説明

質量分析装置

【課題】 電圧の制御により帯電粒子によるノイズ成分を排除して、高感度な測定を行う。また、微量成分の分析を実現する。
【解決手段】 正(負)イオン分析時には、多重極ロッド電極を挟んで設けられた、イオンが導入される第1の電極の静電位が、イオンが排出される第2の電極の静電位よりも高く(低く)なるような静電圧と、第2の電極に交流電圧を印加する制御をし、交流電圧の印加制御に応じた検出部における出力値を用いてデータ処理を行う。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、血中薬物動態や薬物代謝、治療薬物モニタリング、バイオマーカー探索、農薬分析などの液体サンプルにおける微量成分分析において広く用いられている液体クロマトグラフ/質量分析器(LC/MS)などに関し、特に四重極質量分析器や三重連四重極質量分析器、四重極イオントラップ質量分析器などの多重極電界を用いる質量分析器に関する。
【背景技術】
【0002】
LC/MSは、質量を測定することにより分析対象物質の特定(同定)を行うことが可能であるうえ、既知の分析対象物質に対して予め検量線を作成する等により、その濃度や量などの定量分析も高感度に行うことができる。そのため、液体状態の混合サンプルに対する高感度な分離分析において、LC/MSは広く使用されている。LCで時間的に分離された溶出成分はLC/MSインターフェースに順次導入され、速やかに気体状イオンに変換される。そして、MSの真空部に設置された質量分析計において、気体状イオンのm/zに応じた質量分離が行われ、気体状イオンの量が検出器により測定される。
【0003】
定量分析を重視する場合、LC/MSにおけるMSには、四重極質量分析器やタンデム質量分析ができる三重連四重極質量分析器、四重極イオントラップ質量分析器などの高周波により発生される多重極電場を用いた質量分析器(非特許文献1)が広く使用されている。これらの質量分析器は、広いダイナミックレンジを有する点が特徴的である。そのため、これらの質量分析器では、特定のm/zイオンに対するイオン強度を数十から数百ms程度の間だけ連続的に測定することにより、特定イオンのイオン強度に対する時間変化であるマスクロマトグラムを取得することができる。しかし、質量分析器の質量分解能は必ずしも高くないので、分析対象イオンのm/zに極めて近い別成分のイオンが共存する場合には、それらを区別できずに測定する可能性がある。典型的には、化学ノイズと呼ばれる不純物由来のイオンが、微弱な分析対象イオンのイオン強度測定に影響することがある。そこで、検出器の出力信号に、共存する別成分イオンの信号が混入することを抑制するために、三重連四重極質量分析器では、SRM(セレクティブ リアクション モニタリング)あるいはMRM(マルチプル リアクション モニタリング)分析モードがしばしば使用される。この分析モードにおいては、特定のm/zを有する前駆体イオンだけを選定し、それを衝突セルで解離させ、複数種類のフラグメントイオンを生成させる。そして、生成されるフラグメントイオンの中から一種類(あるいは複数種)のフラグメントイオンを選択し、そのイオン強度を数十から数百ms程度の間だけ連続的に測定することにより、選択されたフラグメントイオンに対するマスクロマトグラムを取得することができる。このSRMモードを使用すると、化学ノイズの混入を抑制でき、極めてダイナミックレンジの広い、高精度な定量分析を行うことができる。(非特許文献1)
さて、これまで述べた質量分析器における検出器信号には、検出器の暗電流や電気ノイズなどのノイズ成分が必ず含まれる。そのため、極めて微量な成分を分析する場合、ノイズ成分が顕著であると、微弱成分の特に定量分析に支障をきたす結果となる。さらに、多くの場合、このノイズ成分に、LCの配管やインターフェース領域に存在する不純物由来の化学ノイズも含まれる。そのため、LCの配管やインターフェース領域のクリーニングは、高感度分析において重要視されている。一方、化学ノイズを低減させるために、SRMモード分析では前駆体イオンの単離(アイソレーション)範囲を1Da以下程度に狭く設定することが一般的に行われている。さらに、化学ノイズを積極的に低減させる手法が、特許文献1に記載されている。この手法では、化学ノイズ成分と優先的に反応する試薬を、質量分析器の真空領域に導入する。また、ノイズ成分だけの質量スペクトルを取得することにより、サンプルの分析結果からノイズ成分を差し引くことも有効である。(特許文献2)
このように、化学ノイズについては不純物由来のために積極的に取り除くための手法が取られている。ところが、検出器信号におけるノイズ成分は、検出器の暗電流や電気ノイズ、化学ノイズの他に、他のノイズ成分が含まれることがある。特に、イオン生成に起因する帯電したノイズ成分には注意が必要である。
【0004】
LC/MSのインターフェース等では、サンプル由来の液体を噴霧することにより大気圧下で気体状イオンを生成する。このイオン生成においては、エレクトロスプレー・イオン化法(ESI)などの噴霧イオン化法(非特許文献2)が広く採用されている。噴霧イオン化法では、液体を噴霧することにより帯電液滴(サイズはミクロンオーダー)が最初に生成され、溶媒分子の蒸発に伴い気体状イオンが帯電液滴から生成される。ところが、溶媒分子の帯電液滴からの蒸発が不充分な場合や、噴霧される液体中に不揮発性成分が含まれる場合にしばしば遭遇する。このような場合、インターフェースにおいて、分析対象となる気体状イオンの他に、電荷も質量も著しく大きい帯電液滴や帯電結晶などの帯電粒子が生成される。(非特許文献3)そして、これら帯電粒子は、気体状イオンとともに質量分析器の真空領域に導入される。そして、分析対象のイオンと異なり、帯電粒子に対しては、真空中における多重極電界による質量分離が必ずしも有効に機能しない。その結果、帯電粒子の一部は、検出器にランダムノイズとして検出されてしまう。このノイズ成分が、質量分析器の感度を実質的に低下させる一因となっている。そこで、真空中でのイオン軌道を、多数の電極を用いてS字型に偏向させることにより、帯電粒子だけを除去する手法が特許文献3に記載されている。他にも、特許文献4に記載のように、三重連四重極質量分析器の衝突セルにおいて、イオン軌道を180°偏向させる手法も開発されている。
【先行技術文献】
【特許文献】
【0005】
【特許文献1】US2009/0256073
【特許文献2】US7638764
【特許文献3】US6891157
【特許文献4】US2009/0095898
【非特許文献】
【0006】
【非特許文献1】Reviews of Modern Physics Vol. 62, 1990, pp531-540.
