説明

酸化物焼結体および酸化物透明導電膜

【課題】150℃以下の低い基板温度の成膜によっても、比抵抗が5×10-3Ω・cm以下、可視波長(400nm〜800nm)において98%以上の高い透過率を有する結晶性の透明導電膜を提供する。
【解決手段】Sn/Inが0.019〜0.102であり、かつ、In/(In+Sn+Co)が0.771〜0.967、Sn/(In+Sn+Co)が0.016〜0.091、Co/(In+Sn+Co)が0.015〜0.15であり、相対密度が98%以上、比抵抗が5×10-3Ω・cm以下である酸化物焼結体をスパッタリングターゲットとして成膜して透明導電膜を得る。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、タッチパネル、電子ペーパーなどの表示素子、太陽電池、および、発光ダイオード(LED)、有機エレクトロルミネッセンス(EL)などの光デバイスに用いられる酸化物透明導電膜、および、この酸化物透明導電膜を得るための酸化物焼結体に関する。
【背景技術】
【0002】
酸化物透明導電膜は、高い導電性と特に可視光領域における高い透過率を有するため、タッチパネル、電子ペーパーなどの表示素子、太陽電池、および、LED、有機ELなどの光デバイスにおける透明電極などの材料として利用されている。その他、自動車窓の熱線反射膜、帯電防止膜、防曇用透明発熱体などにも広く利用されている。
【0003】
酸化物透明導電膜としては、主として、酸化インジウム系(In23+α)の酸化物膜、酸化亜鉛系(ZnO+α)の酸化物膜、酸化錫系(SnO2+α)の酸化物膜が広く知られている。これらのうち、酸化インジウム系の酸化物膜が最も多く使用されているが、その中でも酸化錫をドーパントとして含む酸化インジウム膜は、ITO(Indium Tin Oxide)膜と称され、特に低抵抗の膜が容易に得られることから、広く利用されている。
【0004】
これらの酸化物透明導電膜を製造する主な手段として、スパッタリング法が用いられている。スパッタリング法は、蒸気圧の低い材料の成膜や精密な膜厚制御が必要とされる際に有効な手法であって、操作が非常に簡便であることから、工業的にも広範に利用されている。
【0005】
スパッタリング法では、一般に、約10Pa以下のガス圧のもとで、透明導電膜を成膜する基板を陽極とし、スパッタリングターゲットを陰極として、これらの間にグロー放電を起こしてアルゴンプラズマを発生させ、プラズマ中のアルゴン陽イオンを陰極のスパッタリングターゲットに衝突させ、これによって弾き飛ばされるターゲット成分の粒子を基板上に堆積させることにより、膜を形成している。
【0006】
スパッタリング法は、直流放電を利用する直流スパッタリング法と、高周波放電を利用する高周波スパッタリング法とに分類される。高周波スパッタリング法は、導電性ターゲットだけでなく、高抵抗ターゲットや、導電性材料と高抵抗材料が混合されたターゲットでも安定して成膜できるという利点を有するが、成膜速度が遅い、装置コストが高価などのデメリットを有している。一方、直流スパッタリング法は、装置価格が安価で、成膜操作も簡易であり、高速成膜に優れていることから、工業的には一般的に利用されている方法であるが、良質の導電性ターゲットを用いる必要がある。すなわち、導電性ターゲット内に微小の高抵抗物質が含まれていると、アルゴンイオンの照射で高抵抗物質が帯電して、成膜時にアーキングが発生してしまうため、このような高抵抗物質を含まない導電性ターゲットが必要とされる。
【0007】
ITOなどの酸化物透明導電膜を、直流マグネトロンスパッタリング法で形成する場合、基板の温度を上げないと十分に低い抵抗の膜を得ることができない。これは、成膜時の基板温度が高いほど、膜の結晶性と添加成分のドーピングが改善され、得られる膜の抵抗値が低下するためである。さらに、近年、酸化物透明導電膜の用途の多様化に伴い、低抵抗化の要求に加えて、可視光領域における高い透過率や膜の十分な結晶化などが要求されるようになってきている。
【0008】
たとえばITOにより、このような要求を満たした透明導電膜を得ようとする場合、ITOの結晶化温度が高いため、基板温度を200℃程度まで上げる必要がある。しかしながら、透明導電膜の膜厚を15〜40nm程度とした場合、可視波長(400〜800nm)における平均透過率は、膜単体で95%程度であり、基板込みでは88%前後に留まっているのが現状である。
