。イオン源で生成されたイオンは真空装置内部の第一の真空部3に配置された四重極イオントラップに導入される。イオンはイオントラップに捕捉され一定時間蓄積された後、イオントラップから射出される。射出されたイオンはピンホールを通過して飛行時間測定部が配置された第二の真空部に入射する。第二の真空部8には直交加速部が配置されており、ピンホールを通ったイオンをイオントラップの軸方向(イオンが射出される方向)に対して直交する方向に加速するための電場を形成することができる。直交加速部には当初は電場は形成されておらず、検出すべきイオンが直交加速部を通過する最中にパルス電圧を印加して加速電場を形成する。
【0037】
加速されたイオンが検出器に到達するまでの飛行時間からイオンのm/zが求められる。イオントラップ内部にはイオンの捕捉効率を高める目的で中性ガス(ヘリウムまたはアルゴンなど)が導入されており、そのためイオントラップ内部の真空度は1mTorr程度であり、第一の真空部のうちイオントラップ外部の真空度は10μTorr程度である。第二の真空部と第一の真空部とは直径1〜2mm程度のピンホールのみを有する隔壁で隔てられており、0.1μTorr程度の高真空である。加速部が0.1μTorr程度の高真空部に配置されているため、加速途中あるいは加速されてから検出器に到達するまでの間に中性ガスと衝突することは殆ど無く、従って高い質量分解能が実現される。イオントラップから射出されたイオンは、イオンのm/zの小さい順に直交加速部に到達するため、直交加速部にパルス電圧を印加する時点で加速部を通過中のイオンのみが検出される。しかし、本装置では四重極イオントラップを用いてイオントラップ中心部の極めて狭い領域(直径1mm程度以下と考えられる)にイオンを収束させることができるため、同一m/zのイオンの直交加速部における軸方向に関する空間広がりは少なく、従って検出すべきイオンの検出感度が高いという特徴がある。
【0038】
(実施例5)
実施例1においては、イオントラップ内に設けたリング電極およびエンドキャップ電極に印可する電圧の極性を交流から直流に切替えることによりイオンの速度分布を狭めたが、同様の効果は、イオントラップの外部にイオンの速度分布を小さくする手段を設けても良い。イオントラップの外部に一対の直流電源の接続された平行電極を設け、イオントラップから射出されたイオンに対して直流電圧を印可することにより、イオンの速度分布が小さく効果が得られる。
【符号の説明】
【0039】
1…イオン源、2…細孔、3…第1の真空部、4…ゲート電極、5…四重極イオントラップ、6…ガス管、7…ピンホール、8…第2の真空部、9…加速電極、10…電極、11…ドリフト空間12…リフレクトロン、13…検出器、14…制御部、15リング電極、16、17…エンドキャップ電極、18…直交加速部、19…隔壁、21、24…エンドキャップ電極、22、23…リング電極、30、32…静電レンズ、41、43,44…直流電源、42,45,47…交流電源、50、51、53…電源、48、49、52…スイッチ、60…液体クロマトグラフ、61…データベース、62…制御部、65…電極、66、67…偏向電極、68…検出器。

【特許請求の範囲】
【請求項1】
イオン源と、
前記イオン源で生成されたイオンを蓄積し射出するイオントラップと、
前記イオントラップから射出されたイオンを前記射出された方向に対して横方向に加速する加速手段と、
前記加速手段により加速されたイオンを検出する検出器と、
前記イオントラップからのイオンの射出のタイミングを制御するタイミング制御手段と、
前記加速手段と前記タイミング制御手段とを連携させる連携制御手段とを有し、
前記連携制御手段は、イオンの射出を開始するタイミングと前記加速手段による加速動作を開始するタイミングとの間の時間を、測定すべきイオンの質量対電荷比の範囲に応じて定めることを特徴とする質量分析装置。
【請求項2】
請求項1に記載の質量分析装置において、前記連携制御手段は、複数の質量対電荷比領域を分析するために、イオンの射出を開始するタイミングと前記加速手段により加速動作を開始するタイミングとの間の時間を順次変化させることを特徴とする質量分析装置。
【請求項3】
請求項1に記載の質量分析装置において、イオンの射出を開始してから前記加速動作を複数回繰り返すことにより複数の質量対電荷比領域を分析する質量分析装置であって、イオンの射出と分析を繰り返し行い、1回又は有限回のイオンの射出ごとに前記複数回の加速動作のタイミングが異なることを特徴とする質量分析装置。
【請求項4】
請求項1に記載の質量分析装置において、前記連携制御手段は、イオンの射出を開始するタイミングと前記加速動作を開始するタイミングとの間の時間を、前記加速動作を行う毎に検出されるイオンの質量対電荷比領域が互いに部分的に重なり合うように定めることを特徴とする質量分析装置。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate

【図11】
image rotate


【公開番号】特開2011−34981(P2011−34981A)
【公開日】平成23年2月17日(2011.2.17)
【国際特許分類】
【出願番号】特願2010−248045(P2010−248045)
【出願日】平成22年11月5日(2010.11.5)
【分割の表示】特願2007−303887(P2007−303887)の分割
【原出願日】平成13年10月10日(2001.10.10)
【出願人】(501387839)株式会社日立ハイテクノロジーズ (4,325)
【Fターム(参考)】