説明

超音波診断装置、医用画像処理装置および医用画像処理プログラム

【課題】操作者の手を煩わすことなくアーチファクトを低減させたキャビティ画像を発生することが出来る超音波診断装置を提供すること。
【解決手段】超音波プローブと送受信部と3次元Bモードデータを発生するBモードデータ発生部と被走査領域における各走査線上の深さ、アジマスおよびエレベーション方向の走査範囲をそれぞれ規定する第1、第2の角度ごとに決定されたゲイン調整値を用いて、3次元Bモードデータに対するゲイン調整を実行するゲイン調整部と、ゲイン調整された3次元Bモードデータを用いて統計処理を実行することにより管腔と非管腔との分割用の閾値を決定する閾値決定部と、決定された閾値を用いてゲイン調整が実行された3次元Bモードデータから非管腔に関するデータを区別するための閾値処理を実行する閾値処理部と、閾値処理が実行された3次元Bモードデータに基づいて管腔に関する超音波画像を発生する画像発生部とを具備する。

【発明の詳細な説明】
【技術分野】
【0001】
本発明の実施形態は、被検体の管腔を表示させる超音波診断装置に関する。
【背景技術】
【0002】
近年、被検体を3次元的に走査することにより、被検体からのエコー信号を収集する超音波診断装置が実用化されている。この超音波診断装置によれば、エコー信号に基づいて3次元Bモードデータを生成することにより、3次元画像(例えばレンダリング画像など)を生成表示することが出来る。
【0003】
上記超音波診断装置を用いて、被走査領域における管腔(例えば、血管、胆管など)を高輝度で3次元表示する映像法(以下キャビティ(Cavity)映像法と呼ぶ。)がある。キャビティ映像法により発生される画像を、以下キャビティ(Cavity)画像と呼ぶ。キャビティ画像は、3次元Bモードデータにおける階調を反転した後に3次元画像(例えばレンダリング画像)を生成することにより発生される。
【0004】
階調反転について説明する。例えば、Bモードデータの階調値が0乃至255の範囲の値を有する場合であって、Bモードデータの階調値が10である場合、階調を反転することとは、Bモードデータの階調値を255−10=245とすることである。階調値は、輝度値に対応するため、Bモードデータの階調値が10のような低階調ならば低輝度に対応し、Bモードデータの階調値が245のような高階調ならば高輝度に対応する。
【0005】
キャビティ映像法は、3次元Bモードデータにおける複数の信号値または複数の画素値における階調を反転する。階調の反転により、高階調(高輝度)の非管腔(例えば、被検体内の実質臓器など)に関する実質データの階調は、低階調(低輝度)となる。また、低階調(低輝度)または透明状態の管腔に関する管腔データの階調は、高階調(高輝度)となる。これにより、管腔が表示される。ただし、このままでは管腔の階調に比べて低階調な実質データが高階調の管腔以外に存在するため、例えば図17(a)のように、非管腔が管腔を取り囲んで表示される場合がある。この場合、管腔の認識は困難なものとなる。このとき、閾値を設定することにより、閾値以下の低階調の実質データを除去することにより、高階調の管腔のみを表示することができる。なお、図17の(a)は、印刷の都合上、白黒を反転した画像である。以下で説明する図17の(b)、図17の(c)、図18の(a)、図18の(b)についても同様である。
【0006】
しかしながら、実際には、被検体体表面への超音波プローブの接触が不十分であることまたは被走査領域の深部において超音波の強度が減弱することなどによりエコー信号は低減することにより、主に被走査領域の側部および深部における実質データの階調は低階調となる。従って、階調反転されたキャビティ画像において、側部および深部における実質データは管腔と同様に高階調となる。このため、図17(b)のように、閾値処理により、実質データを除去できない問題が発生する。閾値処理により除去されない実質データは、キャビティ画像においてアーチファクトとなる。このアーチファクトは、操作者による管腔の検出能および診断能を低下させる。このとき、アーチファクトを消すために閾値を上げると、図17(c)に示すように管腔も同時に消えてしまう。従って、閾値処理によりアーチファクトの影響を回避することは困難となる問題がある。
【0007】
上記アーチファクトを低減させる方法は、ボリュームの除去機能を用いる方法である。この方法では、まず、トラックボールを介して操作者により入力された領域が、表示されたキャビティ画像上に設定される。次いで、入力部のパネル上のスイッチ操作を契機として、設定された領域に関するボリューム画像が除去される。キャビティ画像を回転させながら、上記手順を数回から十数回繰り返す。上記手順により、アーチファクトは除去される。この方法は、操作者の入力により除去される領域が設定されるため、アーチファクトの消し残しが発生する。そのため、管腔の検出能が低くなり、診断能が低下する問題がある。加えて、上記領域の設定に手間と時間を要するため、この方法は、検査の場で実施することが難しく実用的ではない問題がある。
【0008】
また、閾値の初期値は適切と思われる値に予め設定されているが、一般的には、最適な閾値は被検体および診断部位によって異なる。従って、初期状態で常に閾値を最適な値に設定することは難しいため、図18(a)に示すように、一般的には実質臓器などの非管腔が多く残存する画像もしくは、管腔が多く消失した不適切な画像が、初期状態で表示される。この時、閾値は、操作者によるパネル上のつまみまたはスライダーの操作を介して、適切な値に変更される必要がある。さらに、Bモード画像における輝度を調整するために、Bモードゲインつまみを使ってゲイン値が変更されると、図18(b)に示すように、ボリューム画像における階調値も変更される。これにより、閾値の再設定の必要性が生じる。すなわち、Bモード画像に関する診断部位およびゲイン値が変更されるたびに閾値の設定変更が必要となり、操作性が低いため検査効率が低い問題がある。
【先行技術文献】
【特許文献】
【0009】
【特許文献1】特開平6−114060号公報
【特許文献2】特開2010−68987号公報
【発明の概要】
【発明が解決しようとする課題】
【0010】
目的は、操作者の手を煩わすことなくアーチファクトを低減させたキャビティ画像を発生することが出来る超音波診断装置を提供することにある。
【課題を解決するための手段】
【0011】
本実施形態に係る超音波診断装置は、複数の超音波振動子を有する超音波プローブと、前記超音波振動子各々に駆動信号を供給し、前記各超音波振動子によって発生された各受信エコー信号に基づいて、被走査領域に対応する受信信号を発生する送受信部と、前記受信信号に基づいて、3次元Bモードデータを発生するBモードデータ発生部と、前記被走査領域内の各走査線における深さ、前記被走査領域におけるアジマス方向の走査範囲を規定する第1の角度、前記被走査領域におけるエレベーション方向の走査範囲を規定する第2の角度ごとに決定されたゲイン調整値を用いて、前記3次元Bモードデータに対するゲイン調整を実行するゲイン調整部と、前記ゲイン調整が実行された前記3次元Bモードデータを用いて統計処理を実行することにより、前記被走査領域における管腔と非管腔との分割に用いられる閾値を決定する閾値決定部と、前記決定された閾値を用いて、前記ゲイン調整が実行された3次元Bモードデータから前記非管腔に関するデータを区別するための閾値処理を実行する閾値処理部と、前記閾値処理が実行された3次元Bモードデータに基づいて、前記管腔に関する超音波画像を発生する画像発生部と、を具備することを特徴とする。
【図面の簡単な説明】
【0012】
【図1】図1は、本実施形態に係る超音波診断装置の構成を示す構成図である。
