説明

赤外線温度センサ、電子機器、および赤外線温度センサの製造方法

【課題】部材費および組立加工費が小さく安価でありながら、かつ、金属ステムを用いた従来構造と同程度の環境温度変化への出力変動耐性を有する赤外線温度センサを提供する。
【解決手段】積層基板1上に金属板2が実装され、センサチップ3およびASIC4は金属板2上に搭載される。センサチップおよびASICは、金属板2上にかぶせられた金属キャップ5にて覆われる。金属板2には開口部が設けられており、積層基板1上の電極とASICとは、開口部を通じてワイヤ接続されている。金属板2は積層基板1上のGND電位に接続されている。金属キャップは金属板2に電気的に接続されている。金属板2は積層基板1に対して半田付けにて実装されている。積層基板1に複数の半田付け用ランドが形成されている。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、物体が発生する赤外線によって該物体の温度を検出する赤外線温度センサに関する。
【背景技術】
【0002】
近年の電子機器においては、周囲環境を検出し、その検出結果を運転制御に利用することが行われている。例えば、エアコンにおいては、人の存在を検知し、人の存在する場所を狙って温度制御するといった運転制御が行われている。このような運転制御においては、周囲環境を検出するためのセンサ装置が用いられ、上記のようなエアコンでは物体からの輻射熱によって非接触で物体温度を検知する赤外線温度センサが用いられる。
【0003】
従来の赤外線温度センサとして、金属ステムにセンサ素子と回路部を搭載した構成がよく知られている(例えば特許文献1)。金属ステムを用いた赤外線温度センサの構成を図7に示す。
【0004】
図7に示す赤外線温度センサは、金属ステム101上にセンサ素子102および該センサ素子102の検知信号を増幅して出力するための回路部(図示せず)とを搭載している。また、金属ステム101には、これを貫通する電極棒103が設けられており、上記回路部と実装基板との接続は電極棒103を介して行われるようになっている。さらに、金属ステム101におけるセンサ素子102および回路部の搭載面は金属キャップ104によって覆われている。金属キャップ104には赤外線を通すための窓が設けられており、該窓には赤外線の透過率の高いガラスや透明樹脂からなるフィルタ105が取り付けられている。
【0005】
上記赤外線温度センサにおいて、金属ステム101を用いている最大の理由は、内部熱による誤差対策である。すなわち、センサ素子102は、フィルタ105を透過する赤外線のみならず、センサ内部の輻射熱による赤外線をも受光する。この時、センサ内部の温度がセンサ素子102と同じであれば、センサ内部温度の影響は相殺されて誤差を生じさせない。一方、センサ内部の温度がセンサ素子102と異なっていれば、センサ内部の温度が誤差としてのってしまい、測定対象物の温度を正確に検知できなくなる。
【0006】
このため、従来の赤外線温度センサでは、熱伝導性の高い金属ステムと金属キャップとを用いたパッケージ構造とし、センサ内部の温度が均一となるようにしている。
【0007】
また、金属ステムを用いない構造の赤外線温度センサが、例えば特許文献2に開示されている。金属ステムを用いない赤外線温度センサの構成を図8に示す。
【0008】
図8に示す赤外線温度センサは、支持基板201上にセンサチップ202を直接搭載し、支持基板201の配線とセンサチップ202とをワイヤ接続する構成となっている。また、上記赤外線温度センサにおいても、センサチップ202は金属キャップ203によって覆われている。
【先行技術文献】
【特許文献】
【0009】
【特許文献1】特開平6−137935号公報(1994年5月20日公開)
【特許文献2】特表2007−503586号公報(2007年2月22日公表)
【発明の概要】
【発明が解決しようとする課題】
【0010】
しかしながら、上述のような従来技術は、以下の問題を有する。
【0011】
まず、金属ステムを用いる構造では、金属ステム自体の部材費が高い。金属ステムは、センサ信号をパッケージ外部に取り出すための電極棒を有しており、この電極棒は低融点ガラス等を用いてステム本体と絶縁されるため、構造が複雑であり部材費が高くなる。また、金属ステムの実装は、実装基板のスルーホールの金属棒を差し込んで、人手によって半田付けするといった工程が必要となり、組立加工費も高くなる。
