説明

超音波探傷方法

【課題】鉄道用レールの底端部の損傷を効率よく検出することができる超音波探傷方法を提供する。
【解決手段】本発明の超音波探傷方法では、鉄道用レール1の底端部5を、レール1の高さ方向に振動させるように加振する加振工程と、加振工程により発生する所定の周波数及び所定の群速度をもつ反射超音波を検出して鉄道用レール1の損傷の位置を検知する検知工程と、を備えている。そして、上記の所定の周波数は、30kHz以上200kHz以下であり、所定の群速度は、2000m/s以上3500m/s以下である。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、超音波を用いて鉄道用レールの探傷を行う超音波探傷方法に関するものである。
【背景技術】
【0002】
従来、超音波を用いて鉄道用レールの探傷を簡便かつ高速に行う技術として、下記非特許文献1に記載のレール探傷車を用いた探傷方法が知られている。このようなレール探傷車は、レール上に接触するタイヤ探触子を備えており、このタイヤ探触子によってレール内部に向けて探傷用の超音波が入射され、反射波が検出される。
【非特許文献1】瀧川光伸,本卓也,尾高達男,「レール探傷車の探傷能力向上」,JR EAST Technical Review,No.02-Winter,2003年,P35.
【発明の開示】
【発明が解決しようとする課題】
【0003】
しかしながら、タイヤ探触子からの超音波は、レール頭部から下方に入射されるので、レール底端部までは超音波が届き難い。従って、上記レール探傷車を用いた方法においては、レール底端部の損傷の検出は十分にできなかった。敷設されたレールの底端部は、枕木に強く締結され、また、踏切等において地中に埋められる場合もあるので、電触や腐食等による損傷が発生し易い箇所である。従って、レール底端部の損傷は、特に効率よく検出することが求められる。
【0004】
本発明は、鉄道用レールの底端部の損傷を効率よく検出することができる超音波探傷方法を提供することを目的とする。
【課題を解決するための手段】
【0005】
本発明の超音波探傷方法は、超音波を用いて鉄道用レールの探傷を行う超音波探傷方法において、鉄道用レールの底部を、当該鉄道用レールの高さ方向に振動させるように加振する加振工程と、加振工程により発生する所定の周波数及び所定の群速度をもつ反射超音波を検出して鉄道用レールの損傷の位置を検知する検知工程と、を備え、所定の周波数は、30kHz以上200kHz以下であり、所定の群速度は、2000m/s以上3500m/s以下であることを特徴とする。
【0006】
この超音波探傷方法では、鉄道レールの底部がレールの高さ方向に振動するような加振工程が行われる。このような加振工程によれば、周波数が30kHz以上200kHz以下であり、群速度が2000m/s以上3500m/s以下において、レールの底端部が高さ方向に振動するようなガイド波のモードが発生することが、本発明者らの鋭意研究により見出された。従って、この方法によれば、レール底部には高さ方向の振動が伝播するので、レール底端部における損傷を効率よく検出することができ、かつ、上記群速度(音速)に基づいて、損傷の位置を同定することができる。
【0007】
またこの場合、加振工程では、鉄道用レールの底部の上面又は下面に超音波探触子を設置し、超音波探触子を設置面に垂直な方向に振動させて所定の周波数の超音波を入射させることとしてもよい。このような方法によれば、超音波探触子から入射された超音波振動により、レールの底端部が高さ方向に振動するように加振される。
【0008】
また、加振工程では、鉄道用レールの底部の上面又は下面に、斜角探触子を成す超音波探触子を設置し、当該超音波探触子の斜角ウェッジ部から、当該鉄道用レールの長手方向に対して所定の入射角θで所定の周波数の超音波を鉄道用レールに入射させ、所定の入射角θは、斜角ウェッジ部における縦波音速cwと、超音波の位相速度cpと、に基づいて、θ=sin−1(cw/cp)で表されることとしてもよい。
【0009】
このような方法によれば、超音波探触子に入射された超音波振動により、レールの底端部が高さ方向に振動するように加振される。また、上記のような入射角θで超音波が入射されると、スネルの法則に従って、超音波はレールの長手方向に伝播するので、効率のよい探傷が可能になる。
【0010】
また、加振工程では、第1の探触子と当該第1の探触子よりも90°遅れた位相で振動させる第2の探触子とを含む複数の超音波探触子が用いられ、第1の探触子と第2の探触子とを、鉄道用レールの上面又は下面に長手方向に交互に直線状に配列し、超音波探触子から入射させる超音波の波長をλとしたとき、第1の探触子同士は、間隔mλ(但し、m=1,2,…)で等間隔に配列され、各第2の探触子は、隣接する各第1の探触子から(1/4+n/2)・λ(但し、n=0,1,2,…)だけ離れて配置されてもよい。
【0011】
