説明

超音波診断装置

【課題】連続波を利用して目標位置から生体内情報を抽出する技術において、不要波成分を低減する。
【解決手段】FM変調器20は、変調信号に基づいて周波数変調処理された連続波の送信信号を出力する。受信ミキサ30は、生体内の目標位置との間の相関関係が調整された参照信号を用いて、受信信号に対して復調処理を施すことにより、その目標位置に対応した復調信号を得る。この送受信処理において、位相調整部23で変調信号の位相が調整されてFM変調器20で互いに位相をずらした複数の送信信号が形成され、複数の送信信号の各々を利用して復調信号が得られる。そして、変調周期の自然数倍に設定された信号期間の開始時点から終了時点までの各復調信号を処理対象として、複数の送信信号に対応した複数の復調信号が合成され、復調信号に含まれる不要波成分が低減される。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、超音波診断装置に関し、特に、連続波を利用する超音波診断装置に関する。
【背景技術】
【0002】
超音波診断装置の連続波を利用した技術として、連続波ドプラが知られている。連続波ドプラでは、例えば、数MHzの正弦波である送信波が生体内へ連続的に放射され、生体内からの反射波が連続的に受波される。反射波には、生体内における運動体(例えば血流など)によるドプラシフト情報が含まれる。そこで、そのドプラシフト情報を抽出して周波数解析することにより、運動体の速度情報を反映させたドプラ波形などを形成することができる。
【0003】
連続波を利用した連続波ドプラは、パルス波を利用したパルスドプラに比べて一般に高速の速度計測の面で優れている。こうした事情などから、本願の出願人は、連続波ドプラに関する研究を重ねてきた。その成果の一つとして、特許文献1において、周波数変調処理を施した連続波ドプラ(FMCWドプラ)に関する技術を提案している。
【0004】
一方、連続波ドプラでは、連続波を利用していることにより位置計測が困難である。例えば、従来の一般的な連続波ドプラの装置(FMCWドプラを利用しない装置)では、位置計測を行うことができなかった。これに対し、本願の出願人は、特許文献2において、FMCWドプラにより選択的に生体内組織の所望の位置からドプラ情報を抽出することができる極めて画期的な技術を提案している。
【先行技術文献】
【特許文献】
【0005】
【特許文献1】特開2005−253949号公報
【特許文献2】特開2008−289851号公報
【発明の概要】
【発明が解決しようとする課題】
【0006】
特許文献1や特許文献2に記載されたFMCWドプラの技術は、それまでにない超音波診断の可能性を秘めた画期的な技術である。本願発明者は、この画期的な技術の改良についてさらに研究を重ねてきた。特に、連続波を利用して目標位置から生体内情報を抽出する技術に注目して研究を重ねてきた。
【0007】
本発明は、このような背景において成されたものであり、その目的は、連続波を利用して目標位置から生体内情報を抽出する技術において、不要波成分を低減することにある。
【課題を解決するための手段】
【0008】
上記目的にかなう好適な超音波診断装置は、変調周期に応じて周期的に周波数を変化させた連続波の送信信号を出力する送信信号処理部と、送信信号に対応した超音波の送信波を生体に送波してその送信波に伴う受信波を生体から受波することにより受信信号を得る超音波送受部と、生体内の目標位置との間の相関関係が調整された参照信号を用いて、受信信号に対して復調処理を施すことにより、当該目標位置に対応した復調信号を得る受信信号処理部と、前記目標位置に対応した復調信号に含まれる不要波成分を低減する復調信号処理部と、不要波成分を低減された復調信号から生体内情報を抽出する生体内情報抽出部と、を有し、前記送信信号処理部は、互いに位相をずらした複数の送信信号を出力し、前記受信信号処理部は、前記複数の送信信号の各々に対応した受信信号に対して前記復調処理を施すことにより、当該複数の送信信号に対応した複数の復調信号を生成し、前記復調信号処理部は、前記変調周期の自然数倍に設定された信号期間の開始時点から終了時点までの各復調信号を処理対象として前記複数の復調信号を合成することにより、前記不要波成分を低減する、ことを特徴とする。
【0009】
望ましい具体例において、前記送信信号処理部は、変調信号を用いて搬送波信号を周波数変調処理することにより前記各送信信号を形成し、変調信号の位相を所定量だけ互いにずらすことにより前記複数の送信信号を形成する、ことを特徴とする。
【0010】
望ましい具体例において、前記送信信号処理部は、前記複数の送信信号として、第1送信信号と、当該第1送信信号から変調信号の位相をπだけずらした第2送信信号と、を形成し、前記復調信号処理部は、第1送信信号に対応した復調信号と第2送信信号に対応した復調信号とを加算することにより、復調信号に含まれる奇数次の不要波成分を低減することを特徴とする。
【0011】
望ましい具体例において、前記送信信号処理部は、前記複数の送信信号として、第1送信信号と、当該第1送信信号から変調信号の位相をπだけずらした第2送信信号と、当該第1送信信号から変調信号の位相を+π/2だけずらした第3送信信号と、当該第1送信信号から変調信号の位相を−π/2だけずらした第4送信信号と、を形成し、前記復調信号処理部は、第1送信信号から第4送信信号までの4つの送信信号から得られる4つの復調信号を加算することにより、復調信号に含まれる変調周波数の基本波成分と第2次高調波成分と第3次高調波成分を低減する、ことを特徴とする。
【0012】
望ましい具体例において、前記送信信号処理部は、前記変調周期の自然数倍に設定された信号期間を各送信信号の出力期間として、互いに位相をずらした複数の送信信号を順次出力する、ことを特徴とする。
【0013】
望ましい具体例において、前記復調信号処理部は、前記信号期間の開始時点から終了時点までの各復調信号を周波数解析処理し、周波数解析処理後の前記複数の復調信号を合成することにより、前記不要波成分を低減する、ことを特徴とする。
【発明の効果】
【0014】
本発明により、連続波を利用して目標位置から生体内情報を抽出する技術において、不要波成分を低減することが可能になる。
【図面の簡単な説明】
【0015】
【図1】本発明の実施において好適な超音波診断装置の全体構成を示す図である。
【図2】周波数変調処理された送信波と受信波を説明するための図である。
【図3】kβが深さdに依存して正弦波状に変化する様子を示す図である。
【図4】FM連続波の周期性がドプラ周波数へ与える影響を説明する図である。
【図5】周波数変調の影響を受けたドプラ信号を説明するための図である。
【図6】周波数変調の影響を受けたドプラ信号の時間変化波形を示す図である。
