説明

走査型プローブ顕微鏡、走査型プローブ顕微鏡用のプローブ、及び検査方法

【課題】 複数のカンチレバーのそれぞれからの反射光を識別可能な走査型プローブ顕微鏡を提供する。
【解決手段】 第1波長を有する第1照射光を発する第1の光源15、第1波長とは異なる第2波長を有する第2照射光を発する第2の光源25、試料50a上を走査し、第1照射光を第1反射光として反射する第1プローブ1、試料50b上を走査し、第2照射光を第2反射光として反射する第2プローブ2、第1波長を有する第1反射光を受光する第1受光素子16、及び第2波長を有する第2反射光を受光する第2受光素子26を備える。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は表面形状検査技術に係り、特に走査型プローブ顕微鏡、走査型プローブ顕微鏡用のプローブ、及び検査方法に関する。
【背景技術】
【0002】
走査型プローブ顕微鏡(SPM)は、真空や液体等の様々な測定環境下でデオキシリボ核酸(DNA)等の微細な試料を観察可能であり、ナノメーター以上の分解能を有する。またSPMは試料を単に可視化するだけでなく、ナノマニュピレーション、ナノリソグラフィ、あるいはピコニュートンレベルでの結合力測定等も可能にする。そのため、SPMはナノテクノロジーやバイオテクノロジーを牽引する重要なツールととらえられている。また、従来SPMは1本のプローブを有していたが、走査可能な範囲を広げるために複数のプローブを有するSPMが開発されている(例えば特許文献1参照。)。しかし、複数のプローブを有するSPMを用いると、複数のプローブのそれぞれからの反射光の識別が困難であるという問題があった。
【特許文献1】特表2005-532555号公報
【発明の開示】
【発明が解決しようとする課題】
【0003】
本発明は、複数のプローブのそれぞれからの反射光を識別可能な走査型プローブ顕微鏡、走査型プローブ顕微鏡用のプローブ、及び検査方法を提供することを目的とする。
【課題を解決するための手段】
【0004】
上記目的を達成するために本発明の第1の特徴は、(イ)第1波長を有する第1照射光を発する第1の光源と、(ロ)第1波長とは異なる第2波長を有する第2照射光を発する第2の光源と、(ハ)試料上を走査し、第1照射光を第1反射光として反射する第1プローブと、(ニ)試料上を走査し、第2照射光を第2反射光として反射する第2プローブと、(ホ)第1波長を有する第1反射光を受光する第1受光素子と、(ヘ)第2波長を有する第2反射光を受光する第2受光素子とを備える走査型プローブ顕微鏡であることを要旨とする。
【0005】
本発明の第2の特徴は、(イ)複数の波長成分を含む照射光を発する光源と、(ロ)試料上を走査し、照射光の第1波長成分を第1反射光として反射する第1プローブと、(ハ)試料上を走査し、照射光の第1波長成分とは異なる第2波長成分を第2反射光として反射する第2プローブと、(ニ)第1反射光を受光する第1受光素子と、(ホ)第2反射光を受光する第2受光素子とを備える走査型プローブ顕微鏡であることを要旨とする。
【0006】
本発明の第3の特徴は、(イ)第1の偏光方向に偏光している第1照射光を発する第1の照明光学系と、(ロ)第1の偏光方向とは異なる第2の偏光方向に偏光している第2照射光を発する第2の照明光学系と、(ハ)試料上を走査し、第1照射光を第1反射光として反射する第1プローブと、(ニ)試料上を走査し、第2照射光を第2反射光として反射する第2プローブと、(ホ)第1の偏光方向に偏光している第1反射光を受光する第1受光素子と、(ヘ)第2の偏光方向に偏光している第2反射光を受光する第2受光素子とを備える走査型プローブ顕微鏡であることを要旨とする。
【0007】
本発明の第4の特徴は、(イ)複数の偏光成分を含む照射光を発する光源と、(ロ)試料上を走査し、照射光の第1偏光成分を第1反射光として反射する第1プローブと、(ハ)試料上を走査し、照射光の第1偏光成分とは偏光方向が異なる第2偏光成分を第2反射光として反射する第2プローブと、(ニ)第1反射光を受光する第1受光素子と、(ホ)第2反射光を受光する第2受光素子とを備える走査型プローブ顕微鏡であることを要旨とする。
【0008】
本発明の第5の特徴は、(イ)カンチレバーと、(ロ)カンチレバーの底面に配置された探針と、(ハ)カンチレバーの上面に配置され、特定の波長の光を反射する波長選択反射膜とを備える走査型プローブ顕微鏡用のプローブであることを要旨とする。
【0009】
本発明の第6の特徴は、(イ)カンチレバーと、(ロ)カンチレバーの底面に配置された探針と、(ハ)カンチレバーの上面に配置された偏光膜とを備える走査型プローブ顕微鏡用のプローブであることを要旨とする。
【0010】
本発明の第7の特徴は、(イ)第1波長を有する第1照射光を発するステップと、(ロ)第1波長とは異なる第2波長を有する第2照射光を発するステップと、(ハ)試料上を走査する第1プローブで、第1照射光を第1反射光として反射するステップと、(ニ)試料上を走査する第2プローブで、第2照射光を第2反射光として反射するステップと、(ホ)第1波長を有する第1反射光を受光するステップと、(ヘ)第2波長を有する第2反射光を受光するステップとを備える検査方法であることを要旨とする。
【0011】
本発明の第8の特徴は、(イ)複数の波長成分を含む照射光を発するステップと、(ロ)試料上を走査する第1プローブで、照射光の第1波長成分を第1反射光として反射するステップと、(ハ)試料上を走査する第2プローブで、照射光の第1波長成分とは異なる第2波長成分を第2反射光として反射するステップと、(ニ)第1反射光を受光するステップと、(ホ)第2反射光を受光するステップとを備える検査方法であることを要旨とする。
【0012】
本発明の第9の特徴は、(イ)第1の偏光方向に偏光している第1照射光を発するステップと、(ロ)第1の偏光方向とは異なる第2の偏光方向に偏光している第2照射光を発するステップと、(ハ)試料上を走査する第1プローブで、第1照射光を第1反射光として反射するステップと、(ニ)試料上を走査する第2プローブで、第2照射光を第2反射光として反射するステップと、(ホ)第1の偏光方向に偏光している第1反射光を受光するステップと、(ヘ)第2の偏光方向に偏光している第2反射光を受光するステップとを備える検査方法であることを要旨とする。
【0013】
本発明の第10の特徴は、(イ)複数の偏光成分を含む照射光を発するステップと、(ロ)試料上を走査する第1プローブで、照射光の第1偏光成分を第1反射光として反射するステップと、(ハ)試料上を走査する第2プローブで、照射光の第1偏光成分とは偏光方向が異なる第2偏光成分を第2反射光として反射するステップと、(ニ)第1反射光を受光するステップと、(ホ)第2反射光を受光するステップとを備える検査方法であることを要旨とする。
【発明の効果】
【0014】
本発明によれば、複数のプローブのそれぞれからの反射光を識別可能な走査型プローブ顕微鏡、走査型プローブ顕微鏡用のプローブ、及び検査方法を提供可能である。
【発明を実施するための最良の形態】
【0015】
