説明

距離測定方法とその装置

本発明は、人体形状の測定などの距離測定装置に関するものであり、人体に沿ってホーンアンテナを昇降させ、十数GHz程度のマイクロ波を周波数を変化させながら放射し、人体からの反射波と進行波との定在波を検出し、DC成分を除去した信号に対してフーリエ変換を行い、人体までの距離を算出する。
高精度に距離測定を行うため、検出した定在波の強度がほぼ一定となるように発信源にフィードバックを行う。

【発明の詳細な説明】
【技術分野】
この発明は、人体形状の測定などの距離測定に関する。
【背景技術】
【特許文献1】 特開2002−357656号公報(EP1365256A1)
特許文献1は、高周波を用いた距離測定を開示している。アンテナから指向性のある高周波を放射して、高周波の周波数を変化させながら、反射波と進行波とで構成される定在波の強度を測定する。得られた定在波の強度を周波数に関してフーリエ変換すると、対象物までの距離が得られる。
発明者らは、この技術を人体形状の測定、特にアパレル向きの人体形状の測定、に応用することを検討した。発明者はこの過程で、人体形状の測定の場合、反射波が微弱なため定在波も微弱で、しかも人体には反射波が特に微弱になる位置があることを見出した。人体の場合、衣服の内側の空気と人体との界面で屈折率等が変化するため、高周波の反射が生じる。しかしこの反射は微弱で、一般に進行波の中に僅かな反射波が存在するような状態となる。次に人体表面からの反射波の強度は場所によって変動する。これは、高周波の放射方向と人体表面が直角な場合には反射波が強いが、直角で無い場合、反射波の多くは受信用のアンテナに戻らないためである。
発明の概要
【発明が解決しようとする課題】
この発明の課題は、定在波の振幅をほぼ一定にして、高精度に距離測定ができるようにすることにある。
発明の構成
この発明の距離測定方法は、発振源から測定対象に向けてビーム状の波を送り、該波の反射に基づく定在波の強度を、前記波の周波数を変えながら測定して、フーリエ変換することにより、測定対象との距離を求める方法において、前記定在波の強度を検出して、該強度がほぼ一定となるように前記発振源にフィードバックして、波のエネルギーを変化させることを特徴とする。
この発明の距離測定装置は、測定対象に向けて発振源からビーム状の波を送り、該波の反射に基づく定在波の強度を、前記波の周波数を変えながら測定して、フーリエ変換することにより、測定対象との距離を求めるようにした装置において、前記定在波の強度を検出するための手段と、検出した強度がほぼ一定となるように前記発振源にフィードバックするための手段、とを設けたことを特徴とする。
好ましくは、測定対象が人体で、前記波が周波数5GHz〜100GHzのマイクロ波である。例えば、発振源が周波数5GHz〜100GHz、特に好ましくは10〜50GHzのマイクロ波発振回路であり、さらに波を人体に沿って高さ方向や周方向にスキャンして、人体形状を求めるようにする。
また好ましくは、前記波をピックアップして検波した後、DC成分を除去したものの強度を、前記定在波の強度とする。
例えば、前記波をピックアップするためのピックアップ手段と、ピックアップした波を検波するための検波手段と、検波手段の出力からDC成分を除去して出力するための除去手段とを設けて、該除去手段の出力を前記フィードバック手段に入力する。
発明の作用と効果
この発明では、定在波の振幅がほぼ一定となるように、発振源にフィードバックを加えるので、反射が弱い場合は発振源の出力が増して、高精度に距離を測定できる。ほぼ一定とは、例えば振幅を基準値の1/2〜2倍程度の範囲に収めることである。
人体形状を測定する場合、分解能はcmオーダーが要求されるので、波は周波数が5〜100GHzのマイクロ波が好ましく、人体では一般に反射率が低く、しかも表面に凹凸があるため、反射波が種々の方向を向く。これらのため、定在波の振幅が小さくしかも振幅が変動することになりやすいが、発振源にフィードバックを加えて、定在波の振幅をほぼ一定にするので、高精度に人体形状を測定できる。
定在波をピックアップする場合、一般には定在波以外に進行波などもピックアップされ、しかも進行波の振幅が定在波よりも大きい場合が多い。ここで検波信号からDC成分を除くと、進行波を除くことができ、正確に距離を測定できる。
【図面の簡単な説明】
図1は、実施例の人体形状測定装置の正面図である。