【図7】不要波成分の低減を説明するための図である。
【図8】各復調信号に関する信号期間を説明するための図である。
【図9】周波数解析により得られる周波数スペクトラムを示す図である。
【図10】4つの送信信号を利用する場合の信号処理タイミングを示す図である。
【図11】不要波成分が除去されたドプラ信号の時間変化波形を示す図である。
【発明を実施するための形態】
【0016】
図1は、本発明の実施において好適な超音波診断装置の全体構成を示す図である。送信用振動子10は、生体内へ送信波を連続的に送波し、また、受信用振動子12は、生体内からの反射波を連続的に受波する。このように、送信および受信がそれぞれ異なる振動子で行われて、いわゆる連続波ドプラ法による送受信が実行される。なお、送信用振動子10は複数の振動素子を備えており、これら複数の振動素子が制御されて超音波の送信ビームが形成される。また、受信用振動子12も複数の振動素子を備えており、これら複数の振動素子により得られた信号が処理されて受信ビームが形成される。
【0017】
送信ビームフォーマ(送信BF)14は、送信用振動子10が備える複数の振動素子に対して送信信号を出力する。送信ビームフォーマ14には、例えば正弦波によるFM変調処理が施されたFM連続波(FMCW波)が入力される。送信ビームフォーマ14は、FM連続波に対して、各振動素子に応じた遅延処理を施して各振動素子に対応した送信信号を形成する。なお、送信ビームフォーマ14において形成された各振動素子に対応した送信信号に対して、必要に応じて電力増幅処理が施されてもよい。こうして、FM連続波による送信ビームが形成される。
【0018】
FM変調器20は、送信ビームフォーマ14にFM連続波を出力する。FM変調器20は、変調波生成部24から位相調整部23を介して供給される変調信号を用いて、RF波発振器22から供給されるRF波(搬送波信号)に対して周波数変調を施すことにより、FM連続波を発生する。このFM連続波の波形や位相調整部23による位相調整などについては後に詳述する。
【0019】
受信ビームフォーマ(受信BF)16は、受信用振動子12が備える複数の振動素子から得られる複数の受波信号を整相加算処理して受信ビームを形成する。つまり、受信ビームフォーマ16は、各振動素子から得られる受波信号に対してその振動素子に応じた遅延処理を施し、複数の振動素子から得られる複数の受波信号を加算処理することにより受信ビームを形成する。なお、各振動素子から得られる受波信号に対して低雑音増幅等の処理を施してから、受信ビームフォーマ16に複数の受波信号が供給されてもよい。こうして受信ビームに沿った受信RF信号が得られる。
【0020】
受信ミキサ30は受信RF信号に対して直交検波を施して複素ベースバンド信号を生成する回路であり、2つのミキサ32,34で構成される。各ミキサは受信RF信号を所定の参照信号と混合する回路である。
【0021】
受信ミキサ30の各ミキサに供給される参照信号は、FM変調器20から出力されるFM連続波に基づいて生成される。つまり、FM変調器20から出力されるFM連続波が遅延回路25において遅延処理され、ミキサ32には遅延処理されたFM連続波が直接供給され、一方、ミキサ34には遅延処理されたFM連続波がπ/2シフト回路26を経由して供給される。
【0022】
π/2シフト回路26は遅延処理されたFM連続波の位相をπ/2だけずらす回路である。この結果、2つのミキサ32,34の一方から同相信号成分(I信号成分)が出力され、他方から直交信号成分(Q信号成分)が出力される。なお、受信ミキサ30の後段に設けられたLPF(ローパスフィルタ)36,38により、同相信号成分および直交信号成分の各々の高周波数成分がカットされ、検波後の必要な帯域のみの復調信号が抽出される。
【0023】
LPF36,38から出力される復調信号は、メモリ42,44に記憶される。図1に示す超音波診断装置では、変調波生成部24において変調信号が生成され、位相調整部23においてその変調信号の位相が調整され、FM変調器20において互いに位相をずらした複数の送信信号が形成される。そして、互いに位相をずらした複数の送信信号の各々を利用して復調信号が得られる。こうして、メモリ42には同相信号成分の複数の復調信号が記憶され、メモリ44には直交信号成分に関する複数の復調信号が記憶される。
【0024】
FFT処理部(高速フーリエ変換処理部)50は、復調信号(同相信号成分および直交信号成分)に対してFFT演算を実行する。その結果、FFT処理部50において復調信号が周波数スペクトラムに変換される。また、FFT処理部50において、メモリ42から得られる同相信号成分の複数の復調信号が加算処理され、メモリ44から得られる直交信号成分の複数の復調信号が加算処理される。この加算処理は、FFT演算の前でもよいし後でもよい。そして、この加算処理により、同相信号成分の復調信号と直交信号成分の復調信号に含まれる不要波成分が低減される。この不要波成分の低減については、後にさらに詳述する。
【0025】
ドプラ情報解析部52は、周波数スペクトラムに変換された復調信号からドプラ信号を抽出する。後に詳述するが、図1の超音波診断装置では、遅延回路25における遅延処理により目標位置が設定され、ドプラ情報解析部52において目標位置からのドプラ信号が選択的に抽出される。ドプラ情報解析部52は、例えば、時間的に変化するドプラ信号の表示波形を形成する。なお、生体内の各深さ(各位置)ごとにドプラ信号を抽出して、例えば、超音波ビーム(音線)上の各深さごとに生体内組織の速度を算出し、リアルタイムで出力してもよい。また、超音波ビームを走査させて二次元的あるいは三次元的に生体内組織の各位置の速度を算出してもよい。
【0026】
表示部54は、ドプラ情報解析部52において形成されたドプラ信号の波形などを表示する。なお、図1に示す超音波診断装置内の各部は、システム制御部60によって制御される。つまり、システム制御部60は、送信制御や受信制御や表示制御などを行う。
【0027】
以上、概説したように、図1の超音波診断装置では、連続波(CW)を変調波でFM変調した超音波(FMCW波)を送受波して受信信号が得られて、目標位置からのドプラ情報が選択的に抽出される。さらに、互いに位相をずらした複数の送信信号が利用され、復調信号に含まれる不要波成分が低減される。そこで、目標位置からのドプラ情報が選択的に抽出される位置選択性と不要波成分の低減について以下に詳述する。なお、図1に示した部分(構成)については、以下の説明においても図1の符号を利用する。
【0028】
<位置選択性について>
周波数fのRF波(搬送波)に対して、周波数fの正弦波によりFM変調を施したFMCW送信波は次式のように表現できる。
【0029】
【数1】