次に図面を参照して、本発明の実施の形態を説明する。以下の図面の記載において、同一又は類似の部分には同一又は類似の符号を付している。なお以下の示す実施の形態は、この発明の技術的思想を具体化するための装置や方法を例示するものであって、この発明の技術的思想は構成部品の配置等を下記のものに特定するものではない。この発明の技術的思想は、特許請求の範囲において種々の変更を加えることができる。
【0016】
(第1の実施の形態)
第1の実施の形態に係る走査型プローブ顕微鏡は、図1に示すように、第1波長を有する第1照射光を発する第1の光源15、第1波長とは異なる第2波長を有する第2照射光を発する第2の光源25、試料50a上を走査し、第1照射光を第1反射光として反射する第1プローブ1、試料50b上を走査し、第2照射光を第2反射光として反射する第2プローブ2、第1波長を有する第1反射光を受光する第1受光素子16、及び第2波長を有する第2反射光を受光する第2受光素子26を備える。なお試料50aと試料50bは、同一物体の異なる部分でもよいし、異なる物体でもよい。
【0017】
試料50a及び試料50bは水平方向(以下、XY方向)にラスター走査するサンプルスキャナ70上に配置されている。サンプルスキャナ70にはピエゾ圧電素子等が使用可能である。レーザダイオード等の第1の光源15は、波長780nmの赤色レーザ光等の第1照射光を第1プローブ1に向けて照射する。第1プローブ1は、シリコン(Si)等からなる第1カンチレバー10、及び第1カンチレバー10の底面に配置された第1の探針11を備える。第1カンチレバー10は、XY方向及びXY方向に対して上下方向に移動可能な第1ホルダ12に保持される。第1ホルダ12には、第1ホルダ12をXY方向及び上下方向に粗動駆動する第1粗動モジュール31が接続されている。第1粗動モジュール31には、アクチュエータ、モータ、あるいはピエゾ圧電素子等が使用可能である。第1粗動モジュール31は、第1カンチレバー10の先端に配置された第1の探針11を、試料50a上の任意の位置に位置決めする。第1ホルダ12には第1加振器13が接続されている。第1加振器13は、第1ホルダ12を介して第1カンチレバー10を第1の周波数で振動させる。第1加振器13にはピエゾ圧電素子等が使用可能である。また第1加振器13は、第1の周波数で振動する電気的な信号である第1の参照信号を生成する。
【0018】
レーザダイオード等の第2の光源25は、波長405nmの青色レーザ光等の第2照射光を第2プローブ2に向けて照射する。第2プローブ2は、Si等からなる第2カンチレバー20、及び第2カンチレバー20の底面に配置された第2の探針21を備える。第2カンチレバー20は、XY方向及び上下方向に移動可能な第2ホルダ22に保持される。第2ホルダ22には、第2ホルダ22をXY方向及び上下方向に粗動駆動する第2粗動モジュール41が接続されている。第2粗動モジュール41は、第2カンチレバー20の先端に配置された第2の探針21を、試料50b上の任意の位置に位置決めする。第2ホルダ22には第2加振器23が接続されている。第2加振器23は、第2ホルダ22を介して第2カンチレバー20を第2の周波数で振動させる。また第2加振器23は、第2の周波数で振動する電気的な信号である第2の参照信号を生成する。
【0019】
第1の探針11を試料50a表面に、第2の探針21を試料50b表面に接近させ、サンプルスキャナ70をラスタスキャンさせると、第1カンチレバー10が試料50a表面を走査し、第2カンチレバー20が試料50b表面を走査する。第1カンチレバー10が試料50a表面を走査している間、第1の光源15は第1カンチレバー10に向けて第1照射光を照射し、第1カンチレバー10は第1照射光を第1反射光として反射する。第1反射光も第1波長を有する。第2カンチレバー20が試料50b表面を走査している間、第2の光源25は第2カンチレバー20に向けて第2照射光を照射し、第2カンチレバー20は第2照射光を第2反射光として反射する。第2反射光も第2波長を有する。
【0020】
第1反射光を受光する第1受光素子16及び第2反射光を受光する第2受光素子26のそれぞれには、2分割フォトダイオード等が使用可能である。また第1受光素子16には、波長780nmの赤色レーザ光を検出できるように、例えば受光波長が350nm〜1100nmのSi受光素子や、受光波長が780nm〜1700nmのインジウムガリウム砒素(InGaAs)受光素子が用いられる。第2 受光素子26には、波長405nmの青色レーザ光を検出できるように、例えば受光波長が350〜1100nmのSi受光素子を用いる。さらに重複する波長のレーザ光をカットするため、第1受光素子16の前には波長が350nm〜500nm程度のレーザ光をカットする第1カットフィルター17が配置されており、第2受光素子26の前には波長が500nm〜1100nm程度のレーザ光をカットする第2カットフィルター27が配置されている。第1受光素子16は、上段受光素子116a及び下段受光素子116bを備える。第2受光素子26は、上段受光素子126a及び下段受光素子126bを備える。第1受光素子16の上段受光素子116aは、第1反射光を第1の上段電気信号に光電変換する。第1受光素子16の下段受光素子116bは、第1反射光を第1の下段電気信号に光電変換する。第2受光素子26の上段受光素子126aは、第2反射光を第2の上段電気信号に光電変換する。第2受光素子26の下段受光素子126bは、第2反射光を第2の下段電気信号に光電変換する。
【0021】
ここで、試料50a表面を走査中に第1カンチレバー10が上方に移動すると、下段受光素子116bが受光する第1反射光の光強度が減少し、上段受光素子116aが受光する第1反射光の光強度が増加する。第1カンチレバー10が下方に移動すると、上段受光素子116aが受光する第1反射光の光強度が減少し、下段受光素子116bが受光する第1反射光の光強度が増加する。したがって、第1カンチレバー10の上下方向の動きに従って、上段受光素子116aが出力する第1の上段電気信号と下段受光素子116bが出力する第1の下段電気信号の差が変化する。
【0022】
また、試料50b表面を走査中に第2カンチレバー20が上方に移動すると、下段受光素子126bが受光する第2反射光の光強度が減少し、上段受光素子126aが受光する第2反射光の光強度が増加する。第2カンチレバー20が下方に移動すると、上段受光素子126aが受光する第2反射光の光強度が減少し、下段受光素子126bが受光する第2反射光の光強度が増加する。したがって、第2カンチレバー20の上下方向の動きに従って、上段受光素子126aが出力する第2の上段電気信号と下段受光素子126bが出力する第2の下段電気信号の差が変化する。
【0023】
第1受光素子16には第1差分算出モジュール236が接続され、第2受光素子26には第2差分算出モジュール246が接続されている。第1受光素子16は第1差分算出モジュール236に第1の上段電気信号及び第1の下段電気信号のそれぞれを伝送する。第2受光素子26は第2差分算出モジュール246に第2の上段電気信号及び第2の下段電気信号のそれぞれを伝送する。
【0024】