図2は、実施例で用いたホーンアンテナの側面図である。
図3は、実施例の人体形状測定装置の信号処理系のブロック図である。
図4は、実施例の人体形状測定方法でのトラッキングアルゴリズムを示すフローチャートである。
図5は、実施例での、フーリエ変換信号からのバックグラウンド信号の除去を模式的に示す図である。
図6は、トラッキングを行わない場合の、フーリエ変換信号と高さ方向に沿った人体形状信号とを示す図である。
図7は、トラッキングを行った場合の、フーリエ変換信号と高さ方向に沿った人体形状信号とを示す図である。
図8は、トラッキングを行わない場合の高さ方向の人体形状信号を示す図である。
図9は、トラッキングを行った場合の高さ方向の人体形状信号を示す図である。
【実施例】
図1〜図9に、人体形状の測定を例に、実施例とその特性を示す。ただし距離の測定対象は任意で、例えば前方の車両との車間距離、障害物との距離の検出などに用いても良い。図1に人体形状測定装置2の外形を示すと、4は人が立つための台で、6はその周囲を取り巻くフレームで、支柱8を備えている。昇降台9は支柱8に沿って昇降し、1個〜複数個のホーンアンテナ10を設ける。ホーンアンテナ10は回折損などの少ない高周波用のアンテナで、アンテナの種類自体は任意である。
12は高周波回路で、ホーンアンテナ10に対して高周波を供給し、ホーンアンテナ10中の進行波と人体からの反射波との定在波をピックアップして検波し、例えばDC成分を除去した後に、信号処理部14へ出力する。ホーンアンテナ10を複数設ける場合、アンテナ毎に高周波の周波数を異ならせることが好ましい。信号処理部14は、デジタルシグナルプロセッサやパーソナルコンピュータレベルの信号処理回路で構成し、求めた人体形状をモニタ16などに出力すると共に、キーボード18からの操作を受け付ける。
ホーンアンテナ10の構造を図2に示すと、21は導波管で、高周波発振回路からの高周波を受け入れ、先端の拡開されたホーン22から高周波を放射する。導波管21中にピックアップ23を挿入して、GaAsショットキーダイオードなどの検波回路24により検波し、コンデンサなどを用いたDCエリミネータ25によりDC成分を除去して、出力する。なおDCエリミネータ25は設けなくてもよい。定在波検出用のピックアップ23は、ホーンアンテナ10とは別のアンテナ内に設けても良いが、高周波用の導波管やアンテナは高価で、送信用のホーンアンテナ10内にピックアップ23を設けることが好ましい。
図3に、用いた信号処理系を示すと、高周波発振回路29からの高周波出力をホーンアンテナ10を介して、人体20に向けて放射する。用いる高周波は例えば10〜15GHz程度で、衛星通信用などの比較的安価な高周波素子を用いることができ、進行方向に垂直な平面内でのビーム径は例えば2cm程度である。ホーンアンテナ10内には高周波の進行波と反射波とが存在し、これらによって定在波が形成され、エネルギーとしては進行波の割合が圧倒的に大きい。そしてホーンアンテナ内の高周波をピックアップ23でピックアップし、GaAs系のショットキーダイオードなどを用いた検波回路24で例えば半波相当に検波し、DCエリミネータ25でDC成分を除去する。DC成分の多くは進行波に起因するもので、コンデンサでDC成分を除去する代わりに、AD変換後の信号を差分あるいは微分してDC成分を除去しても良い。
DCエリミネータ25からの信号は、振幅検出部26にフィードバックされ、ALC(自動レベル制御装置)27へ入力されて、振幅に対する基準値との差が出力される。出力制御部28は前記の差に応じたゲインで、高周波発振回路29を駆動する。高周波発振回路29の出力は、例えば基準出力の1/3〜3倍程度の範囲で変化する。これらの結果、DCエリミネータ25からの出力信号の振幅がほぼ一定となるように、高周波発振回路29の出力にフィードバックが施され、これによって定在波のパワー(DCエリミネータ25からの出力)が小さい場合には進行波のパワー(エネルギー)を増し、検波回路24で定在波を雑音に埋もれずに検波できるようにする。即ち振幅の小さな定在波を、振幅の大きな進行波の存在下に検波することは難しいが、定在波の振幅を増すと検波が容易になる。またDCエリミネータ25からの出力が大きい時には、進行波のパワーを落として、DCエリミネータからの信号強度をほぼ一定に保ち、これによって検波器24等の飽和を防止する。