【0030】
数1式において、Δfは周波数変動幅の0−P値(ゼロピーク値:最大周波数偏移)であり、最大周波数偏移Δfと変調周波数fの比であるβはFMの変調指数である。
【0031】
また、ドプラシフトを伴う場合のFMCW受信波は、生体における往復の減衰をαとすると次式で表現できる。
【0032】
【数2】

【0033】
なお、数2式においてfに対するドプラシフトは、fのシフト分fに比較して小さいので無視している。
【0034】
図2は、周波数変調処理された送信波と受信波を説明するための図である。図2(a)は、FMCW送信波(送信信号)の波形(数1式参照)を示しており、横軸が時間軸であり縦軸が振幅である。また、図2(b)は、FMCW送信波(送信信号)とFMCW受信波(受信信号)の各々についての瞬時周波数変化を示している。図2(b)の横軸は時間軸であり縦軸は周波数(瞬時周波数)である。なお、図2(a)と図2(b)の時間軸は互いに揃えられている。
【0035】
図2(b)に示されるように、送信信号(破線)は、周期T=1/fで周波数を変化させた連続波となっている。また、受信信号(実線)は、送信信号から、位相角でφだけ遅れている。なお、図2(b)においては、数2式で示した受信信号の減衰やドプラシフトを省略している。
【0036】
数2式で表される受信波形は、超音波振動子を介して受信される信号波形(受信RF信号)である。FMCWドプラでは、受信RF信号に対する復調処理において、FMCW送信波を参照信号として受信波と乗算を行う。図1を利用して説明したように、FM変調器20から出力されるFM連続波が遅延回路25において遅延処理され、参照信号として、ミキサ32には遅延処理されたFM連続波が直接供給され、一方、ミキサ34には遅延処理されたFM連続波がπ/2シフト回路26を経由して供給される。したがって、ミキサ32へ供給される参照信号vrI(t)と、ミキサ34へ供給される参照信号vrQ(t)は、次式のように表現できる。
【0037】
【数3】

【0038】
数3式において、φmrは、遅延回路25における遅延処理により任意に設定できる参照信号の位相を示しており、φ0rは、任意に設定した参照信号の位相に対応して決まる搬送波の位相変化量を示している。
【0039】
受信ミキサ30では、復調処理として直交検波が行われる。つまり、ミキサ32において、受信RF信号v(t)と参照信号vrI(t)の乗算に相当する処理が実行され、また、ミキサ34において、受信RF信号v(t)と参照信号vrQ(t)の乗算に相当する処理が実行される。
【0040】
ミキサ32における受信RF信号v(t)と参照信号vrI(t)の乗算vDI(t)は次式のように表現される。なお、次式の計算途中において、周波数2fの成分が消去されている。これは、LPF36によって除去される。
【0041】
【数4】

【0042】
ここで、ベッセル関数に関する次の公式を利用する。
【0043】
【数5】

【0044】
数5式の公式を用いると、数4式はさらに次式のように計算される。
【0045】
【数6】

【0046】
一方、ミキサ34における受信RF信号v(t)と参照信号vrQ(t)の乗算vDQ(t)は次式のように表現される。なお、次式の計算途中において、周波数2fの成分が消去されている。これは、LPF38によって除去される。
【0047】
【数7】

【0048】
ここで、数6式のvDI(t)と数7式のvDQ(t)とに基づいて、複素ベースバンド信号を定義する。まず、vDI(t)とvDQ(t)に含まれている直流(DC)成分、変調周波数fの偶数次高調波成分を次式のように表現する。
【0049】
【数8】