第1差分算出モジュール236は、第1の上段測定信号と第1の下段測定信号との差をとり、第1の差分電気信号を算出する。第1差分算出モジュール236には、第1位相検波器235が接続されている。第1位相検波器235は第1加振器13にも接続されており、第1加振器13から第1の参照信号を受信する。第1位相検波器235は第1の差分電気信号と第1の参照信号との積演算を行い、ローパスフィルターで積分して、第1の周波数で振動する第1の差分測定信号を抽出する。なお差分測定信号のうち第1の周波数以外の周波数で振動する周波数成分は、積分すると0となる。したがって第1の差分測定信号は外乱光等の影響を受けず、第1反射光のみを反映する。
【0025】
第2差分算出モジュール246は、第2の上段測定信号と第2の下段測定信号との差をとり、第2の差分電気信号を算出する。第2差分算出モジュール246には、第2位相検波器245が接続されている。第2位相検波器245は第2加振器23にも接続されており、第2加振器23から第2の参照信号を受信する。第2位相検波器245は第2の差分電気信号と第2の参照信号との積演算を行い、ローパスフィルターで積分して、第2の周波数で振動する第2の差分測定信号を抽出する。なお差分測定信号のうち第2の周波数以外の周波数で振動する周波数成分は、積分すると0となる。したがって第2の差分測定信号は外乱光等の影響を受けず、第2反射光のみを反映する。
【0026】
第1位相検波器235には第1フィードバックモジュール32が接続されており、第1位相検波器235は第1フィードバックモジュール32に第1の差分測定信号を伝送する。第1フィードバックモジュール32には、第1ピエゾ33が接続されている。第1ピエゾ33は、第1ホルダ12を介して、第1カンチレバー10を上下方向に移動させる。ここでサンプルスキャナ70が試料50aをXY方向に走査中に試料50aに凹凸があると、第1の探針11と試料50a表面との距離が変化する。第1の探針11と試料50aとの距離が変化すると、例えばファンデルワールス力及び磁気力等の、第1の探針11と試料50a表面の間の相互作用の強さが変化する。そのため、第1カンチレバー10の振動の振幅が変化する。第1フィードバックモジュール32は第1の差分測定信号の振幅の変化を監視することにより、第1カンチレバー10の振幅の変化を検知する。第1カンチレバー10の振幅が変化した時には、第1フィードバックモジュール32は第1ピエゾ33に第1のフィードバック電圧を印加して第1カンチレバー10の上下位置を変動させ、第1の周波数における第1カンチレバー10の振幅を一定に保たせる。第1カンチレバー10の振幅を一定に保たせることにより、第1の探針11と試料50a表面との距離が一定に保たれる。第1フィードバックモジュール32には第1画像生成モジュール37が接続されている。第1フィードバックモジュール32は、第1のフィードバック電圧を第1画像生成モジュール37にも伝送する。第1画像生成モジュール37は、試料50a上を第1カンチレバー10が走査した際の第1のフィードバック電圧の履歴に基づいて、試料50aの表面画像を生成する。
【0027】
第2位相検波器245には第2フィードバックモジュール42が接続されており、第2位相検波器245は第2フィードバックモジュール42に第2の差分測定信号を伝送する。第2フィードバックモジュール42には、第2ピエゾ43が接続されている。第2ピエゾ43は、第2ホルダ22を介して、第2カンチレバー20を上下方向に移動させる。ここでサンプルスキャナ70が試料50bをXY方向に走査中に試料50bに凹凸があると、第2の探針21と試料50b表面との距離が変化する。第2の探針21と試料50bとの距離が変化すると、第2の探針21と試料50b表面の間の相互作用の強さが変化する。そのため、第2カンチレバー20の振動の振幅が変化する。第2フィードバックモジュール42は第2の差分測定信号の振幅の変化を監視することにより第2カンチレバー20の振幅の変化を検知する。第2カンチレバー20の振幅が変化した時には、第2フィードバックモジュール42は第2ピエゾ43に第2のフィードバック電圧を印加して第2カンチレバー20の上下位置を変動させ、第2の周波数における第2カンチレバー20の振幅を一定に保たせる。第2カンチレバー20の振幅を一定に保たせることにより、第2の探針21と試料50b表面との距離が一定に保たれる。第2フィードバックモジュール42には第2画像生成モジュール47が接続されている。第2フィードバックモジュール42は、第2のフィードバック電圧を第2画像生成モジュール47に伝送する。第2画像生成モジュール47は、試料50b上を第2カンチレバー20が走査した際の第2のフィードバック電圧の履歴に基づいて、試料50bの表面画像を生成する。
【0028】
第1画像生成モジュール37及び第2画像生成モジュール47には、出力装置251が接続されている。出力装置251は、第1画像生成モジュール37で生成された試料50aの表面画像及び第2画像生成モジュール47で生成された試料50bの表面画像を表示する。出力装置251には、液晶モニタ等が使用可能である。
【0029】
サンプルスキャナ70、第1粗動モジュール31、第1加振器13、及び第1フィードバックモジュール32のそれぞれは、制御モジュール150に接続されている。制御モジュール150はサンプルスキャナ70を制御して、試料50aをXY方向に走査させる。また制御モジュール150は、第1粗動モジュール31に試料50a上における第1の探針11の配置を指示する。さらに制御モジュール150は、第1加振器13に第1の周波数を設定し、第1フィードバックモジュール32に第1加振器13に設定した第1の周波数を伝達する。また第2粗動モジュール41、第2加振器23、及び第2フィードバックモジュール42のそれぞれも、制御モジュール150に接続されている。制御モジュール150は第2粗動モジュール41に試料50b上における第2の探針21の配置を指示する。さらに制御モジュール150は、第2加振器23に第2の周波数を設定し、第2フィードバックモジュール42に第2加振器23に設定した第2の周波数を伝達する。制御モジュール150には、入力装置250が接続されている。入力装置250は、制御モジュール150にサンプルスキャナ70の走査条件、第1の探針11の配置、第2の探針21の配置、第1の周波数、及び第2の周波数等を入力するために用いられる。入力装置250には、キーボード等が使用可能である。
【0030】
次に第1の実施の形態に係る検査方法を、図2に示すフローチャートを用いて説明する。
【0031】
(a) ステップS101で、図1に示す第1加振器13で第1カンチレバー10を第1の周波数で振動させる。さらに第1の光源15から第1カンチレバー10に向けて第1波長を有する第1照射光を照射する。次に第1粗動モジュール31で第1の探針11を試料50aの検査位置に近接させる。その後、サンプルスキャナ70をラスタースキャンさせることにより、第1カンチレバー10で試料50aを走査する。
【0032】
(b) ステップS101と並行してステップS111で、第2加振器23で第2カンチレバー20を第2の周波数で振動させる。さらに第2の光源25から第2カンチレバー20に向けて第2波長を有する第2照射光を照射する。次に第2粗動モジュール41で第2の探針21を試料50bの検査位置に近接させる。サンプルスキャナ70はラスタースキャンしているため、第2カンチレバー20は試料50b上を走査する。
