説明

造影用カプセル

【課題】磁性物質を超音波で充分に振動させるための技術を提供する。
【解決手段】造影用カプセル10は、例えば、超音波を送波してその超音波に応じた磁界の変化を検出する際の造影剤として利用される。造影用カプセル10は、全体として略球形に形成される。外殻16内は、液体14例えばPFCで満たされている。その液体14内に、例えばSF6などの難溶性ガスによる微小気泡18が封入されている。さらに、外殻16内には、棒状の磁性体12が封入されている。造影用カプセル10に超音波が照射されると、微小気泡18の拡張収縮運動や液体14の運動に伴って、磁性体12が振動して周囲の磁界を変化させる。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、超音波を用いた造影に利用される造影用カプセルに関する。
【背景技術】
【0002】
超音波を用いた造影において、マイクロバブル(またはナノバブル)を含んだ造影剤が知られている。マイクロバブルは、液体などに注入された微細な気泡(微小気泡)を意味している。このマイクロバブルは、様々な優れた特性を備えているため、多くの分野で利用されており、特に、医療分野への応用として、マイクロバブルが超音波の好適な反射体となることから、超音波画像を取得する際の血管造影剤として利用されている。
【0003】
一方において、超音波と他の物理的な現象とを組み合わせた造影に関する提案もある。特に下記文献には、超音波と磁界(磁場)を併用した造影に関する技術が記載されている。例えば、特許文献1と特許文献2には、磁性体などを含んだ造影剤を磁界により振動させ、その振動に伴って発生する超音波を検出する技術が記載されている。また、非特許文献1には、磁性粒子(Magnetic Nanoparticles)を超音波で振動させ、その振動に伴って発生する磁界の変化を検出する技術が記載されている。
【0004】
【特許文献1】特開平10−5216号公報
【特許文献2】特開平11−206763号公報
【非特許文献1】S.J.Norton,T.Vo-Dinh,"Imaging the Distribution of Magnetic Nanoparticles with Ultrasound",IEEE TRANSACTIONS ON MEDICAL IMAGING,VOL.26,NO.5,MAY 2007,p.660-665
【発明の開示】
【発明が解決しようとする課題】
【0005】
このような状況のもと、本願の発明者は、超音波と磁界を併用した造影技術について研究開発を重ねてきた。特に、磁気的な性質を備えた磁性物質を超音波で振動させ、その振動に伴って発生する磁界の変化を検出する際に、磁性物質を超音波で充分に振動させるための技術について研究開発を重ねてきた。ちなみに、上記非特許文献1は、磁性粒子を超音波で振動させてその振動に伴う磁界の変化を検出する際の理論を開示しているものの、磁性物質を超音波で充分に振動させるための具体的な方法を提供するものではない。
【0006】
本発明は、上述した研究開発の過程において成されたものであり、その目的は、磁性物質を超音波で充分に振動させるための技術を提供することにある。
【課題を解決するための手段】
【0007】
上記目的を達成するために、本発明の好適な態様である造影用カプセルは、外力を受けて振動することにより磁界を変化させる磁性物質と、超音波を受けて運動することにより磁性物質を振動させる振動体と、を有し、超音波を送波してその超音波に応じた磁界の変化を検出する造影に利用されることを特徴とする。上記態様によれば、振動体が磁性物質を振動させるため、磁性物質が直接的な超音波のみに応じて振動する場合に比べて、磁性物質を充分に振動させる確実性が向上する。
【0008】
望ましい態様において、前記振動体は、超音波を受けて運動する流体を含むことを特徴とする。望ましい態様において、前記振動体は、前記流体とその流体内に封入される気泡を含むことを特徴とする。望ましい態様において、前記流体は液体であり、前記気泡は難溶性の気体によって形成されることを特徴とする。望ましい態様において、前記振動体は、前記流体を閉じ込める外殻を含むことを特徴とする。
【0009】
望ましい態様において、前記磁性物質は、前記振動体の流体内に封入されることを特徴とする。望ましい態様において、前記磁性物質は、前記外殻の外側に高分子を介して接続されることを特徴とする。望ましい態様において、前記磁性物質は、前記外殻中に封入されることを徴とする。
【0010】
