説明

転移性乳癌および転移性結腸癌の調節遺伝子

【課題】どの腫瘍が転移するようであることを決定するための、およびこれらの腫瘍の転移を抑制するための試薬ならびに方法を提供する。
【解決手段】特定の遺伝子配列が、発見されかつ単離され、そして他の器官に対する乳癌細胞および結腸癌細胞の転移性の広がりと有意に関連することが見出された。腫瘍由来の組織サンプルが、特定の配列に示されるような遺伝子、またはその実質的な部分によりコードされるポリペプチドを発現するか否かを決定する工程を含む、乳房腫瘍または結腸腫瘍の転移の危険度を決定するための方法。この遺伝子の1つは、どの腫瘍が転移するようであるかを決定するため、およびこれらの腫瘍の転移を抑制するための試薬および方法を提供するために使用され得る、CSP56と呼ばれる新規なアスパルチルプロテアーゼをコードする。

【発明の詳細な説明】
【技術分野】
【0001】
(発明の技術分野)
本発明は、腫瘍の挙動を予測するための方法、および特に、限定されないが、転移の広がりの傾向を示す特定の遺伝子配列の発現について腫瘍サンプルを試験する方法に関する。
【背景技術】
【0002】
(発明の背景)
多数の組織化学的、遺伝的、および免疫学的マーカーの使用にもかかわらず、臨床家はなお、どの腫瘍が他の器官に転移するかを予測するために困難な時間を過ごしている。いくらかの患者は、再発および転移を予防するために補助の治療を必要とし、そして他の患者は、必要としない。患者のこれらの亜集団の間を区別することは、簡単ではない。従って、処置の方針は、容易に立てられない。従って、当該分野において、異なる転移可能性の腫瘍の間を区別するための新しいマーカーの必要性が存在する。
【発明の概要】
【課題を解決するための手段】
【0003】
(発明の要旨)
どの腫瘍が転移するようであることを決定するための、およびこれらの腫瘍の転移を抑制するための試薬ならびに方法を提供することが、本発明の目的である。本発明のこれらおよび他の目的は、以下に記載される1つ以上の実施態様によって提供される。
【0004】
本発明の1つの実施態様は、配列番号1〜18からなる群から選択されるヌクレオチド配列を含むポリヌクレオチドによりコードされるアミノ酸配列に少なくとも85%同一であるアミノ酸配列を有する、単離されかつ精製されたタンパク質である。同一性%を、12のギャップオープンペナルティおよび1のギャップエクステンションペナルティを用いるアフィンギャップ検索を使用するSmith−Waterman相同性検索アルゴリズムを使用して決定する。
【0005】
本発明の別の実施態様は、配列番号1〜18からなる群から選択されるヌクレオチド配列を含むポリヌクレオチドによりコードされるアミノ酸配列を有するタンパク質の少なくとも8個の連続するアミノ酸からなる、単離されかつ精製されたポリペプチドである。
【0006】
本発明のさらに別の実施態様は、ペプチド結合によって互いに融合された第1のタンパク質セグメントおよび第2のタンパク質セグメントを含む融合タンパク質である。この第1のタンパク質セグメントは、配列番号1〜18からなる群から選択されるヌクレオチド配列を含むポリペプチドによりコードされるアミノ酸配列から選択される少なくとも8個の連続したアミノ酸からなる。
【0007】
本発明のなお別の実施態様は、配列番号1〜18からなる群から選択されるヌクレオチド配列を含むポリペプチドによりコードされるアミノ酸配列を有するタンパク質に特異的に結合する抗体調製物である。
【0008】
本発明のさらに別の実施態様は、配列番号1〜18からなる群から選択されるヌクレオチド配列を含むポリヌクレオチドによりコードされるアミノ酸配列に少なくとも85%同一であるアミノ酸配列を有する、単離されかつ精製されたタンパク質をコードするcDNA分子である。同一性%を、12のギャップオープンペナルティおよび1のギャップエクステンションペナルティを用いるアフィンギャップ検索を使用するSmith−Waterman相同性検索アルゴリズムを使用して決定する。
【0009】
本発明の別の実施態様は、配列番号1〜18からなる群から選択されるヌクレオチド配列を含むポリヌクレオチドによりコードされるタンパク質の少なくとも8個の連続するアミノ酸をコードするcDNA分子である。
【0010】
本発明のさらに別の実施態様は、配列番号1〜18からなる群から選択されるヌクレオチド配列の少なくとも12個の連続するヌクレオチドを含むcDNA分子である。
【0011】
本発明のなお別の実施態様は、配列番号1〜18からなる群から選択されるヌクレオチド配列に少なくとも85%同一であるcDNA分子である。同一性%を、12のギャップオープンペナルティおよび1のギャップエクステンションペナルティを用いるアフィンギャップ検索を使用するSmith−Waterman相同性検索アルゴリズムを使用して決定する。
【0012】
本発明のさらなる実施態様は、65℃で0.2×SSCを用いて洗浄した後に、配列番号1〜18からなる群から選択されるヌクレオチド配列にハイブリダイズするヌクレオチドセグメントを含む、単離されかつ精製されたサブゲノムポリヌクレオチドである。
【0013】
本発明の別の実施態様は、プロモーター、および配列番号1〜18からなる群から選択されるヌクレオチド配列を含むポリヌクレオチドによりコードされるタンパク質の少なくとも8個の連続するアミノ酸をコードするポリヌクレオチドセグメントを含む構築物である。このポリヌクレオチドセグメントは、プロモーターの下流に位置し、ここで、このポリヌクレオチドセグメントの転写は、このプロモーターで開始する。
【0014】
本発明のなお別の実施態様は、プロモーター、ならびに配列番号1〜18からなる群から選択されるヌクレオチド配列を含むポリヌクレオチドによりコードされるタンパク質の少なくとも8個の連続するアミノ酸をコードするポリヌクレオチドを含む構築物を含む宿主細胞である。
【0015】
本発明のさらに別の実施態様は、新しい転写単位開始単位を含む組換え宿主細胞である。この新しい転写開始単位は、5’から3’の順に、(a)外因性調節配列、(b)外因性エキソン、および(c)スプライスドナー部位、を含む。この新しい転写開始単位は、遺伝子のコード配列の上流に位置する。このコード配列は、配列番号1〜18からなる群から選択されるヌクレオチド配列を含む。この外因性調節配列は、遺伝子のコード配列の転写を制御する。
【0016】
本発明のなお別の実施態様は、(a)配列番号1〜18からなる群から選択される、少なくとも12個の連続するヌクレオチド、ならびに(b)検出可能な標識、を含むポリヌクレオチドプローブである。
【0017】
本発明のさらに別の実施態様は、転移性組織または組織の転移可能性を同定するための方法である。配列番号1〜4、配列番号6〜13、および配列番号15〜18からなる群から選択されるヌクレオチド配列を含む遺伝子の発現産物は、組織サンプル中で測定される。配列番号1、4、11、16、17、および18からなる群から選択されるヌクレオチド配列を含む遺伝子産物を発現するか、または配列番号2、3、6、7、8、9、10、12、13、および15からなる群から選択されるヌクレオチド配列を含む遺伝子産物を発現しない組織サンプルは、転移性として、または転移可能性を有するとして同定される。
【0018】
本発明のなお別の実施態様は、腫瘍の転移可能性を抑制する能力について試験化合物をスクリーニングする方法である。生物学的サンプルを試験化合物と接触させる。配列番号1〜4、配列番号6〜13、および配列番号15〜18からなる群から選択されるヌクレオチド配列を含むポリヌクレオチドによりコードされるアミノ酸配列を有するタンパク質の合成は、生物学的サンプル中で測定される。配列番号1、4、11、16、17、または18を含むポリヌクレオチドによりコードされるタンパク質の合成を減少させるか、または配列番号2、3、6、7、8、9、10、12、13、または15を含むポリヌクレオチド配列によりコードされるタンパク質の合成を増加させる試験化合物は、腫瘍の転移可能性を抑制するための潜在的な薬剤として同定される。
【0019】
本発明の別の実施態様は、結腸腫瘍の高程度または低程度の転移の広がりについての傾向を予測する方法である。配列番号16および配列番号17からなる群から選択される配列を有する遺伝子の発現産物は、結腸腫瘍サンプル中で測定される。配列番号16の産物を発現する結腸腫瘍サンプルは、転移する高い傾向を有するとして分類され、そして配列番号17の産物を発現する結腸腫瘍サンプルは、転移する低い傾向を有するとして分類される。
【0020】
本発明のなお別の実施態様は、配列番号1〜18に示されるヌクレオチド配列からなる群から選択されるコード配列を有する遺伝子の少なくとも一部を増幅するためのプライマーセットである。
【0021】
本発明のなお別の実施態様は、配列番号1〜18からなる群から選択されるヌクレオチド配列の少なくとも12個の連続するヌクレオチドを含む少なくとも1つの一本鎖ポリヌクレオチドを含むポリヌクレオチドアレイである。
【0022】
本発明のさらなる実施態様は、転移性組織または組織の転移可能性を同定するための方法である。一本鎖のポリヌクレオチド分子を含む組織サンプルは、少なくとも1つの一本鎖ポリヌクレオチドプローブを含むポリヌクレオチドアレイと接触させられる。この少なくとも1つの一本鎖ポリヌクレオチドプローブは、配列番号1〜4、配列番号6〜13、および配列番号15〜18からなる群から選択されるヌクレオチド配列の少なくとも12個の連続するヌクレオチドを含む。この組織サンプルは、転移性であるかまたは転移可能性を有すると疑われる。ポリヌクレオチドアレイに結合した二本鎖ポリヌクレオチドを検出する。配列番号1〜4、11、16、17、および18からなる群から選択される連続するヌクレオチドを含む二本鎖ポリヌクレオチドの検出、または配列番号2、3、6、7、8、9、10、12、13、および15からなる群から選択される連続するヌクレオチドを含む二本鎖ポリヌクレオチドの検出を欠くことは、この組織サンプルを転移性または転移可能性を有すると同定する。
【0023】
従って、本発明は、当該分野に、転移のマーカーとして使用され得る多数の遺伝子およびタンパク質を提供する。これらは、癌の患者、特に乳癌または結腸癌に対する治療の方針をより合理的に規定するために有用である。
本発明はまた、以下の項目を提供する。
(項目1) 単離されかつ精製されたタンパク質であって、配列番号1〜18からなる群から選択されるヌクレオチド配列を含むポリヌクレオチドによりコードされるアミノ酸配列に少なくとも85%同一であるアミノ酸配列を有し、ここで同一性%は、12のギャップオープンペナルティおよび1のギャップエクステンションペナルティを用いてアフィンギャップ検索を使用するSmith−Waterman相同性検索アルゴリズムを使用して決定される、タンパク質。
(項目2) 配列番号19に示されるアミノ酸配列に少なくとも85%同一である、項目1に記載の単離されかつ精製されたタンパク質。
(項目3) 配列番号1〜18からなる群から選択されるヌクレオチド配列を含むポリヌクレオチドによりコードされるアミノ酸配列を含む、項目1に記載の単離されかつ精製されたタンパク質。
(項目4) 配列番号19に示されるアミノ酸配列を含む、項目2に記載の単離されかつ精製されたタンパク質。
(項目5) 配列番号1〜18からなる群から選択されるヌクレオチド配列を含むポリヌクレオチドによりコードされるアミノ酸配列を有するタンパク質の少なくとも8個の連続するアミノ酸からなる、単離されかつ精製されたポリペプチド。
(項目6) 配列番号19の少なくとも8個の連続するアミノ酸からなる、項目5に記載の単離されかつ精製されたポリペプチド。
(項目7) 項目6に記載の単離されたポリペプチドであって、配列番号19の少なくともアミノ酸461〜489、配列番号19の少なくともアミノ酸106〜115、配列番号19の少なくともアミノ酸297〜306、および配列番号19の少なくとも8〜20からなる群から選択される、ポリペプチド。
(項目8) 融合タンパク質であって、ペプチド結合によって互いに融合した第1のタンパク質セグメントおよび第2のタンパク質セグメントを含み、ここでその第1のタンパク質セグメントは、配列番号1〜18からなる群から選択されるヌクレオチド配列を含むポリヌクレオチドによりコードされるアミノ酸配列から選択される少なくとも8個の連続するアミノ酸からなる、融合タンパク質。
(項目9) 上記第1のタンパク質セグメントが、配列番号19に示されるアミノ酸配列から選択される少なくとも8個の連続するアミノ酸からなる、請求項8に記載の融合タンパク質。
(項目10) 配列番号1〜18からなる群から選択されるヌクレオチド配列を含むポリヌクレオチドによりコードされるアミノ酸配列を有するタンパク質に特異的に結合する、抗体調製物。
(項目11) cDNA分子であって、配列番号1〜18からなる群から選択されるヌクレオチド配列を含むポリヌクレオチドによりコードされるアミノ酸配列に少なくとも85%同一であるアミノ酸配列を有する単離されかつ精製されたタンパク質をコードし、ここで同一性%が、12のギャップオープンペナルティおよび1のギャップエクステンションペナルティを用いるアフィンギャップ検索を使用するSmith−Waterman相同性検索アルゴリズムを使用して決定される、cDNA分子。
(項目12) 配列番号19に少なくとも85%同一であるアミノ酸配列を有するタンパク質をコードする、項目11に記載のcDNA分子。
(項目13) 配列番号1〜18からなる群から選択されるヌクレオチド配列を含むポリヌクレオチドによりコードされるタンパク質の少なくとも8個の連続するアミノ酸をコードする、cDNA分子。
(項目14) 配列番号19をコードする、項目13に記載のcDNA分子。
(項目15) 配列番号18を含む、項目14に記載のcDNA分子。
(項目16) 配列番号1〜18からなる群から選択されるヌクレオチド配列の少なくとも12の連続するヌクレオチドを含む、cDNA分子。
(項目17) cDNA分子であって、配列番号1〜18からなる群から選択されるヌクレオチド配列に少なくとも85%同一であり、ここで同一性%は、12のギャップオープンペナルティおよび1のギャップエクステンションペナルティを用いるアフィンギャップ検索を使用するSmith−Waterman相同性検索アルゴリズムを使用して決定される、cDNA分子。
(項目18) 配列番号18に示されるヌクレオチド配列に少なくとも85%同一である、項目17に記載のcDNA分子。
(項目19) 65℃で0.2×SSCを用いて洗浄した後に、配列番号1〜18からなる群から選択されるヌクレオチド配列にハイブリダイズするヌクレオチドセグメントを含む、単離されかつ精製されたサブゲノムポリヌクレオチド。
(項目20) 上記ヌクレオチドセグメントが、配列番号18に示されるヌクレオチド配列にハイブリダイズする、項目19に記載の単離されかつ精製されたサブゲノムポリヌクレオチド。
(項目21) 構築物であって、以下:
プロモーター;および
配列番号1〜18からなる群から選択されるヌクレオチド配列を含むポリヌクレオチドによりコードされるタンパク質の少なくとも8個の連続するアミノ酸をコードするポリヌクレオチドセグメント、
を含み、そのポリヌクレオチドセグメントは、そのプロモーターの下流に位置し、そのポリヌクレオチドセグメントの転写は、そのプロモーターで開始する、構築物。
(項目22) 上記タンパク質が、配列番号19のアミノ酸配列を含む、項目21に記載の構築物。
(項目23) プロモーター;および
配列番号1〜18からなる群から選択されるヌクレオチド配列を含むポリヌクレオチドによりコードされるタンパク質の少なくとも8個の連続するアミノ酸をコードするポリヌクレオチドセグメント、を含む構築物を含む、宿主細胞。
(項目24) 上記タンパク質が、配列番号19に示されるアミノ酸配列を有する、項目23に記載の宿主細胞。
(項目25) 新しい転写開始単位を含む組換え宿主細胞であって、その新しい転写開始単位が、5’から3’の順で以下:
(a)外因性調節配列;
(b)外因性エキソン;および
(c)スプライスドナー部位、
を含み、ここでその新しい転写開始単位は、遺伝子のコード配列の上流に位置し、そのコード配列は、配列番号1〜18からなる群から選択されるヌクレオチド配列を含み、その外因性調節配列は、その遺伝子のコード配列の転写を制御する、組換え宿主細胞。
(項目26) 上記遺伝子が、配列番号18に示されるコード配列を有する、項目25に記載の組換え宿主細胞。
(項目27) ポリヌクレオチドプローブであって、(a)配列番号1〜18からなる群から選択される少なくとも12個の連続するヌクレオチド、および検出可能な標識、を含む、ポリヌクレオチドプローブ。
(項目28) 上記少なくとも12個の連続するヌクレオチドが、配列番号18から選択される、項目27に記載のポリヌクレオチドプローブ。
(項目29) 転移性組織または組織の転移可能性を同定するための方法であって、以下の工程:
組織サンプル中の、配列番号1〜4、配列番号6〜13、および配列番号15〜18からなる群から選択されるヌクレオチド配列を含む遺伝子の発現産物を測定する工程であって、ここで配列番号1、4、11、16、17、および18からなる群から選択されるヌクレオチド配列を含む遺伝子産物を発現するか、または配列番号2、3、6、7、8、9、10、12、13、および15からなる群から選択されるヌクレオチド配列を含む遺伝子産物を発現しない組織サンプルが、転移性として、または転移する可能性を有するとして同定される、工程、
を包含する、方法。
(項目30) 上記組織サンプルが、乳房組織および結腸組織からなる群から選択される、項目29に記載の方法。
(項目31) 上記発現産物がタンパク質である、項目29に記載の方法。
(項目32) 上記発現産物がmRNAである、項目29に記載の方法。
(項目33) 上記遺伝子が、配列番号18に示されるヌクレオチド配列を含む、項目29に記載の方法。
(項目34) 腫瘍の転移する可能性を抑制する能力について試験化合物をスクリーニングする方法であって、以下の工程:
生物学的サンプルを試験化合物と接触させる工程;および
その生物学的サンプル中の、配列番号1〜4、配列番号6〜13、および配列番号15〜18からなる群から選択されるヌクレオチド配列を含むポリヌクレオチドによりコードされるアミノ酸配列を有するタンパク質の合成を測定する工程であって、ここで配列番号1、4、11、16、17、または18を含むポリヌクレオチドによりコードされるタンパク質の合成を減少させるか、あるいは配列番号2、3、6、7、8、9、10、12、13、または15を含むポリヌクレオチドによりコードされるタンパク質の合成を増加させる試験化合物が、腫瘍の転移する可能性を抑制するための可能性のある薬剤として同定される、工程、