【0033】
(c) ステップS201で、試料50aを走査中の第1カンチレバー10は第1照射光を第1反射光として反射する。この時、試料50aの表面形状に応じて第1カンチレバー10の振幅が変動すると、第1受光素子16へ入射する第1反射光の振幅も、試料50aの表面形状に応じて変動する。ステップS201に並行してステップS211で、試料50bを走査中の第2カンチレバー20は第2照射光を第2反射光として反射する。この時、試料50bの表面形状に応じて第2カンチレバー20の振幅が変動すると、第2受光素子26へ入射する第2反射光の振幅も、試料50bの表面形状に応じて変動する。
【0034】
(d) ステップS202で第1受光素子16の上段受光素子116aは、第1反射光及び外乱交を受光し、第1の上段電気信号に光電変換する。同時に、第1受光素子16の下段受光素子116bは、第1反射光及び外乱交を受光し、第1の下段電気信号に光電変換する。第1受光素子16は、第1の上段電気信号及び第1の下段電気信号のそれぞれを、第1差分算出モジュール236に伝送する。
【0035】
(e) ステップS202に並行してステップS212で、第2受光素子26の上段受光素子126aは、第2反射光及び外乱交を受光し、第2の上段電気信号に光電変換する。同時に、第2受光素子26の下段受光素子126bは、第2反射光及び外乱交を受光し、第2の下段電気信号に光電変換する。第2受光素子26は、第2の上段電気信号及び第2の下段電気信号のそれぞれを、第2差分算出モジュール246に伝送する。ステップS203で第1差分算出モジュール236は、第1の上段電気信号と第1の下段電気信号との差をとり、第1の差分測定信号を算出する。ステップS203に並行してステップS213で、第2差分算出モジュール246は第2の上段電気信号と第2の下段電気信号との差をとり、第2の差分測定信号を算出する。
【0036】
(f) ステップS204で第1位相検波器235は、第1の周波数で振動する第1の参照信号を第1加振器13から受信する。次に第1位相検波器235は、第1の差分測定信号と第1の参照信号との積演算を行い、ローパスフィルターで積分して、第1の周波数で振動する第1の測定信号を抽出する。第1位相検波器235は第1の測定信号を第1フィードバックモジュール32に伝送する。次に第1フィードバックモジュール32は、第1の測定信号の振幅の変化から第1カンチレバー10の振幅の変化を検知すると、ステップS205で第1ピエゾ33に第1のフィードバック電圧を印加し、第1の周波数における第1カンチレバー10の振幅を一定に保たせる。
【0037】
(g) ステップS204に並行してステップS214で、第2位相検波器245は第2の周波数で振動する第2の参照信号を第2加振器23から受信する。次に第2位相検波器245は、第2の差分測定信号と第2の参照信号との積演算を行い、ローパスフィルターで積分して、第2の周波数で振動する第2の測定信号を抽出する。第2位相検波器245は第2の測定信号を第2フィードバックモジュール42に伝送する。次に第2フィードバックモジュール42は第2の測定信号の振幅の変化から第2カンチレバー20の振幅の変化を検知すると、ステップS215で第2ピエゾ43に第2のフィードバック電圧を印加し、第2の周波数における第2カンチレバー20の振幅を一定に保たせる。
【0038】
(h) ステップS206で第1画像生成モジュール37は、第1フィードバックモジュール32から第1のフィードバック電圧を受信する。第1画像生成モジュール37は第1の探針11が試料50a上の各位置を走査した時に第1フィードバックモジュール32が第1ピエゾ33に印加した第1のフィードバック電圧の履歴に基づいて、試料50aの表面画像を生成する。
【0039】
(i) ステップS216で第2画像生成モジュール47は、第2フィードバックモジュール42から第2のフィードバック電圧を受信する。第2画像生成モジュール47は第2の探針21が試料50b上の各位置を走査した時に第2フィードバックモジュール42が第2ピエゾ43に印加した第2のフィードバック電圧の履歴に基づいて、試料50bの表面画像を生成する。
【0040】
(j) ステップS301で第1画像生成モジュール37は、出力装置251に試料50aの表面画像を伝送する。また第2画像生成モジュール47は、出力装置251に試料50bの表面画像を伝送する。出力装置251は、試料50aの表面画像及び試料50bの表面画像を表示し、第1の実施の形態に係る検査方法を終了する。
【0041】
従来、複数のカンチレバーを有するSPMで試料を観察すると、複数のカンチレバーのそれぞれからの反射光が干渉するという問題があった。これに対し、図1に示す走査型プローブ顕微鏡及び図2に示す検査方法によれば、図1に示す第1カンチレバー10に第1照射光が照射され、第2カンチレバー20に、第1照射光とは波長が異なる第2照射光が照射される。そのため、第1カンチレバー10から反射される第1反射光の第1波長と、第2カンチレバー20から反射される第2反射光の第2波長が異なるため、第1反射光と第2反射光は干渉しない。したがって、第1カンチレバー10及び第2カンチレバー20が近接して配置されており、第1反射光と第2反射光が交差するような場合でも、第1画像生成モジュール37は第2反射光に影響されずに試料50aの表面画像を生成する。また第2画像生成モジュール47は、第1反射光に影響されずに試料50bの表面画像を生成する。
【0042】
さらに、図1に示す走査型プローブ顕微鏡及び図2に示す検査方法によれば、図1に示す第1カンチレバー10及び第2カンチレバー20のそれぞれを、異なる周波数で振動させる。そのため、第1反射光及び第2反射光は、異なる周波数で振動する。したがって、第1受光素子16が第1反射光及び第2反射光の両方を受光しても、第1位相検波器235で第1反射光のみを反映する第1の測定信号を抽出可能である。また第2受光素子26が第1反射光及び第2反射光の両方を受光しても、第2位相検波器245で第2反射光のみを反映する第2の測定信号を抽出可能である。そのため、第1カンチレバー10と第2カンチレバー20が近接していて、第1反射光と第2反射光とを空間的に分離する光学系の配置が困難である場合や、複数の受光素子の配置が困難である場合でも、高い精度で第1カンチレバー10で検査された試料50aと第2カンチレバー20で検査された試料50bのそれぞれの表面画像を生成することが可能となる。ただしこれは、カンチレバーを振動して測定する場合であり、カンチレバーを振動させない測定モードであるコンタクトモードにおいてはこの限りではない。
【0043】
(第1の実施の形態の第1の変形例)
図1に示す走査型プローブ顕微鏡と異なり、図3に示す第1の変形例に係る走査型プローブ顕微鏡においては、第1受光素子16に第1位相検波器235が接続されており、第2受光素子26に第2位相検波器245が接続されている。第1位相検波器235は第1加振器13に接続されており、第1の参照信号を第1加振器13から受信する。第1位相検波器235は第1の上段電気信号と第1の参照信号との積演算を行い、ローパスフィルターで積分することにより、第1の上段電気信号から第1の周波数で振動する第1の上段測定信号を抽出する。また第1位相検波器235は第1の下段電気信号と第1の参照信号との積演算を行い、ローパスフィルターで積分することにより、第1の下段電気信号から第1の周波数で振動する第1の下段測定信号を抽出する。