このような探触子の配列及び探触子の振動によれば、鉄道用レールの長手方向の一方方向にのみ振動のエネルギーを伝播させ、反対の方向には振動のエネルギーを伝播させないという状態が作り出される。従って、この構成によれば、探傷に係る超音波をレール内に高いエネルギーで伝播させ、反射波を高いエネルギーで得ることができるので、より良好なレールの探傷を行うことができる。
【0012】
加振工程では、鉄道用レールの底部の上面又は下面に打撃を加えて当該底部を振動させることとしてもよい。この方法によれば、探触子を用いる場合よりも高いエネルギーの振動をレール内に伝播させ、高いエネルギーの反射波を得ることができるので、良好なレールの探傷を行うことができる。
【0013】
本発明の超音波探傷方法は、超音波を用いて鉄道用レールの探傷を行う超音波探傷方法において、鉄道用レールの底部を、当該鉄道用レールの幅方向に振動させるように加振する加振工程と、加振工程により発生する所定の周波数及び所定の群速度をもつ反射超音波を検出して鉄道用レールの損傷の位置を検知する検知工程と、を備え、所定の周波数は、70kHz以上200kHz以下であり、所定の群速度は、2400m/s以上3500m/s以下であることを特徴とする。
【0014】
この超音波探傷方法では、鉄道レールの底部がレールの幅方向に振動するような加振工程が行われる。このような加振工程によれば、周波数が70kHz以上200kHz以下であり、群速度が2400m/s以上3500m/s以下において、レールの底端部が幅方向に振動するようなガイド波のモードが発生することが、本発明者らの鋭意研究により見出された。従って、この方法によれば、レール底部には幅方向の振動が伝播するので、レール底端部における損傷を効率よく検出することができ、かつ、上記群速度に基づいて、損傷の位置を同定することができる。
【0015】
加振工程では、鉄道用レールの底端部の側面に、斜角探触子を成す超音波探触子を設置し、当該超音波探触子の斜角ウェッジ部から、当該鉄道用レールの長手方向に対して所定の入射角θで所定の周波数の超音波を鉄道用レールに入射させ、所定の入射角θは、斜角ウェッジ部における縦波音速cwと、超音波の位相速度cpと、に基づいて、θ=sin−1(cw/cp)で表されることとしてもよい。
【0016】
このような方法によれば、超音波探触子に入射された超音波振動により、レールの底端部が幅方向に振動するように加振される。また、上記のような入射角θで超音波が入射されると、スネルの法則に従って、超音波はレールの長手方向に伝播するので、効率のよい探傷が可能になる。
【0017】
また、加振工程では、鉄道用レールの底端部の側面に超音波探触子を設置し、超音波探触子を設置面に垂直な方向に振動させて所定の周波数の超音波を入射させることとしてもよい。このような方法によれば、超音波探触子に入射された超音波により、レールの底部が幅方向に振動するように加振することができる。
【0018】
また、加振工程では、第1の探触子と当該第1の探触子よりも90°遅れた位相で振動させる第2の探触子とを含む複数の超音波探触子が用いられ、第1の探触子と第2の探触子とを、鉄道用レールの底端部の側面に長手方向に交互に直線状に配列し、超音波探触子から入射させる超音波の波長をλとしたとき、第1の探触子同士は、間隔mλ(但し、m=1,2,…)で等間隔に配列され、各第2の探触子は、隣接する各第1の探触子から(1/4+n/2)・λ(但し、n=0,1,2,…)だけ離れて配置されることとしてもよい。
【0019】
このような探触子の配列及び探触子の振動によれば、鉄道用レールの長手方向の一方方向にのみ振動のエネルギーを伝播させ、反対の方向には振動のエネルギーを伝播させないという状態が作り出される。従って、この構成によれば、探傷に係る超音波をレール内に高いエネルギーで伝播させ、反射波を高いエネルギーで得ることができるので、より良好なレールの探傷を行うことができる。
【0020】
また、加振工程では、鉄道用レールの底端部の側面に打撃を加えて当該底部を振動させることとしてもよい。この方法によれば、探触子を用いる場合よりも高いエネルギーの振動をレール内に伝播させ、高いエネルギーの反射波を得ることができるので、良好なレールの探傷を行うことができる。
【0021】
また、加振工程における打撃が加えられた瞬間を検出する打撃検知工程を更に備えてもよい。このような打撃検出工程により、探傷に係る超音波が発生した瞬間を認識し、受信信号波形を表示することができる。また、加振工程における底部の打撃を複数回繰り返す場合には、各回の受信信号波形を足し合わせて平均化することで、ランダムノイズが消えたきれいな波形を得ることができ、レール損傷の位置の同定を良好に行うことができる。
【発明の効果】
【0022】
本発明の超音波探傷方法によれば、鉄道用レールの底端部の損傷を効率よく検出することができる。
【発明を実施するための最良の形態】
【0023】
以下、図面を参照しつつ本発明に係る超音波探傷方法の好適な実施形態について詳細に説明する。以下の説明においては、図1等に示すように、鉄道用レール1の幅方向をx方向、レール1の高さ方向をy方向、レール1の長手方向をz方向とする。また、このような鉄道用レール1は、頭部1a、腹部1b、及び底部3の部位から構成されており、底部3のうち両端に近い部位5は、底端部と呼ばれる。また、本発明において、「底部3の(又は底端部5の)上面5a」、「底部3の(又は底端部5の)下面5b」等の語を用いる場合の上下の概念は、図1に示すようなレール1の通常の使用状態での上下に従うものとする。