【0009】
ITO以外の材料として、特許文献1には、セリウムを含有した酸化インジウム系のスパッタリングターゲット材(In−Ce−O)と、このスパッタリングターゲットを用いて得られる透明導電膜に関する技術が開示されている。この透明導電膜は、非晶質で用いられることを前提としているが、基板温度を200℃以上としたり、200〜250℃の温度で加熱したりすることにより、膜が結晶化すると開示されている。
【0010】
また、特許文献2には、高い導電性と可視光領域での高い透過率を備える酸化物透明導電膜として、基板温度を200℃以上に加熱して成膜することにより結晶性としたタングステンを含有した酸化インジウム膜(In−W−O)が開示されている。
【0011】
すなわち、これらのIn−Ce−OやIn−W−Oを用いた透明導電膜でも、高い透過率や膜の十分な結晶化を図るためには、200℃以上の温度での成膜や熱処理が必要とされている。
【0012】
一方、近年のモバイル機器の発達により、デバイスの軽量化および低コスト化、安全性への要求が高まるにつれて、透明導電膜用の基板として、軽量かつ安価であり、割れないプラスチック板やプラスチックフィルムのような透明樹脂基板が多く用いられるようになってきている。これらの透明樹脂基板を用いる場合、基板を150℃以上に加熱することが難しく、結晶化した透明導電膜を形成することが困難となる。また、ガラス基板と比較した場合、透明樹脂基板は透過率が低いため、その上に透明導電膜を形成した場合に、全体として十分な透過率を得ることができないという問題もある。
【0013】
特許文献3および特許文献4には、ITOよりも高抵抗の透明導電膜を直流スパッタリング法により得るため、ITOにチタン、イリジウム、コバルトなどの金属元素を添加した低抵抗のスパッタリングターゲットが開示されている。このスパッタリングターゲットを用いた場合、直流マグネトロンスパッタリング法により、基板温度を室温として成膜した場合であっても、透明導電膜が得られるとされている。しかしながら、これらのスパッタリングターゲットは、十分な相対密度および比抵抗を備えたものとはなっていない。また、得られる膜もその目的から本来的に高抵抗の傾向があり、高い導電性と可視光領域での高い透過率を兼ね備えた酸化物透明導電膜およびそのような特性の膜を得るための条件は示されていない。
【先行技術文献】
【特許文献】
【0014】
【特許文献1】特開2005−290458号公報
【特許文献2】特開2004−43851号公報
【特許文献3】特開平9−209134号公報
【特許文献4】特開平9−161542号公報
【発明の開示】
【発明が解決しようとする課題】
【0015】
本発明は、このような問題に鑑み、高い導電性と可視光領域での高い透過率を兼ね備えた、十分な結晶性を備える酸化物透明導電膜を提供すること、および、このような特性を備えた酸化物透明導電膜を、透明樹脂基板を用いて、直流スパッタリング法により成膜することを可能とする酸化物焼結体を提供することを目的としている。
【課題を解決するための手段】
【0016】
本発明は、酸化インジウムを主成分とし、酸化スズおよび酸化コバルトを含有する酸化物焼結体であって、Inに対するSnの原子比:Sn/Inが0.019〜0.102であり、かつ、In、SnおよびCoの合計に対する各成分の原子比:In/(In+Sn+Co)が0.771〜0.967、Sn/(In+Sn+Co)が0.016〜0.091、Co/(In+Sn+Co)が0.015〜0.15であり、該酸化物焼結体の相対密度が98%以上であることを特徴とする。さらに、比抵抗が5×10-3Ω・cm以下であることが好ましい。
【0017】
本発明の酸化物焼結体を、スパッタリングターゲットとして用いることで、150℃以下の低い基板温度での成膜によっても、次のような特性の酸化物透明導電膜を得ることが可能となる。
【0018】
すなわち、本発明の酸化物透明導電膜は、酸化インジウムを主成分とし、酸化スズおよび酸化コバルトを含有する透明導電膜であって、Inに対するSnの原子比:Sn/Inが0.019〜0.102であり、かつ、In、SnおよびCoの合計に対する各成分の原子比:In/(In+Sn+Co)が0.771〜0.967、Sn/(In+Sn+Co)が0.016〜0.091、Co/(In+Sn+Co)が0.015〜0.15であり、比抵抗が5×10-3Ω・cm以下であることを特徴とする。
【0019】