【非特許文献2】Trends in Analytical Chemistry Vol. 16, 1997, pp45-52.
【非特許文献3】International Journal of Mass Spectrometry and Ion Processes Vol. 175, 1998, pp241-245.
【発明の概要】
【発明が解決しようとする課題】
【0007】
上記の特許文献3,4のように、イオン生成に伴って生成される帯電粒子を検出することにより発生するランダムノイズを低減するためには、真空中での明確なイオン軌道の偏向が必要と考えられている。その結果、質量分析計における構造の複雑化を避けることが困難となり、分析装置のコスト増加が課題となっている。
【課題を解決するための手段】
【0008】
上記課題を解決するための代表的な質量分析装置の構成は、イオンを生成するイオン源と、多重極ロッド電極と、多重極ロッド電極を挟むように設けられ、多重極ロッド電極にイオンを導入する第1の電極と、多重極ロッド電極からイオンを排出する第2の電極とを備える多重極部と、多重極部の電極に電圧を印加する電源部と、多重極部から排出されたイオンを検出する検出部と、検出部からの出力値の処理を行うデータ処理部と、データ処理部の出力をする出力部と、電源部を制御する制御部とを備え、制御部は、電源部に対し、正(負)イオン分析時には、第1の電極の静電位が、第2の電極の静電位よりも高く(低く)なるような静電圧と、第2の電極に交流電圧を印加する制御をし、データ処理部は、交流電圧の印加制御に応じた検出部における出力値を用いてデータ処理を行う。
【0009】
データ処理部は、交流電圧が第1の振幅値のときの出力値から、交流電圧が当該第1の振幅値よりも小さい第2の振幅値又は振幅値がゼロのときの出力値を差し引いて、測定対象のイオンのシグナル成分を算出する。
【0010】
制御部は、第2の電極に対し、振幅が周期的に変化する交流電圧を印加するように制御するようにしてもよいし、交流電圧の印加を予めユーザにより選択されたタイミングで制御するようにしてもよい。
【発明の効果】
【0011】
電圧の制御により帯電粒子によるノイズ成分を排除して、高感度な測定を行うことができる。また、微量成分の分析を実現することができる。
【図面の簡単な説明】
【0012】
【図1】(A)本実施例の質量分析計における多重極部や検出部の模式図(断面図)、(B)イオン軌道の中心軸における電位。
【図2】(A)本実施例の質量分析計における多重極部や検出部の模式図(断面図)、(B)イオン軌道の中心軸における電位。
【図3】検出器5からの出力信号の実測例。
【図4】(A)検出器5の出力信号、(B)電極3に印加される交流電圧の振幅に対する時間依存性。
【図5】(A)検出器5の出力信号、(B)電極3に印加される交流電圧の振幅に対する時間依存性。
【図6】(A)検出器5の出力信号、(B)電極3に印加される交流電圧の振幅に対する時間依存性。
【図7】(A)検出器5の出力信号、(B)電極3に印加される交流電圧の振幅に対する時間依存性。
【図8】(A)検出器5の出力信号、(B)電極3に印加される交流電圧の振幅に対する時間依存性。
【図9】(A)検出器5の出力信号、(B)電極3に印加される交流電圧の振幅、(C)ロッド電極に印加される高周波電圧の振幅の時間依存性。
【図10】本実施例の質量分析装置におけるブロック図。
【図11】(A)本実施例の質量分析装置における多重極部や検出部の模式図、(B)断面図、(C)イオン軌道の中心軸における電位。
【図12】(A)検出器5の出力信号、(B)電極3に印加される交流電圧の振幅に対する時間依存性。
【図13】(A)検出器5の出力信号、(B)電極3に印加される交流電圧の振幅に対する時間依存性。
【図14】(A)検出器5の出力信号、(B)電極3に印加される交流電圧の振幅に対する時間依存性。
【図15】(A)本実施例の質量分析装置における多重極部や検出部の模式図(断面図)、(B)イオン軌道の中心軸における電位。
【図16】本実施例のLC/MSにおける装置構成図(ブロック図)。
【図17】本実施例のLC/MSにおける装置構成図(ブロック図)。
【発明を実施するための形態】
【0013】
以下、実施例を用いて説明する。
【実施例1】
【0014】
本実施例では、検出器信号における帯電粒子由来ノイズを、気体状イオン由来の信号と区別することができる質量分析装置の例を説明する。
【0015】
図1は、(A)本実施例の質量分析装置における多重極部や検出部の模式図(断面図)、及び、(B)イオン軌道の中心軸における電位である。既に述べたように、インターフェース(イオン生成部)では気体状イオンの他に帯電粒子が生成される。この帯電粒子は、電荷も質量も気体状イオンよりも著しく大きく、大抵の場合、電荷は数十以上、質量は数千以上であり、測定対象イオンと比較して非常に高い運動量を有する。これは測定対象のイオンとは異なり、多重極電界において質量分離されることなく素通りしてしまう。その結果、質量スペクトル上で、1ダルトン毎に検出される化学ノイズと異なり、帯電粒子はランダムノイズとして検出される。図1では、(黒三角の印)は帯電粒子を表している。さらに、(丸の印)は気体状イオンであり、(丸の印)の大きさは気体状イオンにおけるm/zの大小を表している。