を包含する、方法。
(項目35) 結腸腫瘍の高程度または低程度の転移の広がりについて傾向を予測する方法であって、以下の工程:
結腸腫瘍サンプル中の、配列番号16および配列番号17からなる群から選択される配列を有する遺伝子の発現産物を測定する工程であって、ここで配列番号16の産物を発現する結腸腫瘍サンプルが、転移する高い傾向を有するとして分類され、そして配列番号17の産物を発現する結腸腫瘍サンプルが、転移する低い傾向を有するとして分類される、工程、
を包含する、方法。
(項目36) 配列番号1〜18に示されるヌクレオチド配列からなる群から選択されるコード配列を有する遺伝子の少なくとも一部を増幅するための、プライマーセット。
(項目37) 上記遺伝子が、配列番号18に示されるコード配列を有する、項目36に記載のセット。
(項目38) 上記プライマーが、配列番号20および配列番号21に示されるヌクレオチド配列である、項目37に記載のセット。
(項目39) 配列番号1〜18からなる群から選択されるヌクレオチド配列の少なくとも12個の連続するヌクレオチドを含む少なくとも1つの一本鎖ポリヌクレオチドを含む、ポリヌクレオチドアレイ。
(項目40) 上記ヌクレオチド配列が、配列番号1、4、11、16、17、および18からなる群から選択される、項目39に記載のポリヌクレオチドアレイ。
(項目41) 上記ヌクレオチド配列が、配列番号2、3、6、7、8,9、10、12、13、および15からなる群から選択される、項目39に記載のポリヌクレオチドアレイ。
(項目42) 転移性組織または組織の転移可能性を同定するための方法であって、以下の工程:
一本鎖ポリヌクレオチド分子を含む組織サンプルを、少なくとも1つの一本鎖ポリヌクレオチドプローブを含むポリヌクレオチドアレイと接触させる工程であって、ここでその少なくとも1つの一本鎖ポリヌクレオチドプローブは、配列番号1〜4、配列番号6〜13、および配列番号15〜18からなる群から選択されるヌクレオチド配列の少なくとも12個の連続するヌクレオチドを含み、その組織サンプルが、転移性であるかまたは転移する可能性を有すると疑われる、工程;
そのポリヌクレオチドアレイに結合する二本鎖ポリヌクレオチドを検出する工程であって、ここで配列番号1〜4、11、16、17、および18からなる群から選択される連続するヌクレオチドを含む二本鎖ポリヌクレオチドの検出、または配列番号2、3、6、7、8、9、10、12、13、および15からなる群から選択される連続するヌクレオチドを含む二本鎖ポリヌクレオチドの検出を欠くことが、転移性または転移する可能性を有するとして組織サンプルを同定する、工程、
を包含する、方法。
(項目43) 上記組織サンプルが、乳房サンプルまたは結腸サンプルである、項目42に記載の方法。
【図面の簡単な説明】
【0024】
【図1】図1。異なるヒト乳癌細胞株の任意のプライマーに基づくディファレンシャルディスプレイおよびRNAブロット分析による確認。図1A。ヒト乳癌細胞株MDA−MB−435における約1.2kbのサイズの2つのバンドを示すディファレンシャルディスプレイゲルのオートラジオグラフ。ディファレンシャルディスプレイ反応物を調製し、そして二重で実行した。図1B。MDA−MB−435における発現パターンを検証するノーザンブロット分析。ディファレンシャルディスプレイゲルから単離されたcDNAは、約2.0kbおよび2.5kbのサイズである2つの転写物にハイブリダイズした。メチレンブルーを用いる膜の染色およびヒトβアクチンプローブとの膜のハイブリダイゼーションにより判定されるように、各レーンに等量のRNAを充填した。
【図2A−1】図2A。CSP56のヌクレオチド配列および推定アミノ酸配列。518アミノ酸長配列を、1855塩基対のヌクレオチド配列の下に1文字コードで示す。アスパルチルプロテアーゼの特徴である、活性部位残基(D)および隣接しているアミノ酸残基は、下線が引かれている。推定プロペプチドは、四角で囲まれている。N末端の推定シグナルペプチドおよびC末端の膜貫通ドメインは、下線が引かれている。
【図2A−2】図2A。CSP56のヌクレオチド配列および推定アミノ酸配列。518アミノ酸長配列を、1855塩基対のヌクレオチド配列の下に1文字コードで示す。アスパルチルプロテアーゼの特徴である、活性部位残基(D)および隣接しているアミノ酸残基は、下線が引かれている。推定プロペプチドは、四角で囲まれている。N末端の推定シグナルペプチドおよびC末端の膜貫通ドメインは、下線が引かれている。
【図2B】図2B。CSP56のヌクレオチド配列を、2606塩基対の長さまで伸長する発現された配列タグ。
【図2C】図2C。CSP56の概略図。SSは、シグナル配列;Proは、プロペプチド;TMは、膜貫通ドメイン。アステリスクは、活性部位を示す。
【図3A】図3。アスパルチルプロテアーゼのペプシンファミリーの他のメンバーとのCSP56の多数のアミノ酸配列のアライメント。同一のアミノ酸残基を、黒い囲いにより示す。アスパルチルプロテアーゼ活性残基(D−S/T−G)を、上の線により示す。ペプシンファミリーのメンバーにおけるアスパルチルプロテアーゼに特徴的であるシステイン残基をアステリスクにより示す。推定膜付着ドメインは、下線が引かれている。ギャップを、点で示す。Cat−Eは、カテプシンE;Pep−Aは、ペプシノゲンE;Pep−Cは、ペプシノゲンC;Cat−Dは、カテプシンD。
【図3B】図3。アスパルチルプロテアーゼのペプシンファミリーの他のメンバーとのCSP56の多数のアミノ酸配列のアライメント。同一のアミノ酸残基を、黒い囲いにより示す。アスパルチルプロテアーゼ活性残基(D−S/T−G)を、上の線により示す。ペプシンファミリーのメンバーにおけるアスパルチルプロテアーゼに特徴的であるシステイン残基をアステリスクにより示す。推定膜付着ドメインは、下線が引かれている。ギャップを、点で示す。Cat−Eは、カテプシンE;Pep−Aは、ペプシノゲンE;Pep−Cは、ペプシノゲンC;Cat−Dは、カテプシンD。
【図3C】図3。アスパルチルプロテアーゼのペプシンファミリーの他のメンバーとのCSP56の多数のアミノ酸配列のアライメント。同一のアミノ酸残基を、黒い囲いにより示す。アスパルチルプロテアーゼ活性残基(D−S/T−G)を、上の線により示す。ペプシンファミリーのメンバーにおけるアスパルチルプロテアーゼに特徴的であるシステイン残基をアステリスクにより示す。推定膜付着ドメインは、下線が引かれている。ギャップを、点で示す。Cat−Eは、カテプシンE;Pep−Aは、ペプシノゲンE;Pep−Cは、ペプシノゲンC;Cat−Dは、カテプシンD。
【図4】図4。scidマウスから単離された原発性腫瘍および転移におけるCSP56発現。異なるヒト乳癌細胞株を注射されたマウスの原発性腫瘍(PT)および転移組織(Met)から単離されたRNAを使用するノーザンブロット分析。メチレンブルーを用いる膜の染色およびヒトβアクチンプローブとの膜のハイブリダイゼーションにより判定されるように、各レーンに等量のRNAを充填した。
【図5】図5。CSP56は、患者の乳房腫瘍サンプルにおいて上方制御される。図5A。同じ患者由来の腫瘍および正常な乳房組織から単離されたRNAを使用するノーザンブロット分析。図5B。3つの異なるヒト乳房腫瘍の患者および正常な乳房組織から単離されたRNAを使用するノーザンブロット分析。
【図6】図6。乳房腫瘍および結腸腫瘍におけるCSP56発現のインサイチュハイブリダイゼーション分析。1人の患者の正常乳房組織(A〜C)から原発性乳房組織(D〜F)まで、ならびに別の患者の正常結腸組織(G、H)、原発性結腸組織(J、K)、から肝転移(L、M)までの隣接または近隣接切片。切片A、D、G、J、およびLを、ヘマトキシリンおよびエオシン(H&E)を用いて染色した。切片B、E、H、K、およびMをアンチセンスCSP56プローブとハイブリダイズし、そして切片CおよびFをCSP56センスコントロールプローブとハイブリダイズした。dは、乳管;fは、脂肪結合組織;lyは、リンパ球;mは、結腸粘膜;metは、転移組織;PTは、原発性腫瘍;stは、支質;tcは、腫瘍細胞。
【図7】図7。ヒト組織におけるCSP56発現。種々のヒト組織における2.0kbおよび2.5kbの2つのCSP56転写物を示すRNAブロット分析。sk.筋は、骨格筋;sm.腸は、小腸;p.b.リンパ球は、末梢血リンパ球。
【発明を実施するための形態】
【0025】
(発明の詳細な説明)
多くの遺伝子が、癌細胞および非転移性の癌細胞の間で、差異的に発現されていることが、本発明の知見である(表1)。この情報は、差異的に示される遺伝子の発現産物に特異的な診断試薬の作製に利用され得る。これはまた、癌、特に乳癌および結腸癌の適切な処置法の計画において臨床医の助けとなる診断および予後の方法に用いられ得る。
【0026】
本明細書において開示されるクローン122のような転移性マーカーのいくつかは、非転移性細胞に比較して転移性細胞においてアップレギュレートされる。クローン337および280のような転移性マーカーのいくつかは、非転移性細胞に比較して転移性細胞においてダウンレギュレートされる。これらの関係およびマーカーの同定は、以下にさらに記載するような試薬の処方および方法を可能にする。さらに、公知のタンパク質との相同性が、同定されており、これは、開示されたタンパク質の機能を示唆する。例えば、転写物280は、ヒトN−アセチルグルコサミン−6−スルファターゼ前駆体に相同であり、転写物245は、二機能性のATPスルフリラーゼ(sulfurylase)−アデノシン5’−ホスホスルフェートキナーゼに相同であり、そして転写物122は、アスパルチルプロテアーゼであるヒトペプシノーゲンcに相同である。
【0027】
本発明の別の知見は、新規のアスパルチル型のプロテアーゼであるCSP56が、高転移性の癌(特に、乳癌および直腸癌)において過剰発現しており、そして転移状態の原発性の腫瘍の進行に関係していることである。この情報は、CSP56遺伝子の発現産物に特異的な診断試薬の作製に利用し得る。これはまた、癌(特に、乳癌および直腸癌)の適切な治療法の計画のための臨床医の助けとなる診断および予後の方法に用い得る。
【0028】
CSP56タンパク質のアミノ酸配列を、配列番号19に示す。本発明の新規のポリヌクレオチドにコードされるアミノ酸配列は、特定のポリヌクレオチド配列の3つずつのリーディングフレームについて翻訳プログラムを実行することにより予測され得る。配列番号1〜17で示されるヌクレオチド配列を含むポリヌクレオチドによりコードされる転移性マーカータンパク質、配列番号19に示されるCSP56タンパク質、あるいはCSP56を含む天然または非天然に生じる転移性マーカータンパク質の生物学的に活性なタンパク質改変体は、本発明の診断および治療の方法に用いられ得る。CSP56改変体を含む生物学的に活性な転移性マーカータンパク質改変体は、配列番号1〜18を含むポリヌクレオチドによりコードされるタンパク質と同じ生物学的活性を保持する。転移性マーカータンパク質の生物学的活性は、腫瘍組織と正常組織の間の(特に高転移性の可能性を有する腫瘍と正常な組織との間の)差異的発現を含む。CSP56の生物学的活性はまた、転移およびアスパルチル型プロテアーゼ活性を許容する能力を含む。
【0029】
CSP56改変体を含む転移性マーカータンパク質改変体の生物学的活性は、当業者によって容易に決定され得る。例えば、改変体の差異的発現は、乳癌細胞株MDA−MB−231(Brinkleyら、Cancer Res.40、3118−29、1980)、MDA−MB−435(Brinkleyら、1980)、MCF−7、BT−20、ZR−75−1、MDA−MB−157、MDA−MB−361、MDA−MB−453、AlabおよびMDA−MB−468、または結腸癌細胞株Km12CおよびKm12L4Aのような転移能力が変化した細胞株において測定され得る。MDA−MB−231細胞株は、1998年5月15日にATCCに寄託された(ATCC CRL−12532)。Km12C細胞株は、1998年5月15日にATCCに寄託された(ATCC CRL−12533)。Km12L4A細胞株は、1998年3月19日にATCCに寄託された(ATCC CRL−12496)。MDA−MB−435細胞株は、1998年10月9日にATCCに寄託された(ATCC CRL−12583)。MCF−7細胞株は、1998年10月9日にATCCに寄託された(ATCC CRL−12584)。
【0030】
乳癌細胞株Hs58Bstのような非癌性細胞株での発現は、癌性細胞株における発現と比較され得る。あるいは、MDA−MB−231またはMDA−MB−435のような高い転移能力を有する乳癌細胞株は、改変体をコードするポリヌクレオチドと接触され得、そして当業者に公知であるように、例えば、細胞分割あるいはタンパク質またはDNA合成をモニターすることにより、低い転移能力のものについてアッセイされ得る。潜在的なCSP56改変体のアスパルチルプロテアーゼ活性はまた、例えば、Wrightら、J.Prot.Chem.16、171−81(1997)に教示されるように測定され得る。
【0031】
CSP56の変異体を含む天然に生じる生物学的に活性な転移性マーカータンパク質改変体が、ヒトまたはその他の種において見出され、そして配列番号1〜18のヌクレオチド配列を含むポリヌクレオチドによってコードされるアミノ酸配列と実質的に同一であるアミノ酸配列を含む。天然には生じない生物学的に活性な転移性マーカータンパク質改変体は、研究室において標準的なDNA組換え技術を用いて構築され得る。
【0032】
好ましくは、天然または非天然に生じる生物学的に活性な転移性マーカータンパク質改変体は、配列番号1〜18のヌクレオチド配列を含むポリヌクレオチドによってコードされるアミノ酸配列に少なくとも65%、75%、85%、90%または95%同一であるアミノ酸配列を有し、そしてこれらの性質は、程度において異なり得るが、類似した差異的発現パターンを有する。天然または非天然に生じる生物学的に活性なCSP56改変体はまた、アスパルチル型プロテアーゼ活性を有する。さらに好ましくは、この改変体は、少なくとも98%または99%同一である。配列同一性%は、以下のパラメーターを有するアフィンギャップ(affine gap)検索を用いるSmith−Watermanアルゴリズムを行なうコンピュータープログラムを用いて決定される:12のギャップオープンペナルティーおよび1のギャップエクステンションペナルティー。Smith−Waterman相同性検索アルゴリズムは、SmithおよびWaterman、Adv.Appl.Math(1981)2:482−489中に教示される。
【0033】
生物学的または免疫学的活性を失うことなく、どのアミノ酸残基が置換、挿入または欠失し得るかの決定に関する手引きが、当該分野で周知であるDNASTARソフトウェアのようなコンピュータープログラムを用いて見出され得る。好ましくは、生物学的に活性な転移性マーカータンパク質改変体におけるアミノ酸変化が、保存的アミノ酸変化である(すなわち、類似した電荷または無電荷のアミノ酸との置換)。保存的アミノ酸化は、側鎖において関連するアミノ酸のファミリーの1つとの置換を含む。天然に生じるアミノ酸は、一般的に4つのファミリーに分けられる:酸性アミノ酸(アスパラギン酸、グルタミ
ン酸)、塩基性アミノ酸(リシン、アルギニン、ヒスチジン)、非極性アミノ酸(アラニン、バリン、ロイシン、イソロイシン、プロリン、フェニルアラニン、メチオニン、トリプトファン)および無電荷極性アミノ酸(グリシン、アスパラギン、グルタミン、シスチン、セリン、スレオニン、チロシン)。フェニルアラニン、トリプトファンおよびチロシンは、時々芳香族アミノ酸として連帯して分類される。単離された、ロイシンのイソロイシンまたはバリンでの置換、アスパラギン酸のグルタミン酸での置換、スレオニンのセリンでの置換、またはあるアミノ酸の構造的に関連したアミノ酸での同様の置換が、得られる転移性マーカータンパク質改変体の生物学的特性に主要な効果を有さないことと予想することは合理的である。例えば、単離された保存的アミノ酸置換は、特に、置換がプロテアーゼの触媒ドメインではない場合、CSP56のアスパルチルプロテアーゼ活性に主要な効果を有すとは予想されない。
【0034】
転移性マーカータンパク質改変体はまた、生物学的活性を維持した、対立遺伝子改変体、種改変体、ムテイン、グリコシル化形態、他の分子との凝集的接合、および無関係な化学的部分と結合した共有結合を含む。共有結合性転移性マーカー改変体は、当該分野で公知のように、アミノ酸鎖またはN末端残基またはC末端残基に見出される基に対する機能性の連結により調製され得る。転移性マーカータンパク質の発現パターン、または例えば、CSP56のアスパルチルプロテアーゼ活性に影響を与えない領域の切断または欠失はまた、生物学的に活性な改変体である。
【0035】
ムテインと呼ばれる変異体のサブセットは、セリンのような中性のアミノ酸がジスフィルド結合に関与しないシステイン残基と置換されているタンパク質の基である。これらの変異体は、天然に生じるタンパク質よりも広い範囲の温度にわたって安定であり得る。Markら、米国特許第4,959,314号を参照のこと。
【0036】