本発明の酸化物透明導電膜においては、さらに、膜厚を15〜40nmとした場合、波長400〜800nmにおける膜単体の平均透過率が98%以上となることが好ましい。また、温度が95℃、湿度が95%の環境に、1000時間さらした場合であっても、その抵抗変化率は1.2以内となることが好ましい。
【発明の効果】
【0020】
本発明の酸化物焼結体をスパッタリングターゲットとして用いて、直流スパッタリング法により、150℃以下の低い基板温度で成膜した場合であっても、比抵抗が5×10-3Ω・cm以下という低抵抗であり、かつ、可視波長400〜800nmにおける膜単体の平均透過率が98%以上という高い透過率を備えた、結晶性の高い酸化物透明導電膜を得ることができる。
【0021】
また、本発明の酸化物焼結体は、相対密度が高く、低抵抗であるため、スパッタリングターゲットとして用いた場合に、成膜時におけるアーキング、およびこれに起因するノジュールやパーティクルの発生を防止することができ、かつ、透明樹脂基板を用いた場合でも、低抵抗かつ高い透過率を備えた結晶性の酸化物透明導電膜の成膜が可能となる。
【発明を実施するための形態】
【0022】
以下、本発明について、(1)酸化物焼結体、(2)酸化物焼結体の製造方法、(3)透明導電膜の成膜、(4)透明導電膜に分けて詳述する。
【0023】
(1)酸化物焼結体
本発明者らは、酸化インジウム系酸化物焼結体について鋭意研究を重ねた結果、酸化インジウム、酸化スズに加えて、酸化コバルトを添加し、かつ、これらの酸化物を構成する、インジウム(In)、スズ(Sn)、コバルト(Co)の各金属成分の組成比率を所定の範囲内に規制するとともに、酸化物焼結体を所定の製造条件により作製することによって、焼結体の密度を上昇させ、焼結体組織の緻密化を図ることができるため、150℃以下という低い基板温度でも、結晶性の酸化物透明導電膜であって、比抵抗が5×10-3Ω・cm以下という低抵抗であり、かつ、可視波長400〜800nmにおける膜単体の平均透過率が98%以上という高い透過率を備え、さらには、高温高湿環境下(温度95℃、湿度95%、1000h)においても、抵抗変化が少ない優れた安定性を有する透明導電膜を得ることできるという知見を得て、本発明を完成するに至ったものである。
【0024】
まず、本発明の酸化物焼結体では、Inに対するSnの原子比:Sn/Inを0.019〜0.102の範囲内となるように規制している。酸化スズ量が少なくすぎると、焼結体の相対密度が98%以上とならなくなってしまい、かつ、焼結体の比抵抗も5×10-3Ω・cm以下にならなくなってしまう。また、このような酸化スズ量が少ない焼結体を用いて成膜した透明導電膜では、膜の平均透過率が98%以上とならず、膜の比抵抗も5×10-3Ω・cmとならず、かつ、高温高湿環境下における抵抗変化率が1.2を超えてしまう。一方、酸化スズ量が多すぎると、成膜後の酸化物透明導電膜が150℃以下の基板温度では結晶化せず、かつ、得られた膜の平均透過率が98%以上とならなくなってしまう。このSn/Inの比率は、0.040〜0.102の範囲内とすることが好ましい。
【0025】
ただし、このような特性は、酸化インジウムに対する酸化スズの添加のみでは十分に得られるものではなく、さらに酸化コバルトを含有させることにより得られるものである。すなわち、本発明の酸化物焼結体では、In、SnおよびCoの合計に対する各金属成分の原子比を、In/(In+Sn+Co)が0.771〜0.967、Sn/(In+Sn+Co)が0.016〜0.091、Co/(In+Sn+Co)が0.015〜0.15となるように規制している。
【0026】
このように、酸化コバルトを含有させることにより、酸化物焼結体の密度が上昇し、焼結体組織の緻密化が図られるとともに、結晶性を向上させ、結晶配向性を一定方向に制御することができる。この酸化コバルトの作用により、酸化スズ量の規制による、低抵抗かつ高い透過率という特性が安定して得られるとともに、特に、高温高湿環境下における抵抗変化率が1.2以下という優れた安定性がもたらされる。
【0027】
Coの、In、SnおよびCoの合計に対する原子比:Co/(In+Sn+Co)は、0.015〜0.15とすることが必要である。酸化コバルト量が少なすぎる場合には、酸化物焼結体の密度が十分に高くならず、焼結体の比抵抗も高いものとなる。得られる透明導電膜は、結晶性を有するものの、比抵抗は高くなる傾向にあり、かつ、その安定性が十分なものではなくなる。一方、酸化コバルト量が多すぎる場合には、高密度で低抵抗の酸化物焼結体が得られるものの、透明導電膜の結晶化温度が上昇するため、低い基板温度では、結晶化しにくくなるとともに、成膜後の膜の抵抗変化が不安定なものとなってしまう。なお、Co/(In+Sn+Co)は、0.05〜0.15の範囲であることが好ましい。