【0016】
イオン生成部で生成された気体状イオンや帯電粒子は、図の左方から、例として四本のロッド電極1から構成される四重極質量分析計に導入される。尚、実施例中では四重極質量分析計を例に説明するが、六本、八本等のロッド電極を用いた多重極質量分析計でもよい。その場合、高周波が印加されるロッド電極1の数が増加する点が異なる。
【0017】
四重極質量分析計のイオン導入側と排出側には、それぞれ入口電極2と出口電極3が設置される。そして、四重極ロッド電極1に印加される高周波電圧成分と静電圧成分に従い、特定の範囲のm/zを有するイオンが四重極ロッド電極の中心領域を透過することができる。そして、透過イオンは出口電極3を透過して、検出部で検出される。検出部には、イオンの極性と逆極性の高電圧(15kV程度)が印加されるコンバージョン電極4や、コンバージョン電極4に向かって高速に加速されたイオンがコンバージョン電極4に衝突することにより発生する二次電子を検出する二次電子増倍管などの検出器5が設置される。尚、図1では、正イオンの分析例を示す。以下の図でも同様に正イオンの分析例を示す。負イオンの場合には、電位の高低は正イオンの場合とは逆とすればよく、測定対象のイオンが受ける電位や障壁の大きさとして、出口側の電位が低く、交流電圧印加による障壁を感じるように設定すればよい。そして、帯電粒子は、四重極ロッド電極の中心領域を透過することができ、イオンと同様に検出部で検出される。
【0018】
さて、入口電極2と出口電極3には、それぞれ静電圧が印加される。その結果、イオン軌道の中心軸における電位として、折れ線に示すような電位、つまり出口側が低くなるような電位が、イオンに与えられる。(図2(B)参照)そして、出口電極3に交流電圧を静電圧に重畳して印加することにより、四重極質量分析計の出口周辺には、疑ポテンシャルが形成される。形成された疑ポテンシャルを図1(B)中の点線9で示す。そして、この疑ポテンシャルは、イオンの四重極質量分析計の出口電極3近傍において、イオンに対するポテンシャル障壁を形成するため、大抵のイオンは出口電極3を透過できなくなる。(図1(B))
交流電圧により形成されるポテンシャル障壁の大きさΦは、イオンのm/zや交流電圧Vと以下の関係にある。
【0019】
【数1】

【0020】
出口電極3に交流電圧Vが印加され、イオンが一定の運動エネルギーで質量分析計に導入された場合、特定のm/zよりも大きいイオンだけが上記ポテンシャル障壁を乗り越えて下流側に移動することが上式より示される。実際には、イオンの運動エネルギーはある程度の幅を持って分布する。そのため、四重極ロッド電極1に高周波電圧が印加された四重極質量分析計は、分解能が比較的低いハイパスフィルターとして機能すると捉えることができる。これにより、通常の測定対象のイオンよりm/zの大きい荷電粒子はこの障壁を乗り越えて出口電極から排出され、測定対象イオンは四重極質量分析計の内部に留まるか散逸することになる。また、特定のm/zに対するポテンシャル障壁の大きさΦは、交流電圧Vに依存するが、交流電圧の周波数には依存しない。ただ、出口電極3近傍でイオンが充分にポテンシャル障壁の影響を受けるためには、周波数は200kHz以上であることが望ましい。
【0021】
形成されるポテンシャル障壁の大きさは、四重極ロッド電極1や出口電極3の幾何学的形状により決定される。そのため、出口電極3におけるイオンが透過する穴が大きいと、印加される交流電圧は高く設定する必要が生じる。しかし、穴がイオンのビーム径より小さいと一部のイオンが出口電極3に衝突して消滅してしまう。このような事情を考慮すると、出口電極3におけるイオンが透過する領域は、荒いメッシュやワイヤーなどの細線で構成されていると好都合である。このことにより、ポテンシャル障壁の形成において、出口電極3に印加される交流電圧を比較的低く設定することができ、電源が簡単化できる。また、出口電極3と四重極ロッド電極1との距離は、できるだけ短いことが望ましく、四重極ロッド電極の内接円半径よりも短い方がよい。一方で、放電の発生は回避する必要がある。実際には、四重極ロッド電極1と出口電極3との距離は、高周波電圧を考慮すると2mm以上であれば、放電が発生し難いと期待される。
【0022】
分析対象イオンのm/zにおける上限は、四重極質量分析計の仕様や分析対象イオンのm/zにより決定されるので、荷電粒子のみを通過させる際には、典型的には分析対象のイオンが全て出口電極3を透過できないように、出口電極3に印加される最低レベルの交流電圧を設定すると便利である。実際には、質量スペクトルにおけるイオン強度をモニターしながら、分析対象のイオンが検出できなくなる交流電圧を予め調べておけばよい。
【0023】