【0050】
次に、vDI(t)とvDQ(t)に含まれている変調周波数fの成分、変調周波数fの奇数次高調波成分を次式のように表現する。
【0051】
【数9】

【0052】
数8式と数9式から、直交検波後のベースバンド信号において、ドプラシフトfを含んだドプラ信号は、DC成分と変調周波数fの成分と変調周波数fの高調波成分とからなる複数の成分の各々についての両側帯波として出現することがわかる。通信工学ではこの種の信号形式を両側帯波搬送波除去変調(Double-Sideband Suppressed-Carrier, DSB-SC)と呼んでいる。
【0053】
ここで、受信信号と参照信号の位相を互いに揃えた場合、つまり、遅延回路25における遅延処理によりφmrを調整してφと一致させた場合(φmr=φ)を考える。φmrとφを一致させた場合には、数4式におけるkが0となる。この結果を数5式のベッセル関数に適用すると、次式のように、0次のベッセル関数の値のみが1となり、それ以外のベッセル関数の値は0となる。
【0054】
【数10】

【0055】
数10式に示す結果を数8式と数9式に適用すると次式のとおりとなる。
【0056】
【数11】

【0057】
数11式は、参照波(参照信号)の位相φmrを送受信間の位相差φに設定すると、圧縮変換により、DC成分(直流信号成分)に対応したドプラ信号のみが抽出できることを示している。その結果として得られる複素ドプラ周波数fの値と極性は、血流などの流体の速度とその極性を表わしている。また、ドプラ信号の振幅は、搬送波および参照波の位相に依存しないこともわかる。
【0058】
この事実は以下のように解釈することもできる。図1における遅延回路25は、参照波(参照信号)における変調波の位相φmrを、送受信間の変調波の位相差φに設定する役目を持っている。しかし、この遅延回路25は変調波の位相ばかりでなく、搬送波の位相も同時に変化させる。この値がφ0rである。搬送波の位相は、参照波における変調波の位相φmrに応じて変化するので、送受信間の変調波の位相差に応じた特定の値に定めることができない。しかし、数11式に示されているように、φ0rは、φと同様に、どんな値になろうとも、直交検波する限りは、ドプラ信号の振幅、周波数およびその極性に影響を与えない。
【0059】
そのため、例えば、変調信号(変調波)のみを目標位置の深さに応じた遅延量だけ遅延処理して遅延変調信号を形成し、その遅延変調信号を用いて搬送波信号を変調処理することにより参照信号を形成し、その参照信号とπ/2だけ位相をずらした参照信号とを用いて復調処理を施すようにしてもよい。
【0060】
そして、図1の超音波診断装置においては、以下に説明するように、PWドプラ(パルスドプラ)と同様に特定位置のドプラ情報をCWドプラと類似の比較的良好なSNRで得ることができる。数6式から数9式において、ドプラ信号の振幅を支配するJ(kβ)の因数であるkβについて考察する。数4式におけるkの定義からkβは次式のように表現でき、kβが深さdに依存して正弦波状に変化することがわかる。
【0061】
【数12】

【0062】
図3は、kβが深さdに依存して正弦波状に変化する様子を示す図である。第1次ベッセル関数の性質により、kβが0のときにJ(kβ)が最大値となる。図3において実線で示されるkβの波形は、体表からの深さdが正の範囲において0となる深さが3箇所ある。これら3箇所の深さから得られるドプラ信号の振幅が最大となることを意味している。
【0063】
数12式などから、目的とする深さからの受信信号の位相φと、参照波の位相φmrとを一致させるとkβを0とすることができ、kβが0となる深さにおいてJ(kβ)が最大となりドプラ信号の振幅が最大となる。つまり、遅延回路25において、目的とする深さからの受信信号の位相φと参照波の位相φmrを一致させることにより、目的とする深さからのドプラ信号の振幅が最大となるようにして、そのドプラ信号を選択的に抽出することができる。
【0064】
以上のように、ドプラ信号が選択的に抽出される目標位置は、遅延回路25における遅延処理に基づいて決定される。図1のシステム制御部60は、目標位置の深さに応じて遅延回路25における遅延時間を制御する。
【0065】
さらに、図1の超音波診断装置では、周波数変調の影響に伴うドプラ信号の不要波成分が低減され、必要とされるドプラ信号が抽出される。そこで、周波数変調に伴う不要波成分と、その不要波成分の低減について以下に詳述する。なお、図1に示した部分(構成)については、以下の説明においても図1の符号を利用する。
【0066】
<周波数変調に伴う不要波成分について>
ドプラ法の基本原理において、移動体(例えば血流)に関するドプラ周波数(ドプラシフト周波数)は、計測に利用される超音波の周波数と移動体の速度に比例する。図1の超音波診断装置においては、FM連続波を利用しており、FM連続波は、図2において説明したように、周波数(瞬時周波数)が周期的に変化している。そのため、移動体の速度が一定の場合においても、FM連続波を利用してその移動体のドプラ周波数を計測すると、FM連続波の周期性に伴ってドプラ周波数が周期的に変動する。
【0067】
図4は、FM連続波の周期性がドプラ周波数へ与える影響を説明する図である。図4には、ドプラシフトの影響を受けていないFM連続波70と、ドプラシフトの影響を受けたFM連続波72が図示されている。なお、図4の横軸は時間軸であり、図4の縦軸にはFM連続波70,72の瞬時周波数が示されている。
【0068】
図1の超音波診断装置における超音波の送信信号は、その瞬時周波数がFM連続波70のように周期的に正弦波状に変化する。そのため、移動体の速度が一定の場合においてもドプラシフトが周期的に変化し、その結果としてFM連続波72のような波形が得られる。つまり、FM連続波70の瞬時周波数が低い(小さい)時刻においては、比較的小さいドプラ周波数fdLとなり、FM連続波70の瞬時周波数が高い(大きい)時刻においては、比較的大きいドプラ周波数fdHとなる。
【0069】
このように、FM連続波70を利用して得られるドプラ周波数の変動は、FM連続波70の周期性に対応した周期的なものとなる。特に、移動体の速度が大きい場合には、ドプラ周波数fdLとドプラ周波数fdHの差も大きくなり、ドプラ周波数の周期性が比較的顕著になる。一方、移動体の速度が小さい場合にはドプラ周波数fdLとドプラ周波数fdHの差が小さくなり、ドプラ周波数の周期性が比較的目立たなくなる。
【0070】
図1の超音波診断装置における超音波の送信信号は、周波数fのRF波(搬送波)に対して、周波数fの正弦波によりFM変調を施したFMCW送信波であり、その信号は前述の数1式のとおりである。その送信信号(FMCW送信波)の瞬時角周波数は、数1式の位相項を時間微分して次式のように表現される。
【0071】
【数13】