【図2】図2は、本実施形態に係り、被走査領域におけるROIの一例を示す図である。
【図3】図3は、本実施形態に係り、3次元Bモードデータに基づいて計算される所定の基準値の一例を示した図である。
【図4】図4は、本実施形態に係り、アジマス方向についてのゲイン調整値の一例を示す図である。
【図5】図5は、本実施形態に係り、エレベーション方向についてのゲイン調整値の一例を示す図である。
【図6】図6は、本実施形態に係り、深さ方向についてのゲイン調整値の一例を示す図である。
【図7】図7は、本実施形態に係り、レンダリング処理における透視投映法の一例を示す図である。
【図8】図8は、本実施形態に係り、レンダリング処理における透視投映法に関する視線と視体積との一例を示す図である。
【図9】図9は、本実施形態により得られるキャビティ画像の一例を示す図である。
【図10】図10は、第1の実施形態に係り、管腔に関する超音波画像を発生させる処理の流れを示すフローチャートである。
【図11】図11は、本実施形態に係り、ゲイン調整前の3次元Bモードデータに含まれる複数の信号値に関するヒストグラムの一例を示す図である。
【図12】図12は、本実施形態に係り、ゲイン調整後の3次元Bモードデータに含まれる複数の信号値に関するヒストグラムの一例を示す図である。
【図13】図13は、本実施形態に係り、階調反転に関するグラフの一例を示す図である。
【図14】図14は、本実施形態に係り、ゲイン調整および階調反転された3次元Bモードデータに含まれる複数の信号値のヒストグラムを、決定された閾値とともに示す図である。
【図15】図15は、本実施形態に係り、階調反転前に実質臓器に関するヒストグラムを除去する場合において、ゲイン調整後の3次元Bモードデータに含まれる複数の信号値に関するヒストグラムを、閾値とともに示す図である。
【図16】図16は、図10のステップSa3に係り、ゲイン調整値を決定する処理の流れを示すフローチャートである。
【図17】図17は、従来のキャビティ画像の一例を示す図である。
【図18】図18は、従来のキャビティ画像の一例を示す図である。
【発明を実施するための形態】
【0013】
以下、図面を参照しながら本実施形態に係わる超音波診断装置を説明する。なお、以下の説明において、略同一の構成を有する構成要素については、同一符号を付し、重複説明は必要な場合にのみ行う。
【0014】
図1は、第1の実施形態に係る超音波診断装置1のブロック構成図を示している。同図に示すように、超音波診断装置1は、超音波プローブ11、装置本体12、表示部13、装置本体12に接続され操作者からの各種指示・命令・情報を装置本体12に取り込むための入力部14を有する。加えて本超音波診断装置1には、心電計、心音計、脈波計、呼吸センサに代表される図示していない生体信号計測部およびネットワークが、インターフェース部43を介して接続されてもよい。以下、被走査領域として1ボリュームを走査後、走査を停止し、上記走査に関する1ボリュームにおける画像を表示する場合(シングルスイープ)について説明するが、本実施形態はシングルスイープに限定されない。すなわち、リアルタイムで走査している場合、およびリアルタイムで走査中に後述する入力部14を介してフリーズ操作された場合などにも適用可能である。
【0015】
超音波プローブ11は、圧電セラミックス等の音響/電気可逆的変換素子としての圧電振動子を有する。複数の圧電振動子は並列され、超音波プローブ11の先端に装備される。なお、一つの圧電振動子が一チャンネルを構成するものとして説明する。圧電振動子は、後述する送受信部23から供給される駆動信号に応答して超音波を発生する。圧電振動子は、被検体の生体組織で反射された超音波(以下、エコー信号と呼ぶ)の受信に応答して、受信エコー信号を発生する。以下、超音波プローブ11は、1次元アレイを複数の振動子の配列方向と直交する方向に揺動させて3次元走査を実行するメカニカル4次元プローブとして説明する。なお、超音波プローブ11は、メカニカル4次元プローブに限定されず、2次元アレイプローブであってもよい。
【0016】
装置本体12は、送受信部23、Bモードデータ発生部25、ゲイン調整部27、階調反転部29、補間部31、閾値決定部33、閾値処理部35、画像発生部37、記憶部39、制御プロセッサ(中央演算処理装置:Central Processing Unit:以下CPUと呼ぶ)41、インターフェース部43を有する。なお、装置本体12は、カラー乃至ドプラ信号を発生するカラー乃至ドプラ処理部(図示していない)を有していてもよい。
【0017】
送受信部23は、図示していないトリガ発生回路、送信遅延回路、パルサ回路、プリアンプ回路、アナログディジタル(Analog to Digital:以下A/Dと呼ぶ)変換器、受信遅延回路、加算器等を有する。トリガ発生回路は、所定のレート周波数で送信超音波を形成するためのレートパルスを繰り返し発生する。トリガ発生回路は、例えば5kHzのレート周波数でレートパルスを繰り返し発生する。このレートパルスは、チャンネル数に分配され、送信遅延回路に送られる。送信遅延回路は、チャンネル毎に超音波をビーム状に収束し且つ送信指向性を決定するのに必要な遅延時間を、各レートパルスに与える。パルサ回路は、このレートパルスに基づくタイミングで、超音波プローブ11の振動子ごとに電圧パルス(駆動信号)を印加する。これにより、超音波ビームが被検体に送信される。
【0018】
被検体の生体組織で反射されたエコー信号は、超音波プローブ11を介して受信エコー信号としてチャンネル毎に取り込まれる。プリアンプ回路は、超音波プローブ11を介して取り込まれた被検体からの受信エコー信号をチャンネル毎に増幅する。A/D変換器は、増幅された受信エコー信号をディジタル信号に変換する。受信遅延回路は、ディジタル信号に変換された受信エコー信号に、受信指向性を決定するために必要な遅延時間を与える。加算器は、遅延時間が与えられた複数の受信エコー信号を加算する。この加算により、送受信部23は、受信指向性に応じた方向からの反射成分を強調した受信信号を発生する。この送信指向性と受信指向性とにより超音波送受信の総合的な指向性が決定される(この指向性により、いわゆる「超音波走査線」が決まる)。送受信部23は、被走査領域内の各走査線における深さごとの受信信号を、後述するBモードデータ発生部25に出力する。なお、送受信部23は、1回の超音波送信で複数の走査線上に生じたエコー信号を同時に受信する並列受信機能を有していてもよい。
【0019】
Bモードデータ発生部25は、図示していない包絡線検波器、対数変換器などを有する。包絡線検波器は、送受信部23から出力された受信信号に対して包絡線検波を実行する。包絡線検波器は、包絡線検波された信号を、後述する対数変換器に出力する。対数変換器は、包絡線検波された信号に対して対数変換して弱い信号を相対的に強調する。Bモードデータ発生部25は、対数変換器により強調された信号に基づいて、各走査線における深さごとの信号値(Bモードデータ)を発生する。
【0020】
Bモードデータ発生部25は、被走査領域におけるアジマス(Azimuth)方向(振動子が配列された方向)とエレベーション(Elevation)方向(走査面の揺動方向)と深さ方向(以下レンジ(Range)方向と呼ぶ)とに対応付けて複数の信号値を配列させたBモードデータであるローデータ(RAW Data)を発生する。なお、本実施形態においては、ローデータ、後述する補間部31で発生されるボリュームデータおよび視線データ等を総称して3次元Bモードデータと記載する。以降、説明を簡単にするため、一般性を失うこと無く、3次元Bモードデータという用語はこれらの総称として、乃至はローデータを念頭に置いて扱うものとする。なお、ローデータは、複数の画素値または複数の輝度値などを、走査線に沿って、アジマス方向、エレベーション方向、レンジ方向にそれぞれ対応付けて配列させたデータであってもよい。また、3次元Bモードデータは、被走査領域において予め設定された関心領域(Region Of Interest:以下ROIと呼ぶ)に関するデータであってもよい。以下、説明を簡便にするために、3次元Bモードデータは、ROIに関するデータであるとする。Bモードデータ発生部25は、3次元Bモードデータを、後述するゲイン調整部27に出力する。