この交流電圧が出口電極3に印加されない場合、図2(A)に示すように、特定の範囲のm/zを有するイオンだけでなく、帯電粒子も出口電極3を透過し、最終的に検出器5で検出される。一方、交流電圧が出口電極3に印加される場合、出口電極3周辺にポテンシャル障壁が形成されるため、分析対象のイオンは出口電極3を透過できない。ところが、帯電粒子は、その質量の大きさによりポテンシャル障壁を乗り越えることができるので、出口電極3を透過して検出器5で検出される。この状態は、図1(B)において、イオン軌道の中心軸における電位の曲線9で示される。上記のような交流電圧の出口電極3への印加の有無は、検出器5の検出信号において、以下のような結果を与える。即ち、検出器5の出力信号は、出口電極3に交流電圧が印加される場合、分析対象であるイオンの検出信号を含まない。しかし、出口電極3に交流電圧が印加されない場合、分析対象であるイオンの検出信号を含む結果となるが、ノイズ成分は共通である。
【0024】
検出器5からの出力信号の実測例を図3に示す。「AC-OFF」とは、イオン生成部でのイオン生成は行われているが、出口電極3には交流電圧が印加されていない状態を表す。一方、「AC-ON」は、出口電極3に交流電圧(周波数693kHz)が印加されている状態を表す。図に示されるように、「AC-OFF」における検出器出力(〜700カウント)は、「AC-ON」の場合(〜550カウント)に比較して高い。この検出器出力の差は、分析対象であるイオンの検出信号と説明される。さらに、「イオン源OFF」とは、インターフェースのイオン生成部におけるイオン生成を停止しているが、他は「AC-ON」と同一の状態を示す。これより、「イオン源OFF」における検出器出力(〜400カウント)は、検出器の暗電流や電気ノイズに依存するノイズ成分と説明される。そして、「AC-ON」と「イオン源OFF」における検出器出力の差は、帯電粒子検出によるノイズ成分と説明される。このように、「AC-ON」と「AC-OFF」の状態を相互に切り替えて、検出器出力の差を求めることにより、分析対象であるイオンの検出信号だけを正確に求めることができる。
【0025】
図4に、(A)検出器5の出力信号、及び、(B)電極3に印加される交流電圧の振幅に対する時間依存性(模式図)を示す。交流電圧が印加されると検出器5の信号は減少し、交流電圧が印加されないと検出器5の信号は増加する。そのため、出口電極3に印加される交流電圧の有無に応じ、検出器5の出力信号の差を計算するなどの処理を施すことにより、正確なイオンの検出信号を得ることができる。つまり、切り替えを時々刻々と行うことにより、検出信号に含まれるノイズ成分の除去をリアルタイムに行うことができる。具体的には、検出器5の出力信号を、ACのON/OFF等に同期させてロック・イン・アンプ等で増幅するなどの処理を施すことが望ましい。このことは、特に微量イオンの分析において、極めて有効である。尚、交流電圧の印加については、ON/OFFを制御すれば簡便な切り替えとなるが、このように完全にOFFの状態でなくても、帯電粒子のみ透過しイオンは透過させないような小さい振幅の交流電圧が印加されている状態でもよい。
【実施例2】
【0026】
LC/MS分析では、分離成分の時間幅(バンド幅)は、分離条件によりほぼ決定され、典型的には数秒から1分程度である。マスクロマトグラムにおいて、分離成分の分離ピークを精度よく解析するためには、分離成分の検出において10回以上はイオンの検出信号を取得することが望ましい。そのためには、交流電圧印加の周期をバンド幅の1/10以下に設定した方がよく、典型的な周期は100msである。図4に示す例では、電極3に交流電圧が印加(ON)される時間と、交流電圧が印加されない(OFF)時間が同一である。しかし、交流電圧が印加(ON)される時間と、印加されない(OFF)時間との比率は、必ずしも1:1である必要はない。図5に示すように、印加されない(OFF)時間の方が長く設定しても構わない。交流電圧が印加(ON)される時間に測定されるノイズ成分が充分な精度で検出されていれば、交流電圧が印加されない(OFF)時間を長くとることができると、イオン検出に要する測定時間が長いので高精度な測定が実現する。典型例は、交流電圧が印加(ON)される時間に測定される帯電粒子由来のノイズ成分が時間的に顕著に変動しない場合である。この場合、交流電圧が印加(ON)される状態でのデータ取得回数を限定的なものとし、他は常に交流電圧が印加されない(OFF)状態でデータ取得を実施すると、イオン検出の時間を極めて有効に利用することができる。また、予め交流電圧が印加(ON)される状態でのデータ取得をしておき、交流電圧が印加されない(OFF)状態において取得されるデータを処理することも有効である。
【実施例3】
【0027】
図4に示す実施例では、交流電圧が印加(ON)される時間に、交流電圧の振幅はほぼ一定である。しかし、図6(B)に示すように、交流電圧の振幅が変動するように振幅を変調させることもできる。この場合、測定対象イオンを一定時間遮断し帯電粒子だけを検出するため、交流電圧の最大値は図4に示す場合より高く設定した方がよい。得られる検出器出力において、シグナル成分が検出されるタイミングの検出器出力から、ノイズ成分が検出されるタイミングの検出器出力を差し引くように、交流電圧の振幅変動に同期して検出器出力を処理すると、極めてS/Nの高いシグナルを得ることができる。このように、交流電圧の振幅が変動するように振幅を変調させると、変動させずに一定の振幅の場合よりも、電源が簡素化できるという効果がある。