【0028】
また、本発明の酸化物焼結体は、スパッタリング中に発生するアーキング、およびこれに起因するノジュールやパーティクルの発生など、膜の特性に影響を与える原因を有効に防止する観点から、その相対密度を98%以上とする必要があり、99%以上とすることがより好ましい。
【0029】
本発明では、酸化物焼結体の組成比率を上述のように規制するとともに、その相対密度を98%以上とすることにより、酸化物焼結体の比抵抗(体積抵抗率)を5×10-3Ω・cm以下、好ましくは1.0×10-3Ω・cm以下となるようにしている。すなわち、本発明の範囲を超えて、低い相対密度、高い比抵抗の酸化物焼結体を用いた場合、高温環境下における抵抗変化率が悪化し、膜の安定性が劣るとともに、さらには膜の透過率が低くなり、かつ、比抵抗も高いものとなる。
【0030】
(2)酸化物焼結体の製造方法
上述のような特性を備える、本発明の酸化物焼結体の製造する際には、酸化インジウム(In23)粉、酸化スズ(SnO2)粉、酸化コバルト(CoO)粉とからなる原料粉末に、水と水溶性バインダを配合し、得られたスラリーを粉砕し、10時間以上攪拌した後、乾燥、造粒を行う。その後、得られた造粒粉を型に詰め、加圧成形し得られた成形体を、酸素含有雰囲気中、1450〜1600℃で12〜25時間焼結することが必要である。以下、各工程について詳述に説明する。
【0031】
(2−1)原料粉末
本発明に係る酸化物焼結体の原料としては、酸化インジウム粉、酸化スズ粉および酸化コバルト粉を使用することができ、これらの平均粒径は、いずれも0.05μm以上1.0μm未満であることが必要である。
【0032】
平均粒径が0.05μm未満の場合には、粉末が凝集して、均一に混合することが困難となる。一方、1.0μm以上になると、得られる酸化物焼結体において、相対密度を98%以上とすることができなくなる。このため、スパッタリング中に発生するアーキングが発生し、これに起因するノジュールやパーティクルの発生などに起因して、膜の特性が悪化してしまう。
【0033】
なお、これらの粉末の混合比は、目的とする酸化物焼結体の組成比率、すなわち各金属成分の原子比に応じたものとすればよい。具体的には、Inに対するSnの原子比:Sn/Inが0.019〜0.102となるようにし、かつ、In、SnおよびCoの合計に対する各成分の原子比:In/(In+Sn+Co)が0.771〜0.967、Sn/(In+Sn+Co)が0.016〜0.091、Co/(In+Sn+Co)が0.015〜0.15となるように調合すればよい。
【0034】
(2−2)湿式粉砕工程
次に、これらの原料粉末に対して、水溶性バインダを0.5〜1.5質量%となるように加え、さらに水とともに樹脂製ポットに入れ、湿式粉砕および混合を行う。水溶性バインダとしては、加熱により消失または気化する公知のバインダであれば限定されず、ポリビニルアルコール(PVA)、ポリビニルブチラール、メチルセルロースなどを使用することが可能である。
【0035】
また、この工程には、ボールミル、ビーズミルなど公知の手段を用いることができる。コストの面ではボールミルを採用することが好ましいが、ボールミルでは粉砕時間が非常に掛かるため、作業効率の面からは、ビーズミルを使用することが好ましい。ボールやビーズとしては、たとえば、硬質のジルコニア(ZrO2)製のものを用いることが好ましい。また、ボール径またはビーズ径によっても粉砕性が変わることから、ボールの場合にはφ2〜6mm程度、ビーズの場合にはφ0.2〜0.7mm程度のものを用いることが好ましい。ボール径またはビーズ径が上記範囲を外れる場合には、所定の粉砕能力が得ることが出来ず、量産性や品質が低下する可能性がある。
【0036】
湿式粉砕および混合の条件は、ボールミルの場合には回転数を50〜70rpmとして、粉砕・混合時間を15〜28時間とすることが好ましい。また、ビーズミルの場合には回転数を1300〜1700rpmとして、粉砕・混合時間を3〜6時間とすることが好ましい。粉砕および混合の時間が不足すると、最終的に得られる焼結体密度が低下する。逆に長すぎても、ジルコニアが不純物として混入して、同様に焼結体密度が低下する。