【0021】
なお、Bモードデータ発生部25は、3次元Bモードデータを図示していないメモリに記憶してもよい。また、Bモードデータ発生部25は、図示していないメモリに3次元Bモードデータを記憶させるときに、アジマス方向、エレベーション方向、レンジ方向にそれぞれ対応付けて上記配列を実行してもよい。
【0022】
図2は、被走査領域におけるROIの一例を示す図である。図2における実線で囲まれた領域は、ROIを示している。図2における第1の角度(φ)は、アジマス方向の走査範囲を規定する角度を示している。図2における第2の角度(ψ)は、エレベーション方向の走査範囲を規定する角度を示している。なお、第1、第2の角度は、ROIを規定する角度であってもよい。また、図2ではアジマス方向とエレベーション方向の振り角の中心が一致しているが必ずしも一致する必要は無い。また、図2では1次元アレイが曲率を持った所謂コンベックス型になっているがこれに限定されず曲率半径無限大の所謂リニア型でもよい。この場合、アジマス方向の走査線は平行となり、第1の角度でアジマス方向の走査範囲を規定することはできないが、以下、1次元アレイ振動子の配列における位置に対応付けて、第1の角度を用いることとする。
【0023】
また、超音波振動子が2次元アレイの場合はエレベーション方向にもリニア型の配列になることがあるが、この場合もエレベーション方向の振動子の配列における位置に対応付けて、第2の角度を用いる。また、2次元アレイを用いてセクタ走査を行う場合は、振り角の中心が振動子上に置かれて扇状に走査線を走査することになる他は図2が適用可能である。この様に、図2はプローブの型や走査方法によって限定されず、適切な解釈を行うことにより一般的に適用される。
【0024】
ゲイン調整部27は、被走査領域内の各走査線におけるレンジ方向の深さ(以下レンジ深さと呼ぶ)、第1の角度、第2の角度ごとに、前記3次元Bモードデータに基づいて、ゲイン調整値を決定する。ゲイン調整部27は、決定されたゲイン調整値を用いて、3次元Bモードデータに含まれる複数の信号値各々に対するゲイン調整を実行する。なお、ゲイン調整部27は、決定されたゲイン調整値を用いて、3次元Bモードデータに含まれる複数の画素値各々に対するゲイン調整を実行してもよい。また、ゲイン調整部27は、3次元Bモードデータとしてローデータだけでなく後述する補間部31により発生されたボリュームデータ乃至視線データを用いることも可能である。ゲイン調整部27は、ゲイン調整された3次元Bモードデータを、後述する階調反転部29に出力する。
【0025】
具体的には、ゲイン調整部27は、3次元Bモードデータに含まれる複数の信号値に基づいて、3次元Bモードデータ全体に関する所定の基準値を計算する。所定の基準値とは例えば、3次元Bモードデータに含まれる複数の信号値の平均値である。なお、所定の基準値は、複数の信号値の平均値以外の代表値(例えば、最頻値、中央値など)および予め設定された一定値であってもよい。ゲイン調整部27は、第1の角度が同一であって3次元Bモードデータに含まれる複数の信号値を代表する第1の代表値を、第1の角度各々について計算する。ゲイン調整部27は、第2の角度が同一であって3次元Bモードデータに含まれる複数の信号値を代表する第2の代表値を、第2の角度各々について計算する。ゲイン調整部27は、レンジ深さが同一であって3次元Bモードデータに含まれる複数の信号値を代表する第3の代表値を、深さ各々について計算する。
【0026】
第1の代表値とは例えば、第1の角度が同一であって3次元Bモードデータに含まれる複数の信号値の平均値である。第2の代表値とは例えば、第2の角度が同一であって3次元Bモードデータに含まれる複数の信号値の平均値である。第3の代表値とは例えば、深さが同一であって3次元Bモードデータに含まれる複数の信号値の平均値である。なお、第1乃至第3の代表値は、最頻値、中央値などであってもよい。また、ゲイン調整部27は、信号値の替わりに、画素値または輝度値を用いることも可能である。また、ゲイン調整部27は、後述する階調反転部29により階調反転された3次元Bモードデータを用いてもよい。
【0027】
ゲイン調整部27は、第1の代表値から所定の基準値を差分した第1のゲイン調整値を、第1の角度各々について計算する。ゲイン調整部27は、第2の代表値から所定の基準値を差分した第2のゲイン調整値を、第2の角度各々について計算する。ゲイン調整部27は、第3の代表値から所定の基準値を差分した第3のゲイン調整値を、深さ各々について計算する。以下、第1乃至第3のゲイン調整値をまとめてゲイン調整値と呼ぶ。ゲイン調整部27は、ゲイン調整値を用いて、第1、第2角度、深さにより規定される複数の信号値各々に対するゲイン調整を実行する。
【0028】
以下、図3乃至図6を参照して、ゲイン調整値の決定についてより詳細に説明する。
【0029】
図3は、レンジ方向、アジマス方向、エレベーション方向各々が直交する直交座標系を用いて、3次元Bモードデータを示した図である。図3において、3次元Bモードデータに含まれる複数の信号値にそれぞれ対応する複数のサンプル点各々をボクセル(voxel)と呼ぶ。なお、ここで用いるボクセルという用語は、後述するローボクセル変換におけるボクセルよりも広い意味で用いており、一般的に3次元対象領域のサンプル点を指している。なお、図3において、3次元Bモードデータを示す直方体は、図2と異なり3次元の被走査領域の形状(以下、走査形状と呼ぶ)を示したものではない。走査形状としては、例えば、1次元アレイが所定の曲率で配列されているコンベックス型のメカニカル4次元プローブでは、図2のようにレンジ方向に深くなるにつれて、アジマス方向およびエレベーション方向に扇状に開いた走査形状となる。
【0030】
以下、説明を簡便にするために、複数の信号値各々は、ボクセルにおける値(以下ボクセル値aijkと呼ぶ)として説明する。ボクセル値における下付きの添え字iは、原点(図3におけるa111)からレンジ方向に沿ったi番目の位置(深さに対応)を示す。ボクセル値における下付きの添え字jは、原点からアジマス方向に沿ったj番目の位置(第1の角度に対応)を示す。ボクセル値における下付きの添え字kは、原点からエレベーション方向に沿ったk番目の位置(第2の角度に対応)を示す。例えば、図3におけるaijkは、a162に対応する。以下、説明を簡単にするため、添え字i、j、kの範囲を、1≦i≦l、1≦j≦m、1≦k≦n、であるとする。すなわち、図3における直方体に含まれるボクセルの総数は、l×m×nとなる。なお、3次元Bモードデータとしてローデータの替わりに、後述する補間部31により発生されたボリュームデータを適用すると、図3におけるレンジ方向、アジマス方向、エレベーション方向各々は、実空間の直交座標系における直交3軸方向に対応する。また、3次元Bモードデータとして後述する補間部31により発生された視線データを適用すると、図3におけるレンジ方向、アジマス方向、エレベーション方向各々は、例えば図8における視線のレンジ(深さ)方向と近平面の相異なる2辺の方向に対応する。
【0031】
ゲイン調整部27は、所定の基準値として、直方体におけるボクセル値の和をボクセルの総数で除算することにより、ROI全体のボクセル値の平均値Mを計算する。具体的には、以下の数式で計算される。
【数1】