【実施例4】
【0028】
図7に、時刻t1とt2との間で交流電圧の振幅を単調に減少させる例を示す。この場合には、時刻t1とt2との間で(イオンの運動エネルギー幅が有限のため)分解能が低い質量分析(スキャン)を実施することになる。四重極ロッド電極1の中心部を透過するイオンは、ある一定のm/zの幅を持つものとして一種類であると、時刻t1とt2との間では質量スキャンを行うことができ、一方、時刻t0とt1との間では、シグナル成分が検出されない。このようにスキャンすることにより、運動エネルギーの高い測定対象イオンをノイズ成分と正確に識別するという効果(用いられ方)を得ることができる。なお、ここでは、時刻t0とt1との間を時刻t1とt2との間よりも短くした例を示している。一方、実質的に、ノイズ成分が検出される時間と、シグナル成分が検出される時間を同等に設定すると、多少のデッドタイムは発生するが、図4に示す実施例と同等の効果が期待される。さらに、交流電圧の振幅が鋸刃型の波形である例を図8に示す。この例では、時刻t0とt2との間で交流電圧の振幅を低減させるように交流電圧を出口電極3に印加する。このように交流電圧の振幅が鋸刃型の波形とすることで、図7の実施例と同様に測定対象イオンと帯電粒子由来のノイズ成分とを正確に識別するという効果(用いられ方)を得ることができる。
【0029】
また、入口電極2を通って四重極ロッド電極1の中心部に導入されるイオンが多種類の場合、それらの中から数種類のイオンに対するマスクロマトグラムを連続して取得することが原理的に可能である。
【0030】
図9に、3種類のイオンに対して、ノイズ成分と各々のシグナル成分を検出する例を示す。時刻t0とt1との間では、交流電圧の振幅を高く設定し、ノイズ成分だけを検出する。次に、時刻t1とt2との間では、m/zの異なる3種類のイオンのなかで特定のm/zのイオンだけが四重極ロッド電極2中心領域を透過できるように、四重極ロッド電極1に印加される高周波電圧成分と静電圧成分を設定する。そして、図9に示す例では時刻t1からt2の間における交流電圧の振幅はゼロであるが、出口電極3には3種類のイオンが透過できるような交流電圧を印加しても問題はない。上記により、特定のm/zのイオンに対するシグナル成分を検出器出力として取得することができる。同様の設定を他の2種類のイオンに対して、各々t2とt3との間、t3とt4との間に、それぞれ特定のm/zのイオンだけが出口電極3の中心領域を透過できるように、四重極ロッド電極1に印加される高周波電圧成分と静電圧成分を設定することにより、1ルーチンで、1回のノイズ成分検出に対して、3種類のイオンのマスクロマトグラムを取得することができ、極めて効率的にデータの取得を行うことができる。検出器の出力値の大きさがそれぞれ異なるのは、それぞれのm/zのイオンの存在する量が異なることを表している。そして、このルーチンを繰り返すことにより、精度の高いマスクロマトグラムを取得することができる。なお、分析の順序は、分析イオンのm/zの大小に依らず、自由に設定しても構わない。図9(C)に示すように、時刻t0とt1との間に四重極ロッド電極1に印加される高周波電圧成分(および静電圧成分)は、3種類の測定対象イオンの中で最もm/zが小さいものに対応する値に設定することが望ましい。
【0031】
図10に、本発明の質量分析装置のブロック図を示す。制御部から出力される制御信号により電源部の各種電源が制御され、各種電源の出力により、イオン生成部等を含むインターフェース部や多重極部、検出部、データ処理部が制御される。そして、交流電圧のON/OFFや振幅の大きさの変動に対応して、検出部出力を取得し、出力はデータ処理部で処理され、データ処理部で処理されたデータが出力部に出力され、データ記憶部に順次保存されていくようにしてもよい。データ処理部では、検出された出力のうち、交流電圧によりイオン障壁を形成して帯電粒子等のノイズ成分として出力された値を、それより低い交流電圧又は交流電圧OFFのときに検出された出力値から差し引くことにより、ノイズ成分が除去された実際のシグナルデータとする。
【実施例5】
【0032】
これまでは、特定のm/zを有するイオンだけが通過できる四重極フィルターを用いた実施例について述べた。以下では、四重極イオントラップなどの多重極イオントラップにおけるノイズ成分の識別技術や、分解能が比較的低い質量分析技術について述べる。
【0033】
図11に、四重極イオントラップの出口電極3(エンドキャップ電極)に交流電圧が印加される例を示す。イオントラップでは、イオンは外部から注入されるヘリウムガス等との衝突により運動エネルギーが低減し、運動エネルギーの幅も低減する。そのため、交流電圧の印加による質量分離には好適である。この例では、イオンが四重極イオントラップの中心部分に停滞することを回避するため、四本の四重極ロッド電極1の間に四枚の羽根電極8が設置されている。図11(A)の点線Aにおける断面図を(B)に示す。この羽根電極8には一定の静電圧が印加され、その電圧は入口電極2に印加される電圧と共通に設定しても構わない。羽根電極8は、入口電極に近い部分はイオン軌道の中心軸に近く、出口電極3に電極に近い部分はイオン軌道の中心軸から離れた構造である。