高周波回路12は、1つの測定点に対して、周波数を例えば256通りなどに複数に変化させ、例えば中心周波数12GHzに対して、周波数を10〜14GHz、あるいは11〜13GHzなどに変化させ、周波数に関するフーリエ変換を可能にする。次に1つの測定点に対する最初の周波数で、ALC27を作動させて、以下同じ測定点では、ALC27の出力を一定にする。あるいはまた各周波数毎にALC27を独立して作動させ、用いたゲイン(ALC27出力制御部28の出力)を後述のFFT38へ入力して、AD変換信号とゲインとの比などをフーリエ変換しても良い。
ADコンバータ36は、DCエリミネータ25の出力信号をAD変換し、AD変換した信号中のDC成分は、距離ゼロの位置に現れるため意味が無く、これをDCエリミネータ37によりデジタル的に処理する。例えばAD変換した信号をDC成分に相当する所定値だけレベルダウンした後、フーリエ変換を行い距離情報を得る。
FFT38は、高速フーリエ変換などにより、AD変換しDC成分を除去した信号をフーリエ変換する。このフーリエ変換は周波数に関するフーリエ変換で、特許文献1に記載のように、フーリエ変換信号のピークはアンテナ10から人体までの距離に対応する。なおAD変換した信号を微分フィルタなどで処理してDC成分を除き、前記の振幅検出部26へ入力しても良い。またADコンバータ36によりAD変換した信号をFFT38でフーリエ変換した後、DCエリミネータ37でDC成分を除去するようにしても良い。
フーリエ変換信号には、アンテナ内の反射や人体以外の背景での反射などに対する信号が含まれている。そこで人体がない場合のフーリエ変換信号をバックグラウンド信号記憶部39に記憶し、差分部40で人体がある場合のフーリエ変換信号との差分を求める。このようにしてフーリエ変換からバックグラウンドに起因する信号を除いて、信号の有効部分を抽出する。
バックグラウンド信号の除去を、図5に模式的に示す。実線はFFT38から入力されたフーリエ変換信号で、DC成分に相当する分のレベルシフト後、フーリエ変換したものである。このフーリエ変換信号から、バックグラウンド信号として記憶した破線の信号を引き算して、人体に起因するフーリエ変換信号のピークを取り出す。なおバックグラウンドを差分する代わりに、人体とのおおよその距離は既知なので、この範囲の信号のみをピックアップする窓関数を用いてもよい。しかしこのような窓関数の使用は、後述のトラッキングと類似の処理で、精度の向上には限界がある。
これ以外に例えば一対のカメラ30,31を用いて人体を測定し、人体の立体視画像を作成し、アウトライン抽出部32で人体のアウトライン形状を抽出する。カメラ30,31では着衣の人体形状を撮影したので、実際の人体表面はアウトライン抽出部32で抽出した人体形状よりも、内側に存在するはずである。あるいはまた測定前に、人の体重と身長、体脂肪率などを測定して、年齢などを加味して、大まかな体型を推定し、アウトライン抽出部32の信号の代わりに用いてもよい。さらにカメラ30,31やアウトライン抽出部32などは、設けなくてもよい。
一方昇降台9は、昇降駆動部34により昇降し、所定の高さ範囲で人体の表面形状をスキャンする。また左右動駆動部35は、ホーンアンテナ10を例えば左右に首振り運動させ、あるいは左右に位置をシフトさせて、人体からの大きな信号が得られる点から、スキャンが開始されるようにする。なお昇降駆動部34や左右動駆動部35の構成は任意であり、左右動駆動部35は設けなくてもよい。
比較部41はスキャンの開始時に、所定のいき値以上の信号が得られているかどうかをチェックし、所定のいき値以上の信号が得られるように、左右動駆動部35を動作させて、ホーンアンテナ10の向きを変更する。トラッキング部42は、ホーンアンテナ10を昇降させて人体形状をスキャンする過程で、各高さでのホーンアンテナと人体との距離を測定すると共に、前回の測定点、もしくはそれ以前の複数の測定点から予想される、次の人体表面との距離の合理的な範囲を求め、この範囲内の信号を抽出するように、トラッキングを行う。合理的な範囲とは、人体表面の連続性が保たれる、あるいは人体表面の凹凸の範囲との意味である。比較部41やトラッキング部42の処理の詳細を図4に示す。
