説明

遮熱コーティングの評価方法及び装置

【課題】非破壊で精度良く熱生成酸化物層の厚さを測定するとともに、熱生成酸化物層の厚さから遮熱コーティングの健全性を評価できる方法を提供することを目的とする。
【解決手段】耐熱基材11上に、MCrAlY合金を主とする金属結合層12と、セラミックス層13とが順に形成された遮熱コーティングの評価方法であって、セラミックス層13側から、遠赤外線を含む赤外線を照射して吸収スペクトルを取得する工程と、この吸収スペクトルから、金属結合層12とセラミックス層13との間に生成されるスピネル酸化物M(Al,Cr)を含む熱生成酸化物層14に帰属されるピークの高さ及び面積の少なくとも一方をピーク情報として取得する工程と、予め取得した熱生成酸化物層14のピーク情報と生成量との相関関係に基づいてピーク情報が基準値の範囲内であるときに遮熱コーティングが健全であると判定する工程とを備える遮熱コーティングの評価方法。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、遮熱コーティングの評価方法及び装置に関するものである。
【背景技術】
【0002】
ガスタービンを構成する静翼や動翼、あるいは燃焼器の壁材などは、耐熱部材で構成されている。該耐熱部材を高温から保護するため、耐熱部材上には、金属結合層を介して溶射等の成膜方法によって酸化物セラミックスからなるセラミックス層を積層した遮熱コーティング(Thermal Barrier Coating,TBC)が形成されている。
【0003】
ガスタービンの作動環境は、1000℃を超える高温となる。遮熱コーティングを施した耐熱部材を長時間、高温で使用し続けると、金属結合層とセラミックス層との間に熱生成酸化物層が生成される。この熱生成酸化物層の厚さが増すと、セラミックス層が上に押し上げられて剥離するという問題が生じる。そのため、遮熱コーティングの状態を定期的に確認し、メンテナンスをする必要がある。遮熱コーティングの状態を非破壊で検査する方法として、X線を利用した技術、超音波探傷、レーザーラマン法などが挙げられる。また、特許文献1に、X線に代わる人体に安全なイメージング手段としてテラヘルツ波を用いた差分イメージング方法が開示されている。
【先行技術文献】
【特許文献】
【0004】
【特許文献1】特開2004−108905号公報(請求項1)
【発明の概要】
【発明が解決しようとする課題】
【0005】
上記X線を利用した技術は、安全性に課題がある。超音波探傷は、分解能が低く、探触子を接触させる必要があるという課題がある。レーザーラマン法は、ブルーレーザーやYAGレーザーをセラミックス層側から照射して熱生成酸化物層を検出することができる。しかしながら、レーザーがセラミックス層や酸化物層を通過する際に、レーザーが減衰してしまうため、セラミックス層や熱生成酸化物層が厚い場合、利用できない。特許文献1に記載の差分イメージング方法は、測定原理が遮熱コーティングの膜中に生成される熱生成酸化物層の分析に適さない。
【0006】
熱生成酸化物層の生成・成長機構は不明であるため、現状の技術では成長速度を予測することは困難である。また、非破壊で熱生成酸化物層の状態を安全に、精度良く確認できる方法もない。従って、現状、一定時間運転したガスタービンは、熱生成酸化物層の厚さに関わらず、全面の遮熱コーティングを剥して、再コーティングする手法がとられており、作業時間がかかる上、メンテナンスコストも高くなる。
【0007】
本発明は、このような事情に鑑みてなされたものであって、非破壊で精度良く熱生成酸化物層の厚さを測定するとともに、熱生成酸化物層の厚さから遮熱コーティングの健全性を評価できる方法を提供することを目的とする。
【課題を解決するための手段】
【0008】
