説明

走査型共焦点レーザ顕微鏡

【課題】観察試料の複数の観察面間におけるマークの位置ずれやギャップを計測する場合に従来の顕微鏡より装置を複雑化、大型化せず、正確に計測できる走査型共焦点レーザ顕微鏡を提供する。
【解決手段】レーザ光源と、前記レーザ光源から出射されたレーザ光を観察試料に集光する対物レンズと、前記観察試料からの反射光を受光して電気信号として出力する受光素子と、前記受光素子で検出したレーザ光の輝度情報を抽出し、観察試料の観察画像を構築する演算部と、前記演算部で構築された観察画像を記憶する画像記憶部と、前記観察画像を表示する表示部を有する走査型共焦点レーザ顕微鏡であって、前記画像記憶部に記憶されている複数の観察画像から、任意に選択した第一の観察画像と、前記第一の観察画像と異なる画像を少なくとも一つ選択し、前記選択した画像の一部を切り取り、前記第一の観察画像に重ね合わせて合成画像を作成する合成画像作成部、を備えた。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、走査型共焦点レーザ顕微鏡に関し、更に詳しくは複数の観察画像を合成して表示する走査型共焦点レーザ顕微鏡に関する。
【背景技術】
【0002】
一般的な走査型共焦点レーザ顕微鏡の光学系の構成について図7を用いて説明する。
レーザ光源1からの直線偏光の特性を持つレーザビーム2は、偏光ビームスプリッタ(PBS)3を通過して、対物レンズ9の瞳8と共役な位置に配置された2次元走査機構4に入射する。図7で示されるレーザビーム2の光路は、この2次元走査機構4にて偏向された場合の光路を示している。
【0003】
2次元走査機構4によって偏向されたレーザビーム2は、瞳投影レンズ5、結像レンズ6、1/4波長板7を介して対物レンズ9の瞳8に入射する。このとき直線偏光の特性を持つレーザビーム2は、上記1/4波長板7を通過することで円偏光に変換される。
【0004】
円偏光に変換されたレーザビーム2は、対物レンズ9によって観察試料10上に集光され、回折によって点状の光を生じる。対物レンズ9と観察試料10との相対距離は調整することが可能となっており、観察試料10の形状によらずピントを調整し、レーザビーム2を観察試料10上に集光させることができる。この点状の光は、2次元走査機構4によって観察試料10上を二次元走査され、その走査範囲は2次元走査機構4で偏向されるレーザビーム2の振れ幅による。
【0005】
観察試料10から反射された円偏光の特性を持つレーザビーム2、例えば反射光ビームは、対物レンズ9とその瞳8を通り、1/4波長板7で再び直線偏光に変換される。ここで直線偏光に変換された反射光ビームは、その特性により入射光ビームに対して互いに直交する直線偏光の特性を持つ。
【0006】
1/4波長板7を通過した反射光ビームは結像レンズ6を通り、一旦結像する。この結像面が通常の光学顕微鏡で像を観察する面である。そして、さらに反射光ビームは瞳投影レンズ5により2次元走査機構4に戻ってくる。
【0007】
このように反射光ビームは、観察試料10に入射した時と全く同じ経路を逆に通って偏光ビームスプリッタ3に戻る。反射光ビームはレーザビーム2に対して上述したように1/4波長板7を二度通過しているため、入射ビームに対して偏光方向が直交している。よって、反射光ビームは、偏光ビームスプリッタ3により反射されて結像レンズ11へと導かれる。
【0008】
反射光ビームは、結像レンズ11によって点状に絞られ、ピンホール12を通過し、その後方の受光素子13の受光面14に集光する。ピンホール12は対物レンズ9を通過したレーザビーム2の焦点位置と共役な位置に配置されているため、反射光ビームは観察試料10で入射ビームが結像したときのみ、ピンホール12で遮光されることなく通過し、受光面へ入射される。この受光面14にて検出された反射光ビームの強度を輝度情報として観察画像を構築する。したがって通常の顕微鏡よりフレア光を少なくすることができ、高解像度で且つ焦点深度の浅い画像が得られる。
【0009】