【0034】
(C)に、イオン軌道の中心軸における電位を示す。四本の四重極ロッド電極1の中心軸上における電位は図2(B)に示すような一定値ではなく、羽根電極8の影響を受け、点線で示すように下流方向に単調減少している。このことにより、四本の四重極ロッド電極1の中心軸上において、イオンは出口電極3寄りにトラップされる。そして、(数1)に示されるように、交流電圧により形成されるポテンシャル障壁の大きさΦは、イオンのm/zに反比例する関係にある。その結果、特定の交流電圧を出口電極3に印加すると、特定の値より大きいm/zのイオンがイオントラップから下流側に排出される。(C)に示すように、イオントラップにおいてはイオン軌道の中心軸における電位は下流方向に単調減少するように用いる。そのための具体策としては、羽根電極8に限定されず様々な形状の電極が使用可能である。
【0035】
図11での入口電極2、出口電極3は、図2等の入口電極2、出口電極3とは異なり、ヘリウムガスを閉じ込めたり、イオンをトラップしやすいようにイオン通過細孔は小さくなっている。
【0036】
図12に、(A)検出器5の出力信号、及び、(B)電極3に印加される交流電圧の振幅に対する時間依存性(模式図)を示す。時刻t0とt1との間では、検出器5の信号は帯電粒子由来のものだけとなるように、比較的高い交流電圧が電極3に印加される。四重極イオントラップに導入されるイオンが三種類である場合、時刻t1とt2との間では、最もm/zが大きいイオンが帯電粒子とともに検出器5で検出される。そして、時刻t2とt3との間ではm/zが中間的なイオンが帯電粒子とともに検出器5で検出され、時刻t3とt4との間では、最もm/zが小さいイオンが帯電粒子とともに検出器5で検出される。そのため、出口電極3に印加される交流電圧の大きさに対応して、検出器5の出力信号を処理し、保存する。さらに、ノイズ成分との差を計算するなどの処理を施すことにより、正確なイオンの検出信号を取得することができる。このことは、特に微量イオンの分析において、分析定量性の確保ができるので、極めて有効である。同様にして、時刻t1とt4との間で、交流電圧が単調に減少する例を図13に示す。
【実施例6】
【0037】
多種類のイオンが四重極イオントラップに導入される例を図14に示す。このような場合、(B)に示すように、時刻t1とt4との間で、交流電圧が単調に減少させると便利である。時刻t0とt1との間で取得されるノイズ成分を得られる検出器出力信号から差し引くと、イオン由来の信号のみとなる。その信号を微分することにより、質量スペクトルを得ることができる。さらに、上記分析を100ms程度の周期で繰り返すことにより、特定のm/zイオンに対するマスクロマトグラムを取得することができる。
【実施例7】
【0038】
本実施例では、出口電極3が二枚の電極(6、7)から構成される装置の例を説明する。図15に示すように、四重極ロッド電極1に近い方の電極6には静電圧だけが印加され、四重極ロッド電極1に遠い方の電極7には周期的に交流電圧が印加される。電極を分離させることにより、静電圧の発生回路と交流電圧の発生回路を独立させることができ、電源回路は直流と交流の混合が不要となるため簡素化される。ポテンシャル障壁は、電極7に印加される交流電圧により形成される。そのため、電極6と7は四重極ロッド電極1と放電しない範囲で極力近接させることが有効である。実施例1で述べたが、出口電極7におけるイオンが透過する領域は、荒いメッシュやワイヤーなどの細線で構成されていると交流電圧を比較的低く設定できる。
【実施例8】
【0039】
本発明技術を用いたLC/MSの装置構成図を、図16に示す。LCポンプ11から供給されるLC移動相がオートサンプラー12に導入され、オートサンプラー12において所定の体積の液体サンプルはLC移動相が流れる流路に導入される。そして、その液体サンプルはLC分離部13において分離カラムに導入され、サンプルの分離が行われ、分離成分はLC溶出液として順次インターフェース部におけるイオン源14に導入される。
【0040】
イオン源14では、LC溶出液の噴霧により、気体状イオンが生成される。生成された気体状イオンは、内径0.3mm程度の細孔15から差動排気部16に導入された後、さらに真空度の高い真空部17に導入される。真空部17では、気体状イオンは多重極ロッド電極等から構成されるイオンガイド18により、四本の四重極ロッド電極1から構成される四重極質量分析計に導入される。四重極質量分析計の入口側と出口側には、それぞれ入口電極2と出口電極3が設置され、特に出口電極3には静電圧だけでなく周期的に交流電圧が印加される。そして、四重極ロッド電極1に印加される高周波電圧成分と静電圧成分に従い、特定の範囲のm/zを有するイオンが四重極ロッド電極1の中心領域を透過する。そして、イオンは出口電極3を透過して、検出部5で検出される。検出部には、イオンの極性と逆極性の高電圧(15kV程度)が印加されるコンバージョン電極4や、コンバージョン電極4に向かって高速に加速されたイオンがコンバージョン電極4に衝突することにより発生する二次電子を検出する検出器5が設置される。検出器5の出力はデータ処理部に導入され、処理されたデータはデータ記録部で記録される。ここでは、イオンガイドの制御に応じて、ノイズ成分を除去するために入口電極2に対し交流電圧を印加するようにしてもよい。