【0032】
図4は、本実施形態に係り、アジマス方向についてのゲイン調整値の一例を示す図である。ゲイン調整部27は、第1の代表値(同一アジマスのボクセル値の平均値)を、第1の角度(アジマス方向)各々について計算する。具体的には、以下の数式で計算される。
【数2】

【0033】
次いで、ゲイン調整部27は、第1の角度各々に対応する第1の代表値Aから平均値Mを減算することにより、第1の角度各々に対応する第1のゲイン調整値(A−M)を計算する。
【0034】
図5は、本実施形態に係り、エレベーション方向についてのゲイン調整値の一例を示す図である。ゲイン調整部27は、第2の代表値(同一エレベーションのボクセル値の平均値)を、第2の角度(エレベーション方向)各々について計算する。具体的には、以下の数式で計算される。
【数3】

【0035】
次いで、ゲイン調整部27は、第2の角度各々に対応する第2の代表値Eから平均値Mを減算することにより、第2の角度各々に対応する第2のゲイン調整値(E−M)を計算する。
【0036】
図6は、本実施形態に係り、レンジ方向についてのゲイン調整値の一例を示す図である。ゲイン調整部27は、第3の代表値(同一レンジのボクセル値の平均値)を、深さ(レンジ方向)各々について計算する。具体的には、以下の数式で計算される。
【数4】

【0037】
次いで、ゲイン調整部27は、深さ各々に対応する第3の代表値Rから平均値Mを減算することにより、深さ各々に対応する第3のゲイン調整値(R−M)を計算する。
【0038】
ゲイン調整部27は、第1乃至第3のゲイン調整値を用いて、第1、第2角度、深さにより規定される複数の信号値各々に対する3次元的なゲイン調整を実行する。ゲイン調整は、具体的には、以下の式で実行される。
【数5】