【0044】
第1位相検波器235には、第1差分算出モジュール236が接続されている。第1差分算出モジュール236は、第1の上段測定信号と第1の下段測定信号との差をとり、第1の差分測定信号を算出する。第1差分算出モジュール236は、第1フィードバックモジュール32に第1の差分測定信号を伝送する。第1フィードバックモジュール32は第1の差分測定信号の振幅の変化を監視することにより、第1カンチレバー10の振幅の変化を検知する。
【0045】
第2位相検波器245は第2加振器23に接続されており、第2の参照信号を第2加振器23から受信する。第2位相検波器245は第2の上段電気信号と第2の参照信号との積演算を行い、ローパスフィルターで積分することにより、第2の上段電気信号から第2の周波数で振動する第2の上段測定信号を抽出する。また第2位相検波器245は第2の下段電気信号と第2の参照信号との積演算を行い、ローパスフィルターで積分することにより、第2の下段電気信号から第2の周波数で振動する第2の下段測定信号を抽出する。
【0046】
第2位相検波器245には、第2差分算出モジュール246が接続されている。第2差分算出モジュール246は、第2の上段測定信号と第2の下段測定信号との差をとり、第2の差分測定信号を算出する。第2差分算出モジュール246は、第2フィードバックモジュール42に第2の差分測定信号を伝送する。第2フィードバックモジュール42は第2の差分測定信号の振幅の変化を監視することにより、第2カンチレバー20の振幅の変化を検知する。その他の構成要件は図1と同様であるので、説明は省略する。
【0047】
(第1の実施の形態の第2の変形例)
第2の変形例に係る走査型プローブ顕微鏡においては、図4に示すように、第1プローブ101が第1波長の光を選択的に反射する第1波長選択反射膜14を備える。第1波長選択反射膜14は、第1カンチレバー10の上面に配置されている。また第2プローブ102が第2波長の光を選択的に反射する第2波長選択反射膜24を備える。第2波長選択反射膜24は、第2カンチレバー20の上面に配置されている。第1波長選択反射膜14及び第2波長選択反射膜24のそれぞれには、誘電体多層膜等が使用可能である。第1波長選択反射膜14は、第1カンチレバー10上に例えばモリブデン(Mo)からなるモリブデン薄膜と、Siからなるシリコン薄膜とを交互に積層させて形成される。交互に積層されるモリブデン薄膜とシリコン薄膜のそれぞれの膜厚を調節することにより、第1波長の光を選択的に反射することが可能となる。第2波長選択反射膜24は、第2カンチレバー20上にモリブデン薄膜と、シリコン薄膜とを交互に積層させて形成される。交互に積層されるモリブデン薄膜とシリコン薄膜のそれぞれの膜厚を調節することにより、第2波長の光を選択的に反射することが可能となる。
【0048】
第2の変形例においては、第1プローブ101が第1波長選択反射膜14を備えるため、第1波長以外の波長の光が第1プローブ101に入射しても反射されない。また、第2プローブ102が第2波長選択反射膜24を備えるため、第2波長以外の波長の光が第2プローブ102に入射しても反射されない。したがって、第1プローブ101及び第2プローブ102のそれぞれが散乱光等を反射し、試料50a, 50bの表面画像にノイズが生じることを予防することが可能となる。
【0049】
(第2の実施の形態)
図5に示す第2の実施の形態に係る走査型プローブ顕微鏡は、白色LED等の広波長帯域の照射光を発する光源5を備える。複数の波長成分を含む照射光の進行方向には、コリメートレンズ90が配置されている。コリメートレンズ90は、照射光を平行光にする。平行光にされた照射光の進行方向には、プリズム91が配置されている。プリズム91は、照射光を第1カンチレバー10及び第2カンチレバー20の方向に屈折させる。プリズム91で屈折された照射光の進行方向には、第1集光レンズ92及び第2集光レンズ93が配置されている。第1集光レンズ92は、照射光を第1プローブ101上に集光する。第2集光レンズ93は、照射光を第2プローブ102上に集光する。
【0050】
第1プローブ101の第1カンチレバー10上には、第1波長選択反射膜14が配置されている。第1波長選択反射膜14は、広波長帯域の照射光を照射されると、第1波長(例えば780nm)を中心波長とする光の波長成分である第1波長成分を、第1反射光として反射する。また第2プローブ102の第2カンチレバー20上には、第2波長選択反射膜24が配置されている。第2波長選択反射膜24は、広波長帯域の照射光を照射されると、第2波長(例えば405nm)を中心波長とする光の波長成分である第2波長成分を、第2反射光として反射する。第1カンチレバー10上で反射された第1反射光の進行方向には、第1反射鏡94が配置されている。第1反射鏡94は、第1反射光を第1受光素子16に向けて反射する。第2カンチレバー20上で反射された第2反射光の進行方向には、第2反射鏡95が配置されている。第2反射鏡95は、第2反射光を第2受光素子26に向けて反射する。その他の構成要素は、図1に示す走査型プローブ顕微鏡と同様であるので、説明は省略する。なお、プリズム91の代わりに反射ミラーを配置し、照射光を第1カンチレバー10及び第2カンチレバー20の方向に反射してもよい。
【0051】
次に第2の実施の形態に係る検査方法を、図6に示すフローチャートを用いて説明する。
【0052】
(a) ステップS121で、図5に示す第1加振器13で第1カンチレバー10を第1の周波数で振動させ、第2加振器23で第2カンチレバー20を第2の周波数で振動させる。次に光源5から複数の波長成分を含む照射光を発する。照射光はコリメートレンズ90、プリズム91、第1集光レンズ92、及び第2集光レンズ93を経て第1プローブ101及び第2プローブ102上に到達する。次に第1粗動モジュール31で第1の探針11を試料50aの検査位置に近接させ、第2粗動モジュール41で第2の探針21を試料50bの検査位置に近接させる。その後、サンプルスキャナ70をラスタースキャンさせ、第1プローブ101で試料50aを走査し、第2プローブ102で試料50bを走査する。
【0053】
(b) ステップS221で、試料50aを走査中の第1プローブ101の第1波長選択反射膜14は照射光の第1波長成分を第1反射光として反射する。ステップS221に並行してステップS231で、試料50bを走査中の第2プローブ102の第2波長選択反射膜24は照射光の第2波長成分を第2反射光として反射する。以後、図2のステップS202乃至ステップS206と同様に、図6のステップS222乃至ステップS226を実施する。また図2のステップS212乃至ステップS216と同様に、図6のステップS232乃至ステップS236を実施する。最後に、図2のステップS301と同様に図6のステップS321を実施して、第2の実施の形態に係る検査方法を終了する。