【0024】
(第1実施形態)
図1に示すような鉄道用レール1において、底部3の底端部5の損傷を効率よく検出することが望まれている。このようなレール1において、底端部5の損傷を効率よく検出するためには、底端部5にエネルギーが集中しながらレール1の長手方向に伝播するガイド波のモードを、レール1に発生させる必要がある。そのようなモードの一つとして、本発明者らは、図2に示すようにレール1の底端部3がレール1の高さ方向(y方向)に上下振動するようなガイド波のモードに着目した。本発明者らはレール1の断面形状データに基づく数値解析により、まず、レール1の底部3が上下に大きく振動するガイド波のモードについての群速度分散曲線(図3)及び位相速度分散曲線(図4)を作成した。
【0025】
そして、本発明者らは種々の実験により、この群速度分散曲線上に対応するガイド波のうち、特に、周波数:30kHz以上200kHz以下、かつ、群速度:2000m/s以上3500m/s以下の領域のものが、底端部5を効率よく上下振動(高さ方向に振動)させ、底端部5の探傷に適していることを見出した。更には、その中でも、周波数:50kHz以上100kHz以下、かつ、群速度:2500m/s以上3500m/s以下の領域に対応するガイド波が、特に、底端部5の探傷に適していることを見出した。なお、ガイド波の周波数が200kHzを超えると、ガイド波の減衰が大きいので、探傷には適さない。また、ガイド波の周波数が30kHz未満であると、入射ノイズのため入射位置から数mの近距離場での検査が不可能であったり、欠陥検出能力が低下したりするので、探傷には適さない。
【0026】
このような知見に基づいて、本発明者らは、群速度分散曲線上(図3)から、周波数:50kHz,群速度:2840m/sの点Q1を選択し、この点に相当するガイド波のモードを用いてレール1の超音波探傷を行うこととした。
【0027】
この超音波探傷方法においては、図1に示すように、鉄道用レール1の底端部5の上面5aにおいて、縦波を励振するための垂直探触子が設置される。ここでは、垂直探触子7a〜9aと、垂直探触子7b〜9bとの2種類の垂直探触子が、レール1の長手方向(z方向)に平行な直線上に、交互に配置される。なお、垂直探触子7a〜9a,7b〜9bの詳細な位置関係については後述する。そして、垂直探触子7a〜9a,7b〜9bにそれぞれ制御装置(図示せず)からの駆動信号が送信されると、上面5aに垂直な矢印A方向に垂直探触子7a〜9a,7b〜9bが周波数50kHzで振動し、超音波がレール1に入射される。
【0028】
このような超音波が入射されることにより、超音波振動で底端部5が上下方向に加振され、上述の通り、レール1の底端部5がy方向に上下振動するようなガイド波のモードが発生する(加振工程)。このガイド波の周波数は50kHzであり、群速度(音速)は、2840m/sである。続いて、垂直探触子7a〜9a,7b〜9bは、それぞれ、レール1の損傷で反射された反射波(反射超音波)を受信する。そして、受信された反射波の時間位置の情報がコンピュータ等で処理される。上記のとおり、探傷に用いるガイド波の群速度が特定されているので、ここでは、レール1の損傷からの反射波が現れる時間位置を計測することで損傷の位置を同定することができる(検知工程)。
【0029】
また、図4に示すレール1の位相速度分散曲線では、このガイド波は点Q2に相当し、位相速度は2590m/sである。また、このガイド波の波長λは、上記周波数と上記位相速度から算出されるように、λ=2590(m/s)/50(kHz)=52(mm)である。そして、図1に示すように、上記垂直探触子7a〜9a,7b〜9bの配置は、上記ガイド波の波長λに基づいて以下のように決定されている。すなわち、探触子7a,8a,9aは等間隔に配置され、当該間隔P1は波長λの整数倍とされている(P1=mλ:m=1,2,…)。例えばm=2を採用した場合は、P1=104となるので、探触子7a,8a,9aは104mm間隔で配列すればよい。また、隣接する探触子7a,7b、探触子8a,8b、及び探触子9a,9bの間の距離P2は、すべてP2=(1/4+n/2)・λに設定されている(n=0,1,2,…)。例えばn=0を採用した場合は、P2=13となるので、隣接する探触子7a,7b、探触子8a,8b、及び探触子9a,9bの間隔は、13mmとすればよい。
【0030】