また、ピンホール12を設けずに、画像を得ることができる。この場合はピンホール12を設けた場合と比較して、対物レンズ9と観察試料10との光軸方向の相対距離が、入射ビームの結像位置から多少ずれていても、反射ビームが受光面14へ入射される。したがってピンホール12がある場合と比較して、焦点深度が深い画像が得られる。
【0010】
受光面14に入射した反射光ビームの強度に応じた出力信号が受光素子13から出力され、その出力信号の強度が輝度情報として演算部31にて処理される。演算部31では受光素子13から出力される出力信号を、2次元走査機構4の走査位置と制御部32を介して同期をとりながら一定の周期でサンプリングし、観察画像を構築している。演算部で構築された観察画像は画像記憶部33に記憶され、表示部34に表示される。
【0011】
図7の観察試料10の詳細図を図8(a)、図8(b)、図8(c)に示す。観察試料10は、光軸方向に対して異なる位置に3つ観察面を持ち、観察試料構造物10dはレーザビーム2を透過する物質で構成されている。特にレーザビーム2が波長1.1〜6.0μmの赤外レーザで、観察試料構造物10dは赤外レーザに対して高い透過率を有するシリコンウエハなどである場合、対物レンズ9と観察試料10との相対距離を変えることにより、対物レンズからのレーザビーム2を各観察面上に結像させることができる。
【0012】
例えば、観察面b(10b)と観察面c(10c)上のアライメントマークの位置ずれやギャップを計測したい場合、従来の走査型共焦点レーザ顕微鏡では図8(b)の状態から図8(c)の状態まで、対物レンズ9と観察試料10の相対距離を変えながら同一条件で画像を連続的に取り込み、演算部31で3次元画像を構築する必要があった。なお、図9には観察面b(10b)と観察面c(10c)の2次元画像(それぞれ50b、50c)、及び従来の方法で3次元画像を構築した際に作られる、観察面bと観察面cの観察画像(50d)の例を示す。
【0013】
従来の測定方法の場合の観察面cの観察画像は、観察面bの表面状態などの影響により、観察面bを取り込む場合と同じ撮像条件では最適な状態の観察画像が撮れないことがある。したがって上記方法で3次元画像を構築した場合、観察面cの部分の鮮明な画像が取得されず、正確な観察面bと観察面c上のアライメントマークの位置ずれや、ギャップの計測を行うことができない、という問題がある。
【0014】
特許文献1では、多層化された半導体装置において、配線パターンが形成されているおもて面側からの観察では上層配線に覆い隠されてしまう下層の配線パターンの位置を裏面側から観察し、これを重ね合わせて表示するものである。しかしながら、この方法では、両側から画像を撮像するための装置が必要で、装置の複雑化、大型化といった問題が発生する。
【特許文献1】特開平10−223633号公報
【発明の開示】
【発明が解決しようとする課題】
【0015】
そこで、本発明の課題は、上述の問題点に鑑み、走査型共焦点レーザ顕微鏡において、観察試料の複数の観察面間におけるマークの位置ずれやギャップを計測する場合に、従来のものより装置を複雑化、大型化せず、正確に計測できる走査型共焦点レーザ顕微鏡を提供することにある。
【課題を解決するための手段】
【0016】
上述した課題を解決するために、本発明の走査型共焦点レーザ顕微鏡は、別々に撮りこんだ任意の観察画像に対して、一枚をベース画像とし、ベース画像以外の画像の任意の領域を切り出してベース画像に合成するようにした。
【0017】
本発明の一態様によれば、レーザ光源と、前記レーザ光源から出射されたレーザ光を観察試料に集光する対物レンズと、前記観察試料からの反射光を受光して電気信号として出力する受光素子と、前記受光素子で検出したレーザ光の輝度情報を抽出し、観察試料の観察画像を構築する演算部と、前記演算部で構築された観察画像を記憶する画像記憶部と、前記観察画像を表示する表示部を有する走査型共焦点レーザ顕微鏡であって、前記画像記憶部に記憶されている複数の観察画像から、任意に選択した第一の観察画像と、前記第一の観察画像と異なる画像を少なくとも一つ選択し、前記選択した画像の一部を切り取り、前記第一の観察画像に重ね合わせて合成画像を作成する合成画像作成部、を備えることを特徴とする。これにより、一枚の観察画像にそれ以外の観察画像の任意の領域を重ね合わせ、一枚の観察画像として合成して表示することができ、例えば、観察試料の複数の観察面間におけるマークの位置ずれなどを簡単に見つけることができるようになる。