【0037】
以上の処理により、平均粒径が0.5μm以下の原料粉末を含むスラリーが得られる。平均粒径が0.5μmを超える場合には、密度低下という問題が生ずる。この平均粒径は、0.1〜0.5μmの範囲にあるようにすることが好ましい。また、生産性の観点から、スラリーの粘度は30〜600mPa・sとすることが好ましい。
【0038】
(2−3)噴霧乾燥工程
前記工程により得られた原料粉末を含むスラリーについて、噴霧乾燥を行い、造粒粉を得る。特に、スプレードライヤを用いることにより、球状の造粒粉を得ることが好ましい。なお、噴霧乾燥時の乾燥温度は、120〜200℃の範囲とすることが好ましい。また、装置に応じて、球状の造粒粉が得られるように排風量などにより乾燥速度を適宜調整する。噴霧乾燥には、量産性に優れたディスクを用いたスプレードライヤを用いることが好ましく、ディスク回転数:8000〜15000rpm、スラリー濃度40%以上とすることで、球状の成形性に優れる造粒粉が得られる。乾燥温度を低くすることで、バインダが硬くならず、成形時に近接する粒同士が変形および密着することで、高強度の成形体が得られる。造粒粉の粒径は、平均粒径で40〜100μmとすることが望ましい。
【0039】
(2−4)成形工程
噴霧乾燥工程を経て得られた造粒粉を、ゴム型に充填し、冷間静水圧プレス(CIP)を用いて、250〜350MPaの圧力、より好ましくは280〜320MPaの圧力で、成形を行う。この際、一軸プレスによる予備成形を実施した後に、CIPを行ってもよい。成形圧力が250MPa未満の場合には、造粒粉同士の間に空孔ができ、酸化物焼結体の相対密度を98%以上とすることができない。一方、350MPaを越えても、それ以上の効果を得ることができず、また、装置の耐久性の観点からも量産に適しているとはいえない。なお、成形時における最高圧力の保持時間は、1〜10分とすることが好ましい。
【0040】
(2−5)脱バインダ工程
次に、得られた成形体を焼結炉内に設置し、炉内の酸素濃度を30体積%以上に維持した状態で、加熱(脱バインダ)を行う。この際、炉内の酸素の流通量は、成形体の大きさや形状に応じて適宜選択されるべきものであるが、90〜110L/分程度の割合で炉内に酸素を流通させることが好ましい。
【0041】
このように炉内に酸素を流通させて酸素濃度を30体積%以上に維持することにより、水溶性バインダが分解されて発生したガスが、酸素と共に炉外へ排出されるため、脱バインダを促進することができるばかりでなく、成形体表面が還元されることを抑制することができるため、高強度、高密度の焼結体を得ることができる。一方、酸素の流通量が十分出ない場合、または、炉内の酸素濃度が不足する場合には、上記の効果を得ることができない。なお、酸素濃度は100体積%(純酸素雰囲気)まで採用することができるが、コストの観点から30体積%程度とすれば十分である。
【0042】
脱バインダ時における加熱温度は200〜800℃とし、加熱時間は30時間以上とすることが好ましい。加熱温度が200℃未満ではバインダが揮発せずに残ってしまい密度低下につながり、一方、800℃を超えると成形体の収縮が始まりバインダが焼結体内部に残り、密度低下という問題が生じる。また、加熱時間が30時間未満では、バインダが十分に分解されない可能性がある。なお、加熱時における成形体の割れを防止する観点から、昇温速度は0.1〜1.5℃/分とすることが好ましく、0.3〜1.0℃/分とすることがより好ましい。
【0043】
(2−6)焼成工程
脱バインダ工程後、常圧の大気雰囲気下、1450〜1600℃の温度で、10〜25時間の焼成を行い、成形体を焼結させる。なお、焼成工程は、脱バインダ工程と連続して同じ加熱炉で行うことが好ましい。
【0044】
焼成温度は1450〜1600℃とすることが好ましく、1470〜1570℃とすることがより好ましい。このような温度範囲で焼成を行うことにより、液相焼結が充分に進行して焼結体密度を高くすることができ、さらには酸化インジウムの溶融を防止して、所望の形状の焼結体の作製が行いやすくなる。
【0045】
また、上記の焼成温度での保持時間は、10〜25時間とすることが好ましく、15〜20時間とすることがより好ましい。この範囲内であれば、焼結時間の短縮(電力の使用量減)と高い生産性を実現しつつ、高品質な酸化インジウム系酸化物焼結体を得ることができる。