【0039】
ここで、bijkはゲイン調整後の信号値である。
【0040】
なお、ゲイン調整部27は、入力された3次元Bモードデータに基づいてゲイン調整値を決定し、ゲイン調整値を決定する基となった3次元Bモードデータに対してゲイン調整を実行するばかりでなく、後続の走査で入力された3次元Bモードデータに含まれる複数の信号値各々に対してゲイン調整を実行してもよい。また、ゲイン調整部27は、入力される3次元Bモードデータごとに、入力された3次元Bモードデータに基づいてゲイン調整値を決定し、ゲイン調整を実行することも可能である。
【0041】
階調反転部29は、ゲイン調整された3次元Bモードデータに関する階調を反転する。これにより、実質臓器に関する階調は、高階調から低階調に反転される。管腔に関する階調は、低階調または透明状態から高階調に反転される。階調反転部29は、階調反転された3次元Bモードデータを、後述する補間部31に出力する。なお、階調反転部29は、後述する閾値処理部35から出力されたデータの信号値に関する階調を反転してもよい。
【0042】
補間部31は、階調反転された3次元Bモードデータを用いて、後述するレンダリング処理のために予め設定された視線上にデータを配列させるために、データの補間を実行する。補間部31は、データの補間により、図8で後述する視線上にデータを配置した視線データを発生する。なお、補間部31は、ゲイン調整された3次元Bモードデータを用いて、視線データを発生してもよい。補間部31は、視線データを後述する閾値決定部33と閾値処理部35とへ出力する。なお、補間部31は、Bモードデータ発生部25で発生されたローデータを、データ補間することによりローボクセル(RAW Voxel)変換して、ボリュームデータ(通常はボリュームである直方体を単位長さで区切った格子上にボクセルが配置される)を発生してもよいし、ローデータ乃至ボリュームデータから視線データを発生させてもよい。
【0043】
閾値決定部33は、視線データを用いて、統計処理を実行する。なお、閾値決定部33は、ローボクセル変換により発生されたボリュームデータを用いて、統計処理を実行してもよいし、ローデータを用いて統計処理を実行してもよい。一般に、統計処理を実行する前提条件はゲイン調整が終了していることで、階調反転処理は終了していても終了していなくてもよい。具体的には、閾値決定部33は、視線データにおける信号値の大きさと頻度とに基づいて、平均値と標準偏差とを計算する。次いで閾値決定部33は、例えば以下のようにして、平均値と所定の定数と標準偏差とを用いて、閾値を計算する。
【0044】
閾値=平均値+所定の定数×標準偏差
なお、信号値の大きさの替わりに、画素値、輝度値、階調値の大きさなどを用いてもよい。また、標準偏差の替わりに他の散布度(分散、平均偏差など)を用いることも可能である。なお、平均値の替わりに最頻値、中央値などでもよい。
【0045】
閾値決定部33は、一般的には、視線データを代表する値(以下、第4の代表値と呼ぶ)と散布度と所定の定数とを用いて、以下のように閾値を計算する。第4の代表値とは、例えば、上記平均値、最頻値、中央値などの総称である。
【0046】
閾値=第4の代表値+所定の定数×散布度
上記2式における所定の定数は、閾値が管腔(例えば、血管、胆管など)に関する信号値と非管腔(例えば、被検体内の実質臓器など)に関する信号値との間になるように予め設定される。非管腔に関する信号値の分布は経験的に被検体および診断部位等によるばらつきが少ないため、所定の定数は、例えば、様々な被検体や診断部位のデータを用いて決定し予め設定することも可能である。設定値は1つにしてもよいし、例えば診断部位毎に設定してもよい。このとき、所定の定数は、図示していないメモリに予め記憶される。閾値決定部33は、図示していないメモリから所定の定数を読み出して、閾値の計算を実行する。なお、上記所定の定数は、後述する入力部14を介して適宜操作者により調整可能である。なお、閾値決定部33は、被走査領域の走査毎に発生される視線データからなる視線データセットに基づいて、閾値を決定することも可能である。
【0047】
閾値処理部35は、閾値決定部33で決定された閾値を用いて、視線データに対する閾値処理を実行する。閾値処理部35は、閾値処理により管腔に関する信号値を、視線データに含まれる複数の信号値から取り出す。具体的には、閾値処理部35は、視線データが階調反転後の場合、閾値より小さい複数の信号値に対して、ゼロを割り当てる。なお、閾値決定部35は、閾値より大きい複数の信号値を、視線データに含まれる複数の信号値からクリッピングしてもよい。また、閾値処理部35は、閾値より小さい複数の信号値を、視線データに含まれる複数の信号値から除去してもよい。閾値処理部35は、閾値処理した視線データを、後述する画像発生部37に出力する。
【0048】
なお、階調反転前に上記閾値処理を実行する場合、閾値決定部33で決定される後述する閾値を用いて、閾値処理部35は、閾値決定部33で決定された閾値より大きい複数の信号値に対して、最大値(例えばここでは255)を割り当てる。
【0049】
また、閾値処理部35は上記閾値処理における大小関係を逆にすることにより、非管腔に関する信号値を取り出すことも可能である。なお、閾値処理部35は、後述する画像発生部37に組み込まれてもよい。
【0050】
画像発生部37は、閾値処理部35から出力された視線データを用いてレンダリング処理を実行する。なお、閾値処理を終了したデータがローデータ乃至ボリュームデータであった場合は、補間部31で補間処理を行い視線データに変換した後レンダリング処理を実行する。また、閾値処理を終了したデータが階調反転前のデータであった場合は、階調反転部29で階調反転処理を行った後レンダリング処理を実行する。画像発生部37は、レンダリング処理により、管腔に関する2次元超音波画像を発生する。以下、レンダリング処理としてボリュームレンダリングについて、図7を用いて説明する。なお、レンダリング処理はボリュームレンダリングに限定されず、例えば、最大値投映法(Maximum Intensity Projection:以下、MIPと呼ぶ)などであってもよい。
【0051】
画像発生部37は、レンダリング処理により、後述する表示部13における2次元のモニタに3次元の物体を表示するために、視線データの投影を実行する。すなわち、画像発生部37は、3次元物体を投影面に投影することにより、2次元平面上の画像を発生する。投影法には透視投映法と平行投影法とがある。図7は、レンダリング処理における透視投映法の一例を示す図である。透視投映法は、視点(投影中心)が物体から有限長にある投映法である。これにより、視点から物体までの距離が長いほど(視点から遠方なほど)、物体は、小さく投影面に投影される。一方、平行投影法は、図示していないが、視点が物体から無限遠に位置する投映法である。なお、ボリュームレンダリングに当たっては、いずれの投映法を用いてもよい。
【0052】
図8は、ボリュームレンダリングにおける透視投映法に関する視線と視体積との一例を示す図である。視体積とは、視点から物体が見える領域である。ここで、物体とは、超音波3次元走査におけるROIまたはROIの一部に対応する。超音波の3次元走査により得られた3次元Bモードデータに含まれる複数の信号値は、階調反転後に、補間部31における補間処理により、視体積内の視線上に配置される。視線とは、視点から視体積内を貫く各方向に伸ばした直線のことをいう。なお、ここで用いた視線という用語は、上記定義に従うものとし、一般的な3次元コンピュータグラフィックスにおける視線の定義とは異なる。
【0053】
画像発生部37は、1つの視線上に配列された視体積内の複数の信号値を、ボリュームレンダリング法により投影面に投影する。これにより、画像発生部37は、超音波画像1画素の画像データを発生させる。画像発生部37は、以上の処理を複数の視線各々について実行することにより、超音波画像を発生する。この時、画像発生部37は、発生された超音波画像における信号列を、テレビなどに代表される一般的なビデオフォーマットの信号列に変換し、表示画像としての超音波画像を発生する。なお、画像発生部37は、図示していないカラー乃至ドプラ処理部から出力されたカラー乃至ドプラ信号に基づいて、カラー乃至ドプラ画像を発生してもよい。画像発生部37は、3次元Bモードデータに基づいて、ROIに関する多断面再構成(MultiPlanar Reconstruction:以下MPRと呼ぶ)画像を発生してもよい。MPR画像に関しては、前記ゲイン調整、閾値処理、及び階調反転処理を行った3次元Bモードデータを用いることにより、管腔に関する2次元超音波画像としてのMPR画像を発生する。また、前記ゲイン調整を行った3次元Bモードデータを用いることにより、感度が均質化されたMPR画像を発生する。