【実施例9】
【0041】
本発明技術を用いた別のLC/MSの装置構成図を、図17に示す。この例は、三連四重極質量分析装置を示している。LCポンプ11から供給されるLC移動相がオートサンプラー12に導入され、オートサンプラー12において所定の体積の液体サンプルはLC移動相が流れる流路に導入される。そして、液体サンプルはLC分離部13において分離カラムに導入され、サンプルの分離が行われ、分離成分はLC溶出液として順次インターフェース部におけるイオン源14に導入される。
【0042】
イオン源14では、LC溶出液の噴霧により、気体状イオンが生成される。生成された気体状イオンは、内径0.3mm程度の細孔15から差動排気部16に導入された後、さらに真空度の高い真空部17に導入される。真空部17では、気体状イオンは多重極ロッド電極等から構成されるイオンガイド18により、四本の四重極ロッド電極21に印加される高周波により発生する第一の四重極電界領域に導入される。
【0043】
四重極ロッド電極21に印加される高周波電圧成分と静電圧成分に従い、特定の範囲のm/zを有するイオンが四重極ロッド電極21の中心領域を透過する。そして、イオンは衝突セル22に導入され、分子衝突などによりフラグメント化される。この衝突セル22では、四重極ロッド電極23に印加される高周波電圧成分と静電圧成分に従い、四本の四重極ロッド電極23の中心軸に沿った第二の四重極電界が発生する。そして、特定のm/zより高いフラグメントイオンは四重極ロッド電極23の中心領域を透過し、衝突セル22から排出される。
【0044】
次に、フラグメントイオンは、第三の四重極電界が発生する四本の四重極ロッド電極1の中心軸上に導入される。この第三の四重極電界が発生する四重極質量分析計の入口側と出口側には、それぞれ入口電極2と出口電極3が設置され、特に出口電極3には静電圧だけでなく周期的に交流電圧が印加される。そして、四重極ロッド電極1に印加される高周波電圧成分と静電圧成分に従い、特定の範囲のm/zを有するイオンが四重極ロッド電極1の中心領域を透過する。そして、イオンは出口電極3を透過して、検出部で検出される。
【0045】
検出部には、イオンの極性と逆極性の高電圧(15kV程度)が印加されるコンバージョン電極4や、コンバージョン電極4に向かって高速に加速されたイオンがコンバージョン電極4に衝突することにより発生する二次電子を検出する検出器5が設置される。検出器5の出力はデータ処理部に導入され、処理されたデータはデータ記録部で記録される。
【0046】
本実施例では第三の四重極電界の出口電極3に交流電圧成分を印加しているが、帯電粒子だけを検出するためには、運動エネルギーが比較的揃ったイオンが透過する電極に交流電圧を印加することが重要である。例えば、第一の四重極電界領域における入口電極24や出口電極25、第三の四重極電界の入口電極2に交流電圧を印加しても同様の効果を得ることができる。上流側に多重極ロッドが存在し、多重極ロッドの出口ではイオンの運動エネルギーが比較的揃っていると期待されるためである。図16に示す実施例でも、入口電極2に交流電圧を印加しても問題はない。
【0047】
実際の分析においては、交流電圧を印加しないでデータ取得を行いたいユーザーも想定できるので、交流電圧の印加に関する装置制御を制御部においてユーザーが選択できることが望ましい。
【0048】
図16と図17に示す実施例では、LC/MSの装置構成を示した。しかし、本発明の質量分析装置には、必ずしもLCが結合されている必要はない。液体の噴霧を伴うイオン源14が用いられる場合に有用である。そのため、LCの代わりにキャピラリー電気泳動(CE)装置を用いる場合や、液体サンプルの分離を行わないインフュージョン分析においても本発明を適用することができる。また、例えば特許文献6に記載のデソープション・エレクトロスプレー・イオン化法(DESI)のように、間接的に液体の噴霧を伴うイオン化法を用いるイオン源の場合にも、本発明を適用することができる。
【0049】
【特許文献6】US2005/0230635
【符号の説明】
【0050】
1 ロッド電極
2 入口電極
3 出口電極
4 コンバージョン電極
5 検出器
6 電極
7 電極
8 羽根電極
9 疑ポテンシャル
11 LCポンプ
12 オートサンプラー
13 LC分離部
14 イオン源
15 細孔
16 差動排気部
17 真空部
18 イオンガイド
21 ロッド電極
22 衝突セル
23 ロッド電極
24 入口電極
25 出口電極

【特許請求の範囲】
【請求項1】
イオンを生成するイオン源と、
多重極ロッド電極と、前記多重極ロッド電極を挟むように設けられ、前記多重極ロッド電極にイオンを導入する第1の電極と、前記多重極ロッド電極からイオンを排出する第2の電極とを備える多重極部と、
前記多重極部の電極に電圧を印加する電源部と、