また、上記目的を達成するための本発明の別の好適な態様は、造影用カプセルの利用方法であって、前記造影用カプセルは、外力を受けて振動することにより磁界を変化させる磁性物質と、超音波を受けて運動することにより磁性物質を振動させる振動体と、を有し、前記利用方法は、前記造影用カプセルに対して超音波を送波する超音波送波工程と、超音波を受けた前記造影用カプセルの振動体が磁性物質を振動させることにより引き起こされる磁界の変化を検出する磁界変化検出工程と、を含むことを特徴とする。
【0011】
望ましい態様において、前記超音波送波工程では、超音波の送信ビームを走査することにより前記造影用カプセルを含む走査領域内に複数の送信ビームが形成され、前記磁界変化検出工程では、各送信ビームごとにその送信ビームに応じて引き起こされる磁界の変化が検出され、さらに、各送信ビームごとに得られる磁界の変化の検出結果に基づいて前記走査領域に対応した画像を形成する画像形成工程を含むことを特徴とする。
【0012】
また、上記目的を達成するための本発明の別の好適な態様は、造影用カプセルを利用する画像形成システムであって、前記造影用カプセルは、外力を受けて振動することにより磁界を変化させる磁性物質と、超音波を受けて運動することにより磁性物質を振動させる振動体と、を有し、前記画像形成システムは、前記造影用カプセルに対して超音波を送波する超音波探触子と、超音波探触子を制御して超音波の送信ビームを走査することにより前記造影用カプセルを含む走査領域内に複数の送信ビームを形成する送信ビームフォーマーと、超音波を受けた前記造影用カプセルの振動体が磁性物質を振動させることにより引き起こされる磁界の変化を検出する磁界変化検出部と、各送信ビームごとに得られる磁界の変化の検出結果に基づいて前記走査領域に対応した画像データを形成する画像形成部と、を有することを特徴とする。
【発明の効果】
【0013】
本発明により、磁性物質を超音波で充分に振動させることが可能になる。例えば、本発明の好適な態様によれば、振動体が磁性物質を振動させるため、磁性物質が直接的な超音波のみに応じて振動する場合に比べて、磁性物質を充分に振動させる確実性が向上する。
【発明を実施するための最良の形態】
【0014】
以下、本発明の好適な実施形態を図面に基づいて説明する。
【0015】
図1には、本発明に係る造影用カプセルの好適な実施形態が示されており、図1は、造影用カプセル10の構造を説明するための説明図である。造影用カプセル10は、例えば、超音波を送波してその超音波に応じた磁界の変化を検出する際の造影剤として利用される。
【0016】
造影用カプセル10は、生体適合性に優れたポリマーなどにより外殻16が形成され、全体として例えば略球形に形成される。その直径Lは、例えば100nm〜数十μm程度である。外殻16内は、圧縮性に優れた液体14、例えばPFC(パーフルオロカーボン)で満たされている。その液体14内に、例えばSF6(六フッ化硫黄)などの難溶性ガスによる直径100nm〜10μm程度の微小気泡18が封入されている。
【0017】
さらに、外殻16内には、長さ50nm〜数μm程度の棒状の磁性体12が封入されている。磁性体12としては、例えば強磁性を示すマグネタイトやフェライト、マグネタイトとシリカの複合体などが用いられる。また、磁性体12は、鉄やコバルト等の強磁性体でもよいし、常磁性体でもよい。さらに、磁性体12は、棒状の磁気双極子でもよいし、粒径20nm以下の超常磁性体でもよい。造影用カプセル10に超音波が照射されると、磁性体12が振動して周囲の磁界を変化させる。
【0018】
図2は、超音波による磁性体12の振動を説明するための図である。造影用カプセル10に超音波が照射されると、造影用カプセル10内の微小気泡18が超音波の影響を受けて膨張や圧縮を繰り返し、また、造影用カプセル10内の液体14も造影用カプセル10内で運動する。図2(A)から(C)にはその様子が示されている。
【0019】
つまり、造影用カプセル10に超音波が照射されると、微小気泡18が図2(A)に示す状態から図2(B)に示す状態へと膨張し、液体14も外殻16側へ移動する。これにより、磁性体12が図2(B)の破線で示す位置から実線で示す位置に移動される。なお、造影用カプセル10の全体が超音波の影響を受けて膨張してもよい。また、図2(C)は、微小気泡18が収縮した状態を示しており、微小気泡18の収縮により液体14が造影用カプセル10の中心側へ戻り、これにより、磁性体12が図2(C)の破線で示す位置から実線で示す位置に移動される。その際、造影用カプセル10の全体が収縮してもよい。
【0020】