更に、探触子7a,8a,9aには同じ駆動信号が分岐されて入力され、探触子7a,8a,9aは同位相で振動する。同様に、探触子7b,8b,9bには同じ駆動信号が分岐されて入力され、探触子7b,8b,9bは同位相で振動する。そして、探触子7b,8b,9bに入力される駆動信号は、探触子7a,8a,9aに入力される駆動信号を反転させ、位相をT/4(Tは中心周波数に対する1周期の時間)分遅らせた波形とされている。従って、探触子7b,8b,9bは、探触子7a,8a,9aよりも位相が90°遅れて振動する。また、探触子7b,8b,9bの振幅と探触子7a,8a,9aの振幅とが同じになるように、駆動信号が制御される。このような駆動信号及び探触子の上記の配置により、これらの探触子7a〜9a,7b〜9bからは、レール1の長手方向における矢印B方向にのみ振動のエネルギーが伝播し、反対の方向にはエネルギーが伝播しないという状態が作り出される。
【0031】
また、反射波の受信についても、探触子7a,8a,9aと探触子7b,8b,9bとで反射波を独立に受信し、探触子7b,8b,9bで受信された波形を90°位相を遅らせて足し合わせる処理を行えばよい。このような構成によれば、探傷に係る超音波をレール1内に高いエネルギーで伝播させ、反射波を高いエネルギーで得ることができるので、より良好なレール1の探傷を行うことができる。なお、垂直探触子7a〜9a,7b〜9bは、上記の間隔で、底端部5の下面5bに設置してもよく、上面5a、下面5bの両方に設置してもよい。
【0032】
以上のような超音波探傷方法によれば、レール1に超音波を入射したときに、底端部5が上下振動しながらレール1の長手方向に伝播するガイド波のモードを、レール1に発生させることができるので、レール1の底端部5の損傷を効率よく検出することができる。
【0033】
なお、上述の領域S1(図3)には、主に2つの曲線が見られるが、そのうちの一つは、図2に示すような、左右の底端部5が同じ方向に上下振動するモードに対応し、他の一つは、図5に示すような、左右の底端部5が逆の方向に上下振動するモードに対応する。実際には、これら2つのモードは混在しており、群速度の差も小さいので、レール1において同時に伝播する。このことから、例えば、レール1の右側の底端部5のみに垂直探触子7a〜9a,7b〜9bを設置して励振すると、励振された右側底端部5のみが振動して、長手方向に伝播していく。これは、レール右側底端部5を励振したため、上記2つのモードが足しあわされたモードが現れた結果、左側底端部5の振動は抑制され、右側底端部5の振動が大きくなったためである。同様に、左側底端部5のみを振動させることも可能である。図3を見て分かるように、これら2つのモードは,周波数による音速差(分散性)が小さい。これは、伝播に伴う波形の崩れが小さいことを意味しており、このようなガイド波のモードを用いれば、長距離伝播後もSN比が大きい波形が得られることを意味している。
【0034】
本発明者らは、上述の超音波探傷方法によるレール1の探傷試験を行った。試験に用いたレール1は、長さ4mのJIS50N規格のものであり、このレール1の端部から約1.9mの位置には、底端部5の損傷が存在していた。また、探触子7a〜9bは、レール1の端部直近に設置し、各探触子の配置に係る上記パラメータm,nは、m=1,n=0とした。図6に示すように、この試験により得られた受信波形によれば、時間1300μs付近に大きな反射波が検出されている。この反射波は、上記の群速度2840m/sに基づいて距離に換算され、レール1端部から約1.9mの位置の上記底端部5の損傷に対応することが判る。このように、上述の超音波探傷方法によれば、底端部5の損傷を検出し、その損傷の位置を同定できることが判った。
【0035】
(第2実施形態)
本発明者らは、底端部5にエネルギーが集中しながらレール1の長手方向に伝播するガイド波のモードの更に他の例として、図7に示すようにレール1の底端部3がレール1の幅方向(x方向)に伸縮振動するようなガイド波のモードに着目した。本発明者らは、数値解析により、まず、レール1の底部3がx方向に大きく伸縮振動するモードについての群速度分散曲線(図8)及び位相速度分散曲線(図9)を作成した。
【0036】
そして、本発明者らは種々の実験により、この群速度分散曲線上に対応するガイド波のうち、特に、周波数:70kHz以上200kHz以下、かつ、群速度:2400m/s以上3500m/s以下の領域のものが、底端部5が効率よくx方向に伸縮振動し、底端部5の探傷に適していることを見出した。上記の領域中でも、周波数:70kHz以上120kHz以下、かつ、群速度:2400m/s以上3200m/s以下の領域に対応するガイド波が、特に、底端部5の探傷に適していることを見出した。なお、ガイド波の周波数が200kHzを超えると、ガイド波の減衰が大きいので、探傷には適さない。また、ガイド波の周波数が70kHz未満であると、波長が大きくなって超音波のエネルギーが底端部側面5c近傍に集中しないので、底端部5の探傷には適さない。
【0037】
このモードは、材料表面上を横波音速より10%程度遅い音速で伝播するレイリー波に似た伝播モードであり、材料表面の半波長程度にエネルギーが集中する性質を持つ波動であることが明らかになった。レール1の底端部側面5cにこのレイリー波に似たモードを励振する場合、側面5c近傍にエネルギーが集中して伝播することから、側面5cにある傷の検出能力に優れている。
【0038】