転移性マーカーポリペプチドは、全長転移性マーカータンパク質よりも少数のアミノ酸を含む。転移性マーカータンパク質ポリペプチドは、全長タンパク質または生物学的に活性な改変体において見られるのと同じ順序で配列番号1を含むポリヌクレオチドによってコードされる、少なくとも8、10、12、15、25、50、75、100、150、200、250、300、350、400、450、500、550、600、650、または700の、連続したアミノ酸;配列番号2または9を含むポリヌクレオチドによってコードされる、少なくとも8、10、12、15、25、50、75、100、または125の連続したアミノ酸;配列番号3、4、5、8、または10を含むポリヌクレオチドによってコードされる、少なくとも8、10、12、15、25、50、75、または100の連続したアミノ酸;配列番号6を含むポリヌクレオチドによってコードされる、少なくとも8、10、12、15、25、50、75、100、150、200、250、300、350、400、450、500、550、600、650、700、750、または800の連続したアミノ酸;配列番号7を含むポリヌクレオチドによってコードされる、少なくとも8、10、12、14、25、50、55または60の連続したアミノ酸;配列番号11に含まれるポリヌクレオチドによってコードされる、少なくとも8、10、12、15、25、50、75、100、150、または160の連続したアミノ酸;配列番号12を含むポリヌクレオチドによってコードされる、少なくとも8、10、12、15、25、50、75、100、125、または130の連続したアミノ酸;配列番号13を含むポリヌクレオチドによってコードされる、少なくとも8、10、12、15、25、50、75、または100の連続したアミノ酸;配列番号14を含むポリヌクレオチドによってコードされる、少なくとも8、10、12、15、25、50、75、100、125、150、175、200、225、250、275、または300の連続したアミノ酸;配列番号15を含むポリヌクレオチドによってコードされる、少なくとも8、10、12、15、25、50、75、100、または150の連続したアミノ酸;配列番号16を含むポリヌクレオチドによってコードされる、少なくとも8、10、12、15、25、50、75、100、150、200、250、300、350、400、450、500、550、600、650、700、750、800、850、900、950、1000、1050、または1100の連続したアミノ酸;あるいは、配列番号17を含むポリヌクレオチドによってコードされる、少なくとも8、10、12、15、25、50、75、100、150、200、250、300、350、400、450、または500の連続するアミノ酸を含み得る。CSP56ポリペプチドは、CSP56タンパク質または生物学的に活性な改変体の少なくとも8、10、11、12、13、14、15、16、17、20、21、23、25、28、29、30、31、32、33、35、40、50、60、75、100、111、112、120、150、175、200、225、250、275、300、325、350、375、400、425、450、475、または500の、あるいはそれ以上のアミノ酸を含み得る。好ましいCSP56ポリペプチドは、配列番号19の少なくともアミノ酸106〜115、105〜116、104〜117、100〜120、297〜306、296〜307、295〜308、290〜320、8〜20、7〜21、6〜22、1〜30、461〜489、460〜490、459〜491および407〜518を含む。その配列番号1〜18のヌクレオチド配列を含むが、特定の転移性マーカーポリペプチド改変体の生物学的な特性に実質的に影響を与えない少数のアミノ酸置換を有するポリヌクレオチドによってコードされるアミノ酸配列と実質的に同等なアミノ酸を有するポリペプチド分子は、転移性マーカーポリペプチドの定義内である。
【0037】
転移性マーカータンパク質またはポリペプチドは、例えば、当業者に周知である生化学的な技術を用いてヒト細胞から単離され得る。単離されかつ精製された転移性マーカータンパク質の調製物は、少なくとも80%純粋であり;好ましくは、その調製物は、少なくとも90%、95%、98%または99%純粋である。転移性マーカータンパク質およびポリペプチドはまた、組換えDNA法または、合成化学的方法により産生され得る。組換え転移性マーカータンパク質またはポリペプチド産生のために、配列番号1〜18から選択したコード配列が、公知の原核生物または真核生物の発現系において発現され得る。細菌、酵母、昆虫または哺乳動物の発現系が、当該分野で公知であるように用いられ得る。あるいは、固相ペプチド合成のような合成化学法を、転移性マーカータンパク質またはポリペプチドの合成に用い得る。生物学的に活性なタンパク質またはポリペプチド改変体を、同様に産生し得る。
【0038】
本発明の転移性マーカータンパク質の連続するアミノ酸を含む融合タンパク質がまた、構築され得る。融合タンパク質は、転移性マーカータンパク質アミノ酸配列に対する抗体を作製するため、および種々のアッセイ系に用いるために有用である。例えば、CSP56融合タンパク質は、CSP56タンパク質と相互作用するタンパク質、および例えば、そのアスパルチルプロテアーゼ活性、その差異的発現、またはその転移を許容する能力に影響するタンパク質の同定に用いられ得る。タンパク質アフィニティークロマトグラフィーのような物理的な方法、または酵母2ハイブリッドまたはファージディスプレイ系のようなタンパク質−タンパク質相互作用のためのライブラリーに基づいたアッセイはまた、この目的のために用いられ得る。そのような方法は、当該分野で周知であり、そして薬物のスクリーニングに用いられ得る。
【0039】
融合タンパク質は、ペプチド結合によってお互いに融合した2つのタンパク質セグメントを含む。この第1のタンパク質セグメントは、配列番号1を含むポリヌクレオチドによってコードされた少なくとも8、10、12、15、25、50、75、100、150、200、250、300、350、400、450、500、550、600、650、または700の連続したアミノ酸;配列番号2または9を含むポリヌクレオチドによってコードされた少なくとも8、10、12、15、25、50、75、100、または125の連続したアミノ酸;配列番号3、4、5、8または10を含むポリヌクレオチドによってコードされた少なくとも8、10、12、15、25、50、75、または100の連続したアミノ酸;配列番号6を含むポリヌクレオチドによってコードされた少なくとも8、10、12、15、25、50、75、100、150、200、250、300、350、400、450、500、550、600、650、700、750または800の連続したアミノ酸;配列番号7を含むポリヌクレオチドによってコードされた少なくとも8、10、12、14、25、50、55または60の連続したアミノ酸;配列番号11を含むポリヌクレオチドによってコードされた少なくとも8、10、12、15、25、50、75、100、150または160の連続したアミノ酸;配列番号12を含むポリヌクレオチドによってコードされた少なくとも8、10、12、15、25、50、75、100、125または130の連続したアミノ酸;配列番号13を含むポリヌクレオチドによってコードされた少なくとも8、10、12、15、25、50、75または100の連続したアミノ酸;配列番号14を含むポリヌクレオチドによってコードされた少なくとも8、10、12、15、25、50、75、100、125、150、175、200、225、250、275または300の連続したアミノ酸;配列番号15を含むポリヌクレオチドによってコードされた少なくとも8、10、12、15、25、50、75、100または150の連続したアミノ酸;配列番号16を含むポリヌクレオチドによってコードされた少なくとも8、10、12、15、25、50、75、100、150、200、250、300、350、400、450、500、550、600、650、700、750、800、850、900、950、1000、1050または1100の連続したアミノ酸;または配列番号17を含むポリヌクレオチドによってコードされた少なくとも8、10、12、15、25、50、75、100、150、200、250、300、350、400、450または500の連続したアミノ酸;またはCSP56タンパク質の少なくとも8、10、11、12、13、14、15、16、17、20、21、23、25、28、29、30、31、32、33、35、40、50、60、75、100、111、112、120、150、175、200、225、250、275、300、325、350、375、400、425、450、475または500の連続したアミノ酸からなる。このアミノ酸は、配列番号1〜18を含むポリヌクレオチドによりコードされるアミノ酸配列、またはそれらの配列の生物学的に活性な改変体から選択され得る。この第1のタンパク質セグメントはまた、全長転移性マーカータンパク質であり得る。この第1のタンパク質セグメントは、便利なようにN末端またはC末端であり得る。
【0040】
第2のタンパク質セグメントは、全長タンパク質またはタンパク質フラグメントあるいはポリペプチドであり得る。タンパク質は、一般的に、β−ガラクトシダーゼ、β−グルクロニダーゼ、緑色蛍光タンパク質(GFP)、青色蛍光タンパク質(BFP)を含む自己蛍光タンパク質、グルタチオン−S−トランスフェラーゼ(GST)、ルシフェラーゼ、西洋ワサビペルオキシダーゼ(HRP)、およびクロラムフェニコールアセチルトランスフェラーゼ(CAT)を含む融合タンパク質構築物に用いた。さらに、エピトープタグは、ヒスチジン(His)タグ、FLAGタグ、インフルエンザ赤血球凝集素(HA)タグ、Mycタグ、VSV−Gタグおよびチオレドキシン(Trx)タグを含む融合タンパク質の構築に用いられる。他の融合構築物は、マルトース結合タンパク質(MBP)、S−タグ、Lex A DNA結合ドメイン(DBD)融合体、GAL4 DNA結合ドメイン融合体、および単純ヘルペスウイルス(HSV)BP16タンパク質融合体を含み得る。
【0041】
これらの融合体は、例えば、2つのタンパク質セグメントの共有結合によるか、または分子生物学の分野において標準的な手順により作製され得る。組換えDNA法は、当該分野で公知のように、例えば、第2のタンパク質セグメントをコードし、そして宿主細胞においてDNA構築物を発現するヌクレオチドと適切なリーディングフレームにおいて配列番号1〜18から選択されるコード配列を含むDNA構築物の作製によって、融合タンパク質を調製するために用いられ得る。融合タンパク質を構築するための多くのキットが、例えば、Promega Corporation(Madison、WI)、Stratagene(La Jolla、CA)、Clontech(Mountain View、CA)、Santa Cruz Biotechnology(Santa Cruz、CA)、MBL International Corporation(MIC;Watertown、MA)およびQuantum Biotechnologies(Montreal、Canada;1−888−DNA−KITS)を含む、実験のための器具を研究室に供給する会社より入手可能である。
【0042】
単離した転移性マーカータンパク質、ポリペプチド、生物学的に活性な変異体、または融合タンパク質は、転移性マーカータンパク質のエピトープと特異的に結合する抗体の調製物を得るための免疫原として用いられ得る。この抗体は、ヒト組織、特にヒト腫瘍またはそれらの画分において、特に、CSP56のような転移性マーカータンパク質を検出するために用い得る。抗体はまた、転移性マーカータンパク質の過少発現もしくは過剰発現、またはサイズもしくは電気泳動移動度が変化した転移性マーカータンパク質の発現を生じる、CSP56遺伝子のような転移性マーカータンパク質での変異の存在の検出に用いられ得る。例えば、抗体がCSP56に結合することにより、CSP56アスパルチル型プロテアーゼ活性または転移を可能にするCSP56の能力もまた阻害し得る。
【0043】
転移性マーカータンパク質、ポリペプチド、融合タンパク質または生物学的に活性な改変体のエピトープに特異的に結合する抗体は、ウェスタンブロット、ELISA、ラジオイムノアッセイ、免疫組織化学的アッセイ、免疫沈降または他の当該分野で公知の免疫化学的アッセイを含むがそれに限定されない免疫化学的アッセイに用い得る。代表的には、本発明の抗体は、そのような免疫化学的アッセイに用いた場合、他のタンパク質により提供される検出シグナルに比べて少なくとも約5、約10、または約20倍高い検出シグナルを提供する。好ましくは、特定の転移性マーカータンパク質のエピトープに特異的に結合する抗体は、免疫化学的アッセイにおいて他のタンパク質を検出せず、そして溶液からのその転移性マーカータンパク質または転移性マーカータンパク質のポリペプチドフラグメントを免疫沈降し得る。
【0044】
転移性マーカータンパク質特異的抗体は、配列番号1〜18のヌクレオチド配列を含むポリヌクレオチドによってコードされるアミノ酸配列またはそれらのアミノ酸配列の生物学的に活性な改変体を有する転移性マーカータンパク質内に存在するエピトープに特異的に結合する。代表的には、少なくとも6、8、10、または12の連続したアミノ酸が、エピトープの形成に必要とされる。しかし、連続しないアミノ酸を含むエピトープは、例えば少なくとも15、25、または50のアミノ酸をさらに必要とし得る。好ましくは、転移性マーカータンパク質のエピトープは、他のヒトタンパク質には存在しない。
【0045】
特に抗原性である転移性マーカータンパク質のエピトープは、例えば、抗原性について転移性マーカータンパク質のポリペプチドフラグメントの慣用的なスクリーニングにより、または転移性マーカータンパク質のアミノ酸配列に対するタンパク質の抗原性領域の選択のための理論的な方法を適用することにより選択され得る。そのような方法は、例えば、HoppおよびWood、Proc.Natl.Acad.Sci.U.S.A.78、3824−28(1981)、HoppおよびWood、Mol.Immunol.20、483−89(1983)、ならびにSutcliffeら、Science 219、660−66(1983)に教示される。図3を参照することにより、他のアスパルチルプロテアーゼと交差反応する抗体にまた結合し得るCSP56の抗原性領域が、回避され得る。
【0046】
当該分野で公知の抗体の任意の型を、転移性マーカータンパク質のエピトープに特異的に結合するために作製し得る。例えば、ポリクローナルおよびモノクローナル抗体の調製は、当該分野で周知の標準的な方法を用いて行われ得る。同様に、一本鎖の抗体もまた、調製され得る。転移性マーカータンパク質のエピトープに特異的に結合する一本鎖の抗体が、例えば、当該分野で公知の一本鎖免疫グロブリンディスプレイライブラリーから単離され得る。このライブラリーは、転移性マーカータンパク質のアミノ酸配列に対して「パニング」され、そして転移性マーカータンパク質の異なるエピトープに対して高い親和性で結合する多くの単鎖抗体が、単離され得る。Hayashiら、1995、Gene 160:129−30。一本鎖の抗体はまた、テンプレートとしてハイブリドーマcDNAを用いたポリメラーゼ連鎖反応(PCR)のようなDNA増幅法を用いて構築され得る。Thirionら、1996、Eur.J.Cancer Prev.5:507−11。
【0047】
単鎖抗体は、単一特異的または二重特異的であり得、そして二価または四価であり得る。四価の二重特異的単鎖抗体の構築が、例えば、ColomaおよびMorrison、1997、Nat.Biotechnol.15:159−63に教示される。二価の二重特異的1本鎖抗体の構築が、特に、MallenderおよびVoss、1994、J.Biol.Chem.269:199−206に教示される。
【0048】
単鎖抗体をコードするヌクレオチド配列は、手動合成または自動ヌクレオチド合成を用いて構築され得、標準的な組換えDNA方法を用いて発現構築物中にクローニングされ、そして以下のコード配列を発現するための細胞中に導入され得る。あるいは、単鎖抗体は、例えば、糸状のファージ技術を用いて直接産生され得る。Verhaarら、1995、Int.J.Cancer 61:497−501;Nichollsら、1993、J.Immunol.Meth.165:81−91。
【0049】
モノクローナルおよび他の抗体はまた、それを治療的に用いた場合、患者が抗体に対する免疫応答を生じることを防ぐために「ヒト化」され得る。そのような抗体は、治療に直接用いるヒト抗体に対する配列に十分に類似し得るか、または少数の鍵となる残基の変更を必要とし得る。例えば、げっ歯類の抗体とヒト配列の間の配列の違いは、例えば、個々の残基の部位特異的変異誘発、または完全な相補性決定領域をグレーティングする(grating)ことにより、ヒト配列における残基と異なる残基との置換により最小化され得る。あるいは、当業者は、GB2188638Bに記載される組換え方法を用いてヒト化された抗体を産生し得る。転移性マーカータンパク質のエピトープに特異的に結合する抗体は、U.S.5,565,332に開示されるような、部分的または完全にのいずれかでヒト化された抗原結合部位を含み得る。
【0050】
抗体の他の型が、構築され、そして本発明の方法で治療的に用いられ得る。例えば、キメラ抗体が、例えば、WO93/03151に開示されるように構築され得る。免疫グロブリンに由来する結合タンパク質およびWO94/13804に記載される「diabodies」のような多価および多特異的である結合タンパク質がまた、調製され得る。
【0051】
本発明の抗体は、当該分野で周知の方法により精製され得る。例えば、抗体は、転移性マーカータンパク質、ポリペプチド、変異体または融合タンパク質が結合するカラムに抗体を通すことによりアフィニティー精製され得る。次いで、結合した抗体は、高塩濃度の緩衝液を用いてカラムから溶出され得る。
【0052】