【0018】
更に本発明の一態様によれば、前記合成画像において任意の領域を三次元的に計測する計測部を備えることを特徴とする。これにより、異なる観察画像上の二点間の距離を正確に計測することが可能である。
【発明の効果】
【0019】
本発明の走査型共焦点レーザ顕微鏡によれば、簡単な構成で一枚の観察画像にそれ以外の観察画像の任意の領域を重ね合わせ、一枚の観察画像として合成して同時に表示することができる。これにより、観察試料の異なる観察面上の例えばアライメントトーク等の位置ずれや、そのギャップを正確に計測することが可能である。
【発明を実施するための最良の形態】
【0020】
以下、図面を参照して、本発明の実施の形態について説明する。
図1に、本発明の一実施例を示す。図1は、本発明の走査型共焦点レーザ顕微鏡における光学系、およびシステム構成図を示したものであり、上述した従来の走査型共焦点レーザ顕微鏡(図7)と同一部分には同一符号を付してその説明は省略する。
【0021】
図1に示した走査型共焦点レーザ顕微鏡の光学系には、光源部にシリコンに対して高い透過率を有する、波長1.1μm〜6.0μmの赤外レーザ光源16が設けられている。
受光素子13から出力される出力信号は、演算部31にて処理され、表示部34に観察試料10の観察画像として表示される。また、操作者は、指示部35により表示部34に表示されたGUI(Graphical User Interface)を介してシステムを操作する。ここで、表示部34としては例えばモニタなどで、指示部35としては例えばマウスやキーボードなどの入力デバイスを用いる。
【0022】
また、従来の走査型共焦点レーザ顕微鏡には存在しなかった機能として、本発明では、合成画像作成部36を備える。該合成画像作成部36は、操作者が指定した第一の観察画像をベース画像とし、更に操作者が指定した該ベース画像とは異なる観察画像における切り出し領域を該ベース画像に重ねるように配置合成して表示部34に出力する処理を行う。
【0023】
更に、本発明の走査型共焦点レーザ顕微鏡は、計測部37を備え、操作者が指示した、表示部34に表示された二点間の指示した位置の該距離、ギャップ等を計測し、結果を表示部34に表示する。該計測部37では、操作者が指定した二点間が、合成した異なる観察画像間に跨る場合は、該距離、ギャップなどの合成画像内の二次元的な距離を算出するだけでなく、観察画像間の光軸方向の位置情報を考慮し、三次元的に距離等を算出する。
【0024】
以下に本発明の走査型共焦点レーザ顕微鏡システムについて、操作者の手順に沿って説明する。
観察試料10は、図2(a)、図2(b)、図2(c)に示すように、光軸方向に対して異なる位置に複数の観察面を持つ。観察試料構造物10dは赤外レーザビーム17を透過する、例えばシリコンウエハなどで構成されている。
【0025】
以下、操作者が観察試料10の観察面b(10b)をベース画像とし、該観察面bと観察面c(10c)の合成画像を得たい場合を例に説明をする。
まず、図2(a)で赤外レーザビームが観察面a(10a)上に結像されている。その後、図2(b)、図2(c)の順に対物レンズ9を光軸方向に移動させ、観察面b、観察面cの画像を取得する。
【0026】
最初に、操作者は、観察面bを取得する。この際、観察試料10と対物レンズ9の相対的な位置関係は、図2(b)のようになっており、対物レンズ9から出射される赤外レーザビーム17は観察面b上に結像される。このとき表示部34に表示される二次元観察画像50bは、例えば図3(a)に示されるようなものであるとする。
【0027】