また、使用状態におけるレール1は、パンドロール型や犬釘型の締結装置により上下に締め付けられているが、このモードは、側面5cを幅方向に振動させることにより、締結による減衰が小さい。従って、このモードによる探傷は、強い締結状態の締結装置が使用されている箇所にも適用することができる。
【0039】
このような知見に基づいて、本発明者らは、群速度分散曲線上(図8)の周波数:100kHz,群速度:2760m/sの点Q21を選択し、この点に相当するガイド波のモードを用いてレール1の超音波探傷を行うこととした。なお、このガイド波のモードは、位相速度分散曲線(図9)上では点Q22に相当し、位相速度は、3300m/sである。
【0040】
この超音波探傷方法においては、図10(a),(b)に示すように、鉄道用レール1の底端部側面5cに、上記のガイド波モード(図8の点Q21)を励振するための発信用斜角探触子37aと、受信用斜角探触子37bと、の2つの斜角探触子が配置される。斜角探触子37a,37bの先端には、超音波をレール1に伝達するためのアクリル製の斜角ウェッジ部31が設けられている。この斜角ウェッジ部31は、所望の超音波入射角θに合わせて傾斜先端面の傾斜が調整されており、この傾斜先端面をレール1の底端部上面5aに沿わせて設置することで、斜角探触子37aは入射角θでレール1に超音波を入射することができる。上記斜角探触子37aと同一の構成を有する斜角探触子37bは、斜角探触子37aの近傍において平行に設置され、反射超音波の受信用として使用される。この超音波探傷方法において、斜角探触子37a,37bは、斜角ウェッジ31の先端がレール1の長手方向(z方向)を指すようにして配置され、超音波の出射方向が、zx平面に平行であるような姿勢で設置される。
【0041】
この方法における斜角探触子37aからの超音波の好ましい入射角θは、以下のように定められる。入射角θは、斜角ウェッジ31の音速cw(ここでは、アクリルの縦波音速:cw=約2600m/s)と、上記点Q21に対応するガイド波モードの位相速度cp=3300m/sと、に基づいて、数式θ=sin−1(cw/cp)により、θ=52°と決定される。このように定めた入射角θで超音波をレール1に入射すれば、スネルの法則により屈折角が90°となるので、すなわち、レール1の長手方向(z方向)に伝播するガイド波が得られ、高いエネルギーの超音波により探傷を効率よく行うことができる。
【0042】
このような配置において、斜角探触子37aに駆動信号が送信されると,探触子37aが側面5cに超音波振動を与える。このとき,cp=3300m/sの上記Q21に対応するモードが、スネルの法則にしたがって大きく励振される。そして斜角探触子37aが側面5cに垂直な矢印D方向に周波数100kHzで振動し、超音波がレール1に入射される。このような超音波が入射されることにより、上述の通りレール1の底端部5がx方向に振動する成分が支配的なガイド波のモードが発生し、底端部5の幅方向の振動がB方向に伝播する。次に、受信用の斜角探触子37bでは、同じくスネルの法則に従って、高いエネルギーの反射波を受信することができる。そして、この反射波を解析し、上記群速度に基づいてレール1の損傷の位置を同定することができる。
【0043】
以上のような超音波探傷方法によれば、底端部5が幅方向(x方向)に伸縮振動しながらレール1の長手方向に伝播するガイド波のモードを、レール1に発生させることができるので、レール1の底端部5の損傷を効率よく検出することができる。なお、この実施形態に係る超音波探傷方法において、第1実施形態と同一又は同等な構成については、図面に同一符号を付し、その説明は省略する。
【0044】
なお、上述した斜角探触子37a,37bと同様の斜角探触子を送信受信兼用として用い、底端部側面5cに配列される斜角探触子を1個としてもよい。また、そのような送信受信兼用の斜角探触子を、底端部側面5cにおいて、z方向に複数配列してもよい。この場合、第1実施形態と同様に、第1の斜角探触子同士を、間隔mλ(但し、m=1,2,…)で等間隔に配列し、第1の探触子よりも90°遅れた位相で振動させる第2の探触子を、隣接する各第1の探触子から(1/4+n/2)・λ(但し、n=0,1,2,…)だけ離れて配置することとしてもよい。このような方法によれば、探傷に係る超音波をレール1内に高いエネルギーで伝播させ、反射波を高いエネルギーで得ることができるので、より良好なレール1の探傷を行うことができる。
【0045】
本発明者らは、上述の超音波探傷方法によるレール1の探傷試験を行った。試験に用いたレール1は上記第1実施形態の探傷試験と同じであるが、ここでは、そのレール1が締結装置により締結された状態で試験を行った。なお、このような締結がされている場合、第1実施形態の探傷方法では、欠陥エコーを得ることが出来なかった。図11に示すように、この試験により得られた受信波形によれば、時間1500μs付近に大きな反射波が得られている。この反射波は、上記の群速度2760m/sに基づいて距離に換算され、レール1端部から約2mの位置の上記底端部5の損傷に対応することが判る。このように、上述の超音波探傷方法によれば、締結装置により底端部5が締め付けられた状態であっても、底端部5の損傷を検出し、その損傷の位置を同定できることが判った。