【0012】
一方、金属ステムを用いない構造では、支持基板の基材を一般的な樹脂基材とした場合、熱伝導性が悪いことから、センサチップとのキャップとの間に温度差が生じやすい。このため、周辺温度が変化した場合などには、パッケージ内側の放射赤外線によってセンサ出力が変動するといった問題が生じる。
【0013】
また、金属ステムを用いない構造では、支持基板の基材を熱伝導性の良いセラミック基材にして、上記問題を解消することができる。しかしながらこの場合には、セラミック基板の価格が非常に高くなり、コスト面で不利となる。
【0014】
本願発明は、上記の課題に鑑みてなされたものであり、部材費および組立加工費が小さく安価でありながら、かつ、金属ステムを用いた従来構造と同程度の環境温度変化への出力変動耐性を有する赤外線温度センサを提供することを目的とする。
【課題を解決するための手段】
【0015】
上記の課題を解決するために、本発明の赤外線温度センサは、実装基板と、上記実装基板上に実装される金属板と、上記金属板上に搭載される赤外線を受信検知するセンサチップと、上記金属板上に搭載される上記センサチップの検知信号を増幅する回路部と、上記金属板上にかぶせられ、上記センサチップおよび上記回路部を覆う金属キャップとを有しており、上記金属板には開口部が設けられており、上記実装基板上の電極と上記回路部とは、上記開口部を通じてワイヤ接続されており、上記金属板は上記実装基板上のGND電位に接続されており、上記金属キャップは上記金属板に電気的に接続されており、上記金属板は上記実装基板に対して半田付けにて実装されており、上記実装基板に複数の半田付け用ランドが形成されていることを特徴としている。
【0016】
上記の構成によれば、上記センサチップおよび上記回路部は上記金属板上に搭載され、さらにその上から金属キャップがかぶせられる。すなわち、上記センサは、上記センサチップおよび上記回路部を上記金属板および上記金属キャップからなるパッケージ内に収容した構造となる。上記金属板および上記金属キャップは熱伝導性が高いため、上記パッケージはセンサ内部の温度を均一に保つ機能を有し、環境温度変化へ対する高い出力変動耐性を持たせることができる。
【0017】
また、上記金属板には開口部が設けられており、上記実装基板上の電極と上記回路部とは、上記開口部を通じてワイヤ接続されている。このような上記実装基板と上記回路部とのワイヤボンディングは、通常のCOB(Chip On Board)実装技術が適用できるため、金属ステムを用いたセンサを実装する従来技術に比べ、組立加工費の大幅な低減が可能となる。
【0018】
また、上記赤外線温度センサでは、上記金属板は上記実装基板上のGND電位に接続されており、上記金属キャップは上記金属板に電気的に接続されている。このため、上記金属板および上記金属キャップからなるパッケージに、電波ノイズを遮断するシールド効果を持たせることができる。
【0019】
また、上記赤外線温度センサでは、上記金属板は上記実装基板に対して半田付けにて実装されている。
【0020】
尚、上記実装基板に形成される半田付け用ランドは、実装される上記金属板の4隅または4辺に対応する箇所と、金属板の中央に対応する箇所とに設けられている構成とすることができる。
【0021】
上記の構成によれば、上記金属板の4隅または4辺に対応する箇所に設けられた半田付け用ランドによって金属板を位置ずれなく強固に実装することができる。金属板の中央に対応する箇所に設けられるランドによって、上記金属板と上記実装基板との間に隙間が生じて上記金属板に撓みが生じることを防ぐことができる。
【0022】
また、上記赤外線温度センサでは、上記金属板は、半田付け性を確保するための表面コーティングが施されている構成とすることができる。これにより、半田付け実装の信頼性を上げることができる。
【0023】
また、上記赤外線温度センサでは、上記金属板には、上記金属キャップを位置決めするためのキャップ位置決め用突起が設けられている構成とすることができる。これにより、上記金属キャップを上記金属板に実装する際、容易に精度良く位置決めできる。
【0024】
また、上記赤外線温度センサでは、上記金属キャップの内側には、樹脂製の内側キャップが設けられている構成とすることができる。
【0025】