本発明はまた、転移性マーカータンパク質、ポリペプチド、改変体または融合タンパク質をコードするサブゲノムポリヌクレオチドを提供し得る。サブゲノムポリヌクレオチドは、全染色体は含まない。好ましくは、サブゲノムポリヌクレオチドは、イントロンを有さない。単離された転移性マーカータンパク質サブゲノムポリヌクレオチドは、少なくとも、配列番号1の8、9、10、11、12、13、14、15、16、17、18、19、20、25、30、40、50、75、100、125、150、175、200、250、300、350、400、450、500、550、600、650、700、750、800、850、900、950、1000、1050、1100、1150、1200、1250、1300、1350、1400、1450、1500、1550、1600、1650、1700、1750、1800、1850、1900、1950、2000、2050、2100、2150、または2200の連続したヌクレオチド;配列番号2または9の少なくとも8、9、10、11、12、13、14、15、16、17、18、19、20、25、30、40、50、75、100、125、150、175、200、250、300、350または400の連続したヌクレオチド;配列番号6の少なくとも8、9、10、11、12、13、14、15、16、17、18、19、20、25、30、40、50、75、100、125、150、175、200、250、300、350、400、450、500、550、600、650、700、750、800、850、900、950、1000、1050、1100、1150、1200、1250、1300、1350、1400、1450、1500、1550、1600、1650、1700、1750、1800、1850、1900、1950、2000、2250または2500の連続したヌクレオチド;配列番号7の少なくとも8、9、10、11、12、13、14、15、16、17、18、19、20、25、30、40、50、75、100、125、150または175の連続したヌクレオチド;配列番号8の少なくとも8、9、10、11、12、13、14、15、16、17、18、19、20、25、30、40、50、75、100、125、150、175、200、250、300または350の連続したヌクレオチド;配列番号12の少なくとも8、9、10、11、12、13、14、15、16、17、18、19、20、25、30、40、50、75、100、125、150、175、200、250、300または350の連続したヌクレオチド;配列番号3、4、5、または10の少なくとも8、9、10、11、12、13、14、15、16、17、18、19、20、25、30、40、50、75、100、125、150、175、200、250または300の連続したヌクレオチド;配列番号11の少なくとも8、9、10、11、12、13、14、15、16、17、18、19、20、25、30、40、50、75、100、125、150、175、200、250、300、350、400、450または500の連続したヌクレオチド;配列番号13の少なくとも8、9、10、11、12、13、14、15、16、17、18、19、20、25、30、40、50、75、100、125、150、175、200、250または300の連続したヌクレオチド;配列番号14の少なくとも8、9、10、11、12、13、14、15、16、17、18、19、20、25、30、40、50、75、100、125、150、175、200、250、300、350、400、450、500、550、600、650、700、750、800、850、900または950の連続したヌクレオチド;配列番号15の少なくとも8、9、10、11、12、13、14、15、16、17、18、19、20、25、30、40、50、75、100、125、150、175、200、250、300、350、400または450の連続したヌクレオチド;配列番号16の少なくとも8、9、10、11、12、13、14、15、16、17、18、19、20、25、30、40、50、75、100、125、150、175、200、250、300、350、400、450、500、550、600、650、700、750、800、850、900、950、1000、1050、1100、1150、1200、1250、1300、1350、1400、1450、1500、1550、1600、1650、1700、1750、1800、1850、1900、1950、2000、2250、2500、2750、3000、3250または3500の連続したヌクレオチド;配列番号17の少なくとも8、9、10、11、12、13、14、15、16、17、18、19、20、25、30、40、50、75、100、125、150、175、200、250、300、350、400、450、500、550、600、650、700、750、800、850、900、950、1000、1050、1100、1150、1200、1250、1300、1350、1400、1450または1500の連続したヌクレオチドを含むか、または配列番号1〜17の1つを含み得る。
【0053】
CSP56ポリヌクレオチドは、配列番号18より選択した少なくとも10、11、12、15、20、24、25、30、32、33、35、36、40、42、45、48、50、51、54、60、63、69、70、74、75、80、84、87、90、93、96、99、100、105、114、120、125、150、225、300、333、336、350、400、450、500、550、600、650、700、750、800、850、900、950、1000、1050、1100、1150、1200、1250、1300、1350、1400、1450、1500、1550、1600、1650、1700、1750、1800または1850ヌクレオチドの連続した配列を含み得るか、または配列番号18を含み得る。単離されたCSP56ポリヌクレオチドは、配列番号19の少なくとも8、10、12、14、15、17、18、20、25、29、30、31、32、40、50、75、100または111の連続したアミノ酸をコードし、そして配列番号19に示される全アミノ酸配列をコードし得る。好ましいCSP56ポリヌクレオチドは、配列番号19の少なくともアミノ酸1〜30、8〜20、7〜21、6〜22、106〜115、105〜116、104〜117、100〜120、297〜306、296〜307、295〜308、290〜320、461〜489、460〜490、459−491、および407−518をコードする。
【0054】
配列番号1〜18に示されるヌクレオチド配列の相補体は、配列番号1〜18に示されるような連続するヌクレオチド配列を用いてワトソン−クリック塩基対を形成する連続するヌクレオチド配列である。配列番号1〜18の相補体はまた、本発明のポリヌクレオチドである。コード配列の相補体は、アンチセンスオリゴヌクレオチドおよびプローブを提供するために使用され得る。本発明のアンチセンスオリゴヌクレオチドおよびプローブは、少なくとも11、12、15、20、25、30、50、または100の連続するヌクレオチドからなり得る。全体のコード配列の相補体もまた、使用され得る。配列番号1〜18に示されるヌクレオチド配列の全てまたは一部分を含む二本鎖ポリヌクレオチド、ならびに転移マーカータンパク質特異的抗体またはリボザイムをコードするポリヌクレオチドはまた、本発明のポリヌクレオチドである。
【0055】
転移マーカータンパク質および/または改変体のアミノ酸配列をコードする縮重ヌクレオチド配列、ならびに配列番号1〜18に示されるヌクレオチド配列に少なくとも65%、75%、85%、90%、95%、98%または99%同一である相同的ヌクレオチド配列もまた、本発明のポリヌクレオチドである。配列同一性%は、Smith−Watermanアルゴリズムを使用するコンピュータープログラム(例えば、以下のパラメーター:12のギャップオープンペナルティおよび1のギャップエクステンションペナルティとともにアフィンギャップサーチ(affine gap search)を用いてMPSRCHプログラム(Oxford Molecular)を実行するように)を使用して決定され得る。
【0056】
代表的には、本発明の相同的ポリヌクレオチド配列は、当該分野において公知のように、ストリンジェントな条件下でハイブリダイゼーションを行うことによって確認され得る。例えば、以下の洗浄条件−−2×SSC、0.1%SDS、室温で2回、それぞれ30分間;次いで、2×SSC、0.1%SDS、50℃で30分間を一回;次いで、2×SSC、室温で2回、10分間を使用して各相同配列を同定し得る。これは最も多くて約25%〜30%の塩基対のミスマッチを含む。より好ましくは、相同的核酸鎖は、15〜25%の塩基対のミスマッチを含み、さらにより好ましくは5〜15%、2〜10%、または1〜5%の塩基対のミスマッチを含む。本発明のポリヌクレオチドの相同性の程度は、当該分野において周知であり、そして例えば、Sambrookら、MOLECULAR CLONING:A LABORATORY MANUAL、第2版(1989)のようなマニュアルに記載されるように、遺伝子ライブラリー(または他の遺伝物質供給源)由来のクローンの同定のための洗浄条件のストリンジェンシーを変化することによって選択され得る。
【0057】
本発明のサブゲノムポリヌクレオチドの種相同体はまた、適切なプローブまたはプライマーを作製し、そしてcDNA発現ライブラリーまたは他の種(例えば、マウス、サル、酵母または細菌)由来のゲノムライブラリーをスクリーニングすることによって同定され得る。完全なポリヌクレオチド配列は、重複しているクローンである、5’RACEのライブラリーの染色体ウォーキング、スクリーニング、または当該分野において周知の他の技術によって得られ得る。相同性が1%減少するごとに、二本鎖DNAのTmは、1〜1.5℃減少することが周知である(Bonnerら、J.Mol.Biol.81、123(1973))。従って、相同的なヒトポリヌクレオチドまたは他種のポリヌクレオチドは、例えば、推定相同ポリヌクレオチドを、配列番号1〜18のヌクレオチド配列を有するポリヌクレオチドとハイブリダイズし、試験ハイブリッドの融点と、配列番号1〜18のヌクレオチド配列を有するポリヌクレオチドおよびこのヌクレオチド配列と完全に相補的なポリヌクレオチドを含むハイブリッドの融点とを比較し、そして試験ハイブリッド内の塩基対ミスマッチの数を計算することにより、同定され得る。
【0058】
ストリンジェントなハイブリダイゼーションおよび/または洗浄条件に従って、配列番号1〜18に示されるヌクレオチド配列とハイブリダイズするヌクレオチド配列はまた、本発明のサブゲノムポリヌクレオチドである。ストリンジェントな洗浄条件は、周知でありかつ当該分野において理解され、そして例えばSambrookら、1989、9.50〜9.51頁に開示される。
【0059】
代表的には、ストリンジェントなハイブリダイゼーション条件について、温度と塩濃度との組み合せは、研究中に算出したハイブリッドのTmよりおおよそ12〜20℃下を選択すべきである。配列番号1〜18に示されるポリヌクレオチド配列とその配列に65%、75%、85%、90%、95%、96%、97%、98%、または99%同一なポリヌクレオチド配列との間のハイブリッドのTmは、例えば、BoltonおよびMcCarthy,Proc.Natl.Acad.Sci.U.S.A.48,1390(1962)の方程式:
Tm=81.5℃−16.6(log10[Na+])+0.41(%G+C)−0.63(%ホルムアミド)−600/l)、
ここで、l=ハイブリッドの塩基対の長さ、を使用して算出され得る。
【0060】
ストリンジェントな洗浄条件は、例えば、65℃で4×SSC、または50%ホルムアミド、42℃で4×SSC、または65℃で0.5×SSC、0.1%SDSを含む。高ストリンジェントな洗浄条件は、例えば、65℃で0.2×SSCを含む。
【0061】
サブゲノムポリヌクレオチドは、標準的な核酸精製技術を使用して、他のヌクレオチド配列がないように精製され得る。例えば、制限酵素およびプローブは、転移マーカータンパク質をコードするヌクレオチド配列を含むポリヌクレオチドを単離するために使用され得る。あるいは、PCRは、このようなポリヌクレオチドを合成および増幅するために使用され得る。単離されかつ精製されたポリヌクレオチドの調製物の少なくとも90%は、ポリヌクレオチドをコードする転移マーカータンパク質を含む。
【0062】
転移マーカータンパク質をコードする相補的なDNA(cDNA)分子はまた、本発明のサブゲノムポリヌクレオチドである。cDNA分子は、mRNAをテンプレートとして使用する標準的な分子生物学的技術を用いて生成され得る。その後、cDNA分子は、当該分野で公知のそしてSambrookら、1989のようなマニュアルに開示される分子生物学的技術を使用して複製され得る。ポリメラーゼ連鎖反応(PCR)のような増幅技術は、テンプレートとしてヒトゲノムDNAまたはcDNAのいずれかを使用して、本発明のサブゲノムポリヌクレオチドのさらなるコピーを得るために使用され得る。
【0063】
あるいは、合成化学技術が、本発明のサブゲノムポリヌクレオチド分子を合成するために使用され得る。ゲノムコードの縮重は、代替のヌクレオチド配列が合成されるのを可能にし、これは、配列番号1〜17から選択されるヌクレオチド配列を含むポリヌクレオチドによりコードされるアミノ酸配列、配列番号19に示されるようなCSP56アミノ酸配列、またはこれらの配列の生物学的活性の改変体を有する転移マーカータンパク質をコードする。このような全てのヌクレオチド配列は、本発明の範囲内である。
【0064】
本発明はまた、例えば、ノザンまたはサザンブロッティングのようなハイブリダイゼーションプロトコルまたはインサイチュハイブリダイゼーションにおいて、転移マーカーポリペプチド配列を検出するために使用され得るポリヌクレオチドプローブを提供する。本発明のポリヌクレオチドプローブは、配列番号1〜18から選択される、少なくとも12、13、14、15、16、17、18、19、20、30、または40以上の連続するヌクレオチドを含む。本発明のポリヌクレオチドプローブは、検出標識(例えば、放射性同位体標識、蛍光標識、酵素標識、または化学発光標識)を含み得る。
【0065】
単離されたポリヌクレオチドは、例えば、このポリヌクレオチドのさらなるコピーを得るためのプライマーとして、またはmRNAを検出するためのプローブとして使用され得る。ポリヌクレオチドはまた、転移マーカータンパク質mRNA、タンパク質、ポリペプチド、生物学的活性改変体、単鎖抗体、リボザイムまたは融合タンパク質を発現するために使用され得る。上記の任意のポリヌクレオチドは、DNAまたはRNAの構築物のような構築物中に存在し得る。この構築物は、ベクターであり得、そして例えばこのポリヌクレオチドの増殖のために、ポリヌクレオチドを細胞へ移入するために使用され得る。構築物は、直鎖状分子または環状分子であり得る。それらは、自律複製分子上であり得、または複製配列がない分子上であり得る。そしてそれら構築物は、当該分野において公知のように、それら自体によって、または他の調節配列によって調節され得る。
【0066】
構築物はまた、発現構築物であり得る。発現構築物は、選択された宿主細胞において機能的であるプロモーターを含む。例えば、当業者は、当該分野で公知であり使用される多くの数の細胞型特異的プロモーターから適切なプロモーターを容易に選択し得る。この発現構築物はまた、宿主細胞中で機能的である転写ターミネーターを含み得る。この発現構築物は、例えば、転移マーカータンパク質の全てまたは一部分、ポリペプチド、生物学的活性改変体、抗体、リボザイム、または融合タンパク質をコードするポリヌクレオチドセグメントを含む。このポリヌクレオチドセグメントは、プロモーターから下流に位置する。ポリヌクレオチドセグメントの転写は、プロモーターで開始する。この発現構築物は、直鎖状または環状であり得、そして所望される場合、自律複製配列を含み得る。
【0067】
サブゲノムポリヌクレオチドは、当該分野において周知の技術を使用して、ベクターおよび細胞株において増殖され得る。細菌における発現系は、Changら、Nature(1978)275:615、Goeddelら、Nature(1979)281:544、Goeddelら、Nucleic Acids Res.(1980)8:4057、EP36,776、米国特許第4,551,433号、deBoerら、Proc.Natl.Acad Sci.USA(1983)80:21−25、およびSiebenlistら、Cell(1980)20:269に記載される発現系を含む。
【0068】
酵母における発現系は、Hinnenら、Proc.Natl.Acad.Sci.USA(1978)75:1929;Itoら、J.Bacteriol.(1983)153:163;Kurtzら、Mol.Cell.Biol.(1986)6:142;Kunzeら、J.Basic Microbiol.(1985)25:141;Gleesonら、J.Gen.Microbiol.(1986)132:3459、Roggenkampら、Mol.Gen.Genet.(1986)202:302)Dasら、J.Bacteriol.(1984)158:1165;De Louvencourtら、J.Bacteriol.(1983)154:737、Van den Bergら、Bio/Technology(1990)8:135;Kunzeら、J.Basic Microbiol.(1985)25:141;Creggら、Mol.Cell.Biol.(1985)5:3376、米国特許第4,837,148号、米国特許第4,929,555号;BeachおよびNurse、Nature(1981)300:706;Davidowら、Curr.Genet.(1985)10:380、Gaillardinら、Curr.Genet.(1985)10:49、Ballanceら、Biochem.Biophys.Res.Commun.(1983)112:284−289;Tilburnら、Gene(1983)26:205−221、Yeltonら、Proc.Natl.Acad.Sci.USA(1984)81:1470−1474、KellyおよびHynes、EMBO J.(1985)4:475479;EP244,234およびWO 91/00357に記載される発現系を含む。
【0069】
昆虫におけるサブゲノムポリヌクレオチドの発現は、米国特許第4,745,051号、Friesenら(1986)「バキュロウイルス遺伝子発現の調節」:THE MOLECULAR BIOLOGY OF BACULOVIRUSES(W.Doerfler編)、EP127,839、EP155,476、およびVlakら、J.Gen.Virol.(1988)69:765−776、Millerら、Ann.Rev.Microbiol.(1988)42:177、Carbonellら、Gene(1988)73:409、Maedaら、Nature(1985)315:592−594、Lebacq−Verheydenら、Mol.Call.Biol.(1988)8:3129;Smithら、Proc.Natl.Acad.Sci.USA(1985)82:8404、Miyajimaら、Gene(1987)58:273;およびMartinら、DNA(1988)7:99に記載されるように達成され得る。多くのバキュロウイルス株および改変体および対応する宿主由来の許容昆虫宿主細胞は、Luckowら、Bio/Technology(1988)6:47−55、Millerら、GENETIC ENGINEERING(Setlow,J.K.ら編)、第8巻(Plenum Publishing、1986)、277〜279頁、ならびにMaedaら、Nature,(1985)315:592−594に記載される。
【0070】
サブゲノムポリヌクレオチドの哺乳動物発現は、Dijkemaら、EMBO J.(1985)4:761、Gormanら、Proc.Natl.Acad.Sci.USA(1982b)79:6777、Boshartら、Cell(1985)41:521および米国特許第4,399,216号に記載されるよに達成され得る。哺乳動物発現の他の特徴は、HamおよびWallace,Meth.Enz.(1979)58:44、BarnesおよびSato、Anal.Biochem.(1980)102:255、米国特許第4,767,704号、米国特許第4,657,866号、米国特許第4,927,762号、米国特許第4,560,655号、WO 90/103430、WO 87/00195号、ならびに米国特許再発行30,985に記載されるように容易にされ得る。
【0071】