【0072】
ここで、ドプラシフトを音速(超音波の速度)cと移動体の速度vの比だけ、瞬時周波数が変化する量として定義する。この場合、相対速度vに対するドプラ周波数変化は、往復で速度2vとして数14式で表現され、さらに、数14式で表現されるドプラ周波数変化を瞬時位相に変換すると数15式となる。
【0073】
【数14】

【0074】
【数15】

【0075】
数15式で表現される瞬時位相は、移動体からの受信波の瞬時位相に対して、初項で表現される搬送波fによるドプラシフトに加え、第2項で表現される変調波によるドプラシフトが追加されることを意味している。なお、第3項は積分定数であり、ドプラ周波数の位相を意味する。一般に、血流などの速度計測では、ドプラ周波数の位相情報までは必要としない。また、時間的に変化しない位相成分であるため、速度計測において物理的に大きな意味を含んでいないと考える。
【0076】
受信波は、送受信時間差(目標位置までの往復の伝播時間)τだけ送信波よりも遅れて到着するため、送受信時間差τを考慮すると、受信波は次式のように表現される。
【0077】
【数16】

【0078】
受信ミキサ30では、送信波に実質的に同じ波形の参照波(参照信号)と受信波との乗算(次式)に相当する処理が実行される。
【0079】
【数17】

【0080】
数17式から2fの周波数成分をローパスフィルタで除去すると、受信ミキサ30の出力(例えばLPF36の出力)は数18式のように表現することができ、数18式の結果についてさらに計算を進めると、数19式のようになる。
【0081】
【数18】

【0082】
【数19】

【0083】
数19式は、ドプラ信号が、新たに定義された変調度β´(数18式参照)と変調周波数fにより周波数変調された信号に等しいことを意味している。
【0084】
図5は、周波数変調の影響を受けたドプラ信号を説明するための図であり、図5には、数19式に対応したドプラ信号の周波数スペクトラムが示されている。なお、図5の横軸は周波数であり縦軸は電力である。
【0085】
図5や数19式に示されるように、変調信号の影響を受けたドプラ信号には、変調周波数fのゼロ次成分である直流成分J(β´)に加え、1次成分J(β´),2次成分J(β´),3次成分J(β´),・・・の折り返し成分が含まれている。なお、直流成分は周波数0からドプラ周波数fだけ離れた位置に現れており、1次成分は周波数fからドプラ周波数fだけ離れた位置に現れており、2次成分は周波数2fからドプラ周波数fだけ離れた位置に現れている。
【0086】
図6は、周波数変調の影響を受けたドプラ信号の時間変化波形を示す図であり、図5の周波数スペクトラムの時間変化を示している。つまり、図6には、ドプラ信号の直流成分と1次成分(−1次成分)と2次成分の各々についての時間変化波形が示されている。横軸に示す時間の経過に伴って測定対象である血流などの速度が変化すると、速度の変化に応じてドプラ周波数fも変化する。そのため、図6に示す各成分の波形は、横軸に示す時間の経過に従って縦軸に示す周波数方向に変化している。
【0087】
図1の超音波診断装置では、必要とされるドプラ信号として、ゼロ次成分である直流成分を抽出する。そのため、折り返し成分である1次成分,2次成分,3次成分,・・・を不要波成分として、これら不要波成分が低減される。
【0088】
<不要波成分の低減について>
不要波成分を低減するために、図1の超音波診断装置では、変調波生成部24において変調信号が生成され、位相調整部23においてその変調信号の位相が調整され、FM変調器20において互いに位相をずらした複数の送信信号が形成される。そして、互いに位相をずらした複数の送信信号の各々を利用して復調信号を得て、複数の送信信号に対応した複数の復調信号を合成することにより、不要波成分を低減している。
【0089】
この不要波成分の低減について数式を利用して説明する。まず、数1式のFMCW送信波に対応した信号として、次式の第1送信信号を定義する。
【0090】
【数20】

【0091】
そして、第1送信信号を利用して得られる第1復調信号として、数19式を次式のように簡略化する。
【0092】
【数21】

【0093】
次に、第1送信信号から変調信号の位相をπだけずらした次式の第2送信信号を定義する。
【0094】
【数22】

【0095】
なお、第1送信信号の全体の位相、つまり数20式の右辺の括弧内の位相を単純にπだけシフトさせてしまうと、搬送波の位相もシフトしてしまい、数22式の第2送信信号にはならない。但し、搬送波の角周波数ωを変調信号の角周波数ωの偶数倍に選んでおけば、変調信号の位相がπだけシフトするように全体の位相をシフトすると、搬送波の位相が2πだけシフトするので、結果的に搬送波の位相を不変とすることができる。
【0096】
第2送信信号を利用して、数13式から数19式までの演算と同様な演算を進めることにより、第2送信信号に対応した次式の第2復調信号が得られる。
【0097】
【数23】