【0046】
なお、成形体の割れを防止しつつ、粒成長を均一に行わせる観点から、昇温速度は0.1〜1.5℃/分とすることが好ましく、0.3〜1.0℃/分とすることがより好ましい。さらに、上記焼成温度で所定時間保持した後は、0.2〜1.2℃/分の範囲の冷却速度で室温付近まで冷却することが好ましい。
【0047】
(3)透明導電膜の成膜
本発明のスパッタリングターゲットを用いて成膜を行う際のスパッタリング法については、何ら制限されることなく、公知のいずれの手段をも用いることができるが、量産性の観点から、直流スパッタリング法、たとえば直流マグネトロンスパッタリング装置を用いた手段を採ることが好ましい。本発明のスパッタリングターゲットは、相対密度が98%以上と高いため、直流スパッタリング法を用いても、アーキングやノジュールの発生は抑制される。
【0048】
また、スパッタリング時の基板温度を150℃以下とした場合であっても、高い結晶性を有する膜を得ることができるため、特に、透明プラスチック基板などの樹脂基板に成膜する場合に、高い透過率を得ることができる。
【0049】
本発明のスパッタリングターゲットを用いて成膜する際の条件については、基板温度を除き、特に限定されることはなく、通常の条件において成膜することができる。たとえば、直流マグネトロンスパッタリング装置により、スパッタリングを行う場合には、ターゲット−基板間距離:35〜120mm、到達真空度:1×10-3Pa以下、導入ガス:0〜10%のO2ガスを含むArガス、ガス圧:0.1〜10.0Pa、投入電力:直流0.55〜5.50W/cm2とする。なお、基板温度は室温から加熱を行わないことにより、150℃未満の温度としてもよく、必要に応じて、基板を冷却して、150℃未満の所定温度に保持するようにしてもよい。
【0050】
(4)透明導電膜
このようにして得られる本発明の透明導電膜は、酸化インジウムを主成分とし、酸化スズおよび酸化コバルトを含有する透明導電膜であって、Inに対するSnの原子比:Sn/Inが0.019〜0.102であり、かつ、In、SnおよびCoの合計に対する各成分の原子比:In/(In+Sn+Co)が0.771〜0.967、Sn/(In+Sn+Co)が0.016〜0.091、Co/(In+Sn+Co)が0.015〜0.15であり、比抵抗が5×10-3Ω・cm以下である。なお、透明導電膜の比抵抗は、1×10-3Ω・cm以下であることが好ましい。
【0051】
透明導電膜の組成は、成膜条件に依存する場合もあるが、通常は適切な設定により、成膜材料として用いられる酸化物焼結体の組成と同様とすることができる。すなわち、透明導電膜の組成に基づいて、酸化物焼結体の組成を決定することにより、成膜によって、所望の組成の透明導電膜が得られることとなる。
【0052】
本発明の透明導電膜では、その膜厚が15〜40nmの場合に、400〜800nmの可視光を用いて、分光光度計や分光エリプソメトリにより透過率を測定した場合、平均透過率が膜単体で98%以上となる。
【0053】
また、基板を無加熱で成膜した場合であっても、高い結晶性を有する結晶質の透明導電膜となる。これについては、X線回折を用いた測定において、(222)面の回折ピークが強く測定されるか否かにより、確認することができる。この面の回折ピークが強く測定される場合、本発明の透明導電膜は、(222)面に主配向しており、結晶性が非常に高い膜となっているといえる。
【0054】
さらには、この透明導電膜は、温度95℃、湿度95%の環境下に1000時間さらした場合であっても、その抵抗変化率が1.2以内、好ましくは1.0以下となる。このような特性は、この透明導電膜が適用された製品を高温環境下の屋外で使用する場合や、車載用の電子機器など適用する場合に、特に有効なものである。
【実施例】
【0055】
(実施例1)
原料粉末として、酸化インジウム(In23)粉末(純度99.9%、平均粒径約0.9μm)、酸化スズ(SnO2)粉末(純度99.9%、平均粒径約0.9μm)、および酸化コバルト(CoO)粉末(純度99.9%、平均粒径約0.8μm)の3種類の原料粉末を用意した。
【0056】
これらの原料粉末を以下の原子比となるように調整した上で、樹脂製ポットに入れた。
【0057】
Sn/In=0.019
In/(In+Sn+Co)=0.967
Sn/(In+Sn+Co)=0.018
Co/(In+Sn+Co)=0.015