上記課題を解決するために、本発明は、耐熱基材上に、MCrAlY合金(Mは、Ni,Co,Feの金属元素またはこれらのうち2種類以上の組合せを示す)を主として含有する金属結合層と、セラミックス層と、が順に形成された遮熱コーティングの評価方法であって、前記遮熱コーティングの前記セラミックス層側から、遠赤外線を含む赤外線を照射して吸収スペクトルを取得する工程と、前記取得した吸収スペクトルから、前記金属結合層と前記セラミックス層との間に生成されるスピネル酸化物M(Al,Cr)(Mは、Ni,Co,Feの金属元素またはこれらのうち2種類以上の組合せを示す)を含む熱生成酸化物層に帰属されるピークの高さ及び面積の少なくとも一方をピーク情報として取得する工程と、予め取得した前記熱生成酸化物層のピーク情報と前記熱生成酸化物の生成量との相関関係に基づいて、前記熱生成酸化物層のピーク情報が基準値の範囲内であるときに前記遮熱コーティングが健全であると判定する工程とを備える遮熱コーティングの評価方法を提供する。
【0009】
金属結合層とセラミックス層との間に生成される熱生成酸化物層の組成は、金属結合層の組成、遮熱コーティングのロットやタービン部材の使用環境などに影響されるため、α−Alからなる場合や、M(Al,Cr)(M:Ni,Co,Feの金属元素またはこれらのうち2種類以上の組合せ)で表されるスピネル酸化物である場合などがある。
熱生成酸化物層がα−Alからなる場合、熱生成酸化物層の厚さが閾値に達すると、成長は飽和状態となる。そのため、α−Alからなる熱生成酸化物層は、セラミックス層の剥離には実質的に影響しない。また、α−Alからなる熱生成酸化物層は、酸素をあまり透過させないため、金属結合層の酸化を防止する作用を有する。
一方、熱生成酸化物層がM(Al,Cr)(M:Ni,Co,Feの金属元素またはこれらのうち2種類以上の組合せ)で表されるスピネル酸化物を含む場合、高温使用環境下で熱生成酸化物層は成長し続け、セラミックス層を上へ押し上げる。その結果、セラミックス層13が剥離する。スピネル酸化物を含む熱生成酸化物層は、酸素透過能が高く、金属結合層の酸化を防止することができない。
【0010】
本発明者らが鋭意研究した結果、M(Al,Cr)(M:Ni,Co,Feの金属元素またはこれらのうち2種類以上の組合せ)で表されるスピネル酸化物を含む熱生成酸化物層は、遠赤外線を照射することで特徴的な吸収スペクトルを取得できることを見出した。赤外線は、波数により近赤外(4000cm−1〜12000cm−1)・中赤外(400cm−1〜4000cm−1)・遠赤外(10cm−1〜400cm−1)の3つに分類される。赤外線吸収は膜厚に依存するため、熱生成酸化物層の生成量が増加して膜厚が厚くなるにともない、熱生成酸化物層のピーク高さまたはピーク面積の値も高くなる。従って、予め熱生成酸化物層のピーク高さまたはピーク面積と熱生成酸化物層の生成量とを相関させておくことで、取得した被評価物の熱生成酸化物層のピーク高さまたはピーク面積から、相関関係に基づいて熱生成酸化物層の生成量を推定することが可能となる。金属結合層やセラミックス層の組成、遮熱コーティングが施されている部位などに応じて、熱生成酸化物層のピーク高さまたはピーク面積に適宜基準を設けることで、遮熱コーティングの状態を評価することができる。
【0011】
上記発明において、前記熱生成酸化物層に帰属されるピーク位置が、150cm−1以上300cm−1以下の波数範囲にあることが好ましい。
上記吸収スペクトルを取得する工程において、赤外線はセラミックス層側から照射される。波数150cm−1以上300cm−1以下の範囲内には、セラミックス層やα−Alに帰属する吸収帯は存在しない。すなわち、セラミックス層の厚さに影響されずに、精度よく吸収スペクトルを取得することができる。
【0012】
上記発明において、内部標準として前記熱生成酸化物層が生成される前後で実質的に赤外線吸収スペクトルが変化しない化合物に帰属するピークのピーク情報を取得し、該ピーク情報と、対応する前記熱生成酸化物層に帰属するピークのピーク情報との比を算出する工程を備え、該算出した比を前記判定する工程に用いることが好ましい。