【0098】
ここで、数21式の第1復調信号と数23式の第2復調信号の第2項同士の極性が逆になっている点に着目し、これら2つの復調信号を次式のとおり加算する。
【0099】
【数24】

【0100】
数24式の中括弧内の第2項は、変調波(変調信号)の偶数倍の周波数成分をもった高次高調波の電力を意味している。つまり、第1復調信号と第2復調信号の加算により、変調波の奇数倍の周波数成分がキャンセルされている。しかし、第1復調信号と第2復調信号の加算では、偶数倍の周波数成分をもった高次高調波はキャンセルされていない。そこで、第1種ベッセル関数の以下の公式を見直してみる。
【0101】
【数25】

【0102】
数24式においては、数25式の公式(1)が利用されている。数25式における公式(1)と公式(2)の相違は、第2項の極性が、nが奇数の場合に異なる点である。この点に着目し、公式(2)で高次高調波の電力を表現できる復調信号について検討する。
【0103】
そのために、第1送信信号から変調信号の位相を+π/2だけずらした次式の第3送信信号を定義する。
【0104】
【数26】

【0105】
なお、第1送信信号の全体の位相、つまり数20式の右辺の括弧内の位相を単純に+π/2だけシフトさせてしまうと、搬送波の位相もシフトしてしまい、数26式の第3送信信号にはならない。但し、搬送波の角周波数ωを変調信号の角周波数ωの4n倍(nは自然数)に選んでおけば、変調信号の位相が+π/2だけシフトするように全体の位相をシフトすると、搬送波の位相が2πだけシフトするので、結果的に搬送波の位相を不変とすることができる。
【0106】
第3送信信号を利用して、数13式から数19式までの演算と同様な演算を進めることにより、第3送信信号に対応した次式の第3復調信号が得られる。
【0107】
【数27】

【0108】
次に、第1送信信号から変調信号の位相を−π/2πだけずらした次式の第4送信信号を定義する。
【0109】
【数28】

【0110】
なお、第1送信信号の全体の位相、つまり数20式の右辺の括弧内の位相を単純に−π/2だけシフトさせてしまうと、搬送波の位相もシフトしてしまい、数28式の第4送信信号にはならない。但し、搬送波の角周波数ωを変調信号の角周波数ωの4n倍(nは自然数)に選んでおけば、変調信号の位相が−π/2だけシフトするように全体の位相をシフトすると、搬送波の位相が−2πだけシフトするので、結果的に搬送波の位相を不変とすることができる。
【0111】
第4送信信号を利用して、数13式から数19式までの演算と同様な演算を進めることにより、第4送信信号に対応した次式の第4復調信号が得られる。
【0112】
【数29】

【0113】
ここで、数27式の第3復調信号と数29式の第4復調信号の第2項同士の極性が逆になっている点に着目し、これら2つの復調信号を次式のとおり加算する。
【0114】
【数30】

【0115】
さらに、数24式と第30式を加算することにより次式が得られる。
【0116】
【数31】

【0117】
図5や数19式では、変調信号の影響により、ドプラシフトfを含んだドプラ信号はDC成分と変調周波数fの成分と変調周波数fの高調波成分とからなる複数の成分の各々についての両側帯波として出現していた。これに対し、数31式においては、DC成分以外である不要波成分のうち、4次,8次,12次,・・・というような、変調波の4n倍(nは自然数)の不要波成分のみが残り、他の不要波成分がキャンセルされている。
【0118】
図7は、不要波成分の低減を説明するための図である。図7の各横軸は周波数であり各縦軸は電力である。図7には、第1復調信号から第2復調信号までの各復調信号の周波数スペクトラムと、複数の復調信号を加算して得られる信号の周波数スペクトラムが示されている。図7の最下段に示す4つの復調信号の加算結果から、変調波の4n倍(nは自然数)の不要波成分のみが残り、他の不要波成分がキャンセルされていることがわかる。
【0119】
以上のように、複数の送信信号に対応した複数の復調信号を加算することにより、復調信号に含まれる不要波成分が低減され、望ましくはキャンセルされる。本実施形態においては、互いに位相をずらした第1送信信号から第4送信信号に対応した超音波が順次送波され、各送信信号に対応した第1復調信号から第4復調信号が次々に生成される。その際に、第1送信信号から第4送信信号までの各送信信号が、変調周期の自然数倍に設定された信号期間だけ送信され、その信号期間と同じ時間長の各復調信号が処理対象とされる。
【0120】
図8は、各復調信号に関する信号期間を説明するための図である。信号期間Tは、次式に示すように、送信信号を形成する際の変調周期TのN倍(Nは自然数)に設定される。
【0121】
【数32】