図2に示すように、超音波の影響を受けて微小気泡18が膨張や収縮を繰り返し、また、液体14が造影用カプセル10内で大きく動くことにより、例えば微小気泡18や液体14が存在しない場合に比べて、磁性体12が造影用カプセル10内で強く振動する。この時、例えば、超音波振動と同じ周波数の高周波誘導磁界(磁場)が強く発生する。誘導磁界(磁場)が超音波振動によって発生するため非常にバックグランドが少ないこと、また、超音波信号と同じ周波数成分を持つため容易に弁別が可能なことなどにより、非常に高感度な検出が可能となる。
【0021】
なお、微小気泡18を省略して、液体14のみにより磁性体12を振動させるようにしてもよい。さらに、外殻16を省略して、例えば液体14の表面張力により形状を維持した造影用カプセル10を形成してもよい。
【0022】
図3は、外殻16に抗体22を修飾した造影用カプセル10を示す図である。外殻16やその内側に封入される液体や微小気泡や磁性体は、その構成や材質が例えば図1のものと同じである。図3(A)に示すように、外殻16の外側に、目的分子を補足するための抗体22が修飾されてもよい。なお、標識は、抗体22の他に、核酸やその他の低分子リガンド等が用いられてもよい。目的分子を捕捉するための分子を標識することで、造影用カプセル10が分子イメージング用探触子として機能する。
【0023】
また、図3(B)は、外殻16内に薬剤24を封入した造影用カプセル10を示している。薬剤24を封入することにより、造影用カプセル10をドラック・デリバリー・システム(DDS)に応用できる。例えば、薬剤24が封入された造影用カプセル10に、強力な超音波を与えることにより、内部の微小気泡を破裂させて強い衝撃波を発生させ、外殻16の一部または全部を壊して、内部の薬剤24を放出する。例えば、抗体22が悪性腫瘍に特異的に発現する分子をターゲットとすることにより、薬剤24が封入された造影用カプセル10を悪性腫瘍に補足させ、悪性腫瘍の近傍において薬剤24を放出させることにより、診断と治療を同時に実施することも可能となる。
【0024】
図4は、外殻16の外側に磁性体12が配置された造影用カプセル10を示す図である。図4において、磁性体12は、高分子26を介して外殻16の外側に接続されている。高分子26の代表例はPEG鎖などである。図4の造影用カプセル10に超音波が照射されると、例えば、微小気泡や外殻16が膨張圧縮してその運動が高分子26を介して磁性体12に伝えられて磁性体12が振動する。外殻16やその内側に封入される液体や微小気泡、そして磁性体12は、その構成や材質が例えば図1のものと同じである。
【0025】
図5は、外殻16中に磁性体12が封入された造影用カプセル10を示す図である。図5の造影用カプセル10に超音波が照射されると、例えば、外殻16が膨張圧縮してその運動に伴って磁性体12が振動する。図5の造影用カプセル10は、比較的製作が容易であり、また、磁性体12を固定しやすくなることにより、振動や収縮に伴う磁性体12同士の結合などを防止できる。外殻16やその内側に封入される液体や微小気泡、そして外殻16中に封入される磁性体12は、その構成や材質が例えば図1のものと同じである。
【0026】
図6には、本発明に係る画像形成システムの好適な実施形態が示されており、図6は、画像形成システムの全体構成を示す機能ブロック図である。図6に示す画像形成システムは、前述の造影用カプセル(図1〜図5の符号10)を利用して画像を形成するシステムである。造影用カプセルは、対象物120(例えば生体内の血管や腫瘍などの診断部位)に投与される。
【0027】
信号発生器112は、メイン制御部110によって制御され、送信パルスを形成するための駆動信号を生成して送信ビームフォーマー114へ出力する。送信ビームフォーマー114は、超音波探触子118に含まれる図示しない複数の振動素子を制御して送信ビームを形成し、形成した送信ビームを電子的に走査する。送信アンプ116は、送信ビームフォーマー114から供給される信号に対して増幅処理を施す。そして、増幅処理された送信信号が超音波探触子118へ出力される。
【0028】
超音波探触子118は、送信信号に基づいて、造影用カプセルが投与された対象物120に対して超音波を照射する。これにより、先に説明したように(図2参照)、造影用カプセルに含まれる磁性体が振動して周囲の電界(電場)を変化させる。
【0029】
検出コイル122は、超音波を受けた造影用カプセルによって引き起こされる磁界の変化を検出する。検出コイル122は、例えば、磁界の変化に伴って発生する電磁波を検出して検出結果である電流を受信アンプ124に出力する。本実施形態では、各送信ビームごとにその送信ビームに応じた磁界の検出結果が得られる。