上記構成によれば、外部環境温度の変化に追随してセンサ内温度が急激に変化することを回避でき、センサの環境温度変化への出力変動耐性を向上させることができる。
【0026】
また、上記赤外線温度センサでは、上記金属キャップの上面には、赤外線をセンサ内部に取り込むための窓部が設けられており、上記窓部の直下には上記窓部を通過する赤外線をセンサチップ上に集光するレンズが配置されており、上記内側キャップは、上記レンズをはめ込むための窪み部を有している構成とすることができる。
【0027】
上記の構成によれば、上記レンズをはめ込むための窪み部を上記内側キャップに設けることで、レンズの焦点をセンサチップ上に合わせるための位置合わせが容易となる。
【0028】
また、上記赤外線温度センサでは、上記レンズの周辺部は上記金属キャップに接触または近接して配置されており、上記レンズと上記金属キャップとの隙間は接着剤が充填されている構成とすることができる。これにより、上記金属キャップと上記レンズとの間の熱伝導性を向上させ、センサ内温度の均一化を図ることができる。
【0029】
また、本発明の赤外線温度センサの製造方法は、上記記載の赤外線温度センサを製造するための赤外線温度センサの製造方法であって、実装基板上に、開口部が設けられた金属板を実装する工程と、上記金属板上に、赤外線を受信検知するセンサチップと、上記センサチップの検知信号を増幅する回路部とを搭載する工程と、上記実装基板上の電極と上記回路部とを、上記金属板の開口部を通じてワイヤ接続する工程と、上記金属板上に、上記センサチップおよび上記回路部を覆う金属キャップをかぶせてパッケージングする工程とを有していると共に、上記実装基板上に金属板を半田付けにて実装する工程では、上記実装基板と金属板との間に半田を介在させた状態で該金属板を実装基板に載置し、リフロー方式によって加熱することを特徴としている。
【0030】
上記の構成によれば、部材費および組立加工費が小さく安価でありながら、かつ、金属ステムを用いた従来構造と同程度の環境温度変化への出力変動耐性を有する赤外線温度センサを製造できる。
【発明の効果】
【0031】
本発明の赤外線温度センサは、上記センサチップおよび上記回路部を上記金属板および上記金属キャップからなるパッケージ内に収容した構造となる。上記パッケージは、高い熱導電性を有するため、センサ内部の温度を均一に保つ機能を有する。このため、上記赤外線温度センサは、環境温度変化へ対する高い出力変動耐性を有する、といった効果を奏する。
【0032】
また、上記金属板には開口部が設けられており、上記実装基板上の電極と上記回路部とは、上記開口部を通じてワイヤ接続されている。このような上記実装基板と上記回路部とのワイヤボンディングは、通常のCOB実装技術が適用できる。このため、上記赤外線温度センサは、金属ステムを用いたセンサを実装する従来技術に比べ、組立加工費の大幅な低減が可能となる、といった効果を奏する。
【図面の簡単な説明】
【0033】
【図1】本発明の一実施形態を示すものであり、赤外線温度センサの構成を示す斜視図である。
【図2】図1の赤外線温度センサで用いられる金属板の形状を示す斜視図である。
【図3】図1の赤外線温度センサにおける金属板の実装方法を示す斜視図である。
【図4】図1の赤外線温度センサにおける金属キャップとレンズとの封止構造を示す断面図である。
【図5】図1の赤外線温度センサにおける金属キャップの実装方法を示す斜視図である。
【図6】赤外線温度センサにおける環境温度変化への出力変動耐性を示すグラフである。
【図7】従来の赤外線温度センサの構成を示す断面図である。
【図8】従来の赤外線温度センサの構成を示す断面図である。
【発明を実施するための形態】
【0034】
以下、本発明の実施の形態について、図面を参照して詳細に説明する。図1は、本実施の形態に係る赤外線温度センサの構成を示す斜視図である。図1では、赤外線温度センサの内部構造が分かるように一部を断面としている。本実施の形態にかかる赤外線温度センサは、周囲環境を検出し、その検出結果を運転制御に利用する電子機器(エアコン等)において利用できる。
【0035】
図1に示す赤外線温度センサは、積層基板1、金属板2、センサチップ3、ASIC(Application Specific Integrated Circuit)4、金属キャップ5、内側キャップ6、およびレンズ7を備えて構成されている。積層基板1は、センサチップ3およびASIC4を実装するための実装基板であり、所定形状にパターニングされた配線層を有している。センサチップ3は赤外線を受信検知する素子であり、ASIC4はセンサチップ3の検知信号を増幅して出力するための回路部である。