【0054】
以上示した第2の実施の形態に係る走査型プローブ顕微鏡によれば、単一の光源5を用いながらも、第1プローブ101からの第1反射光と、第2プローブ102からの第2反射光との干渉を防止することが可能となる。なお、第1反射光の進行方向に、図7に示すように、第1波長の光のみを透過させる第1波長フィルター53を配置し、第2反射光の進行方向に、第2波長の光のみを透過させる第2波長フィルター54を配置してもよい。第1波長フィルター53及び第2波長フィルター54のそれぞれには、ダイクロイックフィルター等が使用可能である。第1波長フィルター53により、第1受光素子16に第1反射光以外の光が入射するのを防止することが可能となる。また第2波長フィルター54により、第2受光素子26に第2反射光以外の光が入射するのを防止することが可能となる。
【0055】
(第2の実施の形態の変形例)
図8に示す変形例に係る走査型プローブ顕微鏡は、単一の光源35を備える。光源35には、例えば白色LED等の広波長帯域の照射光を発する光源が使用可能である。第1カンチレバー10及び第2カンチレバー20の上方には、第1ダイクロイックミラー51及び第2ダイクロイックミラーが52配置されている。第1ダイクロイックミラー51は、光源35が発した照射光のうち、赤色光の第1波長成分のみ選択的に第1カンチレバー10に向けて反射し、第1波長成分以外の波長成分はそのまま透過させる。第2ダイクロイックミラー52は、光源35が発し第1ダイクロイックミラー51を透過した照射光のうち、青色光の第2波長成分のみ選択的に第2カンチレバー20に向けて反射し、第2波長成分以外の波長成分はそのまま透過させる。第2ダイクロイックミラー52を透過した照射光は、カンチレバーが2個の場合は不要となるので、例えば不図示の吸収フィルターで吸収される。カンチレバーが2個以上の場合は、検出光として利用する。
【0056】
第1ダイクロイックミラー51で下方に向かって反射した第1波長成分は、第1カンチレバー10を照射する。第1波長成分は、第1カンチレバー10で第1反射光として反射される。第2ダイクロイックミラー52で下方に向かって反射した第2波長成分は、第2カンチレバー20を照射する。第2波長成分は、第2カンチレバー20で第2反射光として反射される。第1カンチレバー10で反射される第1反射光の第1波長と、第2カンチレバー20で反射される第2反射光の第2波長は異なるため、第1反射光と第2反射光は干渉しない。したがって、第1カンチレバー10及び第2カンチレバー20が近接して配置されており、第1反射光と第2反射光が交差するような場合でも、第1画像生成モジュール37は第2反射光に影響されずに試料50aの表面画像を生成する。また第2画像生成モジュール47は、第1反射光に影響されずに試料50bの表面画像を生成する。
【0057】
第2の実施の形態の変形例に係る走査型プローブ顕微鏡のその他の構成要件は図1と同様であるので、説明は省略する。第2の実施の形態の変形例に係る走査型プローブ顕微鏡によれば、光源が一つでよいので、構成が簡単になる。
【0058】
(第3の実施の形態)
第3の実施の形態に係る走査型プローブ顕微鏡は、図9に示すように、第1照射光を発する第1の光源115及び第2照射光を発する第2の光源125を備える。第3の実施の形態において、第1照射光の波長と第2照射光の波長は、同じでもよいし、異なっていてもよい。第1の光源115から発せられる第1照射光の進行方向には、第1偏光子114が配置されている。第1偏光子114は、第1照射光を第1の偏光方向に偏光している偏光にする。第1の光源115及び第1偏光子114は、第1の照明光学系113を構成する。第2の光源125から発せられる第2照射光の進行方向には、第2偏光子124が配置されている。第2偏光子124は、第2照射光を第1の偏光方向とは異なる第2の偏光方向に偏光している偏光にする。第2の光源125及び第2偏光子124は、第2の照明光学系123を構成する。
【0059】
第1カンチレバー10は、第1の偏光方向に偏光している第1照射光を、第1の偏光方向に偏光している第1反射光として反射する。第1受光素子16は、第1の偏光方向に偏光している第1反射光を受光する。第2カンチレバー20は、第2の偏光方向に偏光している第2照射光を、第2の偏光方向に偏光している第2反射光として反射する。第2受光素子26は、第2の偏光方向に偏光している第2反射光を受光する。第3の実施の形態に係る走査型プローブ顕微鏡のその他の構成要素は、図1と同様であるので、説明は省略する。
【0060】
次に第3の実施の形態に係る検査方法を、図10に示すフローチャートを用いて説明する。
【0061】
(a) ステップS141で、図9に示す第1加振器13で第1カンチレバー10を第1の周波数で振動させ、第1の光源115から第1カンチレバー10に向けて第1照射光を照射する。ステップS142で、第1偏光子114を透過することにより第1照射光は第1の偏光方向に偏光する。次に第1粗動モジュール31で第1の探針11を試料50aの検査位置に近接させる。その後、サンプルスキャナ70をラスタースキャンさせ、第1カンチレバー10で試料50aを走査する。
【0062】
(b) ステップS151で、第2加振器23で第2カンチレバー20を第2の周波数で振動させ、第2の光源125から第2カンチレバー20に向けて第2照射光を照射する。ステップS152で、第2偏光子124を透過することにより第2照射光は第2の偏光方向に偏光する。次に第2粗動モジュール41で第2の探針21を試料50bの検査位置に近接させる。その後、サンプルスキャナ70をラスタースキャンさせ、第2カンチレバー20で試料50bを走査する。
【0063】
(c) ステップS241で、試料50aを走査中の第1カンチレバー10は第1照射光を第1の偏光方向に偏光している第1反射光として反射する。ステップS241に並行してステップS251で、試料50bを走査中の第2カンチレバー20は第2照射光を第2の偏光方向に偏光している第2反射光として反射する。以後、図2のステップS202乃至ステップS206と同様に、図10のステップS242乃至ステップS246を実施する。また図2のステップS212乃至ステップS216と同様に、図10のステップS252乃至ステップS256を実施する。最後に、図2のステップS301と同様に図10のステップS341を実施して、第3の実施の形態に係る検査方法を終了する。
【0064】
以上示した第3の実施の形態に係る走査型プローブ顕微鏡によれば、第1照射光及び第1反射光のそれぞれが第1の偏光方向に偏光しており、第2照射光及び第2反射光のそれぞれが第1の偏光方向とは異なる第2の偏光方向に偏光している。そのため第1照射光は、第2照射光及び第2反射光と干渉しない。また第1反射光は、第2照射光及び第2反射光と干渉しない。したがって、第1プローブ1と第2プローブ2とが近接して配置されていても、高い精度で試料50a及び試料50bの表面画像を取得することが可能となる。
【0065】
(第4の実施の形態)