【0054】
記憶部39は、フォーカス深度の異なる複数の受信遅延パターン、本超音波診断装置1の制御プログラム、診断プロトコル、送受信条件等の各種データ群、3次元Bモードデータ、画像発生部37で発生された超音波画像およびMPR画像、ゲイン調整部27で用いられる所定の基準値、閾値決定部33で用いられる所定の定数、ゲイン調整値を決定するアルゴリズムに関するプログラム、閾値を決定するアルゴリズムに関するプログラムなどを記憶する。記憶部39は、後述する入力部14を介して操作されたフリーズ操作直前の超音波画像および視線データなどを記憶する。
【0055】
CPU41は、操作者により入力部14から入力されたモード選択、受信遅延パターンリストの選択、送信開始・終了に基づいて、記憶部39に記憶された送受信条件と装置制御プログラムを読み出し、これらに従って装置本体12を制御する。例えば、CPU41は、記憶部39から読み出した制御プログラムに従って、ゲイン調整部27と階調反転部29と補間部31と閾値決定部33と閾値処理部35とを制御する。
【0056】
インターフェース部43は、入力部14、ネットワーク、図示していない外部記憶装置および生体信号計測部に関するインターフェースである。装置本体12によって得られた超音波画像等のデータおよび解析結果等は、インターフェース部43とネットワークとを介して他の装置に転送可能である。
【0057】
表示部13は、画像発生部37からの出力に基づいて、超音波画像およびMPR画像を表示する。表示部13は、上記処理により被走査領域(またはROI)における管腔(例えば、血管、胆管など)を高輝度で表示する。図9は、表示部13において高輝度で表示された画像(キャビティ画像)の一例を示す図である。なお、表示部13は、画像発生部37で発生された超音波画像およびMPR画像に対して、ブライトネス、コントラスト、ダイナミックレンジ、γ補正などの調整および、カラーマップの割り当てを実行してもよい。
【0058】
入力部14は、インターフェース部43に接続され操作者からの各種指示・命令・情報・選択・設定を装置本体12に取り込む。入力部14は、図示していないトラックボール、スイッチボタン、マウス、キーボード等の入力デバイスを有する。入力デバイスは、表示画面上に表示されるカーソルの座標を検出し、検出した座標をCPU41に出力する。なお、入力デバイスは、表示画面を覆うように設けられたタッチパネルでもよい。この場合、入力部14は、電磁誘導式、電磁歪式、感圧式等の座標読み取り原理でタッチ指示された座標を検出し、検出した座標をCPU41に出力する。また、操作者が入力部14の終了ボタンまたはフリーズボタンを操作すると、超音波の送受信は終了し、装置本体12は一時停止状態となる。なお、入力部14は、操作者の指示に従って、装置本体12に所定の基準値を入力してもよい。また、入力部14は、閾値決定部33で用いられる所定の定数を入力してもよい。
【0059】
(キャビティ画像発生機能)
キャビティ画像発生機能とは、3次元Bモードデータに基づいてゲイン調整を実行し、ゲイン調整された3次元Bモードデータに基づいて閾値を決定し、決定された閾値に基づいて閾値処理を実行することにより、管腔に関する超音波画像(以下、キャビティ画像と呼ぶ)を発生する機能である。以下、キャビティ画像発生機能に関する処理(以下、キャビティ画像発生処理と呼ぶ)を説明する。
【0060】
図10は、キャビティ画像を発生させる処理の流れを示すフローチャートである。
【0061】
被検体に対する超音波送受信に先立って、入力部14を介した操作者の指示により、患者情報の入力、送受信条件、種々の超音波データ収集条件、ROIの設定および更新などが実行される。これらの設定および更新は、記憶部39に記憶される。これらの入力/選択/設定/決定が終了したならば、操作者は超音波プローブ11を被検体体表面の所定の位置に当接する。次いで送受信部23が、超音波を被検体に向けて送信する。送信された超音波に対応するエコー信号の受信(すなわち超音波スキャン)に基づいて、受信信号が発生される(ステップSa1)。
【0062】
発生された受信信号に基づいて、3次元Bモードデータが発生される(ステップSa2)。図11は、ゲイン調整前の3次元Bモードデータに含まれる複数の信号値に関するヒストグラムである。実質臓器に関する信号値は、管腔に関する信号値に比べて大きいことが特徴である。管腔に関する信号値のヒストグラムに重なるように、アーチファクトに関する信号値のヒストグラムが存在する。
【0063】
3次元Bモードデータに基づいて、レンジ深さ、第1、第2角度ごとにゲイン調整値が決定される(ステップSa3)。決定されたゲイン調整値を用いて、3次元Bモードデータに含まれる複数の信号値各々に対して、3次元的なゲイン調整が実行される(ステップSa4)。ゲイン調整により、アーチファクトに関するヒストグラムは、実質臓器に関するヒストグラムに取り込まれる。これにより、管腔に関するヒストグラムと実質臓器に関するヒストグラムとが区別される。
【0064】
以下、3次的なゲイン調整により、管腔に関するヒストグラムとアーチファクトに関するヒストグラムとが分離される論理について説明する。実質臓器は、被走査領域における空間において、管腔に比べて広い領域に亘って分布している。一方、管腔は実質臓器に比べて細く局所的であるため、被走査領域(l×m×n)中において管腔が占める体積は、実質臓器にくらべて小さい。加えて、アジマス方向に対応する面積(l×n)、エレベーション方向に対応する面積(l×m)、レンジ方向に対応する面積(m×n)各々において、管腔が占める面積は、実質臓器が占める面積にくらべて小さい。従って、所定の基準値および第1乃至第3の代表値は、実質臓器を反映した値となる。他方、アーチファクトは実質臓器のエコー信号に起因しているため、実質臓器同様、被走査領域における空間において、管腔に比べて広い領域に亘って分布している。これらのことから、所定の基準値および第1乃至第3の代表値は、実質臓器およびアーチファクトを反映した値となる。
【0065】
これらのことから、実質臓器およびアーチファクトに関する信号値に対するゲイン調整の影響は、管腔に関する信号値に対するゲイン調整の影響よりも大きくなる。すなわち、管腔に関するヒストグラムとアーチファクトに関するヒストグラムとがオーバーラップしている信号値近傍においては、アーチファクトに関するヒストグラムに関してのみゲイン調整がより強く実行されることになる。ここで、管腔とアーチファクトについては、ヒストグラム上はオーバーラップしていても空間的には分離しているので、この様なゲイン調整が可能となる。このゲイン調整により、管腔に関するヒストグラムは、アーチファクトに関するヒストグラムと区分される。図12は、ゲイン調整後の3次元Bモードデータに含まれる複数の信号値の大きさに関するヒストグラムの一例を示す図である。
【0066】
ゲイン調整が実行された複数の信号値は、階調反転部29により、階調が反転される。図13は、階調反転に関するグラフの一例を示す図である。このグラフによれば、例えば、入力された信号値が10であって、信号値の最大値が255である場合、出力される信号値は255−10=245であることを示している。階調反転された複数の信号値を用いて、統計処理が実行される(ステップSa5)。ステップSa5における統計処理により、例えば、ヒストグラム全体における信号値の平均値と標準偏差とが計算される。ここで、被走査領域乃至ROIにおいて管腔の体積に比較して実質臓器の体積の方が相当程度大きいので、ヒストグラム全体における信号値の平均値と標準偏差は実質臓器のヒストグラムにおける信号値の平均値と標準偏差に近いものとなる。統計処理により計算された平均値と標準偏差とを用いて閾値が決定される(ステップSa6)。決定された閾値を用いて、ゲイン調整が実行された3次元Bモードデータに対して閾値処理が実行される(ステップSa7)。図14は、ゲイン調整および階調反転された3次元Bモードデータに含まれる複数の信号値のヒストグラムを、決定された閾値とともに示す図である。図14における閾値は、例えば所定の定数倍の標準偏差に平均値を加えた値としている。閾値処理により、実質臓器およびアーチファクトに関するヒストグラムが除去される。閾値処理された3次元Bモードデータに基づいて、管腔に関する超音波画像が発生される(ステップSa8)。