【0036】
積層基板1上には金属板2が取り付けられ、センサチップ3およびASIC4は金属板2上に搭載される。また、金属板2には、積層基板1とASIC4とをワイヤ接続するための開口部21が設けられている。本実施の形態における金属板2の形状を図2に示す。
【0037】
センサチップ3およびASIC4上には、金属キャップ5、内側キャップ6、およびレンズ7からなる構造がかぶせられている。レンズ7は内側キャップ6の上面に形成された窪み部に嵌めこまれ、さらにその上から金属キャップ5がかぶせられる。金属キャップ5は、内側キャップ6およびレンズ7をその内側に完全に収容し、その下端は金属板2に接している。また、金属キャップ5の上面には、赤外線をセンサ内部に取り込むための窓部が設けられており、レンズ7は該窓部の直下に配置される。
【0038】
レンズ7は、金属キャップ5の窓部を通過する赤外線をセンサチップ3上に集光する。これによって、上記赤外線温度センサは効率のよい赤外線検知が可能となる。
【0039】
また、金属板2と金属キャップ5との隙間およびレンズ7と金属キャップ5との隙間、は接着剤にて封止され、センサ内部が密閉されるようになっている。これはもちろん、センサ内部が密閉されていなければ、空気の出入りによってセンサ内部の温度維持が困難になるためである。但し、金属キャップ5の窓部に取り付けられる赤外線透過部材は、必ずしもレンズである必要は無く、上記集光機能を必要としなければガラス板や透明樹脂板等であってもよい。
【0040】
上記構成の赤外線温度センサでは、金属板2と金属キャップ5とによるパッケージ構造が形成され、このパッケージ内部にセンサチップ3、ASIC4が配置される。このため、金属ステムを用いる従来構造のセンサと同程度に、センサ内温度を均一に保つことが可能となる。すなわち、従来構造と同程度の環境温度変化への出力変動耐性を有する赤外線温度センサを提供することができる。
【0041】
金属板2の材質は特に限定されないが、特に熱伝導性が良好な、鉄、銅、アルミ等を好適に用いることができる。また、金属板2は、さび防止と、後述する半田付け性を確保するため、表面コーティング(例えばニッケルメッキ)が施されていてもよい。
【0042】
また、内側キャップ6は樹脂にて形成されている。内側キャップ6を設ける主な目的は、外部温度の変化に追随してセンサ内温度が急激に変化することを避けるためである。上述したように、センサ内温度が不均一であると検出誤差が生じるため、上記赤外線温度センサでは、金属板2と金属キャップ5とによるパッケージ構造によってセンサ内温度を均一に保つようになっている。しかしながら、パッケージにおける熱伝導性を向上させるのみでは、外部温度が急減に変化した場合、センサ内温度も急激に変化する。センサ内温度に関しては、このような急激な温度が生じることも好ましくない。このため、上記赤外線温度センサでは、樹脂にて形成された内側キャップ6を設け、外部温度の変化を緩和して、センサ内温度の急激な変化を避けるようにしている。
【0043】
続いて、上記赤外線温度センサの組立手順を説明する。最初に、積層基板1上に金属板2を半田付けにて実装する。この半田付け工程では、間にクリーム半田を介在させた状態で金属板2を積層基板1上に載置し、リフローによって加熱するといった、電子部品の実装技術における一般的な半田付け方法が使用可能である。
【0044】
このように、半田付けによって積層基板1上に金属板2を実装するため、積層基板1には半田付け用ランドが予め形成されている(図3参照)。半田付け用ランドは、少なくとも、金属板2の中心から上下左右に均等な位置で金属板2のエッジにかかる4箇所に対応して設けられる。半田付け用ランドは、実装される金属板2の4隅または4辺に対応する箇所に設けられていても良い。また、金属板2のほぼ中央に対応する箇所にも、半田付け用ランドを形成することが好ましい。これは、金属板2の中央部付近で金属板2と積層基板1との間に隙間が生じて、金属板2に撓みが生じることを防ぐためである。金属板2の中央に対応する箇所のランドは、1箇所であっても複数箇所であってもよい。
【0045】