次に、対物レンズ9を光軸方向に変化させ、観察試料10と対物レンズ9との相対的な位置関係が図2(c)のようにし、対物レンズ9から出射される赤外レーザビーム17は観察面c上に結像させる。このとき表示部34に表示される二次元観察画像50cは図3(b)に示されるようなものであるとする。なお、観察面b、観察面cの画像を取得する時、それぞれに最適な条件設定(赤外レーザ光源の調光、受光素子のゲイン調整など)を行って測定することも可能である。
【0028】
ここで、操作者が表示部34上に表示されている切り出し合成メニュー、または切り出し合成メニューボタンを指示部35で選択すると、図4に示すような切り出しメニューGUI40が表示部34に表示される。
【0029】
画像記憶部33には撮像された画像が多数記憶されており、操作者は、ベース画像とする観察面bの二次元観察画像50bを該画像記憶部33から選び出し、表示部34に表示させる。
【0030】
次に、操作者が切り出し合成メニューGUI40上のベース画像確定ボタン41をマウスなどの入力デバイスである指示部35から指定すると、表示部34に表示されている観察面bの二次元観察画像50bがベース画像として設定される。すると設定されたベース画像を画像記憶部33に記憶させていたときの画像名がベース画像名表示部42に表示される。
【0031】
そして次に、ベース画像の設定と同様に、合成対象である、切り出し元となる画像を設定する。すなわち、観察面cの二次元観察画像50cを画像記憶部33から選び出し、表示部34に表示させる。操作者が、切り出しメニューGUI40上の切り出し元画像確定ボタン43を指示部35から指定すると、表示部34に表示されている観察面cの二次元観察画像50cが切り出し元画像として設定される。すると設定された切り出し元画像を画像記憶部33に記憶させていたときの画像名が、切り出し元画像名表示部44に表示される。
【0032】
そして次に、表示部34に表示されている切り出し元画像である観察面cの二次元観察画像50cにおいて、ベース画像である観察面bの二次元観察画像50bと合成する領域を指定する。切り出し合成メニュー40上の切り出し枠設定ボタン45を指定すると、図3(c)に示すように表示部34に表示されている切り出し元画像の観察面cの二次元観察画像50c内に、切り出し領域指定ライン50eの矩形領域が表示される。この切り出し領域指定ライン50eの矩形領域の位置、大きさを指示部35によって指定する。例えば指示部35がマウスの場合は、表示部34において、カーソルを切り出し領域指定ライン50eの矩形領域内に合わせ、マウスで矩形領域の頂点を設定し、カーソルを切り出し領域指定ライン50eの矩形領域の対角上の頂点に合わせ、ドラッグ&ドロップによって大きさを設定する。
【0033】
ベース画像と、切り出し元画像の設定、及び切り出し元画像の切り出し領域の設定が確定したら、切り出し合成メニューGUI40上の合成実行ボタン46を指定する。すると設定されているベース画像と、切り出し元画像から切り出し領域指定ライン50eにて指定された部分画像は合成画像作成部36にて合成され、図3(d)のように、観察面bと観察面cの合成画像50fが表示部34に表示される。画像の合成を取り消したい場合は、切り出し合成メニューGUI40上の合成取り消しボタン47を指定すると、合成前の状態に戻る。なお、ベース画像と切り出し元画像から切り出し領域指定された部分画像の合成は、XY方向の位置情報に基づいて合成される。
【0034】
以上の操作者の操作の流れを、図5にまとめて記す。
まず、ステップS1で観察面bの二次元観察画像50bが取得される。次にステップS2で観察面cの二次元観察画像50cが取得される。ステップS3で操作者は切り出し合成メニュー(ボタン)GUIを表示させる。ステップS4で、ベース画像となる観察面bの二次元観察画像50bを表示部34に表示させ、ステップS5で、切り出し合成メニューGUIのベース画像確定ボタン41をマウスでクリックするなどして、観察面bの二次元観察画像50bをベース画像として設定する。同様にステップS6、ステップS7で、切り出し元画像となる観察面cの二次元観察画像50cを表示部34に表示させ、切り出し合成メニューGUIの切り出し画像確定ボタン43をマウスでクリックするなどして、観察面cの二次元観察画像50cを切り出し元画像として設定する。その後、ステップS8で、観察面cの二次元観察画像50c上の切り出し領域を、マウスなどで選択し、切り出し枠設定ボタン45をクリックするなどして切り出し矩形領域を設定する。そして、合成実行ボタン46がマウスでクリックするなどして指定されると、合成処理が実行され(ステップS9)、ステップS10で表示部34に合成画像が表示される。また、その後、必要があれば二点間の距離計測などの処理を行う。(二点間の距離計測については後述する。)