【0067】
なお、ゲイン調整、階調反転、閾値処理は、ローデータ、ボリュームデータ、視線データの何れに対してもそれぞれ実行されてよい。また、ゲイン調整、階調反転、閾値処理は、一部の処理をローデータに対して実行し、一部の処理をボリュームデータに対して実行し、一部の処理を視線データに対して実行してもよい。また、ゲイン調整と階調反転とは、処理の順序を入れ替えることも可能である。さらに、階調反転と閾値処理とは、処理の順序を入れ替えることも可能である。階調反転より閾値処理を先に実行する場合、閾値を決定する計算は、以下のようになる。
【0068】
閾値=平均値−所定の定数×標準偏差
一般的には、
閾値=第4の代表値−所定の定数×散布度
となる。管腔に関するヒストグラムは閾値未満に存在し、実質臓器に関するヒストグラムは閾値以上に存在するため、閾値以上のヒストグラムを除去する。即ち、最大階調にする。図15は、階調反転前に実質臓器に関するヒストグラムを除去する場合において、ゲイン調整後の3次元Bモードデータに含まれる複数の信号値に関するヒストグラムを、閾値とともに示す図である。
【0069】
(ゲイン調整値決定機能)
ゲイン調整値決定機能とは、3次元Bモードデータに基づいて、被走査領域内の各走査線における深さとアジマス方向の走査範囲を規定する第1の角度、被走査領域におけるエレベーション方向の走査範囲を規定する第2の角度ごとにゲイン調整値を決定する機能である。以下、ゲイン調整値決定機能に関する処理(以下、ゲイン調整値決定処理と呼ぶ)を説明する。
【0070】
図16は、図10のステップSa3に係り、ゲイン調整値を決定する処理の流れを示すフローチャートである。3次元Bモードデータに含まれる複数の信号値を平均した値(以下、基準値と呼ぶ)が計算される(ステップSb1)。複数の第1の角度各々について、第1の角度が同一である複数の信号値を平均した値(以下、第1平均値と呼ぶ)が計算される(ステップSb2)。第1平均値から基準値を差分した第1の差(第1のゲイン調整値)が、第1の角度各々ついて計算される(ステップSb3)。複数の第2の角度各々について、第2の角度が同一である複数の信号値を平均した値(以下、第2平均値と呼ぶ)が計算される(ステップSb4)。第2平均値から基準値を差分した第2の差(第2のゲイン調整値)が、第2の角度各々ついて計算される(ステップSb5)。被走査領域における複数の深さ各々について、深さが同一である複数の信号値を平均した値(以下第3平均値と呼ぶ)が計算される(ステップSb6)。第3平均値から基準値を差分した第3の差(第3のゲイン調整値)が、深さ各々ついて計算される(ステップSb7)。なお、第1乃至第3のゲイン調整値が計算される順序は、それぞれ適宜入れ替え可能である。第1乃至第3の差が、複数の信号値各々における第1、第2の角度および深さにそれぞれ対応付けられた第1乃至第3のゲイン調整値として決定される(ステップSb8)。このようなゲイン調整により、実質臓器に関する信号値、画素値または階調は、一様に近づくことになる。
【0071】
以上に述べた構成によれば、以下の効果を得ることができる。
本超音波診断装置1によれば、3次元Bモードデータに基づいて決定された3次元的なゲイン調整値を用いて、3次元Bモードデータに含まれる複数の信号値各々について、3次元的なゲイン調整を実行することが出来る。ゲイン調整された3次元Bモードデータまたはボリュームデータに含まれる複数の信号値を用いて統計処理を実行することにより、管腔と非管腔との分割に用いられる閾値を決定することが出来る。決定された閾値を用いて閾値処理を実行することにより、管腔に関する画像(キャビティ画像)を発生することができる。これらのことから、アーチファクトが大幅に低減された管腔に関する超音波画像を発生することができ、診断能が向上する。加えて、キャビティ画像を得るための操作性が向上するため、検査効率が向上する。
【0072】
また、本超音波診断装置1によれば、ゲイン調整値を決定するアルゴリズムは、実質臓器と管腔とを区別して処理するような複雑なアルゴリズムを用いずに、単なる平均を用いているため、リアルタイム性を向上させることが出来る。これにより、3次元Bモードデータの発生ごとにゲイン調整値を更新することができ、最適なゲイン調整を実行することができる。加えて、3次元Bモードデータに含まれる複数の信号値各々に対してゲイン調整値を決定しているため、精度の良いゲイン調整を実行することが出来る。これらのことから、リアルタイム性の向上と管腔の検出能が向上することにより、検査効率が向上する。
【0073】
加えて、本超音波診断装置1によれば、シングルスイープのように、被走査領域に対する1回の走査で得られる3次元Bモードデータに対しても、ゲイン調整および閾値処理が可能である。また、シングルスープに限定されず、リアルタイムで走査している場合およびリアルタイムで走査中にフリーズして超音波画像を発生させる場合になどに対しても、ゲイン調整および閾値処理を実行することが出来る。
【0074】
また、本超音波診断装置1によれば、例えば、Bモード画像の輝度を調整するために、STC(Sensitivity Time Conrol)ゲイン調整およびBモードゲイン調整を行ったとしても、最適な閾値が維持され、操作性が大幅に向上する。これは以下の理由による。Bモードゲイン調整においては、ヒストグラムの分布状態は変わらず、分布全体の信号値または階調などがシフトするだけであるため、所定の定数を再設定する必要はない。また、STCゲイン調整においては、ある深さの信号値または階調が変化するが、本実施形態におけるゲイン調整値決定機能では、実質臓器に関する信号値が一様に近づくようにゲイン調整値が決定されるため、所定の定数を再設定する必要はない。
【0075】
加えて、本超音波診断装置1によれば、3次元的なゲイン調整が実行できることにより、例えば、フライスルーなどにおける管腔の精度が向上する。これにより診断効率が向上する。
【0076】
また、上記実施形態の変形例として、本超音波診断装置1の技術的思想を医用画像処理装置で実現する場合には、例えば図1の構成図における実線内の構成要素を有するものとなる。この時、キャビティ画像発生に関する処理は、ステップSa3からステップSa8の処理に対応する。これらの処理につては、実施形態と同様である。なお、ステップSa3における3次元Bモードデータは、予め記憶部39に記憶される。また、医用画像処理装置において、超音波診断装置から出力されたDICOMファイル(例えば、3次元Bモードデータなど)を読み込んで、上記処理を実行することも可能である。加えて、実施形態に係る各機能は、当該処理を実行するプログラムをワークステーション等のコンピュータにインストールし、これらをメモリ上で展開することによっても実現することができる。このとき、コンピュータに当該手法を実行させることのできるプログラムは、磁気ディスク(フロッピー(登録商標)ディスク、ハードディスクなど)、光ディスク(CD−ROM、DVDなど)、半導体メモリなどの記憶媒体に格納して頒布することも可能である。
【0077】
本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれるものである。
【符号の説明】
【0078】
1…超音波診断装置、11…超音波プローブ、12…装置本体、13…表示部、14…入力部、23…送受信部、25…Bモードデータ発生部、27…ゲイン調整部、29…階調反転部、31…補間部、33…閾値決定部、35…閾値処理部、37…画像発生部、39…記憶部、41…制御プロセッサ(CPU)、43…インターフェース部