上記のように内部標準となる化合物に帰属するピークと熱生成酸化物層に帰属するピークとのピーク情報の比を判定する工程に用いることで、吸収スペクトルを取得する際に生じる誤差を小さくできるようになる。
【0013】
本発明は、耐熱基材上に、MCrAlY合金(Mは、Ni,Co,Feの金属元素またはこれらのうち2種類以上の組合せを示す)を主として含有する金属結合層と、セラミックス層と、が順に形成された遮熱コーティングの評価装置であって、被評価物の前記遮熱コーティングに遠赤外線を含む赤外線を照射する照射部と、前記被評価物の吸収スペクトル情報を取得するスペクトル取得部と、前記取得した吸収スペクトルから、前記金属結合層と前記セラミックス層との間に生成されるスピネル酸化物M(Al,Cr)(Mは、Ni,Co,Feの金属元素またはこれらのうち2種類以上の組合せを示す)を含む熱生成酸化物層に帰属されるピークの高さ及び面積の少なくとも一方をピーク情報として取得するピーク情報取得部と、予め取得した前記熱生成酸化物層のピーク情報と前記熱生成酸化物層の生成量との相関関係に基づいて、前記熱生成酸化物層のピーク情報が基準値の範囲内であるときに前記遮熱コーティングが健全であると判定する判定部と、を備えた遮熱コーティングの評価装置を提供する。
【0014】
上記発明によれば、照射部は遠赤外線を含む赤外線を照射できるため、スピネル酸化物M(Al,Cr)(Mは、Ni,Co,Feの金属元素またはこれらのうち2種類以上の組合せを示す)に帰属する特徴的なピーク情報を得ることができる。判定部は、得られたピーク情報を、予め取得した熱生成酸化物層に帰属されるピーク情報と生成量との相関関係と照合することで、遮熱コーティングの健全性を判定することができる。上記のような評価装置を用いることで、熱生成酸化物層の生成量に応じて、遮熱コーティングの再コーティングを実施することができるようになるため、メンテナンスコストの無駄を省くことができる。
【発明の効果】
【0015】
本発明によれば、150cm−1以上300cm−1以下の波数を含む赤外線を利用することによって、非破壊で精度良く熱生成酸化物層の生成量を推定して遮熱コーティングの健全性を評価することができるようになる。
【図面の簡単な説明】
【0016】
【図1】本実施形態の評価対象であるタービン部材の断面の模式図である。
【図2】本実施形態の評価対象であるタービン部材の断面の模式図である。
【図3】遮熱コーティングに係る赤外線吸収スペクトルの一例を示す図である。
【図4】遮熱コーティングに係る赤外線吸収スペクトルの一例を示す図である。
【図5】遮熱コーティングに係る赤外線吸収スペクトルの一例を示す図である。
【発明を実施するための形態】
【0017】
図1は、本実施形態の評価対象であるタービン部材の断面の模式図である。タービン動翼などの耐熱基材11上に、遮熱コーティングとして金属結合層12及びセラミックス層13が順に形成される。
【0018】
耐熱基材11は、例えば、商標名:IN−738LC(化学組成:Ni−16Cr−8.5Co−1.75Mo−2.6W−1.75Ta−0.9Nb−3.4Ti−3.4Al(質量%))といった合金基材とされる。
【0019】
金属結合層12は、耐食性及び耐酸化性に優れたMCrAlY合金(Mは、Ni,Co,Feの金属元素またはこれらのうち2種類以上の組合せを示す)などとされる。例えば、金属結合層12の形成方法は、特に限定されず、低圧プラズマ溶射法や、電子ビーム物理蒸着法などを用いることができる。
【0020】
セラミックス層13は、YSZ(イットリア安定化ジルコニア)、YbSZ(イッテルビア安定化ジルコニア)、DySZ(ジスプロシア安定化ジルコニア)、ErSZ(エルビア安定化ジルコニア)、SmYbZrなどとされる。セラミックス層13は、任意の割合で気孔を含有しても良い。