【0035】
ところで、合成画像作成部36での合成処理については、特に複雑な合成処理を行っているわけではない。ベース画像である観察面bの二次元観察画像50bと、切り出し元画像である観察面cの二次元観察画像50c内の切り出し領域指定ライン50eで指定された領域は、それぞれ二次元観察画像内でのXY方向の位置情報を持っている。また、それぞれの観察画像は、対物レンズを光軸方向(Z方向)に動かして得ているのでXY方向の原点は同一である。よって合成画像作成部36ではこれらの情報をもとに、切り出し領域指定ライン50eで指定された領域が二次元観察画像50c内に存在するのと同一な位置になるように、観察面bの二次元観察画像50b内に、観察面cの二次元観察画像50c内の切り出し領域指定ライン50eで指定された領域が配置されるように合成する。尚、以上の画像の合成については、ベース画像に一枚の切り出し画像を合成する場合を例に説明したが、同様な方法でベース画像に複数枚の切り出し画像を合成するように構成することも可能である。また、画像合成時、同一な位置に画像を合成するとしたが、それぞれの画像は、XYZ方向の情報を持っているので、同一な位置に画像を合成しなくてもよい。
【0036】
最後に、二点間の距離計測などの計測処理について説明をする。本発明の走査型共焦点レーザ顕微鏡は図1に示したように、合成した画像の二点間の距離などを計測する計測部37を備える。これにより、観察試料10の異なる観察面上のアライメントマークの位置ずれや、そのギャップを正確に計測することが可能である。
【0037】
計測部37による計測処理は次の通りである。操作者は、指示部35によって、表示部34に表示されている合成画像の二点を指定する。指定方法は、例えば指示部35としてマウスを使用する場合は、計測したい二点をクリックすることにより指定する。観察面b上の点Bと観察面c上の点Cを計測したい二点であるとして指定したとすると、図3(e)に示すように、点Bと点Cの間に、計測位置表示バー50gが表示される。計測部37の計測項目は、二点間の距離、X方向、Y方向のずれ量等である。二点間が同一観察面上である場合は、それぞれの点のXY方向の位置情報から該二点間の距離などを算出する。また二点間が光軸方向に異なる観察面にまたがっている場合は、二次元観察画像自体が持つ光軸方向(Z方向)の位置情報を踏まえて二点間の距離を算出する。すなわち、計測部37は合成画像において任意の領域を三次元的に計測する。また二点間が光軸方向に異なる観察面上に跨る場合、Z方向の段差と三次元角度を算出し、計測結果として表示部34に表示するようにしてもよい。
【0038】
このように計測部37にて二点間の距離などが計測できることから、アライメントマークの位置ずれやそのギャップ等を正確に計測することができる。例えば図3(e)の正方形と丸が観察面bと観察面c上のアライメントマークであるとすれば、その位置ずれを確認したい場合は、大雑把には表示される画像から目視によってずれ具合を確認することができるし、また、それぞれの中心点を測定したい二点として指定し、その二点間のずれ量から位置を確認することができる。そして、アライメントマーク間のギャップについては適宜マークの中心点などの二点を指定し、その二点間におけるZ方向の距離を求めることでギャップを測定することができる。
【0039】