【特許請求の範囲】
【請求項1】
複数の超音波振動子を有する超音波プローブと、
前記超音波振動子各々に駆動信号を供給し、前記各超音波振動子によって発生された各受信エコー信号に基づいて、被走査領域に対応する受信信号を発生する送受信部と、
前記受信信号に基づいて、3次元Bモードデータを発生するBモードデータ発生部と、
前記被走査領域内の各走査線上における深さ、前記被走査領域におけるアジマス方向の走査範囲を規定する第1の角度、前記被走査領域におけるエレベーション方向の走査範囲を規定する第2の角度ごとに決定されたゲイン調整値を用いて、前記3次元Bモードデータに対するゲイン調整を実行するゲイン調整部と、
前記ゲイン調整が実行された前記3次元Bモードデータを用いて統計処理を実行することにより、前記被走査領域における管腔と非管腔との分割に用いられる閾値を決定する閾値決定部と、
前記決定された閾値を用いて、前記ゲイン調整が実行された3次元Bモードデータから前記非管腔に関するデータを区別するための閾値処理を実行する閾値処理部と、
前記閾値処理が実行された3次元Bモードデータに基づいて、前記管腔に関する超音波画像を発生する画像発生部と、
を具備することを特徴とする超音波診断装置。
【請求項2】
前記ゲイン調整部は、
前記第1の角度が同一である前記3次元Bモードデータを代表する第1の代表値と所定の基準値との第1の差と、
前記第2の角度が同一である前記3次元Bモードデータを代表する第2の代表値と前記基準値との第2の差と、
前記深さが同一である前記3次元Bモードデータを代表する第3の代表値と前記基準値との第3の差とを、前記ゲイン調整値として決定すること、
を特徴とする請求項1に記載の超音波診断装置。
【請求項3】
前記ゲイン調整部は、前記ゲイン調整値の決定に用いられた前記3次元Bモードデータとは発生された時刻が異なる3次元Bモードデータに対するゲイン調整を実行すること、
を特徴とする請求項1に記載の超音波診断装置。
【請求項4】
前記超音波画像を表示する表示部と、
前記表示された超音波画像をフリーズする操作を入力する入力部とをさらに具備し、
前記ゲイン調整部は、前記入力部を介して入力されたフリーズ操作を契機として、フリーズされた超音波画像に関する3次元Bモードデータに基づいて決定された前記ゲイン調整値を用いて、前記フリーズされた超音波画像に関する3次元Bモードデータに対するゲイン調整を実行すること、
を特徴とする請求項1に記載の超音波診断装置。
【請求項5】
前記閾値決定部は、前記統計処理として、前記ゲイン調整が実行された前記3次元Bモードデータのヒストグラムにおける代表値に、前記ヒストグラムにおける散布度の定数倍の値を加算した値を、前記閾値として決定すること、
を特徴とする請求項1に記載の超音波診断装置。
【請求項6】
前記閾値決定部は、前記統計処理として、前記ゲイン調整が実行された前記3次元Bモードデータのヒストグラムにおける代表値から、前記ヒストグラムにおける散布度の定数倍の値を減算した値を、前記閾値として決定すること、
を特徴とする請求項1に記載の超音波診断装置。
【請求項7】
前記定数倍を示す数値を入力する入力部をさらに具備する請求項5と請求項6とのうちいずれか一項に記載の超音波診断装置。
【請求項8】
前記画像発生部は、前記管腔に関する超音波画像として、レンダリング画像と多断面再構成画像とのうち少なくとも一つを発生すること、
を特徴とする請求項1に記載の超音波診断装置。
【請求項9】
複数の超音波振動子を有する超音波プローブと、
前記超音波振動子各々に駆動信号を供給し、前記各超音波振動子によって発生された各受信エコー信号に基づいて、被走査領域に対応する受信信号を発生する送受信部と、
前記受信信号に基づいて、3次元Bモードデータを発生するBモードデータ発生部と、
前記被走査領域内の各走査線における深さ、前記被走査領域におけるアジマス方向の走査範囲を規定する第1の角度、前記被走査領域におけるエレベーション方向の走査範囲を規定する第2の角度ごとに決定されたゲイン調整値を用いて、前記3次元Bモードデータに対するゲイン調整を実行するゲイン調整部とを具備し、
前記ゲイン調整部は、
前記第1の角度が同一である前記3次元Bモードデータを代表する第1の代表値と所定の基準値との第1の差と、
前記第2の角度が同一である前記3次元Bモードデータを代表する第2の代表値と前記基準値との第2の差と、
前記深さが同一である前記3次元Bモードデータを代表する第3の代表値と前記基準値との第3の差とを、前記ゲイン調整値として決定すること、
を特徴とする超音波診断装置。
【請求項10】
超音波画像を発生する画像発生部を更に具備し、
前記画像発生部は、
前記ゲイン調整が実行された3次元Bモードデータに基づいて、多断面再構成画像を発生すること、
を特徴とする請求項9に記載の超音波診断装置。
【請求項11】
3次元Bモードデータを記憶する記憶部と、
前記3次元Bモードデータに基づいて、被走査領域内の各走査線における深さ、前記被走査領域におけるアジマス方向の走査範囲を規定する第1の角度、前記被走査領域におけるエレベーション方向の走査範囲を規定する第2の角度ごとに決定されたゲイン調整値を用いて、前記3次元Bモードデータに対するゲイン調整を実行するゲイン調整部と、
前記ゲイン調整が実行された前記3次元Bモードデータを用いて統計処理を実行することにより、前記被走査領域における管腔と非管腔との分割に用いられる閾値を決定する閾値決定部と、
前記決定された閾値を用いて、前記ゲイン調整が実行された3次元Bモードデータから前記非管腔に関するデータを区別する閾値処理を実行する閾値処理部と、
前記閾値処理が実行された3次元Bモードデータに基づいて、前記管腔に関する超音波画像を発生する画像発生部と、
を具備することを特徴とする医用画像処理装置。
【請求項12】
コンピュータに、
超音波診断装置により発生された3次元Bモードデータを記憶させる記憶機能と、
前記3次元Bモードデータに基づいて、被走査領域内の各走査線における深さ、前記被走査領域におけるアジマス方向の走査範囲を規定する第1の角度、前記被走査領域におけるエレベーション方向の走査範囲を規定する第2の角度ごとに決定させたゲイン調整値を用いて、前記3次元Bモードデータに対するゲイン調整を実行させるゲイン調整機能と、
前記ゲイン調整が実行された前記3次元Bモードデータを用いて統計処理を実行させることにより、前記被走査領域における管腔と非管腔との分割に用いられる閾値を決定させる閾値決定機能と、
前記決定された閾値を用いて、前記ゲイン調整が実行された3次元Bモードデータから前記非管腔に関するデータを区別する閾値処理を実行させる閾値処理機能と、
前記閾値処理が実行された3次元Bモードデータに基づいて、前記管腔に関する超音波画像を発生させる画像発生機能と、
を実現させることを特徴とする医用画像処理プログラム。
【請求項13】
前記画像発生機能は、前記管腔に関する超音波画像として、レンダリング画像と多断面再構成画像とのうち少なくとも一つを発生させる機能をさらに実現させること、
を特徴とする請求項12に記載の医用画像処理プログラム。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate

【図11】
image rotate

【図12】
image rotate

【図13】
image rotate

【図14】
image rotate

【図15】
image rotate

【図16】
image rotate

【図17】
image rotate

【図18】
image rotate