続いて、金属板2上にセンサチップ3、ASIC4が搭載される。センサチップ3、ASIC4は、金属板2上に接着剤によって実装することができる。その後、ワイヤボンディングによって配線接続(センサチップ3とASIC4との接続、およびASIC4と積層基板1との接続)がなされる。上述したように、金属板2には、積層基板1とASIC4とをワイヤ接続するための開口部21が設けられている。つまり、金属板2が積層基板1に実装されている状態で、積層基板1側の接続用パッド(電極)は、開口部21の領域に配置されている。このため、開口部21を通じて積層基板1とASIC4とのワイヤボンディングが可能となる。このような積層基板1とASIC4とのワイヤボンディングは、通常のCOB(Chip On Board)実装技術が適用できるため、金属ステムを用いたセンサを実装する従来技術に比べ、組立加工費の大幅な低減が可能となる。
【0046】
金属キャップ5、内側キャップ6、およびレンズ7については、積層基板1への実装前に、これら部材の組み立てが行われる。まず、内側キャップ6の上面に形成された窪み部にレンズ7が嵌めこまれ、さらにその上から金属キャップ5がかぶせられる。レンズ7はその焦点がセンサチップ上に来るように精度良く位置あわせして組み込む必要があるが、レンズ7をはめ込むための窪み部を内側キャップ6に設けることで、この位置合わせが容易となる。
【0047】
レンズ7の周辺部は金属キャップ5に接触または近接して配置されており、金属キャップ5とレンズ7との隙間は接着剤にて封止される。この時、接着剤は、金属キャップ5とレンズ7との隙間の略全体を充填することが好ましい(図4参照)。これは、密閉性を高めるだけでなく、金属キャップ5とレンズ7との間の熱伝導性を向上させる意味がある。
【0048】
金属キャップ5、内側キャップ6、およびレンズ7の組立物は、センサチップ3およびASIC4の実装がすんだ積層基板1の金属板2上にかぶせられ、センサがパッケージングされる。この時、金属キャップ5と金属板2とは接着剤にて封止され、赤外線温度センサの内部が密閉される。上記組立物の実装を容易にするため、金属板2には、キャップ位置決め用突起22を設けても良い(図5参照)。キャップ位置決め用突起22は、金属板2の4隅または4辺に設けられていることが好ましい。これにより、金属キャップ5を金属板2に実装する際、容易に精度良く位置決めできる。
【0049】
本実施の形態に係る赤外線温度センサにおける環境温度変化への出力変動耐性を図6に示す。図6は、センサの周囲温度を25℃から35℃に上昇させた場合(温度変動に要した時間は約100s)の出力温度の変動をしめすグラフであり、横軸に時間、縦軸にセンサ出力温度誤差を示している。また、図6では、本実施の形態のセンサ以外に、比較例1,2におけるセンサの測定結果を示している。ここで、比較例1は、特許文献1の従来構造に対応するものであり、金属ステムを介して実装基板上にセンサチップが搭載された構造である。また、比較例2は、本発明と同様に、金属板を介して実装基板上にセンサチップが搭載されているが、レンズと金属キャップとの間が樹脂充填されておらず隙間が生じている構造である。
【0050】
まず、本実施の形態に係るセンサは、周囲温度の急減な変化にも関わらず、出力温度の誤差はほぼ±0.5℃以内であり、また、周囲温度の変化後に発生する誤差の戻りも早い。一方、比較例1のセンサでは、最大誤差が0.8℃近くあり、温度変化開始後300s程度の時間が経過するまで、0.5℃以上の誤差が発生している。これより、本実施の形態に係るセンサは、金属ステムを用いない安価な構造であるに関わらず、金属ステムを用いた従来センサと同程度かそれ以上の環境温度変化への出力変動耐性を有していることが分かる。
【0051】
また、比較例2のセンサでは、2.0℃に近い最大誤差が発生しており、誤差が0.5℃程度に収束するまで700s程度の時間を有している。これより、実装基板とセンサチップとの間に金属板を介して放熱性を高めても、センサ内の密閉性がなければ出力変動耐性を有さないことが分かる。
【0052】
本発明の赤外線温度センサにおいては、金属板2は積層基板1上のGND電位に接続され、かつ、金属板2と金属キャップ5とを導電性接着剤にて電気的に接続する構成とすることが好ましい。センサチップ3およびASIC4は電波ノイズの影響を受けやすいセンシティブなデバイスであるが、上記構成とすることで、金属板2および金属キャップ5からなるパッケージに電波ノイズを遮断するシールド効果をもたせることができる。また、上記構成は、積層基板1上の半田付け用ランドの少なくとも一つを、GND電位供給配線と接続しておけば容易に実現できる。