以上、合成画像について、取得した二次元観察画像を合成する場合を例に説明したが、この画像の合成において、エクステンド画像を合成するようにしてもよい。エクステンド画像とは、段差のある観察試料の表面すべてに合焦した画像のことである。このエクステンド画像は焦点位置で得られる観察試料の輝度が最大輝度となることを利用したものである。ある対物レンズの位置にて得られる観察試料の輝度情報と対物レンズを光軸方向に微小位置ずらしたところで得られる観察試料の輝度情報とを比較し、これら二枚の画像の同一画素同士で輝度の高い方の画素を残していく。そして、最終的にある光軸方向範囲で得られる観察試料の画像が、観察試料表面全体に合焦した二次元画像となる。エクステンド画像はこのように生成される。また、前述の画素比較の際、輝度が高いと判断された場合、そのときの光軸方向の位置を記憶させることで最終的に観察試料の高さの情報も得られる。尚、本発明においては、対物レンズ9と観察試料10の相対距離を特定の範囲において変化させながら二次元観察画像を連続的に取り込み、取り込んだ複数の二次元観察画像の輝度値情報から高さデータを読み取り、全ての面に焦点の合った観察画像が演算部31にて求められてエクステンド画像が構築される。
【0040】
エクステンド画像による合成画像の取り込み方法は、表示部34に表示される、図6のGUI上にて設定する。取り込むサンプルは図2(b)、図2(c)を例とする。観察面bと観察面cのエクステンド画像を生成する場合、まず図2(b)のように観察面bにピントをあわせ、GUI上のTop位置指定ボタン91をマウスなどの入力デバイスである指示部35で指示する。次に、観察面bを中心に光軸方向に画像を取り込む範囲を、指示部35により、GUI上のTop位置取込領域指定ボックス92に入力する。次に、図2(c)のように観察面cにピントを合わせ、GUI上のBottom位置指定ボタン93を指示部35で指示する。そして、観察面bの設定と同様に、観察面cを中心に光軸方向に画像を取り込む範囲を、指示部35により、GUI上のBottom位置取込領域指定ボックス94に入力する。設定が完了した後、指示部35にて、GUI上の取込開始ボタン95を指示すると、制御部32によって、Bottom位置指定ボタン93で指定された位置で、対物レンズ9と観察試料10の相対位置を変動させる。次に、Bottom位置取込領域指定ボックス94で指定された光軸方向の範囲の画像を取得し、観察面cのエクステンド画像を生成する。次に、制御部32は、Top位置指定ボタン91で指定された位置に、対物レンズ9と観察試料10の相対位置を変動させ、Bottom位置でのエクステンド画像生成と同様に、Top位置取込領域指定ボックス92で設定された光軸方向の範囲の画像を取得し、観察面bのエクステンド画像を生成する。なお、エクステンド画像を生成する順は、最初に観察面cのエクステンド画像を生成した後、観察面bのエクステンド画像を生成するようにしたが、観察面bのエクステンド画像を最初に生成するようにしてもよい。
【0041】
生成された2つのエクステンド画像による合成画像の作成方法は、二次元観察画像による合成画像の作成方法と同一であり、二点間の距離などの計測方法に関しても同一である。また、光軸方向(Z方向)の段差と三次元角度についても計測する二点間の高さデータから算出を行う。
【0042】
以上、本発明の走査型共焦点レーザ顕微鏡について詳細に説明したが、本発明は以上に述べたことに限定されるものではなく、本発明の要旨を逸脱しない範囲内で様々の構成または形状を取ることができることはいうまでもない。
【図面の簡単な説明】
【0043】
【図1】本発明の実施例を示す図である。
【図2】観察試料と対物レンズの相対距離を示す図である。(a)は、赤外レーザビームが観察面aで結像しており、同様に(b)は観察面bで、(c)は観察面cで結像している。
【図3】それぞれ、(a)観察面bの二次元観察画像を示す図、(b)観察面cの二次元観察画像を示す図、(c)切り出し矩形領域を示す図、(d)観察面bと観察面cの合成画像を示す図、(e)二点間距離を測定する場合の計測位置表示バーの例を示す図、である。
【図4】切り出しメニューGUIを示す図である。
【図5】操作者の操作の流れを示す図である。
【図6】エクステンド画像による合成画像を取り込む際に、表示部に表示されるGUIを示した図である。
【図7】一般的な走査型共焦点レーザ顕微鏡の構成を示す図である。