第4の実施の形態に係る図11に示す走査型プローブ顕微鏡は、図5に示す走査型プローブ顕微鏡と異なり、複数の偏光成分を含む照射光を発する光源105を備える。さらに図11に示す走査型プローブ顕微鏡の第1プローブ111は、図5に示す第1プローブ101と異なり、第1カンチレバー10上に配置された第1偏光膜34を備える。第1偏光膜34は、第1の偏光方向に偏光する光を反射し、第1の偏光方向以外の偏光方向に偏光する光を吸収する。第1偏光膜34は、例えば、第1カンチレバー10上に配置され、光を吸収する吸収膜、及び吸収膜上に配置され、第1の偏光方向に偏光する光を反射し、第1の偏光方向以外の偏光方向に偏光している光を透過させる誘電体多層膜を備える。
【0066】
また図11に示す第2プローブ112は、図5に示す第2プローブ102と異なり、第2カンチレバー20上に配置された第2偏光膜44を備える。第2偏光膜44は、第1の偏光方向とは異なる第2の偏光方向に偏光する光を反射し、第2の偏光方向以外の偏光方向に偏光する光を吸収する。第2偏光膜44は、例えば、第2カンチレバー20上に配置され、光を吸収する吸収膜、及び吸収膜上に配置され、第2の偏光方向に偏光する光を反射し、第2の偏光方向以外の偏光方向に偏光している光を透過させる誘電体多層膜を備える。
【0067】
さらに第4の実施の形態に係る走査型プローブ顕微鏡は、第1の偏光方向に偏光している光を透過させ、第1の偏光方向以外に偏光している光が第1受光素子16に入射するのを防止する第1偏光フィルタ153、及び第2の偏光方向に偏光している光を透過させ、第2の偏光方向以外に偏光している光が第2受光素子26に入射するのを防止する第2偏光フィルタ154を備える。
【0068】
次に第4の実施の形態に係る検査方法を、図12に示すフローチャートを用いて説明する。
【0069】
(a) ステップS161で、図11に示す第1カンチレバー10を第1の周波数で振動させ、第2カンチレバー20を第2の周波数で振動させる。次に光源105から複数の偏光成分を含む照射光を第1プローブ111及び第2プローブ112上に照射する。次に第1の探針11を試料50aの検査位置に近接させ、第2の探針21を試料50bの検査位置に近接させる。その後、第1プローブ111で試料50aを走査し、第2プローブ112で試料50bを走査する。
【0070】
(b) ステップS261で、試料50aを走査中の第1プローブ111の第1偏光膜34は、照射光のうち、第1の偏光方向に偏光する第1偏光成分を第1反射光として反射する。ステップS221に並行してステップS231で、試料50bを走査中の第2プローブ102の第2偏光膜44は、照射光のうち、第2の偏光方向に偏光する第2偏光成分を第2反射光として反射する。
【0071】
(c) ステップS262で第1受光素子16の上段受光素子116aは、第1偏光フィルタ153を透過した第1反射光を受光し、第1の上段電気信号に光電変換する。同時に、第1受光素子16の下段受光素子116bは、第1偏光フィルタ153を透過した第1反射光を受光し、第1の下段電気信号に光電変換する。第1受光素子16は、第1の上段電気信号及び第1の下段電気信号のそれぞれを、第1差分算出モジュール236に伝送する。
【0072】
(d) ステップS262に並行してステップS272で、第2受光素子26の上段受光素子126aは、第2偏光フィルタ154を透過した第2反射光を受光し、第2の上段電気信号に光電変換する。同時に、第2受光素子26の下段受光素子126bは、第2偏光フィルタ154を透過した第2反射光を受光し、第2の下段電気信号に光電変換する。第2受光素子26は、第2の上段電気信号及び第2の下段電気信号のそれぞれを、第2差分算出モジュール246に伝送する。
【0073】
(e) 図2のステップS202乃至ステップS206と同様に、図12のステップS262乃至ステップS266を実施する。また図2のステップS212乃至ステップS216と同様に、図12のステップS272乃至ステップS276を実施する。最後に、図2のステップS301と同様に図12のステップS361を実施して、第4の実施の形態に係る検査方法を終了する。
【0074】
以上示した第4の実施の形態に係る走査型プローブ顕微鏡によれば、第1反射光以外の光が第1受光素子16に入射せず、第2反射光以外の光が第2受光素子26に入射しない。したがって、高い精度で試料50a及び試料50bの表面画像を取得することが可能となる。
【0075】
(その他の実施の形態)
上記のように、本発明を実施の形態によって記載したが、この開示の一部をなす論述及び図面はこの発明を限定するものであると理解すべきではない。例えば第1の実施の形態では、第1受光素子16及び第2受光素子26のそれぞれが2分割フォトダイオードである場合を説明した。これに対し第1受光素子16及び第2受光素子26のそれぞれは、2個もしくは4個のフォトダイオードを近接配置したものを用いてもよい。あるいはまた第1受光素子16及び第2受光素子26のそれぞれは、4分割フォトダイオードであってもよい。この場合、4分割フォトダイオードを構成する4つの受光素子のそれぞれに差分算出モジュールを接続すれば、上下方向のみならず、第1カンチレバー10及び第2カンチレバー20のそれぞれのXY方向の変位を検出することも可能となる。さらに第1の実施の形態では、第1フィードバックモジュール32は第1の測定信号の振幅の変化を監視することにより、第1カンチレバー10の振幅の変化を検知すると説明したが、第1フィードバックモジュール32は第1の測定信号の位相の変化を監視することにより、第1カンチレバー10の位相の変化を検知してもよい。この場合、第1カンチレバー10の位相が変化した時には、第1フィードバックモジュール32は第1ピエゾ33に第1のフィードバック電圧を印加して第1カンチレバー10の上下位置を変動させ、第1の周波数における第1カンチレバー10の位相を一定に保たせる。第2カンチレバー20についても同様である。また、実施の形態においては、第1カンチレバー10及び第2カンチレバー20のそれぞれを振動させながら、試料50a,50b上を走査させる例を示した。しかし、第1カンチレバー10及び第2カンチレバー20のそれぞれを振動させることなく試料50a,50b上を走査させ、第1カンチレバー10及び第2カンチレバー20のそれぞれの変位から試料50a,50bの表面画像を生成するコンタクトモードにも、本発明が適用可能であるのはいうまでもない。以上示したように、この開示から当業者には様々な代替実施の形態、実施例及び運用技術が明らかとなろう。したがって、本発明の技術的範囲は上記の説明からは妥当な特許請求の範囲に係る発明特定事項によってのみ定められるものである。
【図面の簡単な説明】
【0076】
【図1】本発明の第1の実施の形態に係る走査型プローブ顕微鏡を示すブロック図である。
【図2】本発明の第1の実施の形態に係る検査方法を示すフローチャート図である。
【図3】本発明の第1の実施の形態の第1の変形例に係る走査型プローブ顕微鏡を示すブロック図である。
【図4】本発明の第1の実施の形態の第2の変形例に係る走査型プローブ顕微鏡を示すブロック図である。
【図5】本発明の第2の実施の形態に係る走査型プローブ顕微鏡を示す第1のブロック図である。
【図6】本発明の第2の実施の形態に係る検査方法を示すフローチャート図である。
【図7】本発明の第2の実施の形態に係る走査型プローブ顕微鏡を示す第2のブロック図である。