さらに、水溶性バインダとしてポリビニルアルコールを、前記原料粉末の総量に対して1.4質量%となるように秤量し、純水とともに樹脂製ポットに入れ、ボールミル(5mmφのZrO2ボールを使用)により24時間粉砕および混合を行い、スラリーを得た。その後、スプレードライヤ(大川原化工機株式会社製、ODL−20型)により、噴霧乾燥を行うことにより、平均粒径が50μmの造粒粉を得た。得られた造粒粉をφ150mm寸法の型へ充填し、冷間静水圧プレスで最高圧力を294MPa(3ton/cm2)として成形体を得た。
【0058】
さらに、この成形体を焼結炉(丸祥電器株式会社製)内に設置し、炉内容積1m3当たり100L/分の割合で酸素を流通させることにより、酸素濃度を30%以上に維持した状態で700℃まで加熱し、脱バインダ処理を34時間行った。その後、炉内雰囲気を大気雰囲気として、最高温度を1550℃として20時間の焼成を行い、焼結体を得た。
【0059】
上記焼結体を研削加工し、直径4インチ(101.6mm)、厚み5mmサイズの酸化インジウム系スパッタリングターゲットを作製した。なお、得られたスパッタリングターゲットをICP発光分光測定装置(株式会社島津製作所製、ICPS8100)で組成分析を行ったところ、原料粉末の組成比と同一であることが確認された。実施例1の原料粉末の組成範囲および焼結温度について、表1に示す。
【0060】
得られた酸化インジウム系スパッタリングターゲットについて、相対密度および焼結体の比抵抗について測定をした。
【0061】
[相対密度]
スパッタリングターゲットを一定の大きさに切り出した試料について、アルキメデス法により密度の測定を行った。次に、各原料の密度を酸化インジウム:7.14g/cm3、酸化スズ:6.95g/cm3、酸化コバルト:6.1g/cm3として加重平均密度(理論密度)を算出し、この加重平均密度を100%として、相対密度を算出した。この結果、実施例1のスパッタリングターゲットの相対密度は、98.8%であった。
【0062】
[焼結体の比抵抗]
酸化物焼結体の比抵抗は、四探針法抵抗率計ロレスタEP(ダイアインスツルメンツ社製、MCP−T360型)を用いて測定した。この結果、実施例1のスパッタリングターゲットの比抵抗は、4.0×10-3Ω・cmであった。
【0063】
得られたスパッタリングターゲットを無酸素銅製のバッキングプレートにメタルボンディングして、直流電源を用いたマグネトロンスパッタリング装置(株式会社トッキ製)にセットし、下記の条件でスパッタリングを行い、膜厚25nmの透明導電膜を得た。基板についてはガラス基板を使用し、基板加熱は行わずに成膜した。
【0064】
(スパッタリング条件)
基板間距離:60mm
到達真空度:6×10-4Pa
基板温度 :室温(加熱なし)
得られた透明導電膜の組成をICP発光分光測定装置により確認したところ、スパッタリングターゲットの組成比と同一であった。この透明導電膜について、結晶性、透過率、比抵抗および抵抗変化を測定した。
【0065】
[透明導電膜の結晶性]
多目的X線回折装置(スペクトリス株式会社製、X’Pert−PRO MPD)を用いて、得られた透明導電酸化物膜の結晶性の確認を行った。(222)面の回折ピークが観測された場合は結晶性の膜が得られているものとし、回折ピークが観察されなかった場合は膜が結晶化していないと判定した。この結果、実施例1の透明導電膜は、高い結晶性を有していることが確認された。
【0066】
[透明導電膜の透過率]
得られた透明導電酸化物膜について、分光光度計(日本分光株式会社製、UbestV−570iRM/DS)を用いて、波長400〜800nmの光の透過率を測定した。波長500〜600nmに透過率のピークが観察された。波長400〜800nmの透過率の平均値は98.2%であった。
【0067】
[透明導電膜の比抵抗、抵抗変化率]
透明導電膜の比抵抗は、四探針法抵抗率計ロレスタEP(ダイアインスツルメンツ社製、MCP−T360型)で測定した表面抵抗と膜厚の積から算出した。透明導電膜の膜厚は接触式表面粗さ計(テンコール社製)を用いて未成膜部分と成膜部分の段差測定から求めた。
【0068】
さらに、透明導電膜を温度が95℃、湿度が95%の環境に、1000時間さらす試験を行い、試験前の表面抵抗R0に対する試験後の表面抵抗Rから、R/R0として抵抗変化率を求めた。この結果、実施例1の比抵抗は3.0×10-3Ω・cm、抵抗変化率は1.20であった。
【0069】