【図8】観察試料と対物レンズの相対距離を示す図である。(a)は、レーザビームが観察面aで結像しており、同様に(b)は観察面bで、(c)は観察面cで結像している。
【図9】従来の走査型共焦点レーザ顕微鏡で撮影された観察面bと観察面cの二次元観察画像、および三次元観察画像を示す図である。
【符号の説明】
【0044】
1 レーザ光源
2 レーザビーム
3 PBS
4 2次元走査機構
5 瞳投影レンズ
6 結像レンズ
7 1/4波長板
8 対物レンズの瞳
9 対物レンズ
10 観察試料
11 結像レンズ
12 ピンホール
13 受光素子
14 受光面
16 赤外レーザ光源
17 赤外レーザビーム
31 演算部
32 制御部
33 画像記憶部
34 表示部
35 指示部
36 合成画像作成部
37 計測部
40 切り出し合成メニューGUI
41 ベース画像確定ボタン
42 ベース画像名表示部
43 切り出し元画像確定ボタン
44 切り出し元画像名表示部
45 切り出し枠設定ボタン
46 合成実行ボタン
47 合成取り消しボタン
10a 観察面a
10b 観察面b
10c 観察面c
10d 観察試料構造物
50b 観察面bの二次元観察画像
50c 観察面cの二次元観察画像
50d 観察面bから観察面cの三次元観察画像
50e 切り出し領域指定ライン
50f 観察面bと観察面cの合成画像
50g 計測位置表示バー
91 Top位置指定ボタン
92 Top位置取込領域指定ボックス
93 Bottom位置指定ボタン
94 Bottom位置取込領域指定ボックス
95 取込開始ボタン

【特許請求の範囲】
【請求項1】
レーザ光源と、前記レーザ光源から出射されたレーザ光を観察試料に集光する対物レンズと、前記観察試料からの反射光を受光して電気信号として出力する受光素子と、前記受光素子で検出したレーザ光の輝度情報を抽出し、観察試料の観察画像を構築する演算部と、前記演算部で構築された観察画像を記憶する画像記憶部と、前記観察画像を表示する表示部を有する走査型共焦点レーザ顕微鏡であって、
前記画像記憶部に記憶されている複数の観察画像から、任意に選択した第一の観察画像と、前記第一の観察画像と異なる画像を少なくとも一つ選択し、前記選択した画像の一部を切り取り、前記第一の観察画像に重ね合わせて合成画像を作成する合成画像作成部、
を備えることを特徴とする走査型共焦点レーザ顕微鏡。
【請求項2】
前記レーザ光源は、シリコンに対して高い透過率をもつ赤外レーザであることを特徴とする請求項1記載の走査型共焦点レーザ顕微鏡。
【請求項3】
前記第一の観察画像と、前記第一の観察画像と異なる画像とは、前記レーザ光の光軸方向において異なる位置で取得された二次元観察画像であることを特徴とする請求項1または請求項2記載の走査型共焦点レーザ顕微鏡。
【請求項4】
前記第一の観察画像と前記第一の観察画像と異なる画像は、エクステンド画像であることを特徴とする請求項1または請求項3記載の走査型共焦点レーザ顕微鏡。
【請求項5】
更に、前記合成画像において任意の領域を三次元的に計測する計測部を備えることを特徴とする請求項1乃至請求項4記載の走査型共焦点レーザ顕微鏡。
【請求項6】
前記計測部は、前記合成画像上において少なくとも二点指定することにより、該二点間の距離及び段差を計測することを特徴とする請求項5記載の走査型共焦点レーザ顕微鏡。
【請求項7】
前記第一の観察画像と前記第一の観察画像と異なる画像は、それぞれ異なる撮像条件にて画像を取得したことを特徴とする請求項1記載の走査型共焦点レーザ顕微鏡。


【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate


【公開番号】特開2006−337701(P2006−337701A)
【公開日】平成18年12月14日(2006.12.14)
【国際特許分類】
【出願番号】特願2005−162025(P2005−162025)
【出願日】平成17年6月1日(2005.6.1)
【出願人】(000000376)オリンパス株式会社 (11,466)
【Fターム(参考)】