セラミックス層13の形成方法は、大気圧プラズマ溶射、電子ビーム物理蒸着などを用いることができる。
【0021】
上記タービン部材が例えば800℃を超える高温環境下に曝されると、図2に示すように、金属結合層12とセラミックス層13との間に組成式:M(Al,Cr)で表されるスピネル酸化物を含む熱生成酸化物層14が生成される場合がある。Mは、Co、Ni、Feなどの金属元素またはこれらのうち2種類以上の組合せを表す。熱生成酸化物層14には、更にY、S、Naなどが含まれていることもある。
【0022】
M(Al,Cr)は組成により変動するが、150cm−1〜300cm−1の波数範囲内に吸収帯を有する。
図3〜図5に、遮熱コーティングの赤外線吸収スペクトルの例を示す。熱生成酸化物層14の赤外線吸収スペクトルを取得するための赤外線照射装置としては、Spectrum 400 FT−IR/FIR(パーキンエルマー社製)を使用した。赤外線吸収スペクトルは、遮熱コーティングのセラミックス層13側から、照射した。
図3は、遮熱コーティングを加熱する前の遠赤外線吸収スペクトルである。金属結合層12は、組成:Co−32wt.%Ni−21wt.%Cr−8wt.%Al−0.5wt.%Y、膜厚:0.1mmとした。セラミックス層13は、8重量%YSZからなり、膜厚:0.3mmとした。
図4は、図3の遮熱コーティングを900℃で100時間程度加熱した後の遠赤外線吸収スペクトルである。
図5は、α−Alからなる熱生成酸化物層14の遠赤外線吸収スペクトルである。熱生成酸化物層14の膜厚は0.01mmとした。
【0023】
図4では、200cm−1〜250cm−1の間、具体的には233cm−1付近に吸収のピークがあり、なだらかに100cm−1まで吸収が存在することを確認した。一方、図3及び図5では、100cm−1〜375cm−1の波数範囲に、セラミックス層13またはα−Alに帰属した吸収帯は存在しないことが確認された。上記結果から、図4で確認されたピークは、加熱によって生成された熱生成酸化物層14に帰属するものと考えられる。
電子プローブマイクロアナライザー(EPMA)による元素定量分析により、(Co,Ni)(Al,Cr)スピネルが生成していることを確認した。
【0024】
以下に、本実施形態に係る遮熱コーティングの評価方法を説明する。
まず、予め熱生成酸化物層14のピーク情報と熱生成酸化物層14の生成量との相関関係を取得する(工程A)。生成量(膜厚)の異なる熱生成酸化物層14を備えた遮熱コーティング部材の赤外線吸収スペクトルを取得し、熱生成酸化物層14に帰属するピークのピーク情報(高さまたは面積)を取得する。ピーク情報を面積として取得する場合、ピーク情報値は、バックグラウンドを差し引いた値とすると良い。また、熱生成酸化物層14に帰属するピーク情報値(X)の他に、内部標準として熱生成酸化物層14が生成される前後で赤外線吸収が変化しない化合物に帰属するピーク情報値(Y)を取得し、ピーク情報値(X)との比(Y/X)を評価に用いるピーク情報値としても良い。
【0025】
次いで、熱生成酸化物層14の生成量として、熱生成酸化物層14の膜厚(生成量)を測定する。測定は、透過型電子顕微鏡などによって行う。
次いで、上記で取得したピーク情報と熱生成酸化物層14の膜厚(生成量)を相関させる。ピーク情報には、適宜基準値を設ける。例えば、剥離が発生する熱生成酸化物層14の生成量でのピーク情報値を基準としても良い。例えば、検量線を作成し、生成量が所定値を超えたときのピーク情報値を基準としても良い。本実施形態では、熱生成酸化物層14の膜厚が、15μm以下に相当するピーク高さであれば、健全な遮熱コーティングであると判定する。
【0026】
次いで、被評価物の遮熱コーティングの赤外線吸収スペクトルを取得する(工程B)。