【0046】
(第3実施形態)
上記第1実施形態で示したような、底端部5がy方向に振動するガイド波のモード(周波数:50kHz、群速度:2840m/s、位相速度cp:2590m/s)を励振させるためには、図12に示すように、第2実施形態で用いた上記斜角探触子37a,37bを用いることができる。この超音波探傷方法においては、斜角探触子37a,37bは、レール1の底端部上面5aに取り付けられる。そして、この斜角探触子37a,37bは、超音波入射角θ=sin−1(cw/cp)=sin−1(2600/2590)となるように調整された斜角ウェッジ31を備えており、斜角ウェッジ31の先端がレール1の長手方向(z方向)を指すようにして配置され、50kHzの超音波が送受信される。
【0047】
このような方法によれば、スネルの法則に従って、z方向に伝播する高いエネルギーの超音波を発生させることができる。そして、底端部5がy方向に上下振動しながらレール1の長手方向に伝播するガイド波のモードを、レール1に発生させることができるので、レール1の底端部5の損傷を効率よく検出することができる。なお、この実施形態に係る超音波探傷方法において、上記各実施形態と同一又は同等な構成については、図面に同一符号を付し、その説明は省略する。
【0048】
(第4実施形態)
また、上記第1実施形態で示したような、底端部5がy方向に振動するガイド波のモード(周波数:50kHz、群速度:2840m/s、位相速度cp:2590m/s)を励振させるためには、垂直探触子7a〜9a,7b〜9bに代えて、図13に示すように、底端部上面5aに対して、ハンマー41で下向きに打撃を加える方法を採用することもできる。この場合、50kHzの超音波を受信するように設計された受信専用の斜角探触子47が底端部上面5aに設置される。
【0049】
この斜角探触子47は、第2実施形態と同様に、超音波入射角θ=sin−1(cw/cp)=sin−1(2600/2590)となるように調整された斜角ウェッジ31を備えており、斜角ウェッジ31の先端がレール1の長手方向(z方向)を指すようにして配置される。上記のようなハンマー打撃によれば、上記モードを含んだ様々な周波数の波が混在して伝播するが、その波の中から上記斜角探触子47により50kHzの所望のモードの超音波のみを選択的に大きく受信することができる。
【0050】
また、コンピュータを用いて、受信した反射超音波からその群速度に基づいて損傷の位置を同定するにあたっては、ガイド波が発生した瞬間、すなわちハンマー打撃が加えられた瞬間を、コンピュータが認識する必要がある。このため、底端部上面5aには、ハンマー打撃による応力波を検出するための垂直探触子48が設置されている。ハンマー打撃が行われると、打撃で発生した応力波が垂直探触子48に検出され、損傷の位置同定に係る上記コンピュータにトリガ信号が送信される(打撃検知工程)。このような打撃検知工程により、上記コンピュータは、ガイド波が発生した瞬間を認識することができるので、受信信号波形を表示することができ、損傷の位置の同定のための演算を行うことができる。また、上記のような底部の打撃を複数回繰り返してもよく、各回の受信信号波形を加算平均することで、ランダムノイズが消えたきれいな波形を得ることができ、レール損傷の位置の同定を良好に行うことができる。なお、ハンマー打撃の瞬間を検知するためには、ハンマー41に代えて、圧電センサが内蔵されたインパクトハンマーを用い、圧電センサからの電気信号をコンピュータに送信してもよい。
【0051】
この超音波探傷方法によれば、ハンマー打撃を用いることにより、探触子を用いる場合に比べて大きなエネルギーのガイド波を発生させることができる。そして、底端部5がy方向に上下振動しながらレール1の長手方向に伝播するガイド波のモードを、斜角探触子47により選択的に受信することで、レール1の底端部5の損傷を効率よく検出することができる。なお、この実施形態に係る超音波探傷方法において、上記各実施形態と同一又は同等な構成については、図面に同一符号を付し、その説明は省略する。
【0052】
(第5実施形態)
また、上記第2実施形態で示したような、底端部5がx方向に振動するガイド波のモード(周波数:100kHz、群速度:2760m/s、位相速度cp:3300m/s)を励振させるためには、図14に示すように、第1実施形態の垂直探触子7a〜9a,7b〜9bを用いることができる。この超音波探傷方法においては、設置面に対して垂直に100kHzで振動する垂直探触子7a〜9a,7b〜9bが、レール1の底端部側面5cに取り付けられる。そして、この垂直探触子7a〜9a,7b〜9bの配列に係るパラメータP1,P2は、第1実施形態と同様に決定される。
【0053】