前記多重極部から排出されたイオンを検出する検出部と、
前記検出部からの出力値の処理を行うデータ処理部と、
前記データ処理部の出力をする出力部と、
前記電源部を制御する制御部とを備え、
前記制御部は、前記電源部に対し、正(負)イオン分析時には、前記第1の電極の静電位が、前記第2の電極の静電位よりも高く(低く)なるような静電圧と、前記第2の電極に交流電圧を印加する制御をし、
前記データ処理部は、交流電圧の印加制御に応じた検出部における出力値を用いてデータ処理を行うことを特徴とする質量分析装置。
【請求項2】
前記データ処理部は、前記交流電圧が第1の振幅値のときの出力値から、前記交流電圧が前記第1の振幅値よりも小さい第2の振幅値又は振幅値がゼロのときの出力値を差し引いて、測定対象のイオンのシグナル成分を算出することを特徴とする請求項1記載の質量分析装置。
【請求項3】
前記制御部は、前記第2の電極に対し、振幅が周期的に変化する交流電圧を印加するように制御することを特徴とする請求項1記載の質量分析装置。
【請求項4】
前記制御部は、前記第2の電極へ印加する交流電圧のONとOFFを繰り返すように制御することを特徴とする請求項1記載の質量分析装置。
【請求項5】
前記制御部は、前記第2の電極へ印加する交流電圧の振幅を周期的に変調するように制御することを特徴とする請求項1記載の質量分析装置。
【請求項6】
前記制御部は、前記第2の電極へ印加する交流電圧の振幅が周期的に単調減少するように制御することを特徴とする請求項1記載の質量分析装置。
【請求項7】
前記制御部は、前記第2の電極へ印加する交流電圧の振幅変化の周期に合わせて、前記多重極ロッド電極へ印加する高周波又は/及び前記第1,2の電極間の静電圧の大きさを変化させることを特徴とする請求項1記載の質量分析装置。
【請求項8】
前記第2の電極のイオン通過部位は、細線で形成されていることを特徴とする請求項1記載の質量分析装置。
【請求項9】
前記第2の電極と前記多重極ロッド電極の端との距離が、2mm以上、前記多重極ロッドの内接円半径以下であることを特徴とする請求項1に記載の質量分析装置。
【請求項10】
前記多重極部はイオントラップであって、前記多重極ロッド電極の中心軸において単調減少する電位を形成する第3の電極を備えることを特徴とする請求項1記載の質量分析装置。
【請求項11】
前記第3の電極は、前記中心軸からの距離が前記ロッド電極の一方の端側と他方の端側で相対的に異なるように、前記多重極ロッド電極間に設けられた羽根電極であることを特徴とする請求項10記載の質量分析装置。
【請求項12】
前記制御部は、第2の電極へ印加する交流電圧の振幅が、複数の異なる一定の大きさを有するように周期的に変化するように制御することを特徴とする請求項10記載の質量分析装置。
【請求項13】
前記制御部は、検出対象のイオンのm/zに依存して、前記交流電圧の振幅の大きさを変化させることを特徴とする請求項10記載の質量分析装置。
【請求項14】
前記制御部は、前記第2の電極へ印加する交流電圧の振幅が周期的に単調減少するように制御することを特徴とする請求項10記載の質量分析装置。
【請求項15】
前記第2の電極は、前記電源部から静電圧が印加される電極と、前記電源部から交流電圧が印加される電極の2つの電極を有することを特徴とする請求項1記載の質量分析装置。
【請求項16】
請求項1記載の質量分析装置であって、さらに、試料を分離する液体クロマトグラフを有し、分離された試料が前記イオン源に導入されることを特徴とする質量分析装置。
【請求項17】
前記イオン源は、液体の噴霧を伴ってイオンを発生させるイオン源であることを特徴とする請求項1記載の質量分析装置。
【請求項18】
請求項1記載の質量分析装置であって、さらに、前記多重極部と前記イオン源との間に設けられたイオンガイドを備え、前記制御部は、前記イオンガイドの制御に伴い、前記多重極部の前記第1の電極に対し交流電圧を印加する制御をすることを特徴とする請求項1記載の質量分析装置。
【請求項19】
請求項1記載の質量分析装置において、前記多重極部を複数備え、隣り合う多重極部の間で前記第1,2の電極が共有化され、前記制御部は、前記共有化された電極に対し、振幅が周期的に変化する交流電圧を印加するような制御をすることを特徴とする質量分析装置。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate

【図11】
image rotate

【図12】
image rotate

【図13】
image rotate

【図14】
image rotate

【図15】
image rotate

【図16】
image rotate

【図17】
image rotate


【公開番号】特開2012−94252(P2012−94252A)
【公開日】平成24年5月17日(2012.5.17)
【国際特許分類】
【出願番号】特願2010−238104(P2010−238104)
【出願日】平成22年10月25日(2010.10.25)
【出願人】(000005108)株式会社日立製作所 (27,607)
【Fターム(参考)】