【0122】
この信号期間Tを各送信信号の出力期間として、互いに位相をずらした複数の送信信号が順次出力される。例えば、第1送信信号(数20式参照)が信号期間Tだけ送信され、それに続いて、第2送信信号(数22式参照)が信号期間Tだけ送信される。図8においては、第1送信信号と第2送信信号が交互に送信される態様について説明する。なお、第1送信信号から第4送信信号の全てを利用する場合には、第2送信信号に続いて、第3送信信号(数26式参照)が信号期間Tだけ送信され、第4送信信号(数28式参照)が信号期間Tだけ送信される。
【0123】
第1送信信号が信号期間Tだけ送信されると、超音波の往復後に、信号期間Tに亘って第1復調信号(数21式参照)が得られる。一方、第2送信信号が信号期間Tだけ送信されると、超音波の往復後に、信号期間Tに亘って第2復調信号(数23式参照)が得られる。
【0124】
図8(A)には、第1送信信号と第2送信信号が信号期間Tごとに交互に送信された場合に得られる受信信号内の変調信号が図示されており、図8(B)には、その受信信号を復調処理して得られる復調信号(ベースバンド信号)に含まれるドプラ周波数の時間変化が図示されている。図8(B)に示すドプラ信号は、一定速度の移動体から得られるものであり、図4を利用して説明したように、FM連続波70の周期性に対応した周期的なものとなる。つまり、図8(B)に示すドプラ周波数は、変調周期Tで周期的に変化する。さらに、第1送信信号と第2送信信号は、変調時の位相を互いに反転させているため(位相がπだけずれているため)、図8(B)に示すドプラ周波数は、信号期間Tごとに位相が反転している。
【0125】
そこで、図1のFFT処理部50は、信号期間Tごとに、信号期間Tの開始時点から終了時点までの復調信号を処理対象とする。例えば、図8(B)に示すドプラ周波数を含んだ復調信号のうち、第1送信信号に対応した期間t内の復調信号が処理対象とされ、この期間t内の復調信号が周波数解析される。この周波数解析においては、期間t内の復調信号が繰り返されるものとして処理が行われる。期間tつまり信号期間Tは、変調周期TのN倍に設定されているため、期間tの開始時点と終了時点の2点において、変調周期Tの連続性が保たれている。そのため、図8(C)に示すように、復調信号に含まれるドプラ周波数の位相の連続性も保たれており、位相の不連続性に伴う不要波の発生を抑えつつ、第1送信信号に対応した第1復調信号(数21式参照)を得ることが可能になる。
【0126】
同様に、図8(B)に示すドプラ周波数を含んだ復調信号のうち、第2送信信号に対応した期間t内の復調信号が処理対象とされ、この期間t内の復調信号が周波数解析される。この周波数解析においては、期間t内の復調信号が繰り返されるものとして処理が行われる。そのため、図8(D)に示すように、復調信号に含まれるドプラ周波数の位相の連続性が保たれて、位相の不連続性に伴う不要波の発生を抑えつつ、第2送信信号に対応した第2復調信号(数23式参照)を得ることが可能になる。なお、期間tに対して期間tは信号期間Tだけ遅れているため、期間tで得られる第2復調信号を次式のように表現する。
【0127】
【数33】

【0128】
ここで、FFT処理部50における周波数解析の周波数分解能について考察する。周波数解析の対象となる復調信号の信号長は信号期間Tであるため、その復調信号に対する周波数解析の周波数分解能はω(数32参照)となる。つまり、FFT処理部50における周波数解析により得られる周波数スペクトラムは、図9に示すように、ωの整数倍の周波数成分のみを含んでいる。したがって、周波数解析の結果として得られるドプラ信号のスペクトラムもωの整数倍の周波数成分で構成される。そのため、FFT処理部50において処理されるドプラ信号ωは、Mを整数として数34式のように表現できる。さらに、数34式を数33式に代入すると、数35式に示す計算結果が得られる。
【0129】
【数34】

【0130】
【数35】

【0131】
数35式は、図8の期間tで得られる数33式の第2復調信号が、数23式の第2復調信号に等しいことを示している。そのため、図8の期間tで得られる第1復調信号と期間tで得られる第2復調信号を加算することにより、次式に示すように、数24式と同一の結果を得ることができ、復調信号に含まれる変調波の奇数倍の周波数成分をキャンセルすることができる。
【0132】
【数36】