このような超音波探傷方法によっても、底端部5が幅方向に伸縮振動しながらレール1の長手方向に伝播するガイド波のモードを、レール1に発生させることができるので、レール1の底端部5の損傷を効率よく検出することができる。なお、この実施形態に係る超音波探傷方法において、上記各実施形態と同一又は同等な構成については、図面に同一符号を付し、その説明は省略する。
【0054】
(第6実施形態)
また、上記第2実施形態で示したような、底端部5がx方向に振動するガイド波のモード(周波数:100kHz、群速度:2760m/s、位相速度cp:3300m/s)を励振させるためには、図15に示すように、底端部側面5cに対して、ハンマー41でx方向に打撃を加える方法を採用することもできる。この場合、100kHzの超音波を受信するように設計された受信専用の斜角探触子67が底端部側面5cに設置される。この斜角探触子67は、第2実施形態の斜角探触子37a,37bと同様に、超音波入射角θ=sin−1(cw/cp)=sin−1(2600/3300)となるように調整された斜角ウェッジ31を備えており、斜角ウェッジ31の先端がレール1の長手方向(z方向)を指すようにして配置される。
【0055】
上記のようなハンマー打撃によれば、上記モードを含んだ様々な周波数の波が混在して伝播するが、その波の中から上記斜角探触子67により100kHzの所望のモードの超音波のみを選択的に大きく受信することができる。また、底端部側面5cには、ハンマー打撃による応力波を検出し、電気信号を送出する垂直探触子68が設置されている。ハンマー打撃が行われると、打撃で発生した応力波が垂直探触子68に検出され、損傷の位置同定に係るコンピュータに送信される(打撃検知工程)。このような打撃検知工程により、上記コンピュータは、ガイド波が発生した瞬間を認識することができ、損傷の位置の同定のための演算を行うことができる。
【0056】
この超音波探傷方法によれば、ハンマー打撃を用いることにより、探触子を用いる場合に比べて大きなエネルギーのガイド波を発生させることができる。そして、底端部5が幅方向に伸縮振動しながらレール1の長手方向に伝播するガイド波のモードを、斜角探触子67により選択的に受信することで、レール1の底端部5の損傷を効率よく検出することができる。なお、この実施形態に係る超音波探傷方法において、上記各実施形態と同一又は同等な構成については、図面に同一符号を付し、その説明は省略する。
【0057】
本発明は、前述した実施形態に限定されるものではない。例えば、上記第1,5実施形態においては、6個の探触子が用いられているが、ガイド波の波長λに応じた間隔で複数の探触子を配列すれば、探触子の個数を増減してもよい。また、一般に、主な鉄道用レールの種類としては、JIS60kgとJIS50Nとが存在するが、両者の断面形状及び材質に大きな差はないので、本発明は、上記両方の種類の鉄道用レールに対して、同じように適用することができる。
【図面の簡単な説明】
【0058】
【図1】本発明の超音波探傷方法の第1実施形態を示す鉄道用レールの斜視図である。
【図2】鉄道用レールの底端部の振動の一形態を表した断面図である。
【図3】鉄道用レールの底部が上下に大きく振動するガイド波のモードの群速度分散曲線を示す図である。
【図4】鉄道用レールの底部が上下に大きく振動するガイド波のモードの位相速度分散曲線を示す図である。
【図5】鉄道用レールの底端部の振動を表した断面図である。
【図6】第1実施形態に係る鉄道用レールの探傷試験によって得られた受信波形を示す図である。
【図7】鉄道用レールの底端部の振動の他の形態を表した断面図である。
【図8】鉄道用レールの底部が幅方向に大きく振動するガイド波のモードの群速度分散曲線を示す図である。
【図9】鉄道用レールの底部が幅方向に大きく振動するガイド波のモードの位相速度分散曲線を示す図である。
【図10】(a)は、本発明の超音波探傷方法の第2実施形態を示す鉄道用レールの斜視図であり、(b)は、その平面図である。
【図11】第2実施形態に係る鉄道用レールの探傷試験によって得られた受信波形を示す図である。
【図12】(a)は、本発明の超音波探傷方法の第3実施形態を示す鉄道用レールの斜視図であり、(b)は、(a)における斜角探触子を側面から見た図である。
【図13】本発明の超音波探傷方法の第4実施形態を示す鉄道用レールの斜視図である。
【図14】本発明の超音波探傷方法の第5実施形態を示す鉄道用レールの斜視図である。
【図15】本発明の超音波探傷方法の第6実施形態を示す鉄道用レールの斜視図である。
【符号の説明】
【0059】
1…鉄道用レール、3…底部、3a…底部の上面、3b…底部の下面、5…底端部、5c…底端部の側面、7a,8a,9a…垂直探触子(第1の探触子)、
7b,8b,9b…垂直探触子(第2の探触子)、31…斜角ウェッジ部、37a,37b,47,67…斜角探触子。

【特許請求の範囲】
【請求項1】
超音波を用いて鉄道用レールの探傷を行う超音波探傷方法において、
前記鉄道用レールの底部を、当該鉄道用レールの高さ方向に振動させるように加振する加振工程と、
前記加振工程により発生する所定の周波数及び所定の群速度をもつ反射超音波を検出して前記鉄道用レールの損傷の位置を検知する検知工程と、を備え、