工程Bにおいて、遮熱コーティングに照射する赤外線は、遠赤外線、更に詳細には少なくとも150cm−1〜300cm−1の波数を含む。赤外線を照射する装置としては、FT−IR/FIRを用いたが、上記波数範囲の赤外線を照射できる装置、例えば、レーザー照射装置なども適用可能である。遮熱コーティングの吸収スペクトルは、赤外線を遮熱コーティングのセラミックス層13側から照射して取得する。得られた吸収スペクトルの150cm−1〜300cm−1の波数範囲に存在するピークのピーク情報を取得する。
【0027】
次いで、工程Aで得られた熱生成酸化物層14のピーク情報と熱生成酸化物層14の生成量との相関関係に基づいて、工程Bで取得したピーク情報が基準値の範囲内であるか否かで遮熱コーティングの状態を評価する。
【符号の説明】
【0028】
11 耐熱基材
12 金属結合層
13 セラミックス層
14 熱生成酸化物層

【特許請求の範囲】
【請求項1】
耐熱基材上に、MCrAlY合金(Mは、Ni,Co,Feの金属元素またはこれらのうち2種類以上の組合せを示す)を主として含有する金属結合層と、セラミックス層と、が順に形成された遮熱コーティングの評価方法であって、
前記遮熱コーティングの前記セラミックス層側から、遠赤外線を含む赤外線を照射して吸収スペクトルを取得する工程と、
前記取得した吸収スペクトルから、前記金属結合層と前記セラミックス層との間に生成されるスピネル酸化物M(Al,Cr)(Mは、Ni,Co,Feの金属元素またはこれらのうち2種類以上の組合せを示す)を含む熱生成酸化物層に帰属されるピークの高さ及び面積の少なくとも一方をピーク情報として取得する工程と、
予め取得した前記熱生成酸化物層のピーク情報と前記熱生成酸化物層の生成量との相関関係に基づいて、前記熱生成酸化物層のピーク情報が基準値の範囲内であるときに前記遮熱コーティングが健全であると判定する工程と、を備える遮熱コーティングの評価方法。
【請求項2】
前記熱生成酸化物層に帰属されるピーク位置が、150cm−1〜300cm−1の波数範囲にある請求項1に記載の遮熱コーティングの評価方法。
【請求項3】
内部標準として前記熱生成酸化物層が生成される前後で実質的に赤外線吸収スペクトルが変化しない化合物に帰属するピーク情報を取得し、該ピーク情報と、対応する前記熱生成酸化物層に帰属するピーク情報との比を算出する工程を備え、該算出した比を前記判定する工程に用いる請求項1または請求項2に記載の遮熱コーティングの評価方法。
【請求項4】
耐熱基材上に、MCrAlY合金(Mは、Ni,Co,Feの金属元素またはこれらのうち2種類以上の組合せを示す)を主として含有する金属結合層と、セラミックス層と、が順に形成された遮熱コーティングの評価装置であって、
被評価物の前記遮熱コーティングに遠赤外線を含む赤外線を照射する照射部と、
前記被評価物の吸収スペクトル情報を取得するスペクトル取得部と、
前記取得した吸収スペクトルから、前記金属結合層と前記セラミックス層との間に生成されるスピネル酸化物M(Al,Cr)(Mは、Ni,Co,Feの金属元素またはこれらのうち2種類以上の組合せを示す)を含む熱生成酸化物層に帰属されるピークの高さ及び面積の少なくとも一方をピーク情報として取得するピーク情報取得部と、
予め取得した前記熱生成酸化物層のピーク情報と前記熱生成酸化物層の生成量との相関関係に基づいて、前記熱生成酸化物層のピーク情報が基準値の範囲内であるときに前記遮熱コーティングが健全であると判定する判定部と、を備えた遮熱コーティングの評価装置。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate


【公開番号】特開2011−214955(P2011−214955A)
【公開日】平成23年10月27日(2011.10.27)
【国際特許分類】
【出願番号】特願2010−82504(P2010−82504)
【出願日】平成22年3月31日(2010.3.31)
【出願人】(000006208)三菱重工業株式会社 (10,378)
【Fターム(参考)】