サブゲノムポリヌクレオチドは、直鎖状分子または環状分子であり得る。それらは、自律複製分子上または複製配列をもたない分子上にあり得る。それらは、当該分野において公知であるようにそれら自体によって、または他の調節配列によって調節され得る。サブゲノムポリヌクレオチドは、当該分野において利用可能な種々の技術(例えば、トランスフェリン−ポリカチオン媒介DNA移入、裸の核酸またはカプセル化核酸を用いたトランスフェクション、リポソーム媒介DNA移入、DNAコートラテックスビーズの細胞内輸送、プロトプラスト融合、ウイルス感染、エレクトロポレーション、およびリン酸カルシウム媒介トランスフェクション)を使用して、適切な宿主細胞へ導入され得る。
【0072】
本発明のポリヌクレオチドはまた、mRNAまたはオリゴヌクレオチド(天然のmRNAまたはその相補体のいずれかの配列を有する)、全長タンパク質、融合タンパク質、ポリペプチド、またはリボザイム、または単鎖抗体を細胞(好ましくは真核生物細胞)に送達する目的のために、遺伝子送達ビヒクルにおいて使用され得る。本発明に従って、遺伝子送達ビヒクルは、例えば裸のプラスミドDNA、本発明のポリヌクレオチドを含むウイルス発現ベクター、またはリポソームもしくは縮合試薬と連結した本発明のポリヌクレオチドであり得る。
【0073】
本発明の1つの実施態様において、この遺伝子送達ビヒクルは、プロモーターおよび本明細書中に開示されるポリヌクレオチドの1つを含む。好ましいプロモーターは、組織特異的プロモーターならびに細胞増殖によって活性化されるプロモーター(例えば、チミジンキナーゼプロモーターおよびチミジレートシンターゼプロモーター)である。他の好ましいプロモーターは、ウイルス感染により活性化され得るプロモーター(例えば、α−およびβ−インターフェロンプロモーター)、ならびにホルモンによって活性化され得るプロモーター(例えば、エストロゲン)を含む。使用され得る他のプロモーターは、モロニーウイルスLTR、CMVプロモーター、およびマウスアルブミンプロモーターを含む。
【0074】
遺伝子送達ビヒクルは、ウイルスの複製またはパッケージングシグナルの起源のようなウイスル配列を含み得る。これらのウイルス配列は、アストロウイルス、コロナウイルス、オルトミクソウイルス、パポバウイルス、パラミクソウイルス、パルボウイルス、ピコルナウイルス、ポックスウイルス、レトロウイルス、トガウイルスまたはアデノウイルスのようなウイルスから選択され得る。好ましい実施態様において、この遺伝子送達ビヒクルは、組換えレトロウイルスベクターである。組換えレトロウイルスおよびそれらの種々の使用は、以下を含む多くの参考文献に記載されている;例えば、Mannら、Cell 33:153、1983、CaneおよびMulligan、Proc.Nat’l.Acad.Sci.USA 81:6349、1984、Millerら、Human Gene Therapy 1:5−14、1990、米国特許番号第4,405,712号、同第4,861,719号、ならびに同第4,980,289号、ならびにPCT出願番号WO 89/02,468、同WO 89/05,349、ならびに同WO 90/02,806。多くのレトロウイルス遺伝子送達ビヒクルは、例えば、以下に記載の例を含め本発明において利用され得る;EP 0,415,731;WO 90/07936;WO 94/03622;WO 93/25698;WO 93/25234;米国特許第5,219,740号;WO 9311230;WO 9310218;VileおよびHart、Cancer Res.53:3860−3864、1993;VileおよびHart、Cancer Res.53:962−967、1993;Ramら、Cancer Res.53:83−88、1993;Takamiyaら、J.Neurosci.Res.33:493−503、1992;Babaら、J.Neurosurg.79:729−735、1993(米国特許第4,777,127号、GB 2,200,651、EP 0,345,242、ならびにWO 91/02805)。
【0075】
特定の好ましいレトロウイルスは、ニワトリ白血病ウイルス(ATCC受託番号VR−535およびVR−247)、ウシ白血病ウイルス(VR−1315)、マウス白血病ウイルス(MLV)、ミンク細胞フォーカス形成ウイルス(Kochら、J.Vir.49:828、1984;およびOliffら、J.Vir.48:542、1983)、マウス肉腫ウイルス(ATCC受託番号VR−844、45010および45016)、細網内皮症ウイルス(ATCC受託番号VR−994、VR−770および45011)、ラウス肉腫ウイルス、メイソン‐パイツァーサルウイルス、ヒヒ内因性ウイルス、内因性ネコレトロウイルス(例えば、RD114)、ならびにレトロウイルスベクターとして使用されるマウスもしくはラットgL30配列を含むレトロウイルス由来である。
【0076】
組換えレトロウイルスが産生され得るMLVの特定の好ましい株は、4070Aおよび1504A(HartleyおよびRowe、J.Vir.19:19、1976)、アーベルソン(ATCC受託番号VR−999)、フレンド(ATCC受託番号VR−245)、グラフィ(Ruら、J.Vir.67:4722、1993;およびYantchev Neoplasma 26:397.1979)、グロス(ATCC受託番号VR−590)、キルステン(Albinoら、J.Exp.Med.164:1710、1986)、ハーベイ肉腫ウイルス(Manlyら、J.Vir.62:3540、1988;およびAlbinoら、J.Exp.Med.164:1710、1986)、ならびにラウシャー(ATCC受託番号VR−998)、ならびにモロニーMLV(ATCC受託番号VR−190)を含む。
【0077】
特定の好ましい非マウスレトロウイルスは、ラウス肉腫ウイルスである。好ましいラウス肉腫ウイルスは、Bratislava(Manlyら、J.Vir.62:3540,1988;およびAlbinoら、J.Exp.Med.164:1710,1986)、高力価ブライアン(Bryan)株(例えば、ATCC受託番号VR−334、VR−657、VR−726、VR−659およびVR−728)、スタンダードブライアン株(ATCC受託番号VR−140)、Carr−Zilber(Adgighitovら、Neoplasma27:159,1980)、Engelbreth−Holm(Laurentら、Biochem Biophys Acta 908:241、1987)、Harris、Prague(例えば、ATCC受託番号VR−772および45033)、ならびにSchmidt−Ruppin(例えばATCC受託番号VR−724、VR−725、VR−354)ウイルスを含む。
【0078】
任意の上記のレトロウイルスは、本明細書中に与えられる開示および当該分野で公知の標準組換え技術(例えば、Sambrookら、1989、およびKunkle、Proc.Natl.Acad.Sci.U.S.A.82:488、1985)によって、レトロウイルス遺伝子送達ビヒクルをアセンブリまたは構築するために容易に利用され得る。レトロウイルス発現ベクターの一部分は、異なるレトロウイルス由来であり得る。例えば、レトロベクターLTRは、マウス肉腫ウイルス、ラウス肉腫ウイルス由来のtRNA結合部位、マウス白血病ウイルス由来のパッケージングシグナル、およびニワトリ白血病ウイルスからの第二鎖合成の起点由来であり得る。これらの組換えレトロウイルスベクターは、形質導入コンピテントレトロウイルスベクター粒子を適切なパッケージング細胞株に導入することによって、それらを生成するために使用され得る(1991年11月29日に出願されたシリアル番号07/800,921号を参照のこと)。組換えレトロウイルスは産生され、これは組換えレトロウイルスゲノムを宿主細胞DNAの特定の領域に部位特異的に組込むことを指向する。このような部位特異的組込みは、レトロウイルス粒子に組込まれたキメラインテグラーゼによって媒介され得る(1995年5月22日に出願されたシリアル番号08/445,466を参照のこと)。組換えウイルス遺伝子送達ビヒクルは、複製欠陥組換えウイルスであることが好ましい。
【0079】
上記のレトロウイルス遺伝子送達ビヒクルを用いた使用に適切なパッケージング細胞株は、容易に調製され得(1994年5月9日に出願したシリアル番号08/240,030を参照のこと;WO 92/05266もまた参照のこと)、そして組換えウイルス粒子の生成のための生成細胞株(ベクター細胞株または「VCL」ともいう)を作製するために使用され得る。本発明の特定の好ましい実施態様において、パッケージング細胞株は、ヒト(例えばHT1080細胞)またはミンク親細胞株から作製される。それによって、ヒト血清中において不活性のままでいられ得る組換えレトロウイルス遺伝子送達ビヒクルの作製が可能となる。組換えレトロウイルス遺伝子送達ビヒクルの構築物は、WO 91/02805に詳細に記載される。これらの組換えレトロウイルス遺伝子送達ビヒクルは、それらを適切なパケージング細胞株に導入することによって形質導入コンピテントレトロウイルス粒子を生成するために使用され得る(シリアル番号07/800,921を参照のこと)。同様にアデノウイルス遺伝子送達ビヒクルはまた、容易に調製され得、そして本明細書中に提供される開示により利用され得る(Berkner,Biotechniques 6:616−627,1988およびRosenfeldら、Science 252:431−434、1991、WO 93/07283、WO 93/06223、およびWO 93/07282もまた参照のこと)。
【0080】
遺伝子送達ビヒクルはまた、組換えアデノウイルス遺伝子送達ビヒクルであり得る。このようなビヒクルは、容易に調製され得、そして本明細書中に提供される開示より利用され得る(Berkner,Biotechniques 6:616、1988、およびRosenfeldら、Science 252:431、1991、WO 93/07283、WO 93/06223、およびWO 93/07282を参照のこと)。アデノ随伴ウイルス遺伝子送達ビヒクルもまた構築され得、そして本発明のタンパク質またはポリヌクレオチドを細胞にインビトロもしくはインビボで送達するために使用され得る。インビトロでのアデノ随伴ウイルス遺伝子送達ビヒクルの使用は、Chatterjeeら、Science 258:1485−1488(1992)、Walshら、Proc.Nat’l.Acad.Sci.89:7257−7261(1992)、Walshら、J.Clin.Invest.94:1440−1448(1994)、Flotteら、J.Biol.Chem.268:3781−3790(1993)、Ponnazhaganら、J.Exp.Med.179:733−738(1994)、Millerら、Proc.Nat’l Acad.Sci.91:10183−10187(1994)、Einerhandら、Gene Ther.2:336−343(1995)、Luoら、Exp.Hematol.23:1261−1267(1995)、およびZhouら、Gene Therapy 3:223−229(1996)に記載される。これらのビヒクルのインビボでの使用は、Flotteら、Proc.Nat’l.Acad.Sci.90:10613−10617(1993)およびKaplittら、Nature Genet.8:148−153(1994)に記載される。
【0081】
本発明の別の実施態様において、遺伝子送達ビヒクルは、トガウイルス由来である。好ましいトガウイルスは、アルファウイルス、特に米国シリアル番号08/405,627(1995年3月15日に出願された、WO 95/07994)に記載されるアルファウイルスを含む。シンドビスウイルスおよびELVSウイルスを含むアルファウイルスは、本発明のポリヌクレオチドのための遺伝子送達ビヒクルであり得る。アルファウイルスは、WO 94/21792、WO 92/10578およびWO 95/07994に記載される。いくつかの異なるアルファウイルス遺伝子送達ビヒクル系が構築され得、そして本発明に従ってポリヌクレオチドを細胞へ送達するために使用され得る。このような系の代表的な例は、米国特許第5,091,309号および同第5,217,879号において記載される系を含む。特に、本発明における使用のための特に好ましいアルファウイルス遺伝子送達ビヒクルは、WO 95/07994、および米国シリアル番号08/405,627に記載されるビヒクルを含む。
【0082】
好ましくは、組換えウイルスビヒクルは、シンドビスウイルスに基づく組換えアルファウイルスのウイスルビヒクルである。シンドビス構築物、ならびに多くの類似構築物は、米国シリアル番号08/198,450に記載のように、基本的には容易に調製され得る。シンドビスウイルス性遺伝子送達ビヒクルは、代表的には、シンドビスウイルスの転写を開始し得る5’配列、シンドビス非構造タンパク質をコードするヌクレオチド配列、フラグメントの転写を妨げるために不活性化されるウイルス結合領域、およびシンドビスRNAポリメラーゼ認識配列を含む。必要に応じて、ポリヌクレオチドの転写は減少され、増加され、または維持されるように、ウイルス結合領域が、改変され得る。当業者に理解されるように、他のアルファウイルス由来の対応する領域は、上記の領域との代わりに使用され得る。
【0083】
アルファウイルス由来遺伝子送達ビヒクルのウイルス結合領域は、ポリヌクレオチドの転写を妨げるために不活性化された第1のウイルス結合領域、およびポリヌクレオチドの転写が減少されるように改変された第2のウイルス結合領域を含み得る。アルファウイルス由来ビヒクルはまた、cDNA由来のウイルスRNAの合成を開始し得る5’プロモーター、および転写終止を制御する3’配列を含み得る。
【0084】
本発明において利用され得る他の組換えトガウイルス遺伝子送達ビヒクルは、セムリキ森林ウイルス(ATCC受託番号VR−67;ATCC受託番号VR−1247)、ミッデルブルグウイルス(ATCC受託番号VR−370)、ロスリバーウイルス(ATCC受託番号VR−373;ATCC受託番号VR−1246)、ヴェネズエラウマ脳脊髄炎ウイルス(ATCC受託番号VR923;ATCC受託番号VR−1250;ATCC受託番号VR−1249;ATCC受託番号VR−532)由来のビヒクル、ならびに米国特許第5,091,309号および同第5,217,879号およびWO 92/10578に記載のビヒクルを含む。上記のシンドビスビヒクル、ならびに多くの類似構築物は、米国シリアル番号08/198,450に記載されるように本質的には容易に調製され得る。
【0085】
本発明における使用に適する他のウイルス遺伝子送達ビヒクルは、例えば、ポリオウイスル(Evansら、Nature 339:385、1989、ならびにSabinら、J.Biol.Standardization 1:115、1973)(ATCC受託番号VR−58);ライノウイルス(Arnoldら、J.Cell.Biochem.L401、1990)(ATCC受託番号VR−1110);カナリア痘ウイルスまたはワクシニアウイルスのようなポックスウイルス(Fisher−Hochら、PROC.NATL.ACAD.SCI.U.S.A.86:317、1989;Flexnerら、Ann.N.Y.Acad.Sci.569:86、1989;Flexnerら、Vaccine 8:17、1990;米国4,603,112および米国4,769,330;WO 89/01973)(ATCC受託番号VR−111;ATCC受託番号VR−2010);SV40(Mulliganら、Nature 277:108、1979)(ATCC受託番号VR−305)、(Madzakら、J.Gen.Vir.73:1533、1992);インフルエンザウイルス(Luytjesら、Cell 59:1107、1989;McMichealら、The New England Journal of Medicine 309:13、1983;ならびにYapら、Nature 273:238、1978)(ATCC受託番号VR−797);アデノ随伴ウイルスのようなパルボウイルス(Samulskiら、J.Vir.63:3822、1989、およびMendelsonら、Virology 166:154,1988)(ATCC受託番号VR−645);単純ヘルペスウイルス(Kitら、Adv.Exp.Med.Biol.215:219、1989)(ATCC受託番号VR−977;ATCC受託番号VR−260);Nature 277:108、1979);ヒト免疫不全ウイルス(EPO386,882、Buchschacherら、J.Vir.66:2731,1992);麻疹ウイルス(EPO 440,219)(ATCC受託番号VR−24);A(ATCC受託番号VR−67;ATCC受託番号VR−1247),アウラ(ATCC受託番号VR−368)、ベバルウイルス(ATCC受託番号VR−600;ATCC受託番号VR−1240)、Cabassou(ATCC受託番号VR−922)、チクングニヤウイルス(ATCC受託番号VR−64;ATCC受託番号VR−1241)、Fort Morgan(ATCC受託番号VR−924)、ゲタウイルス(ATCC受託番号VR−369;ATCC受託番号VR−1243)、Kyzylagach(ATCC受託番号VR−927)、マヤロ(ATCC受託番号VR−66)、ムカンボウイルス(ATCC受託番号VR−580;ATCC受託番号VR−1244)、ヌヅム(ATCC受託番号VR−371)、ピクスナウイルス(ATCC受託番号VR−372;ATCC受託番号VR−1245)、Tonate(ATCC受託番号VR−925)、トリニティ(ATCC受託番号VR−469)、ユナ(ATCC受託番号VR−374)、ワタノワ(ATCC受託番号VR−926)、Y−62−33(ATCC受託番号VR−375)、オニオンウイルス、東部脳炎ウイルス(ATCC受託番号VR−65;ATCC受託番号VR−1242)、西部脳炎ウイルス(ATCC受託番号VR−70;ATCC受託番号VR−1251;ATCC受託番号VR−622;ATCC受託番号VR−1252)ならびにコロナウイルス(Hamreら、Proc.Soc.Exp.Biol.Med.121:190,1966)(ATCC受託番号VR−740)由来のビヒクルを含む。
【0086】
本発明のポリヌクレオチドはまた、縮合試薬と組み合わされ得、そして遺伝子送達ビヒクルを形成し得る。好ましい実施態様において、縮合試薬は、ポリカチオン(例えば、ポリリジン、ポリアルギニン、ポリオルニチン、プロタミン、スペルミン、スペルミジン、およびプトレッシン)である。このような結合を生成する多くの適切な方法は、当該分野において公知である(例えば、1994年12月30日に出願されたシリアル番号08/366,787を参照のこと)。
【0087】