前記所定の周波数は、30kHz以上200kHz以下であり、前記所定の群速度は、2000m/s以上3500m/s以下であることを特徴とする超音波探傷方法。
【請求項2】
前記加振工程では、前記鉄道用レールの底部の上面又は下面に超音波探触子を設置し、前記超音波探触子を設置面に垂直な方向に振動させて前記所定の周波数の超音波を入射させることを特徴とする請求項1に記載の超音波探傷方法。
【請求項3】
前記加振工程では、前記鉄道用レールの底部の上面又は下面に、斜角探触子を成す超音波探触子を設置し、当該超音波探触子の斜角ウェッジ部から、当該鉄道用レールの長手方向に対して所定の入射角θで前記所定の周波数の超音波を前記鉄道用レールに入射させ、
前記所定の入射角θは、
前記斜角ウェッジ部における縦波音速cwと、前記超音波の位相速度cpと、に基づいて、θ=sin−1(cw/cp)で表されることを特徴とする請求項1に記載の超音波探傷方法。
【請求項4】
前記加振工程では、第1の探触子と当該第1の探触子よりも90°遅れた位相で振動させる第2の探触子とを含む複数の前記超音波探触子が用いられ、
前記第1の探触子と前記第2の探触子とを、前記鉄道用レールの上面又は下面に長手方向に交互に直線状に配列し、
前記超音波探触子から入射させる前記超音波の波長をλとしたとき、
前記第1の探触子同士は、間隔mλ(但し、m=1,2,…)で等間隔に配列され、
各前記第2の探触子は、隣接する各前記第1の探触子から(1/4+n/2)・λ(但し、n=0,1,2,…)だけ離れて配置されることを特徴とする請求項2又は3に記載の超音波探傷方法。
【請求項5】
前記加振工程では、前記鉄道用レールの底部の上面又は下面に打撃を加えて当該底部を振動させることを特徴とする請求項1に記載の超音波探傷方法。
【請求項6】
超音波を用いて鉄道用レールの探傷を行う超音波探傷方法において、
前記鉄道用レールの底部を、当該鉄道用レールの幅方向に振動させるように加振する加振工程と、
前記加振工程により発生する所定の周波数及び所定の群速度をもつ反射超音波を検出して前記鉄道用レールの損傷の位置を検知する検知工程と、を備え、
前記所定の周波数は、70kHz以上200kHz以下であり、前記所定の群速度は、2400m/s以上3500m/s以下であることを特徴とする超音波探傷方法。
【請求項7】
前記加振工程では、前記鉄道用レールの底端部の側面に、斜角探触子を成す超音波探触子を設置し、当該超音波探触子の斜角ウェッジ部から、当該鉄道用レールの長手方向に対して所定の入射角θで前記所定の周波数の超音波を前記鉄道用レールに入射させ、
前記所定の入射角θは、
前記斜角ウェッジ部における縦波音速cwと、前記超音波の位相速度cpと、に基づいて、θ=sin−1(cw/cp)で表されることを特徴とする請求項6に記載の超音波探傷方法。
【請求項8】
前記加振工程では、前記鉄道用レールの底端部の側面に超音波探触子を設置し、前記超音波探触子を設置面に垂直な方向に振動させて前記所定の周波数の超音波を入射させることを特徴とする請求項6に記載の超音波探傷方法。
【請求項9】
前記加振工程では、第1の探触子と当該第1の探触子よりも90°遅れた位相で振動させる第2の探触子とを含む複数の前記超音波探触子が用いられ、
前記第1の探触子と前記第2の探触子とを、前記鉄道用レールの底端部の側面に長手方向に交互に直線状に配列し、
前記超音波探触子から入射させる前記超音波の波長をλとしたとき、
前記第1の探触子同士は、間隔mλ(但し、m=1,2,…)で等間隔に配列され、
各前記第2の探触子は、隣接する各前記第1の探触子から(1/4+n/2)・λ(但し、n=0,1,2,…)だけ離れて配置されることを特徴とする請求項7又は8に記載の超音波探傷方法。
【請求項10】
前記加振工程では、前記鉄道用レールの底端部の側面に打撃を加えて当該底部を振動させることを特徴とする請求項6に記載の超音波探傷方法。
【請求項11】
前記加振工程における前記打撃が加えられた瞬間を検出する打撃検知工程を更に備えたことを特徴とする請求項5又は10に記載の超音波探傷方法。


【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate

【図11】
image rotate

【図12】
image rotate

【図13】
image rotate

【図14】
image rotate

【図15】
image rotate


【公開番号】特開2008−107165(P2008−107165A)
【公開日】平成20年5月8日(2008.5.8)
【国際特許分類】
【出願番号】特願2006−289125(P2006−289125)
【出願日】平成18年10月24日(2006.10.24)
【新規性喪失の例外の表示】特許法第30条第1項適用申請有り 平成18年5月23日 社団法人 日本非破壊検査協会発行の「平成18年度春季大会講演概要集」に発表
【出願人】(304021277)国立大学法人 名古屋工業大学 (784)
【出願人】(000221616)東日本旅客鉄道株式会社 (833)
【Fターム(参考)】