【0133】
図8に示すように、第1送信信号と第2送信信号を交互に利用する場合には、例えば、期間tで得られる第1復調信号と期間tで得られる第2復調信号が加算処理され、続いて、期間tで得られる第2復調信号と期間tで得られる第1復調信号が加算処理される。さらに、期間tで得られる第1復調信号と期間tで得られる第2復調信号が加算処理される。
【0134】
また、第1送信信号から第4送信信号の全てを利用する場合には、第2送信信号に続いて、第3送信信号(数26式参照)が信号期間Tだけ送信され、第4送信信号(数28式参照)が信号期間Tだけ送信される。そして、第3送信信号に対応した第3復調信号と第4送信信号に対応した第4復調信号についても、信号期間Tの信号長が処理対象となる。
【0135】
図10は、4つの送信信号を利用する場合の信号処理タイミングを示す図である。図10の横軸(横方向)は時間であり、図10の最上段には位相調整部23(図1)から出力される位相シフト後の変調信号が図示されている。
【0136】
まず、セット期間tにおいて、変調信号を利用して第1送信信号から第4送信信号が形成され、各送信信号ごとに送受信が行われて第1復調信号vd1から第4復調信号vd4が得られる。各送信信号ごとの送受信は、例えば変調信号の1周期の期間(1/f)内で行われる。この場合には、第1送信信号から第4送信信号までの送受信期間が4/fとなり、これがセット期間tとなる。なお、各送信信号ごとの送受信は、例えば変調信号の2周期の期間(2/f)で行われてもよい。この場合には、第1送信信号から第4送信信号までの送受信期間が8/fとなり、セット期間tも8/fとなる。
【0137】
また、各送信信号ごとの送受信を3周期の期間(3/f)以上としてもよい。送受信の期間を長くすることにより、結果的に得られるドプラ信号のSNR(信号対雑音比)を改善することができる。
【0138】
こうして、セット期間tにおいて、例えば超音波ビーム1本分の復調信号が得られると、続いて、超音波ビームの方向を変えて、セット期間tにおいて、例えば超音波ビーム1本分の復調信号が得られる。セット期間tにおいても、変調信号を利用して第1送信信号から第4送信信号が形成され、各送信信号ごとに送受信が行われて、第1復調信号vd1から第4復調信号vd4が得られる。
【0139】
なお、セット期間tにおいて得られた第1復調信号vd1から第4復調信号vd4までの復調信号に対する加算処理、FFT処理、表示処理は、セット期間tにおける送受信と並行して行われる。
【0140】
さらに、セット期間tにおいて復調信号が得られると、続いて、超音波ビームの方向を変えて、セット期間tにおいて、例えば超音波ビーム1本分の復調信号が得られる。セット期間tにおいても、変調信号を利用して第1送信信号から第4送信信号が形成され、各送信信号ごとに送受信が行われて、第1復調信号vd1から第4復調信号vd4が得られる。
【0141】
また、セット期間tにおいて得られた第1復調信号vd1から第4復調信号vd4までの復調信号に対する加算処理、FFT処理、表示処理は、セット期間tにおける送受信と並行して行われる。
【0142】
こうして、セット期間t以降においても、各セット期間ごとに4つの送信信号が形成されて4つの復調信号が得られ、これら4つの復調信号が加算処理されて、復調信号に含まれる不要波成分が低減される。望ましくは不要波成分が完全にキャンセルされる。なお第1復調信号vd1から第4復調信号vd4までの加算処理は、FFT処理前でもよいしFFT処理後でもよい。
【0143】
図11は、不要波成分が除去されたドプラ信号の時間変化波形を示す図であり、図7最下段の周波数スペクトラムの時間変化を示している。図6と比較すると、図11においては、1次成分(−1次成分)と2次成分の不要波成分がキャンセルされ、ドプラ信号の直流成分についての時間変化波形のみが示されている。なお、3次成分の不要波成分もキャンセルされる。こうして、例えば、図11に示す直流成分の時間変化波形が、ドプラ信号の時間変化波形として、図1の表示部54に表示される。
【0144】
以上、本発明の好適な実施形態を説明したが、上述した本発明の好適な実施形態等は、あらゆる点で単なる例示にすぎず、本発明の範囲を限定するものではない。本発明は、その本質を逸脱しない範囲で各種の変形形態を包含する。
【符号の説明】
【0145】
20 FM変調器、22 RF波発振器、23 位相調整部、24 変調波生成部、25 遅延回路、50 FFT処理部、52 ドプラ情報解析部。

【特許請求の範囲】
【請求項1】
変調周期に応じて周期的に周波数を変化させた連続波の送信信号を出力する送信信号処理部と、
送信信号に対応した超音波の送信波を生体に送波してその送信波に伴う受信波を生体から受波することにより受信信号を得る超音波送受部と、
生体内の目標位置との間の相関関係が調整された参照信号を用いて、受信信号に対して復調処理を施すことにより、当該目標位置に対応した復調信号を得る受信信号処理部と、
前記目標位置に対応した復調信号に含まれる不要波成分を低減する復調信号処理部と、
不要波成分を低減された復調信号から生体内情報を抽出する生体内情報抽出部と、
を有し、
前記送信信号処理部は、互いに位相をずらした複数の送信信号を出力し、
前記受信信号処理部は、前記複数の送信信号の各々に対応した受信信号に対して前記復調処理を施すことにより、当該複数の送信信号に対応した複数の復調信号を生成し、
前記復調信号処理部は、前記変調周期の自然数倍に設定された信号期間の開始時点から終了時点までの各復調信号を処理対象として前記複数の復調信号を合成することにより、前記不要波成分を低減する、
ことを特徴とする超音波診断装置。
【請求項2】
請求項1に記載の超音波診断装置において、
前記送信信号処理部は、変調信号を用いて搬送波信号を周波数変調処理することにより前記各送信信号を形成し、変調信号の位相を所定量だけ互いにずらすことにより前記複数の送信信号を形成する、
ことを特徴とする超音波診断装置。
【請求項3】
請求項2に記載の超音波診断装置において、
前記送信信号処理部は、前記複数の送信信号として、第1送信信号と、当該第1送信信号から変調信号の位相をπだけずらした第2送信信号と、を形成し、
前記復調信号処理部は、第1送信信号に対応した復調信号と第2送信信号に対応した復調信号とを加算することにより、復調信号に含まれる奇数次の不要波成分を低減する、
ことを特徴とする超音波診断装置。
【請求項4】
請求項3に記載の超音波診断装置において、
前記送信信号処理部は、前記複数の送信信号として、第1送信信号と、当該第1送信信号から変調信号の位相をπだけずらした第2送信信号と、当該第1送信信号から変調信号の位相を+π/2だけずらした第3送信信号と、当該第1送信信号から変調信号の位相を−π/2だけずらした第4送信信号と、を形成し、
前記復調信号処理部は、第1送信信号から第4送信信号までの4つの送信信号から得られる4つの復調信号を加算することにより、復調信号に含まれる変調周波数の基本波成分と第2次高調波成分と第3次高調波成分を低減する、
ことを特徴とする超音波診断装置。
【請求項5】
請求項1から4のいずれか1項に記載の超音波診断装置において、
前記送信信号処理部は、前記変調周期の自然数倍に設定された信号期間を各送信信号の出力期間として、互いに位相をずらした複数の送信信号を順次出力する、
ことを特徴とする超音波診断装置。
【請求項6】
請求項1から5のいずれか1項に記載の超音波診断装置において、
前記復調信号処理部は、前記信号期間の開始時点から終了時点までの各復調信号を周波数解析処理し、周波数解析処理後の前記複数の復調信号を合成することにより、前記不要波成分を低減する、
ことを特徴とする超音波診断装置。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate

【図11】
image rotate