代わりの実施態様において、ポリヌクレオチドは、リポソームと会合して、遺伝子送達ビヒクルを形成する。リポソームは、脂質二重層により囲まれた水性区画から構成される小さな、脂質小胞であり、代表的には球状であり、または直径数百オングストロームのわずかに伸長された構成物である。適切な条件下で、リポソームは、細胞の原形質膜と融合し得るか、またはリポソームをインターナリゼーションした細胞内のエンドサイトーシスな小胞の膜と融合し得、それによって、細胞質へその内容物を放出する。しかし、細胞の表面と相互作用する前に、リポソーム膜は、その内容物を、例えば、分解性酵素から分離しそして保護する比較的不透過性のバリアとして作用する。
【0088】
リポソームは、合成構造であるため、所望の特徴を組込んだ、特に設計されたリポソームが生成される。Stryer,Biochemistry,236〜240頁、1975(W.H.Freeman,San Francisco,CA);Szokaら、Biochim.Biophys.Acta 600:1,1980;Bayerら、Biochim.Biophys.Acta.550:464,1979;Rivnayら、Meth.Enzymol.149:119,1987;Wangら、Proc.Natl.Acad.Sci.U.S.A.84:7851,1987、Plantら、Anal.Biochem.176:420,1989,ならびに米国特許第4,762,915号を参照のこと。リポソームは、DNA、RNA、プラスミド、および本発明で開示されるポリヌクレオチドのようなポリヌクレオチドを含む発現構築物を含む種々の核酸分子をカプセル化し得る。
【0089】
本発明における使用のためのリポソーム調製物には、カチオン性(正に荷電した)、アニオン性(負に荷電した)、および中性調製物が挙げられる。カチオン性リポソームは、プラスミドDNA(Felgnerら、Proc.Natl.Acad.Sci.USA 84:7413−7416,1987)、mRNA(Maloneら、Proc.Natl.Acad.Sci.USA 86:6077−6081、1989)、および精製された転写因子(Debsら、J.Biol.Chem.265:10189−10192,1990)の細胞内伝達を機能的形態において媒介するために、示される。カチオン性リポソームは、容易に入手可能である。例えば、N[1−2,3−ジオレイルオキシ)プロピル]−N,N,N−トリエチルアンモニウム(DOTMA)リポソームは、登録商標リポフェクチン(GIBCO BRL,Grand Island,NYより)の名の下で入手可能である。Felgnerら、Proc.Natl.Acad.Sci.USA 91:5148−5152.87,1994もまた参照のこと。他の市販のリポソームには、Transfectace(DDAB/DOPE)およびDOTAP/DOPE(Boerhinger)が挙げられる。他のカチオン性リポソームは、当該分野において周知の技術を使用して、入手可能な物質から容易に調製され得る。例えば、DOTAP(1,2−ビス(オレオイルオキシ)−3−(トリメチルアンモニオ)プロパン)リポソームの合成の説明について、Szokaら、Proc.Natl.Acad.Sci.USA 75:4194−4198、1978;およびWO 90/11092を参照のこと。
【0090】
同様に、アニオン性および中性のリポソームが、例えば、Avanti Polar Lipids(Birmingham,AL)から、容易に入手可能であるか、または容易に入手可能な物質を用いて容易に調製され得る。このような物質として、とりわけ、ホスファチジルコリン、コレステロール、ホスファチジルエタノールアミン、ジオレオイルホスファチジルコリン(DOPC)、ジオレオイルホスファチジルグリセロール(DOPG)、ジオレオイルホスファチジルエタノールアミン(DOPE)が挙げられる。これらの物質はまた、出発物質DOTMAおよびDOTAPと適切な比率で混合され得る。これらの物質を使用するリポソームの製造方法は、当該分野において周知である。
【0091】
このリポソームは、多重ラメラ小胞(MLV)、単ラメラ小胞(SUV)、または大単ラメラ小胞(LUV)を含む。この種々のリポソーム−核酸複合体は、当該分野において公知の方法を用いて調製される。例えば、Straubingerら、METHODS OF IMMUNOLOGY(1983)、101巻、512−527頁;Szokaら、Proc.Natl.Acad.Sci.USA 87:3410−3414、1990;Papahadjopoulosら、Biochim.Biophys.Acta 394:483,1975;Wilsonら、Cell 17:77,1979;DeamerおよびBangham、Biochim.Biophys.Acta 443:629,1976;Ostroら、Biochem.Biophys.Res.Commun.76:836,1977;Fraleyら、Proc.Natl.Acad.Sci.USA 76:3348,1979;EnochおよびStrittmatter、Proc.Natl.Acad.Sci.USA 76:145,1979;Fraleyら、J.Biol.Chem.255:10431,1980;SzokaおよびPapahadjopoulos、Proc.Natl.Acad.Sci.USA 75:145,1979;およびSchaefer−Ridderら、Science 215:166,1982、を参照のこと。
【0092】
さらに、リポタンパク質が、細胞への送達に関する本発明のポリヌクレオチドと共に含まれ得る。このようなリポタンパク質の例としては、キロミクロン、HDL、IDL、LDL、およびVLDLが挙げられる。これらのタンパク質の変異体、フラグメント、または融合体もまた、用いられ得る。アセチル化LDLのような、天然に存在するリポタンパク質の改変体もまた、用いられ得る。これらのリポタンパク質は、リポタンパク質レセプターを発現する細胞へのポリヌクレオチドの送達を標的にし得る。好ましくは、リポタンパク質が、ポリヌクレオチドと共に含まれる場合、他の標的リガンドは、この組成物に含まれない。
【0093】
別の実施態様において、WO 90/11092および米国特許第5,580,859号に記載されるように、裸のポリヌクレオチド分子が、遺伝子送達ビヒクルとして用いられ得る。このような遺伝子送達ビヒクルは、DNAまたはRNAのいずれかであり得、特定の実施態様においては、死菌アデノウィルスと連結される。Curielら、Hum.Gene.Ther.3:147−154,1992。他の適切なビヒクルとしては、DNA−リガンド(Wuら、J.Biol.Chem.264:16985−16987,1989)、脂質−DNA組み合わせ体(Felgnerら、Proc.Natl.Acad.Sci.USA 84:7413−7417,1989)、リポソーム(Wangら、Proc.Natl.Acad.Sci.84:7851−7855,1987)およびマイクロプロジェクティル(microprojectile)(Williamsら、Proc.Natl.Acad.Sci.88:2726−2730,1991)が挙げられる。
【0094】
生分解性ラテックスビーズ上にこのポリヌクレオチドをコーティングすることにより、細胞内への裸のポリヌクレオチド取り込みの効率を増加し得る。このアプローチは、ラテックスビーズが、培養中の細胞と共にインキュベートされる場合、この細胞の核周囲の領域に有効に輸送および濃縮されるという知見を利用する。次いで、筋肉内に注射される場合、このビーズは細胞内へ輸送される。ポリヌクレオチドをコーティングしたラテックスビーズは、エンドサイトーシスが、このラテックスビーズにより開始された後、細胞中へ効率的に輸送されるので、遺伝子移入および発現効率を増大する。この方法は、ビーズを処理してこれらの疎水性を増大することにより、さらに改良され得、それによりエンドソームの分裂および細胞質内へのポリヌクレオチドの放出を促進する。
【0095】
本発明はまた、乳房または結腸の組織サンプルのような、生物学的サンプル中の転移性マーカー遺伝子の発現を検出する方法を提供する。転移性マーカー遺伝子の発現の検出は、例えば、転移性組織の同定および組織の転移の可能性の同定に関して、身体の他の器官内での転移性癌の進行の危険性のある患者を同定するために有用である。
【0096】
この組織サンプルは、例えば、固体組織または液体サンプルであり得る。タンパク質または核酸の発現産物は、組織サンプル中で検出され得る。1つの実施態様において、この組織サンプルは、転移性マーカータンパク質の存在に関してアッセイされる。この転移性マーカータンパク質は、配列番号1〜18を含むポリヌクレオチドによりコードされる配列を有し、かつ本発明の転移性マーカータンパク質に特異的な抗体を用いて検出され得る。この抗体は、例えば、放射活性、蛍光、ビオチン化、または酵素学的タグで標識化され得、そして直接的に検出されるか、または(標識化した二次抗体を使用する)間接的な免疫化学的方法を用いて検出され得る。この転移性マーカータンパク質の存在は、(例えば、免疫細胞化学によって組織切片において、または溶解物中において、当該分野において公知であるようなウェスタンブロットを用いて)アッセイされ得る。
【0097】
別の実施態様において、組織サンプルは転移性マーカータンパク質mRNAの存在に関してアッセイされる。転移性マーカータンパク質mRNAは、組織切片中のインサイチュハイブリダイゼーションまたはポリAおよびmRNAを含むノーザンブロットにより検出され得る。転移性マーカータンパク質に特異的なプローブは、配列番号1〜18に開示されるcDNA配列を用いて生成され得る。このプローブは、8、10、11、12、20、25、30、35、40、45、60、75、または100ヌクレオチドの長さであり得るが、これらは、好ましくは15〜50ヌクレオチドの長さである。これらのプローブは、化学的に合成され得るか、または制限酵素を使用して、より長いポリヌクレオチドから生成され得る。これらのプローブは、例えば、放射活性、ビオチン化、または蛍光タグで、標識化され得る。所望される場合、この組織サンプルは、核酸増幅プロセスに供され得る。
【0098】
配列番号1、4、11、16、17、または18を含むポリヌクレオチドの発現産物が検出される組織サンプルは、転移性か、または転移の可能性を有すると同定される。配列番号2、3、6、7、8、9、10、12、13、または15を含むポリヌクレオチドの発現産物が同定される組織サンプルは、転移性では無いか、または低い転移の可能性を有すると同定される。
【0099】
結腸腫瘍の高いグレードまたは低いグレードの転移に関する傾向がまた、結腸腫瘍サンプルにおける配列番号16または17のヌクレオチド配列を含む遺伝子の発現産物を測定することによって予想され得る。配列番号16のヌクレオチド配列を含む遺伝子の産物を発現する結腸腫瘍サンプルは、転移する高い傾向を有するものとして分類される。配列番号17のヌクレオチド配列を含む遺伝子の産物を発現する結腸腫瘍サンプルは、転移する低い傾向を有するものとして分類される。
【0100】
必要に応じて、組織サンプル中の特定の転移性マーカー発現産物のレベルが、定量され得る。定量は、例えば、組織サンプル中で検出される発現産物のレベルを、検量線中に存在する産物の量とを比較することによって達成され得る。比較は、視覚的または(コンピューター化された補助を伴うか、または伴わない)デンシトメトリーのような技術を用いて行われ得る。コントロールとしての使用のために、組織サンプルは、他のヒト、検査される患者の他の非癌性器官、または好ましくは、検査される患者由来の非転移性乳癌または結腸癌から単離され得る。
【0101】
本発明の転移性マーカー特異的試薬をコードするポリヌクレオチド(例えば、抗体プローブおよびヌクレオチドプローブ)は、生物学的サンプルにおいてこれらを検出するためのキットで供給され得る。このキットはまた、緩衝液または標識化成分、ならびに生物学的サンプル中の転移性マーカー発現産物を検出するための試薬を用いる指示を含み得る。
【0102】
細胞中の転移性マーカー遺伝子の発現は、所望により、増加され得るか、または減少され得る。転移性マーカー遺伝子の発現は、以下に記載されるように治療を目的に改変され得るか、または治療薬を同定するために用いられ得る。
【0103】
本発明の1つの実施態様において、転移性のマーカー遺伝子の発現が転移性の癌においてアップレギュレートされるその発現は、リボザイム(触媒活性を有するRNA分子)を用いて低下される。例えば、Cech,1987,Science 236:1532−1539:Cech,1990,Ann.Rev.Biochem.59:543−568;Cech,1992,Curr.Opin.Struct.Biol.2:605−609;CoutureおよびStinchcomb,1996,Trends Genet.12:510−515を参照のこと。当該分野において公知であるように(例えば、Haseloffら、米国特許第5,641,673号)、リボザイムは、RNA配列の切断により遺伝子機能を阻害するために用いられ得る。
【0104】
この転移性マーカー遺伝子のコード配列は、転移性マーカー遺伝子から転写されるmRNAに対して特異的に結合するリボザイムを生成するために用いられ得る。高度に配列特異性な様式において、他のRNA分子をトランスに切断し得るリボザイムの設計方法および構築方法が、当該分野において開発ならびに記載されている(Haseloffら、(1988),Nature 334:585−591を参照のこと)。例えば、リボザイムの切断活性は、このリボザイム中の別々の「ハイブリダイゼーション」領域を操作することによって特定のRNAを標的とし得る。このハイブリダイゼーション領域は、この標的RNAに対して相補的な配列を含み、それによって標的に特異的にハイブリダイズする(例えば、Gerlachら、欧州特許第321,201号を参照のこと)。より長い相補的配列は、この標的に対するハイブリダイゼーション配列の親和性を増大するために用いられ得る。このリボザイムのハイブリダイゼーションおよび切断領域は、一体的に関与され得る;従って、相補的な領域をによる標的RNAに対するハイブリダイゼーションに際し、このリボザイムの触媒領域は、標的を切断し得る。
【0105】
当該分野で公知であるように、リボザイムは、DNA構築物の一部分として細胞中へ導入され得る。このDNA構築物はまた、転写調節エレメント(例えば、細胞中のこのリボザイムの転写の制御に関する、プロモーターエレメント、エンハンサーまたはUASエレメント、および転写ターミネーターシグナル)を含み得る。
【0106】
上記のように、機械的方法(例えば、マイクロインジェクション、リポソーム媒介トランスフェクション、エレクトロポレーション、またはリン酸カルシウム沈殿)は、細胞の分裂が低減されることを所望される細胞中へリボザイム含有DNA構築物を導入するために用いられ得る。あるいは、DNA構築物が、細胞によって安定に保持されることが所望される場合、当該分野において公知であるように、このDNA構築物は、プラスミド上に供給され得、そして別々のエレメントとして保持され得るか、または細胞のゲノムへ組み込まれ得る。
【0107】
Haseloffら、米国特許第5,641,673号において教示されるように、リボザイムは、その発現が、転移性マーカー遺伝子の発現を誘導する因子に対する応答を生じるように操作され得る。このリボザイムはまた、さらなるレベルの調節を提供するために操作され得、その結果、このリボザイムおよび転移性マーカー遺伝子の両方が細胞中で誘導される場合にのみ、mRNAの破壊が生じる。
【0108】
転移性マーカー遺伝子の発現はまた、アンチセンスオリゴヌクレオチド配列を用いて改変され得る。このアンチセンス配列は、配列番号1〜18に示されるヌクレオチド配列を有する転移性マーカー遺伝子のコード配列の少なくとも一部分に対して相補的である。配列番号1〜18に示されるヌクレオチド配列の相補物は、配列番号1〜18に示される連続した配列のヌクレオチドとワトソン−クリック塩基対を形成する連続した配列のヌクレオチドから成る。
【0109】
好ましくは、このアンチセンスオリゴヌクレオチド配列は、少なくとも6ヌクレオチドの長さであるが、約8、12、15、20、25、30、35、40、45、または50ヌクレオチドの長さであり得る。より長い配列もまた、用いられ得る。上記のように、アンチセンスオリゴヌクレオチド分子は、DNA構築物中に提供され得、ならびに細胞分裂が減少されるべきである細胞中へと導入され得る。
【0110】
アンチセンスオリゴヌクレオチドは、デオキシリボヌクレオチド、リボヌクレオチド、または両方の組み合わせで構成され得る。オリゴヌクレオチドは、手動または自動合成機によって、1つのヌクレオチドの5’末端を、アルキルホスホネート、ホスホロチオエート、ホスホロジチオエート、アルキルホスホノチオエート、アルキルホスホネート、ホスホロアミデート(phosphoramidates)、リン酸エステル、カルバメート、アセトアミデート(acetoamidate)、カルボキシメチルエステル、カーボネート、およびリン酸トリエステルのような、非リン酸ジエステルのヌクレオチド間結合を有する別のヌクレオチドの3’末端と共有結合することにより合成され得る。Brown,1994,Meth.Mol.Biol.20:1−8;Sonveaux,1994,Meth.Mol.Biol.26:1−72;Uhlmannら、1990,Chem.Rev.90:543−583を参照のこと。
【0111】
正確な相補性は、アンチセンス分子と転移性マーカー遺伝子の相補的コード配列との間に成功した二重鎖の形成を必要としない。例えば、隣接したコード遺伝子に対して相補的ではない連続したヌクレオチドのストレッチにより、それぞれ分離された転移性マーカー遺伝子のコード配列の一部分に対して正確に相補的な、連続したヌクレオチドの2、3,4または5、あるいはそれ以上のストレッチを含むアンチセンス分子は、転移性マーカー遺伝子のmRNAに対して特異的な標的化を提供し得る。好ましくは、連続したヌクレオチドのそれぞれのストレッチは、少なくとも、4、5,6、7、または8、あるいはそれ以上の長さのヌクレオチドである。非相補的介在配列は、好ましくは、1、2、3、または4ヌクレオチドの長さである。当業者は、アンチセンス−センスペアの計算された融点を容易に利用し得、特定のアンチセンスオリゴヌクレオチドと特定の転移性マーカー遺伝子コード配列との間で許容されるミスマッチの程度を決定する。
【0112】