【図8】本発明の第2の実施の形態の変形例に係る走査型プローブ顕微鏡を示すブロック図である。
【図9】本発明の第3の実施の形態に係る走査型プローブ顕微鏡を示すブロック図である。
【図10】本発明の第3の実施の形態に係る検査方法を示すフローチャート図である。
【図11】本発明の第4の実施の形態に係る走査型プローブ顕微鏡を示すブロック図である。
【図12】本発明の第4の実施の形態に係る検査方法を示すフローチャート図である。
【符号の説明】
【0077】
1, 101, 111…第1プローブ
2, 102, 112…第2プローブ
5, 105…光源
10…第1カンチレバー
11…第1の探針
12…第1ホルダ
13…第1加振器
14…第1波長選択反射膜
15, 115…第1の光源
16…第1受光素子
20…第2カンチレバー
21…第2の探針
22…第2ホルダ
23…第2加振器
24…第2波長選択反射膜
25, 125…第2の光源
26…第2受光素子
31…第1粗動モジュール
32…第1フィードバックモジュール
33…第1ピエゾ
34…第1偏光膜
37…第1画像生成モジュール
41…第2粗動モジュール
42…第2フィードバックモジュール
43…第2ピエゾ
44…第2偏光膜
47…第2画像生成モジュール
50a, 50b…試料
51…第1半透鏡
52…第2半透鏡
53…第1波長フィルター
54…第2波長フィルター
70…サンプルスキャナ
90…コリメートレンズ
91…プリズム
92…第1集光レンズ
93…第2集光レンズ
94…第1反射鏡
95…第2反射鏡
113…第1の照明光学系
114…第1偏光子
116a…上段受光素子
116b…下段受光素子
123…第2の照明光学系
124…第2偏光子
126a…上段受光素子
126b…下段受光素子
150…制御モジュール
153…第1偏光フィルタ
154…第2偏光フィルタ
235…第1位相検波器
236…第1差分算出モジュール
245…第2位相検波器
246…第2差分算出モジュール
250…入力装置
251…出力装置

【特許請求の範囲】
【請求項1】
第1波長を有する第1照射光を発する第1の光源と、
前記第1波長とは異なる第2波長を有する第2照射光を発する第2の光源と、
試料上を走査し、前記第1照射光を第1反射光として反射する第1プローブと、
前記試料上を走査し、前記第2照射光を第2反射光として反射する第2プローブと、
前記第1波長を有する前記第1反射光を受光する第1受光素子と、
前記第2波長を有する前記第2反射光を受光する第2受光素子
とを備えることを特徴とする走査型プローブ顕微鏡。
【請求項2】
複数の波長成分を含む照射光を発する光源と、
試料上を走査し、前記照射光の第1波長成分を第1反射光として反射する第1プローブと、
前記試料上を走査し、前記照射光の前記第1波長成分とは異なる第2波長成分を第2反射光として反射する第2プローブと、
前記第1反射光を受光する第1受光素子と、
前記第2反射光を受光する第2受光素子
とを備えることを特徴とする走査型プローブ顕微鏡。
【請求項3】
前記照射光の前記第1波長成分を前記第1プローブに向けて反射し、前記第2波長成分を透過させる第1ダイクロイックミラーを更に備えることを特徴とする請求項2に記載の走査型プローブ顕微鏡。
【請求項4】
前記照射光の前記第2波長成分を前記第2プローブに向けて反射する第2ダイクロイックミラーを更に備えることを特徴とする請求項3に記載の走査型プローブ顕微鏡。
【請求項5】
第1の偏光方向に偏光している第1照射光を発する第1の照明光学系と、
前記第1の偏光方向とは異なる第2の偏光方向に偏光している第2照射光を発する第2の照明光学系と、
試料上を走査し、前記第1照射光を第1反射光として反射する第1プローブと、
前記試料上を走査し、前記第2照射光を第2反射光として反射する第2プローブと、
前記第1の偏光方向に偏光している前記第1反射光を受光する第1受光素子と、
前記第2の偏光方向に偏光している前記第2反射光を受光する第2受光素子
とを備えることを特徴とする走査型プローブ顕微鏡。
【請求項6】
複数の偏光成分を含む照射光を発する光源と、
試料上を走査し、前記照射光の第1偏光成分を第1反射光として反射する第1プローブと、
前記試料上を走査し、前記照射光の前記第1偏光成分とは偏光方向が異なる第2偏光成分を第2反射光として反射する第2プローブと、
前記第1反射光を受光する第1受光素子と、
前記第2反射光を受光する第2受光素子
とを備えることを特徴とする走査型プローブ顕微鏡。
【請求項7】
カンチレバーと、
前記カンチレバーの底面に配置された探針と、
前記カンチレバーの上面に配置され、特定の波長の光を反射する波長選択反射膜
とを備えることを特徴とする走査型プローブ顕微鏡用のプローブ。
【請求項8】
カンチレバーと、
前記カンチレバーの底面に配置された探針と、
前記カンチレバーの上面に配置された偏光膜
とを備えることを特徴とする走査型プローブ顕微鏡用のプローブ。
【請求項9】
第1波長を有する第1照射光を発するステップと、
前記第1波長とは異なる第2波長を有する第2照射光を発するステップと、
試料上を走査する第1プローブで、前記第1照射光を第1反射光として反射するステップと、
前記試料上を走査する第2プローブで、前記第2照射光を第2反射光として反射するステップと、
前記第1波長を有する前記第1反射光を受光するステップと、
前記第2波長を有する前記第2反射光を受光するステップ
とを備えることを特徴とする検査方法。
【請求項10】
複数の波長成分を含む照射光を発するステップと、
試料上を走査する第1プローブで、前記照射光の第1波長成分を第1反射光として反射するステップと、
前記試料上を走査する第2プローブで、前記照射光の前記第1波長成分とは異なる第2波長成分を第2反射光として反射するステップと、
前記第1反射光を受光するステップと、
前記第2反射光を受光するステップ
とを備えることを特徴とする検査方法。
【請求項11】
第1の偏光方向に偏光している第1照射光を発するステップと、
前記第1の偏光方向とは異なる第2の偏光方向に偏光している第2照射光を発するステップと、
試料上を走査する第1プローブで、前記第1照射光を第1反射光として反射するステップと、
前記試料上を走査する第2プローブで、前記第2照射光を第2反射光として反射するステップと、
前記第1の偏光方向に偏光している前記第1反射光を受光するステップと、
前記第2の偏光方向に偏光している前記第2反射光を受光するステップ
とを備えることを特徴とする検査方法。
【請求項12】
複数の偏光成分を含む照射光を発するステップと、
試料上を走査する第1プローブで、前記照射光の第1偏光成分を第1反射光として反射するステップと、
前記試料上を走査する第2プローブで、前記照射光の前記第1偏光成分とは偏光方向が異なる第2偏光成分を第2反射光として反射するステップと、
前記第1反射光を受光するステップと、
前記第2反射光を受光するステップ
とを備えることを特徴とする検査方法。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate

【図11】
image rotate

【図12】
image rotate