図4の測定開始時点で、ホーンアンテナはスキャン範囲の上端もしくは下端にあり、比較部41へ入力されるフーリエ変換信号の最大値を検出し、最大値がいき値以上かどうかをチェックする。最大値の値が小さく、いき値以下の場合、左右動駆動部35によりホーンアンテナの向きを変えて、より強い信号が得られる位置を探すなどの処理を行う。
スキャン範囲の上端もしくは下端でいき値以上の最大値が得られると、トラッキングを開始する。トラッキングを開始すると、人体との距離を変数「トラッキング位置」として更新しながら保持し、例えば5mmずつホーンアンテナの位置を変えて、測定点を上下に移動させ、次の最大値を求める。この最大値は差分部40の出力中の最大値で、人体との距離に対応する。最大値を検出する範囲は検索範囲として制限され、前回の測定点での人体との距離に対して、例えば±1cm以内、あるいは±5mm以内などに制限される。前回の測定点だけでなく、前回までの複数の測定点を用いる場合、これらの測定点を外挿して得られる点に対して±5mm程度に検索範囲を制限する。そして検索範囲内でのフーリエ変換信号の最大値を検出する。
得られた最大値に対していき値判断を行い、いき値以上の最大値が得られた場合、測定は有効で、新たな測定点での人体に対する距離が得られたものとする。いき値以上の最大値が得られなかった場合、次回のいき値判断でのいき値を例えば5〜10%程度低下させる、あるいは人体の凹凸が激しいものとして、最大値を検索する範囲を例えば±5mmから±7mmなどのように増加させる。そして今回測定した最大値の扱いは任意であるが、例えば有効な最大値が得られなかったものとして、検出した最大値を無効にする。以上の処理を、最終測定点まで繰り返すと、1つのスキャンラインに沿った人体の形状が得られる。
ここで図1に戻り、ホーンアンテナ10を複数設け、アンテナ間の干渉を防止するため高周波の周波数などを変えて、同時に複数のラインに沿ってスキャンする。そしてアンテナの数が少ない場合、フレーム6を回動させてスキャンを繰り返す。このようなスキャンを繰り返すと、人体表面の3次元形状を得ることができる。
図6はトラッキングを行わず、スキャンの過程でのフーリエ変換信号の最大値を単純に人体との距離信号として用いた例である。実線はフーリエ変換信号を示し、700mm付近と900mm付近に2つのピークがあり、900mm付近のピークが大きいので、これが距離信号となる。フーリエ変換信号のピークを単純に距離信号として高さ方向に沿って求めた人体形状信号を、ドットで示す。なおフーリエ変換信号と人体形状信号とは、横軸の位置を変えてある。図6のようにトラッキングを行わないと、人体形状信号が不連続にジャンプしている。
これに対して図7は、同じフーリエ変換信号に対して、前回の測定点での距離信号から所定の範囲内の最大値のみを抽出するようにした際の結果である。フーリエ変換信号のピークは2つに分裂しているが、人体形状信号は連続した線として得られている。
図8は、図6の測定を1スキャンライン分行った場合の、人体形状信号を示している。また図9は、図7の測定を1スキャンライン分行った場合の、人体形状信号を示している。トラッキングを行わない場合、高さ800〜900mm付近で、人体形状信号が不自然に変動する。これに対してトラッキングを行うと、このようなノイズを除くことができる。
トラッキングを行わない場合に、図6,図8のような不自然な結果が得られることには、ホーンアンテナから直進した位置の測定点以外での、例えば人体からの反射が、影響しているものと思われる。そしてこのような反射は、高周波の周波数を増してビーム径を絞れば、小さくすることができる。例えば周波数を2倍にすれば、ビーム径は約1/2になり、図6の距離900mm付近での信号は、強度が減少するはずである。しかしながら周波数を増すと、民生用の高周波素子を用いることができず、回路コストが急増する。そこでトラッキングを行うことにより、衛星通信などに用いられる民生用の高周波素子を用いて、人体形状を測定することができる。
実施例では、定在波の振幅が小さい測定点で、放射する高周波のパワー(エネルギー)を増すので、定在波が雑音に埋もれて検出できなくなることがない。また定在波の振幅が大きな測定点では、高周波のパワーを小さくするので、検波回路などの飽和を防止できる。これらのため、定在波の振幅にかかわらず、ほぼ一定の振幅の定在波を発生させ、高精度に距離を測定できる。実施例では、マイクロ波などの高周波を用いたが、10kHz〜100kHz程度の超音波を用いても良い。
【図1】