アンチセンスオリゴヌクレオチドは、転移性マーカータンパク質のコード配列に対してハイブリダイゼーションするそれらの能力に影響を与えることなしに改変され得る。これらの改変は、アンチセンス分子の内部か、あるいは片方または両方の末端に存在し得る。例えば、ヌクレオチド間のリン酸結合は、アミノ基と末端リボースとの間で変化する数の炭素残基を有するコレステリル部分またはジアミン部分の付加によって改変され得る。改変塩基および/または糖(例えば、リボースの代わりにアラビノ−ス、あるいは3’水酸基または5’リン酸基が置換されている3’,5’−置換オリゴヌクレオチド)もまた、改変アンチセンスオリゴヌクレオチドに利用され得る。これらの改変オリゴヌクレオチドは、当該分野で周知の方法により調製され得る。Agrawalら、1992,Trends Biotechnol.10:152−158;Uhlmannら、1990,Chem.Rev.90:543−584;Uhlmannら、1987,Tetrahedron Lett.215:3539−3542。
【0113】
転移性マーカータンパク質に特異的に結合する本発明の抗体はまた、転移性マーカー遺伝子の発現を改変するために用いられ得る。特異的抗体は、転移性マーカータンパク質に結合し、そしてこのタンパク質を細胞中で機能しないようにする。上記のように、本発明の特異的抗体をコードするポリヌクレオチドは、細胞中に導入され得る。
【0114】
転移細胞中でダウンレギュレートされる転移性マーカー遺伝子の発現を増大するために、全てのまたは一部分の転移性マーカー遺伝子または発現産物は、細胞中へ導入され得る。必要に応じて、この遺伝子または発現産物は、薬学的に受容可能なキャリアを含む治療用組成物の構成要素であり得る(以下を参照のこと)。上記のようにコード配列の全体が導入され得る。あるいは、転移性マーカータンパク質、またはそれをコードするヌクレオチド配列の一部分が、細胞中へ導入され得る。
【0115】
細胞中の内因性転移性マーカー遺伝子の発現はまた、内因性転移性マーカー遺伝子とフレームが合って、DNA構築物を含む相同的組換え細胞が形成されるような相同組換えによって、転移性マーカータンパク質の標的配列、調節配列、エキソン、および不対のスプライス供与部位を含むDNA構築物を導入することによって改変され得る。この新しい転写ユニットは、転移性マーカー遺伝子を所望されるようにオンまたはオフするために用いられ得る。内因性遺伝子発現に影響するこの方法は、米国特許第5,641,670号に教示されている。
【0116】
この標的配列は、配列番号1〜18に示されるヌクレオチド配列から選択される、少なくとも10、12、15,20、または50の連続したヌクレオチドのセグメントである。転写ユニットは、内因性転移性マーカータンパク質遺伝子のコード配列の上流に位置される。内因性の調節配列は、転移性マーカー遺伝子のコード配列の転写を指示する。
【0117】
本発明の転移性マーカータンパク質の発現は、治療的抗転移効果を有する薬物に関するスクリーニングに用いられ得る。転移性マーカータンパク質の合成に対する試験化合物の効果もまた、転移を調製する試験化合物の同定に用いられ得る。生物学的サンプル(例えば、細胞培養、組織サンプル、または無細胞ホモジネート)中の転移性マーカータンパク質の合成は、当該分野において公知のタンパク質合成の測定のための任意の手段(例えば、タンパク質中への標識アミノ酸の取り込み、およびポリアクリルアミドゲルにおける標識転移性マーカータンパク質の検出)によって測定され得る。転移性マーカータンパク質の量は、例えば、ウェスタンブロットにおける本発明の転移性マーカータンパク質に特異的な抗体を用いて検出され得る。試験化合物の存在下または非存在下で合成された転移性マーカータンパク質の量は、当該分野において公知の任意の手段(例えば、合成された転移性マーカータンパク質の量と、検量線に存在する転移性マーカータンパク質の量との比較)により決定され得る。
【0118】
当該分野において公知であるように、転移性マーカータンパク質の合成に対する試験化合物の効果はまた、ノーザンブロット分析により、本発明の転移性マーカータンパク質に特異的なヌクレオチドプローブを用いて試験化合物に応答する転移性マーカータンパク質のmRNA発現の量を測定することによって測定され得る。配列番号1、4、11、16、17、または18を含むポリヌクレオチドによりコードされる転移性マーカータンパク質の合成を減少するか、あるいは配列番号2、3、6、7、8、9、10、12、13、または15を含むポリヌクレオチドによりコードされる転移性マーカータンパク質の合成を増加する試験化合物は、可能な治療薬として同定される。
【0119】
代表的には、生物学的サンプル(例えば、乳房サンプルまたは結腸サンプル)は、この試験化合物の濃度範囲(例えば、1.0nM、5.0nM、10nM、50nM、100nM、500nM、1mM、10mM、50mM、および100mM)と接触される。好ましくは、この試験化合物は、転移性マーカータンパク質の発現を60%、75%、または80%まで増加するか、または減少する。より好ましくは、85%、90%、95%、または98%の増加または減少が達成される。
【0120】
本発明は、転移性マーカータンパク質の発現の増加または減少に関して適切であるような治療用組成物を提供する。転移性マーカー遺伝子発現を増加するための治療用組成物は、転移細胞においてダウンレギュレートされる転移性マーカーに望ましい。これらは、転移性マーカータンパク質の遺伝子の発現産物の全部または一部をコードするポリヌクレオチドを含む。好ましくは、この治療用組成物は、プロモーターおよび転移性マーカータンパク質の少なくとも6つの連続したアミノ酸をコードするポリヌクレオチドセグメントを含む発現構築物を含む。発現構築物の内で、ポリヌクレオチドセグメントはプロモーターの下流に位置され、そしてポリヌクレオチドセグメントの転写は、このプロモーターで開始する。遺伝子移入ベクター(特に、レトロウィルスベクター)のより完全な記載は、米国特許出願番号第08/869,309号に含まれる。
【0121】
転移性マーカー遺伝子の発現の減少は、この転移性マーカー遺伝子が、転移性の癌においてアップレギュレートされる条件下で所望される。これらの障害を処置するための治療用組成物は、本明細書で開示されるような、転移性マーカーのタンパク質発現産物と特異的に結合する薬剤をコードするポリヌクレオチドを含む。
【0122】
本発明の転移性マーカーの治療用組成物はまた、薬学的に受容可能なキャリアを含む。薬学的に受容可能なキャリアは、当該分野において周知である。このようなキャリアは、大きく、ゆっくりと代謝される高分子(例えば、タンパク質、多糖類、ポリ乳酸、ポリグリコール酸、重合体アミノ酸、アミノ酸コポリマー、および不活性ウィルス粒子)を含むが、これらに限定されない。薬学的に受容可能な塩(例えば、塩酸塩、臭化水素酸塩、リン酸塩、または硫酸塩のような無機酸の塩、ならびに酢酸塩、プロピオン酸塩、マロン酸塩、または安息香酸塩のような有機酸の塩)もまた、この組成物に用いられ得る。
【0123】
治療用組成物はまた、水、生理食塩水、グリセロール、およびエタノールのような液体、ならびに湿潤剤、乳化剤、pH緩衝剤のような物質を含み得る。米国特許第5,422,120号、WO95/13796、WO91/14445、または欧州特許第524,968B1に記載されるようなリポソームもまた、この治療用組成物のためのキャリアとして用いられ得る。
【0124】
代表的には、治療用転移性マーカー組成物は、液体溶液または懸濁液としてのいずれかで、注射可能なものとして調製される;しかし、溶液中、または懸濁液中、注射前の液体ビヒクルに適した固形もまた、調製され得る。転移性マーカー組成物もまた、(例えば、米国特許第4,853,230号、欧州特許第225,189号、豪州特許第9,224,296号および豪州特許第9,230,801号に記載されるような)当該分野において公知の方法に従って、腸溶コーティングの錠剤またはゲルカプセル中に処方され得る。
【0125】
本発明の転移性マーカー治療薬の投与は、注射、経口投与、微粒子銃(particle gun)、またはカテーテル法投与、および局所的投与を含む、局所投与または全身投与を含み得る。多様な方法が、身体における特定の部位に治療用転移性マーカー組成物を直接的に投与するために用いられ得る。
【0126】
例えば、腫瘍の処置のために、小さな腫瘍または転移性の病巣が位置付けされ得、そして治療用転移性マーカー組成物が、腫瘍の本体内のいくつかの異なる部位に数回注射され得る。あるいは、腫瘍の役に立つ動脈が同定され得、そして治療用組成物が、この組成物をこの腫瘍中へ直接的に送達するために、このような動脈中に注射され得る。
【0127】
壊死の中心を有する腫瘍は、吸引され得、そしてこの組成物が、たった今空になった腫瘍の中心に直接的に注射され得る。治療用転移性マーカー組成物は、腫瘍の表面に(例えば、この組成物の局所的な塗布によって)直接的に投与され得る。X線造像は、特定の上記の送達方法を補助するために用いられ得る。転移性マーカータンパク質、ポリペプチド、またはサブゲノムポリヌクレオチドおよび他の治療用薬剤を含む、治療用薬剤の組み合わせは、同時に、または経時的に投与され得る。
【0128】
レセプターに媒介される標的送達は、サブゲノムポリヌクレオチド、タンパク質、または特定の組織に対する、抗体、リボザイム、またはアンチセンスオリゴヌクレオチドのような試薬を含む、治療用組成物を送達するために用いられ得る。レセプターに媒介される送達技術は、例えば、Findeisら(1993),Trends in Biotechnol.11,202−05;Chiouら(1994),GENE THERAPEUTICS:METHODS AND APPLICATIONS OF DIRECT GENE TRANSFER(J.A.Wolff編);WuおよびWu(1988),J.Biol.Chem.263,621−24;Wuら(1994),J.Biol.Chem.269,542−46;Zenkeら(1990),Proc.Natl.Acad.Sci.USA.87,3655−59;Wuら(1991),J.Biol.Chem.266,338−42中に記載される。
【0129】
あるいは、転移性マーカー治療用組成物は、エクスビボでヒト細胞中へ導入され得、次いでこの細胞はヒトの中へ再配置され得る。細胞は、例えば、選択された腫瘍から、または罹患した器官からを含む種々の部位から取り出され得る。さらに、治療用組成物は、罹患していない、例えば、皮膚線維芽細胞、または末梢血白血球中へ挿入され得る。所望される場合、T細胞サブセットまたは幹細胞のような特定の細胞画分もまた、血液から特異的に取り出され得る(例えば、PCT WO91/16116を参照のこと)。次に、この取り出された細胞は、任意の上記の技術を利用して転移性マーカー治療用組成物と接触され得、続いてこの細胞をヒトに(好ましくは、腫瘍の近傍または処置されるべき他の部位に、あるいはそれらの中に)へ戻される。上記の方法は、ヒトから腫瘍細胞を取り出すことに続き、線維芽細胞、または他の共雑物ではない腫瘍細胞を枯渇する工程、および/または(例えば、照射により)これらの細胞を不活性化する工程をさらに包含し得る。
【0130】
転移性マーカー組成物の用量および投与の手段の両方は、治療用組成物の特定の性質、患者の状態、年齢、および体重、この疾患の進行および他の関連する因子に基づき決定され得る。好ましくは、本発明の治療用組成物は、転移性マーカー遺伝子の発現を50%、60%、70%、または80%まで増加するか、または減少する。最も好ましくは、転移性マーカー遺伝子の発現は、90%、95%、99%、または100%まで増加するか、または減少する。転移性マーカー遺伝子の発現を改変するために選択されたメカニズムの有効性は、転移性マーカー遺伝子のmRNAに対するヌクレオチドプローブのハイブリダイゼーション、定量的RT−PCR、または特異的抗体を用いる転移性マーカータンパク質の検出のような当該分野において周知の方法を用いて評価され得る。
【0131】
この組成物が、転移性マーカータンパク質、ポリペプチド、または抗体を含む場合、この組成物の有効用量は、患者の体重1kgあたり約5μg〜約50μg、1kgあたり約50μg〜約5mg、患者の体重1kgあたり約100μg〜約500μg、および1kgあたり約200μg〜約250μgの範囲内である。
【0132】
転移性マーカーのサブゲノムポリヌクレオチドを含む治療用組成物は、約100ng〜約200mgの範囲のDNAを、遺伝子治療のプロトコルにおいて局所投与するために投与され得る。約500ng〜約50mg、約1μg〜約2mg、約5μg〜約500μg、および約20μg〜約100μgの濃度範囲のDNAもまた、遺伝子治療のプロトコルの間に用いられ得る。作用の方法および形質転換および発現効力のような因子は、転移性マーカータンパク質のサブゲノムポリヌクレオチドの究極の効力のために必要とされる投薬量に影響する考慮すべきことである。より高い発現が、組織のより広い範囲にわたり所望される場合、より大量の転移性マーカータンパク質のサブゲノムポリヌクレオチドであるか、または投与の連続的プロトコルにおいて再投与される同じ量であるか、あるいは、例えば、腫瘍部位の異なる隣接または近接組織の部分に対するいくつかの投与が、陽性の治療結果を行うために必要とされ得る。全ての場合において、臨床試験における慣用的実験が、最適な治療効果についての特定の範囲を決定する。
【0133】
本発明の転移性マーカーサブゲノムポリヌクレオチドはまた、ポリヌクレオチドアレイに使用され得る。ポリヌクレオチドアレイは、単一サンプルにおける多数のポリヌクレオチド配列をアッセイし得る高度処理技術を提供する。この技術は、例えば、転移性病巣を同定するため、または腫瘍の転移潜在性を評価するための診断用ツールとして使用され得る。
【0134】
アレイを作製するために、一本鎖ポリヌクレオチドプローブは、二次元マトリックスまたはアレイにおいて基質上にスポットされ得る。各一本鎖ポリヌクレオチドプローブは、配列番号1〜18に示されるヌクレオチド配列から選択される少なくとも6、7、8、9、10、11、12、13、14、15、16、17、18、19、20、25、または30以上の隣接ヌクレオチドを含み得る。好ましいアレイは、配列番号1、4、11、16、17および18に示されるヌクレオチド配列から選択される少なくとも6、7、8、9、10、11、12、13、14、15、16、17、18、19、20、25、または30以上の隣接ヌクレオチドを含有する少なくとも1つの一本鎖ポリヌクレオチドプローブを含む。他の好ましいアレイは、配列番号2、3、6、7、9、10、12、13および15に示されるヌクレオチド配列から選択される少なくとも6、7、8、9、10、11、12、13、14、15、16、17、18、19、20、25、または30以上の隣接ヌクレオチドを含有する少なくとも1つの一本鎖ポリヌクレオチドプローブを含む。なお他に好ましいアレイは、配列番号5および14もしくは配列番号16および17に示されるようなヌクレオチド配列から選択される少なくとも6、7、8、9、10、11、12、13、14、15、16、17、18、19、20、25、または30以上の隣接ヌクレオチドを含有する少なくとも1つの一本鎖ポリヌクレオチドプローブを含む。
【0135】
基質は、ポリヌクレオチドプローブが付着し得る任意の基質(ガラス、ニトロセルロース、シリコン、およびナイロンを含むがそれらに限定されない)であり得る。ポリヌクレオチドプローブはいずれかの共有結合により、または非特異的相互作用(例えば、疎水結合)により基質に結合され得る。アレイを構築する技術およびそれらのアレイを使用する方法は、EP番号第0 799 897号;PCT番号WO 97/29212;PCT番号WO 97/27317;EP番号第0 785 280;PCT番号WO 97/02357;米国特許第5,593,839号;米国特許第5,578,832号;EP番号第0 728 520号;米国特許第5,599,695号;EP番号第0 721 016号;米国特許第5,556,752号;PCT番号WO 95/22058;および米国特許第5,631,734号に記載されている。市販のポリヌクレオチドアレイ(例えば、Affymetrix GeneChipO)もまた使用され得る。遺伝子発現を検出するためのGeneChipOの使用は、例えば、Lockhartら、Nature Biotechnology 14:1675(1996);Cheeら、Science 274:610(1996);Haciaら、Nature Genetics 14:441、1996;およびKozalら、Nature Medicine 2:753、1996に記載されている。
【0136】
転移性が疑わしいまたは転移潜在性が未知の組織サンプルは、当該分野において公知のように、例えば、加熱または化学変性によって、一本鎖ポリヌクレオチドを形成するように処置され得る。次いで、組織サンプル中の一本鎖ポリヌクレオチドは標識され得、そしてアレイ上のポリヌクレオチドプローブにハイブリダイズされ得る。使用され得る検出可能な標識は、放射性標識、ビオチン化標識、発蛍光団(fluorophor)、および化学発光標識を含むがそれらに限定されない。ポリヌクレオチドプローブに結合した標識されたサンプルポリヌクレオチドを含む二本鎖ポリヌクレオチドはを、一旦サンプル中の非結合部分を洗い流して検出され得る。検出は、視覚的またはコンピューターの補助を伴うものであり得る。
【0137】
配列番号1〜4、11、16、17、および18からなる群から選択される隣接ヌクレオチドを含む二本鎖ポリヌクレオチドの検出、または配列番号2、3、6、7、8、9、10、12、13、および15からなる群から選択される隣接ヌクレオチドを含む二本鎖ポリヌクレオチドの検出の欠如は、転移性としてまたは転移潜在性を有するものとして組織サンプルを同定する。
【0138】
この開示において引用される全ての参照は、特に本明細書中で参考として援用される。上記の開示は、本発明を一般的に記載する。より完全な理解は、以下の特定の実施例を参照することにより得られ得る。この特定の実施例は、ただ例示目的のために本明細書で提供され、そして本発明の範囲を限定することは意図されない。
【実施例】
【0139】
(実験手順)
以下の材料および方法を、以下の実施例において使用した。
【0140】
(細胞株)
細胞株MCF−7、BR−3、BT−20、ZR−75−1、MDA−MB−157、MDA−MB−231、MDA−MB−361、MDA−MB−435、MDA−MB−453、MDA−MB−468、Alab、およびHs578Bstを、アメリカンタイプカルチャーコレクションから入手した。全ての細胞株をそれらの明細書に従って増殖した。
【0141】