【0030】
図7は、送信ビーム140と造影用カプセル10の対応関係を説明するための図である。アレー振動子119は、複数の振動素子によって構成され、超音波探触子(図6の符号118)の内部に設けられる。そして、アレー振動子119を構成する複数の振動素子が送信ビームフォーマー(図6の符号114)によって制御され、対象物(図6の符号120)を含む走査領域内においてビーム方向を段階的に変化させながら、複数の送信ビーム140が形成される。なお、走査領域は二次元平面でもよいし三次元空間でもよい。
【0031】
送信ビーム140が走査されると、送信ビーム140の位置にある造影用カプセル10が送信ビーム140の影響を強く受ける。つまり、送信ビーム140のビーム方向に対応した位置にある造影用カプセル10が大きく振動して、その造影用カプセル10から強い検出結果(磁界の変化)が検出コイル(ピックアップコイル)122において検出される。検出コイル122は、例えばアレー振動子119の近傍に配置されてもよい。
【0032】
こうして、各送信ビーム140ごとに(各ビーム方向ごとに)その送信ビーム140に応じた磁界の検出結果が得られる。なお、超音波を送波してから磁界の検出結果が得られるまでの時間に基づいて、造影用カプセル10の位置つまり送信ビーム140に沿った深さに関する情報を得るようにしてもよい。
【0033】
図6に戻り、各送信ビームごとに検出されて受信アンプ124で増幅処理された電流(信号)は、アナログデジタルコンバータ(A/D)126においてデジタルデータに変換されてメモリ128に記憶される。メモリ128は、メイン制御部110の制御に応じてデジタルデータをメモリ128内の所定のアドレスに格納する。例えば、各送信ビームごとにそのビーム方向の深さに応じたアドレスに各データが格納される。
【0034】
信号プロセッサ130は、メモリ128に記憶されたデジタルデータに基づいて、超音波の送信ビームの走査領域に対応した画像データを形成する。例えば、造影用カプセルの位置を明示した画像データを形成する。信号プロセッサ130で形成された画像データに対応した画像は、表示器132に表示される。表示器132は、例えば、CRTモニタや液晶モニタなどである。もちろん、他の表示デバイスを利用してもよい。
【0035】
以上、本発明の好適な実施形態を説明したが、上述した実施形態は、あらゆる点で単なる例示にすぎず、本発明の範囲を限定するものではない。本発明は、その本質を逸脱しない範囲で各種の変形形態を包含する。
【0036】
例えば、本発明に係る造影用カプセルは、上述した造影方法以外にも、通常のMRI装置と超音波診断装置の造影剤としても機能する。そのため、MRI装置と超音波診断装置との併用が可能である。例えば、粒径150nmのカプセルを腫瘍周辺に注入すると、カプセルは腫瘍周辺のリンパ管に入り、その特異的な大きさによってセンチネルリンパ節で集積する。MRI装置を用いることで広い範囲に分布しても、センチネルリンパ節の造影が可能となる。MRI装置で造影されたセンチネルリンパ節は、癌の転移を予防し、また浸潤の度合いを診断するため、外科的手法による摘出が行われる。MRI装置は、術中での使用が不可能であるため、手術中に簡便に磁性粒子を検出する技術が必要となる。手術中でのセンチネルリンパ節の検出方法としては、色素法やRI標識法がある。前者は、その検出精度に、後者はRI施設が必要であることで、広く一般病院まで普及していない。本発明に係る造影用カプセルは、超音波診断装置でも画像化が可能であり、手術中での適応が可能である。更に、本発明に係る検出方法では、従来の超音波診断装置で検出が困難な、集積が少ない場合でも高感度の検出が可能であり、臨床的な意義は高い。
【図面の簡単な説明】
【0037】
【図1】本発明に係る造影用カプセルの構造を説明するための説明図である。
【図2】超音波による磁性体の振動を説明するための図である。
【図3】外殻に抗体を修飾した造影用カプセルを示す図である。
【図4】外殻の外側に磁性体が配置された造影用カプセルを示す図である。
【図5】外殻中に磁性体が封入された造影用カプセルを示す図である。
【図6】本発明に係る画像形成システムの好適な実施形態を示す図である。
【図7】送信ビームと造影用カプセルの対応関係を説明するための図である。
【符号の説明】
【0038】
10 造影用カプセル、12 磁性体、14 液体、16 外殻、18 微小気泡。