【0053】
本発明は上述した各実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能であり、異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。
【産業上の利用可能性】
【0054】
本発明は、周囲環境を検出し、その検出結果を運転制御に利用する電子機器(エアコン等)に利用することができる。
【符号の説明】
【0055】
1 積層基板(実装基板)
2 金属板
3 センサチップ
4 ASIC(回路部)
5 金属キャップ
6 内側キャップ
7 レンズ
21 開口部
22 キャップ位置決め用突起

【特許請求の範囲】
【請求項1】
実装基板と、
上記実装基板上に実装される金属板と、
上記金属板上に搭載される赤外線を受信検知するセンサチップと、
上記金属板上に搭載される上記センサチップの検知信号を増幅する回路部と、
上記金属板上にかぶせられ、上記センサチップおよび上記回路部を覆う金属キャップとを有しており、
上記金属板には開口部が設けられており、上記実装基板上の電極と上記回路部とは、上記開口部を通じてワイヤ接続されており、
上記金属板は上記実装基板上のGND電位に接続されており、
上記金属キャップは上記金属板に電気的に接続されており、
上記金属板は上記実装基板に対して半田付けにて実装されており、
上記実装基板に複数の半田付け用ランドが形成されていることを特徴とする赤外線温度センサ。
【請求項2】
上記金属板は、半田付け性を確保するための表面コーティングが施されていることを特徴とする請求項1に記載の赤外線温度センサ。
【請求項3】
上記金属板には、上記金属キャップを位置決めするためのキャップ位置決め用突起が設けられていることを特徴とする請求項1又は2に記載の赤外線温度センサ。
【請求項4】
上記金属キャップの内側には、樹脂製の内側キャップが設けられていることを特徴とする請求項1から3のいずれか一項に記載の赤外線温度センサ。
【請求項5】
上記金属キャップの上面には、赤外線をセンサ内部に取り込むための窓部が設けられており、上記窓部の直下には上記窓部を通過する赤外線をセンサチップ上に集光するレンズが配置されており、
上記内側キャップは、上記レンズをはめ込むための窪み部を有していることを特徴とする請求項4に記載の赤外線温度センサ。
【請求項6】
上記レンズの周辺部は上記金属キャップに接触または近接して配置されており、上記レンズと上記金属キャップとの隙間は接着剤が充填されていることを特徴とする請求項5に記載の赤外線温度センサ。
【請求項7】
請求項1から6のいずれか一項に記載の赤外線温度センサを搭載したことを特徴とする電子機器。
【請求項8】
請求項1〜6のいずれか1項に記載の赤外線温度センサを製造するための赤外線温度センサの製造方法であって、
実装基板上に、開口部が設けられた金属板を半田付けにて実装する工程と、
上記金属板上に、赤外線を受信検知するセンサチップと、上記センサチップの検知信号を増幅する回路部とを搭載する工程と、
上記実装基板上の電極と上記回路部とを、上記金属板の開口部を通じてワイヤ接続する工程と、
上記金属板上に、上記センサチップおよび上記回路部を覆う金属キャップをかぶせてパッケージングする工程とを有していると共に、
上記実装基板上に金属板を半田付けにて実装する工程では、上記実装基板と金属板との間に半田を介在させた状態で該金属板を実装基板に載置し、リフロー方式によって加熱することを特徴とする赤外線温度センサの製造方法。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate


【公開番号】特開2013−50460(P2013−50460A)
【公開日】平成25年3月14日(2013.3.14)
【国際特許分類】
【出願番号】特願2012−238100(P2012−238100)
【出願日】平成24年10月29日(2012.10.29)
【分割の表示】特願2011−45689(P2011−45689)の分割
【原出願日】平成23年3月2日(2011.3.2)
【出願人】(000002945)オムロン株式会社 (3,542)
【Fターム(参考)】