【図2】

【図3】

【図4】

【図5】

【図6】

【図7】

【図8】

【図9】


【特許請求の範囲】
【請求項1】
発振源から測定対象に向けてビーム状の波を送り、該波の反射に基づく定在波の強度を、前記波の周波数を変えながら測定して、フーリエ変換することにより、測定対象との距離を求める方法において、
前記定在波の強度を検出して、該強度がほぼ一定となるように前記発振源にフィードバックして、波のエネルギーを変化させることを特徴とする、距離測定方法。
【請求項2】
測定対象が人体で、前記波が周波数5GHz〜100GHzのマイクロ波であることを特徴とする、請求の範囲第1項の距離測定方法。
【請求項3】
前記波をピックアップして検波した後、DC成分を除去したものの強度を、前記定在波の強度とすることを特徴とする、請求の範囲第1項の距離測定方法。
【請求項4】
測定対象に向けて発振源からビーム状の波を送り、該波の反射に基づく定在波の強度を、前記波の周波数を変えながら測定して、フーリエ変換することにより、測定対象との距離を求めるようにした装置において、
前記定在波の強度を検出するための手段と、検出した強度がほぼ一定となるように前記発振源にフィードバックするための手段、とを設けたことを特徴とする、距離測定装置。
【請求項5】
測定対象が人体で、前記発振源が周波数5GHz〜100GHzのマイクロ波発振回路であり、さらに波を人体に沿ってスキャンして、人体形状を求めるようにしたことを特徴とする、請求の範囲第4項の距離測定装置。
【請求項6】
前記波をピックアップするためのピックアップ手段と、ピックアップした波を検波するための検波手段と、検波手段の出力からDC成分を除去して出力するための除去手段とを設けて、該除去手段の出力を前記フィードバック手段に入力するようにしたことを特徴とする、請求の範囲第4項の距離測定装置。

【国際公開番号】WO2004/095058
【国際公開日】平成16年11月4日(2004.11.4)
【発行日】平成18年7月13日(2006.7.13)
【国際特許分類】
【出願番号】特願2005−505696(P2005−505696)
【国際出願番号】PCT/JP2004/004111
【国際出願日】平成16年3月24日(2004.3.24)
【出願人】(000151221)株式会社島精機製作所 (357)
【Fターム(参考)】