【特許請求の範囲】
【請求項1】
外力を受けて振動することにより磁界を変化させる磁性物質と、
超音波を受けて運動することにより磁性物質を振動させる振動体と、
を有し、
超音波を送波してその超音波に応じた磁界の変化を検出する造影に利用される、
ことを特徴とする造影用カプセル。
【請求項2】
請求項1に記載の造影用カプセルにおいて、
前記振動体は、超音波を受けて運動する流体を含む、
ことを特徴とする造影用カプセル。
【請求項3】
請求項2に記載の造影用カプセルにおいて、
前記振動体は、前記流体とその流体内に封入される気泡を含む、
ことを特徴とする造影用カプセル。
【請求項4】
請求項3に記載の造影用カプセルにおいて、
前記流体は液体であり、前記気泡は難溶性の気体によって形成される、
ことを特徴とする造影用カプセル。
【請求項5】
請求項2から4のいずれか1項に記載の造影用カプセルにおいて、
前記振動体は、前記流体を閉じ込める外殻を含む、
ことを特徴とする造影用カプセル。
【請求項6】
請求項2から5のいずれか1項に記載の造影用カプセルにおいて、
前記磁性物質は、前記振動体の流体内に封入される、
ことを特徴とする造影用カプセル。
【請求項7】
請求項5に記載の造影用カプセルにおいて、
前記磁性物質は、前記外殻の外側に高分子を介して接続される、
ことを特徴とする造影用カプセル。
【請求項8】
請求項5に記載の造影用カプセルにおいて、
前記磁性物質は、前記外殻中に封入される、
ことを徴とする造影用カプセル。
【請求項9】
造影用カプセルの利用方法であって、
前記造影用カプセルは、
外力を受けて振動することにより磁界を変化させる磁性物質と、
超音波を受けて運動することにより磁性物質を振動させる振動体と、
を有し、
前記利用方法は、
前記造影用カプセルに対して超音波を送波する超音波送波工程と、
超音波を受けた前記造影用カプセルの振動体が磁性物質を振動させることにより引き起こされる磁界の変化を検出する磁界変化検出工程と、
を含む、
ことを特徴とする造影用カプセルの利用方法。
【請求項10】
請求項9に記載の利用方法において、
前記超音波送波工程では、超音波の送信ビームを走査することにより前記造影用カプセルを含む走査領域内に複数の送信ビームが形成され、
前記磁界変化検出工程では、各送信ビームごとにその送信ビームに応じて引き起こされる磁界の変化が検出され、
さらに、
各送信ビームごとに得られる磁界の変化の検出結果に基づいて前記走査領域に対応した画像を形成する画像形成工程を含む、
ことを特徴とする造影用カプセルの利用方法。
【請求項11】
造影用カプセルを利用する画像形成システムであって、
前記造影用カプセルは、
外力を受けて振動することにより磁界を変化させる磁性物質と、
超音波を受けて運動することにより磁性物質を振動させる振動体と、
を有し、
前記画像形成システムは、
前記造影用カプセルに対して超音波を送波する超音波探触子と、
超音波探触子を制御して超音波の送信ビームを走査することにより前記造影用カプセルを含む走査領域内に複数の送信ビームを形成する送信ビームフォーマーと、
超音波を受けた前記造影用カプセルの振動体が磁性物質を振動させることにより引き起こされる磁界の変化を検出する磁界変化検出部と、
各送信ビームごとに得られる磁界の変化の検出結果に基づいて前記走査領域に対応した画像データを形成する画像形成部と、
を有する、
ことを特徴とする画像形成システム。

【図6】
image rotate

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図7】
image rotate


【公開番号】特開2009−39225(P2009−39225A)
【公開日】平成21年2月26日(2009.2.26)
【国際特許分類】
【出願番号】特願2007−205952(P2007−205952)
【出願日】平成19年8月7日(2007.8.7)
【国等の委託研究の成果に係る記載事項】(出願人による申告)国等の委託研究の成果に係る特許出願(平成19年度独立行政法人新エネルギー・産業技術総合開発機構「健康安心プログラム/分子イメージング機器研究開発プロジェクト/悪性腫瘍等治療支援分子イメージング機器研究開発プロジェクト/悪性腫瘍等治療支援分子イメージング機器に関する先導研究/ラベル化造影剤を用いた超音波によるがんの超早期診断システムの研究開発に係る先導研究」に係る委託研究、産業活力再生特別措置法第30条の適用を受けるもの)
【出願人】(390029791)アロカ株式会社 (899)
【Fターム(参考)】