(ディファレンシャルディスプレイ) ディファレンシャルディスプレイを、製造業者の指示(Genomyx Corp.、Foster City、CA)に従ってHieroglyph mRNAプロ−フィールキットを使用して実施した。合計200プライマー対を、遺伝子発現のプロフィールを描くために使用した。逆転写ポリメラーゼ連鎖反応(RT−PCR)による、ランダムに開始されたmRNAの増幅に続いて、cDNA産物を、genomyxLRシークエンサー(Genomyx Corp.)を使用して6%シークエンシング型ゲル上で分離した。乾燥させたゲルをKodak XAR−2フィルム(Kodak、Rochester、NY)に、種々の時間露光した。
【0142】
示差的に発現されたcDNAフラグメントを摘出し、そして製造業者の指示(Genomyx Corp.)に従って再増幅した。ゲルから摘出されたゲル切片は1〜3の同じサイズのcDNAフラグメントを含むため(Martinら、BioTechniques 24、1018−26、1998;Gieseら、Differential Display、Academic Press、1998)、再増幅した産物を(Mathieu−Dandeら、Nucl.Acids Res.24、1504−07、1996)に記載されるように一本鎖確認多型性ゲルにより分離し、そしてM13ユニバーサルプライマーおよびT7プライマーを使用して、直接的に配列決定した。
【0143】
(ヒト骨髄間質細胞cDNAライブラリーの構築およびスクリーニング)
RNAを、チオシアン酸グアニジニウム/フェノールクロロホルム抽出プロトコール(Chirgwinら、Biochem.18、5294−99、1979)を使用して、ヒト骨髄間質細胞(Poietic Technologies,Inc.、Germantown、MD)から単離した。ポリ(A)+RNAをoligo−dT spinカラム(Stratagene、La Jolla、CA)を使用して単離した。第1鎖および第2鎖の合成を、製造業者の指示(Pharmacia、Piscataway、NJ)に従って実施した。二本鎖cDNAをpBK−CMVファージミドベクター(Stratagene、La Jolla、CA)中にライゲーションした。約1×106プラークが、1.2kb CSP56 cDNAフラグメントを使用してスクリーニングされた。陽性クローン由来のプラスミドDNAは、製造業者の指示に従って得られた。ヌクレオチド配列の正確性を、二本鎖配列決定により決定した。
【0144】
(ノーザンブロット分析およびRT−PCR)
種々のヒト正常組織および腫瘍組織から調製されたポリ(A)+RNAを含むノーザンブロットを、ClonTech(Palo Alto、CA)およびBiochain Institute(San Leandro、CA)から購入した。全ての他のノーザンブロットは、チオシアン酸グアニジニウム/フェノールクロロホルム抽出プロトコール(Chirgwinら、1979)を使用して、異なるヒト乳癌細胞株および正常細胞株から単離された20〜30μgの全RNAを使用して調製された。ノーザンブロットを、Express−hyb(ClonTech)中で、65℃でハイブリダイズさせた。
【0145】
RT−PCRを、製造業者の指示に従って逆転写酵素RNA PCRキット(Perkin−Elmer、Roche Molecular Systems、Inc.、Branchburg、NJ)を、使用して実施した。
【0146】
(インサイチュハイブリダイゼーション) インサイチュハイブリダイゼーションを、Pfaffら、Cell 84、309−20、1996の手順に従って、外科的除去および10μmでの凍結切片後に直ちに凍結したヒト組織において、実施した。ジゴキシゲニン−UTP−標識リボプローブを、テンプレートとしてCSP56含有プラスミドDNAを使用して生成した。アンチセンスプローブの生成については、DNAをEcoRI(約1kb転写物)またはNcoI(全長転写物)で直線化し、そしてT3ポリメラーゼで転写した。センスコントロールについては、DNAをXhoI(全長転写物)で直線化し、そしてT7ポリメラーゼで転写した。ハイブリダイズしたプローブをBM紫を基質として使用する、アルカリホスファターゼ結合抗ジゴキシゲニン抗体で検出した(Boehringer Mannheim)。
【0147】
(免疫不全マウスの乳房脂肪パット(fatpad)における腫瘍増殖)
Scid(重篤複合免疫不全)マウス(Jackson Laboratory)を麻酔し、そして乳房脂肪パッドを曝露させるために小さく切開した。約4×106細胞を各マウスの脂肪パッド内に注射した。腫瘍増殖を1週間毎の検査によりモニターし、そして増殖をカリパス測定により決定した。約4週間後、原発腫瘍を麻酔したマウスから除去し、そしてその皮膚切開を創クリップで閉じた。約4週間後、マウスを殺傷し、そして肺転移の存在を検査した。原発腫瘍細胞および肺転移を、ヒト細胞の存在について組織化学的に分析した。80%を超えるヒト起源の細胞を表す腫瘍組織の塊を、全RNAを単離するために使用した。MDA−MD−435の場合、90%を超えるヒト細胞を表す広範な肺転移を使用した。全RNAを、CSP56コード領域について特異的なプライマーを使用するRT−PCRにより増幅した。反応産物をナイロンメンブレン上にドットブロットし、そしてCSP56特異的プローブでハイブリダイズした。
【0148】
(実施例1)
この実施例は、攻撃的で侵襲性のヒト乳癌細胞株MDA−MB−435において示差的に発現される遺伝子の同定を実証する。
【0149】
転移性表現型に関連する遺伝子を同定するために、本発明者らは、貧弱な侵襲性から最も攻撃的な侵襲性まで及ぶ、異なる悪性表現型MDA−MB−453、MCF−7、MDA−MB−231、およびMDA−MB−435を示す4つのヒト乳癌細胞株を使用して、遺伝子発現プロフィールを比較した(Engelら、Cancer Res.38、4327−39、1978;ShafieおよびLiotta、Cancer Lett.11、81−87、1990;OzelloおよびSordat、Eur.J.Cancer 16、553−59、1980;Priceら、Cancer Res.50、717−21、1990)。細胞株は、多量の純粋なRNAを得る能力に基づき、出発材料として選択された。対照的に、ヒト乳癌生検は、癌型ならびにマクロファージおよびリンパ球を含む他の細胞型の混合物からなる(Kellyら、Br.J.Cancer 57、174−77、1988;Whitfordら、Br.J.Cancer 62、971−75、1990)。記載されたヒト乳癌細胞株はマウスモデルにおいて広範囲に研究されており、腫瘍進行において同定された候補遺伝子を機能的に特徴付けることを可能にする。
【0150】
細胞株が、培養において継代を延長した後でそれらの起源の悪性特徴を保持したことを保証するために、本発明者らは、scidマウスにおいて増殖する潜在能および乳房脂肪パッド内への注射に続いて転移を形成する潜在能を検査した。4つの細胞株のうち3つが、以前の報告(Engelら、1978;ShafieおよびLiotta、1990;OzelloおよびSordat、1980;Priceら、1990)と一致して原発腫瘍を形成した。原発腫瘍形成は、MDA−MB−453では全く検出されなかった。さらに、MDA−MB−231およびMDA−MB−435を注射されたマウスは、MDA−MB−435を使用して検出される最も高い発生率を有して、肺転移を進展させた。
【0151】
次に、本発明者らは、乳癌細胞株から単離された全RNAおよび合計200の異なるプライマー対の組み合わせを使用してディファレンシャルディスプレイ分析を実施した。いくつかの示差的に発現される転写物の中で、1.2−kbのcDNAフラグメントがMDA−MB−435 RNAサンプルから、Ap8[5’−ACGACTCACTATAGGGC(T)12AA](配列番号20)およびArp1(5’−ACAATTTCACACAGGACGACTCCAAG)(配列番号21)のプライマー対組み合わせを使用して特異的に増幅された(図1A、レーン5および6)。弱い発現もまた、MDA−MB−231においても検出された(図1A、レーン1および2)が、一方、MCF−7およびMDA−MB−453から単離されたRNAサンプルにおいては全くシグナルは検出されなかった(図1A、レーン3、4、7および8)。
【0152】
発現パターンを確認するため、DNAフラグメントをゲルから単離し、再増幅し、放射性標識し、そして異なる悪性表現型を有するヒト乳癌細胞株および非腫瘍形成乳房細胞株のノーザンブロット分析におけるハイブリダイゼーションプローブとして使用した。(図1B)。放射性プローブは、MDA−MB−435 RNAサンプルにおいて、約2.0−kbおよび約2.5−kbのサイズの2つの転写物に、類似した強度でハイブリダイズした(レーン9)。これらの転写物の弱い発現は、貧弱な侵襲性のヒト乳房細胞株(レーン2および3)または非腫瘍形成株Hs578Bst(レーン1)において検出された。シグナルは、MDA−MB−453およびMCF−7では全く検出されなかった。これらのデータは、高度にまたは中程度に転移性のヒト乳癌細胞株に対して、この遺伝子の制限された発現パターンを示す。
【0153】
(実施例2)
この実施例は、CSP56 cDNAのヌクレオチド配列を実証する。
【0154】
公的なデータ−ベースに対するCSP56 cDNAヌクレオチド配列の比較は、有意な相同性を全く示さなかった。よりヌクレオチド配列の情報を得るため、本発明者らはヒト骨髄間質細胞cDNAライブラリーをスクリーニングした。陽性クローンのうちの1つは、長さを1855ヌクレオチドにまで起源クローンを伸長した(図2A)。この配列は、いくつかの発現される配列タグで、3’末端を長さを2606ヌクレオチドにまでさらに伸長させた(図2B)。さらなる750ヌクレオチドは、おそらく代わりのポリ−A部位選択の結果である。
【0155】
ヌクレオチド配列の分析は、ヌクレオチド101位の翻訳開始コドンで開始し、そしてヌクレオチド1655位の停止コドンで終結する、518アミノ酸の単一のオープンリーディングフレームを明らかにした。開始コドン周囲のコンセンサスKozak配列(Kozak、Cell 44、283−92、1986)およびコドン使用頻度(codon usage)の分析(Wisconsin package、UNIX(登録商標))は、このcDNAクローンが完全なコード領域を含むことを示唆する。
【0156】
このオープンリーディングフレームの翻訳は、56kDの分子量を有するタンパク質を推定する。高度転移性ヒト乳癌細胞株におけるその特異的発現に基づいて、このcDNAのコードするタンパク質をCSP56(cancer−specific protein 56−kd)と名付けた。
【0157】
(実施例3)
この実施例は、CSP56が新規のアスパルチル型プロテアーゼであることを実証する。
【0158】
CSP56オープンリーディングフレームの、公的なデータ−ベースにおけるタンパク質との比較は、アスパルチルプロテアーゼのペプシンファミリーのメンバーへのいくらかの相同性を示す(図3)。このプロテアーゼファミリーの特徴的な特色は、遺伝子複製により進化された2つの活性中心の存在である(Davies、Ann.Rev.Biophys.Biochem.19、189−215、1990;NeilおよびBarrett、Meth.Enz.248、105−80、1995)。触媒ドメイン(Asp−Thr/Ser−Gly)およびその隣接残基を含むこのアミノ酸残基は、このファミリーにおいて最も高い保存性を示し、そしてこのアミノ酸残基はCSP56において保存されている(図2および3)。
【0159】
しかし、CSP56は、他のアスパルチルプロテアーゼとは異なる構造的特徴を示す。ペプシノーゲンCおよびA、レニン、ならびにカテプシンDおよびEへのCSP56の全体的な類似性は、CSP56のC末端伸長を無視すると、それぞれ、55、51、54、52、および51%にすぎない。他のメンバーにおいて触媒ドメインの前後に見出されるシステイン残基は、CSP56において存在しない(図3)。CSP56はまた、公知のタンパク質に有意な相同性を全く示さない約90アミノ酸残基のカルボキシ末端伸長を含む。
【0160】
CSP56はまた、C末端伸長に29のアミノ酸残基からなる疎水性モチーフを含み、これは膜結合ドメインとして機能し得る(図2および3)。CSP56はまた、推定シグナル配列を含む。
【0161】
従ってCSP56は、推定膜貫通ドメイン(アミノ酸8〜20)および推定プロペプチドを表す約45のアミノ酸の伸展(アミノ酸21〜76)を有する新規のアスパルチル型プロテアーゼである。
【0162】
(実施例4)
この実施例は、ヒト乳癌発達および転移を通したCSP56の発現パターンを実証する。
【0163】
CSP56の発現パターンをさらに試験するため、本発明者らは、さらなるヒト乳癌細胞細胞株および正常細胞株を使用してノーザンブロット分析を実施した(図4)。CSP56の発現はMDA−MB−435、MDA−MB−468、およびBR−3において検出され(レーン1、4、および9)、最も強いシグナルがMDA−MB−435で検出された。他の細胞株は弱い発現を示した。貧弱な侵襲性のヒト乳癌細胞株MDA−MB−453およびMCF−7ならびに正常な乳房細胞株Hs578Bstでは、全くシグナルは検出されなかった。総合して、これらのデータは高度な悪性ヒト乳癌細胞株におけるCSP56の発現の増加と一致する。
【0164】
(実施例5)
この実施例は、正常ヒト組織におけるCSP56の発現パターンを実証する。
【0165】
CSP56の組織分布を決定するため、種々のヒト組織由来のポリA+RNAをノーザンブロット分析により試験した(図7)。2つの主な転写物が検出され、それらは癌細胞株およびヒト組織において検出された転写物に類似したサイズである。最も高い発現は、膵臓、前立腺、および胎盤で検出された。脳、および末梢血液リンパ球においては、弱いシグナルが検出されるかまたは全くシグナルは検出されなかった。
【0166】
(実施例6)
この実施例は、MDA−MB−435を注射された免疫不全マウスから単離された原発腫瘍および転移性肺組織におけるCSP56転写物の同定を実証する。
【0167】
scidマウスモデルを腫瘍におけるCSP56発現を試験するために使用した。このモデルは、ヒト乳癌細胞の腫瘍形成能および転移性に関連する遺伝子の機能を評価するために適切であることが示されている(Steegら、Breast Cancer Res.Treat.25、175−87、1993;Price、Breast Cancer Res.Treat.39、93−102、1996)。
【0168】
異なるヒト乳癌細胞株を免疫不全マウスの乳房脂肪パッド内に注射した。原発腫瘍および、適用性である場合、肺転移をマウスから単離し、そして全RNAをノーザンブロット分析のために調製した(図4)。
【0169】
CSP56転写物は、MDA−MB−435、MDA−MB−468およびAlab由来の原発腫瘍RNAにおいて検出され、MCF−7由来の原発腫瘍RNAにおいては検出されなかった(図4)。CSP56遺伝子発現はまた、MDA−MB−435で注射されたマウスの肺転移においても検出された(レーン1)。ZR−75−1、MDA−MB−361、およびMDA−MB−231で注射されたマウスの原発腫瘍においてCSP56転写物を検出できなかったことは、他の原発腫瘍RNAサンプルと比較した場合、弱いヒトβ−アクチンシグナルにより判断されるように、これらの腫瘍におけるヒト癌組織の量が少ないことで説明され得る。
【0170】
総合すると、これらのデータはCSP56上方調節の原因としてのインビトロ培養条件を除外し、そしてこれらの遺伝子を新規の腫瘍マーカーとして確立する。
【0171】
(実施例7)
この実施例は、患者サンプルにおいて検出されたCSP56遺伝子発現の検出を実証する。
【0172】
CSP56発現を患者腫瘍生検から単離されたRNAサンプルにおいて試験した。乳癌腫瘍組織および同じ患者に由来する正常乳房組織由来の全RNAを含むノーザンブロットを、CSP56特異的プローブでハイブリダイズした(図5A)。CSP56転写物は腫瘍サンプルにおいて検出されたが、一方、正常乳房RNAにおいては全くシグナルは検出されなかった(レーン1および2)。同様に、CSP56転写物の発現は、正常乳房RNAコントロールと比較された場合、2つの他の乳癌RNAサンプルにおいて上方調節された(図5B)。CSP56の発現の増加はまた、ヒト結腸ガン組織において、同じ患者の正常結腸組織と比較された場合に検出された。
【0173】
インビボでCSP56転写物を発現する細胞型を同定するために、本発明者らは一人の乳癌患者から得られた組織サンプルにおいてインサイチュハイブリダイゼーション分析を実施した(図6A−6F)。弱いCSP56シグナルが、正常乳房組織の管の細胞において検出された(図6B)。原発腫瘍において、CSP56は腫瘍細胞において高度に発現されたが、周囲のリンパ球においては発現されなかった(図6E)。センスプローブを使用すると、全くシグナルは検出されなかった(図6Cおよび6F)。
【0174】
本発明者らはまた、CSP56発現について2人の結腸ガン患者から得られた組織サンプルを分析した(図6G−6M)。正常結腸組織においては全くシグナルは検出されなかったが(図6H)、一方、CSP56転写物は原発結腸腫瘍および肝転移の両方の腫瘍細胞において富み、そして周囲の支質においては全く発現は検出されなかった(図6Kおよび6M)。
【0175】
これらのデータは、CSP56がヒト癌患者の腫瘍細胞において過剰に発現されること、そして異なる型の腫瘍の発達および進行において役割を果たし得ることを実証する。
【0176】
【表1】


【特許請求の範囲】
【請求項1】
明細書中に記載の単離されかつ精製されたタンパク質。

【図1】
image rotate

【図2A−1】
image rotate

【図2A−2】
image rotate

【図2B】
image rotate

【図2C】
image rotate

【図3A】
image rotate

【図3B】
image rotate

【図3C】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate


【公開番号】特開2012−131798(P2012−131798A)
【公開日】平成24年7月12日(2012.7.12)
【国際特許分類】
【出願番号】特願2012−20841(P2012−20841)
【出願日】平成24年2月2日(2012.2.2)
【分割の表示】特願2009−295519(P2009−295519)の分割
【原出願日】平成10年12月24日(1998.12.24)
【出願人】(591076811)ノバルティス バクシンズ アンド ダイアグノスティックス,インコーポレーテッド (265)
【Fターム(参考)】