実施例1のスパッタリングターゲットの相対密度および比抵抗、透明導電膜の結晶性、透過率、比抵抗および抵抗変化率について測定を行った結果を、表2に示す。
【0070】
(実施例2〜8)
各成分の組成比を変更し、表1に記載した値としたこと以外は、実施例1と同様にして、スパッタリングターゲットを得た。これらのスパッタリングターゲットについて、ICP発光分光法で組成分析を行ったところ、実施例1と同様に、いずれも原料粉末の組成比と同一であることが確認された。また、これらのスパッタリングターゲットを用いて成膜した透明導電膜についてもICP発光分光測定装置で組成分析を行ったところ、実施例1と同様に、いずれもスパッタリングターゲットの組成比と同一であることが確認された。
【0071】
実施例2〜8のスパッタリングターゲットの相対密度および比抵抗、透明導電膜の結晶性、透過率、比抵抗および抵抗変化率について測定を行った結果を、表2に示す。
【0072】
(比較例1、2)
各成分の組成比を変更し、表1に記載した値としたこと以外は、実施例1と同様にして、スパッタリングターゲットを得た。比較例1は、Sn/InとSn/(In+Sn+Co)が本発明の範囲を下回り、In/(In+Sn+Co)が本発明の範囲を上回る例である。比較例2は、Sn/InとSn/(In+Sn+Co)が本発明の範囲を下回る例である。
【0073】
これらのスパッタリングターゲットおよび透明導電膜についても、いずれも原料粉末の組成比と同一であることが確認された。比較例1および2のスパッタリングターゲットの相対密度および比抵抗、透明導電膜の結晶性、透過率、比抵抗および抵抗変化率について測定を行った結果を、表2に示す。
【0074】
(比較例3〜5)
各成分の組成比を変更し、表1に記載した値としたこと以外は、実施例1と同様にして酸化物焼結体を得た。比較例3は、Sn/InとSn/(In+Sn+Co)がともに本発明の範囲を上回る例である。比較例4は、Sn/Inが本発明の範囲を上回り、In/(In+Sn+Co)が本発明の範囲を下回る例である。比較例5は、Sn/Inのみが本発明の範囲を上回る例である。
【0075】
これらのスパッタリングターゲットおよび透明導電膜についても、いずれも原料粉末の組成比と同一であることが確認された。比較例3〜5のスパッタリングターゲットの相対密度および比抵抗、透明導電膜の結晶性、透過率、比抵抗および抵抗変化率について測定を行った結果を、表2に示す。
【0076】
(比較例6)
焼成温度を1400℃にした以外は、実施例4と同様にして酸化物焼結体を得た。これらのスパッタリングターゲットおよび透明導電膜についても、いずれも原料粉末の組成比と同一であることが確認された。比較例6のスパッタリングターゲットの相対密度および比抵抗、透明導電膜の結晶性、透過率、比抵抗および抵抗変化率について測定を行った結果を、表2に示す。
【0077】
(比較例7、8)
各成分の組成比を変更し、表1に記載した値としたこと以外は、実施例1と同様にして酸化物焼結体を得た。比較例7は、In/(In+Sn+Co)が本発明の範囲を上回り、Co/(In+Sn+Co)が本発明の範囲を下回る例である。比較例8は、In/(In+Sn+Co)が本発明の範囲を下回り、Co/(In+Sn+Co)が本発明の範囲を上回る例である。
【0078】
これらのスパッタリングターゲットおよび透明導電膜についても、いずれも原料粉末の組成比と同一であることが確認された。比較例7および8のスパッタリングターゲットの相対密度および比抵抗、透明導電膜の結晶性、透過率、比抵抗および抵抗変化率について測定を行った結果を、表2に示す。
【0079】
(比較例9〜14)
比較例9〜14では、平均粒径が1.0μm以上の原料粉末を1種以上用いたこと以外は、それぞれ実施例1〜6と同様にして、酸化物焼結体を得た。これらのスパッタリングターゲットおよび透明導電膜についても、いずれも原料粉末の組成比と同一であることが確認された。比較例9〜14のスパッタリングターゲットの相対密度および比抵抗、透明導電膜の結晶性、透過率、比抵抗および抵抗変化率について測定を行った結果を、表2に示す。
【0080】
(評価)
実施例1〜8のスパッタリングターゲットは、いずれも98%以上の相対密度が得られていた。また、実施例1〜8のスパッタリングターゲットを用いて得られた透明導電膜は、その比抵抗が5×10-3Ω・cm以下となり、タッチパネル等に好適な導電性を示していた。また、透過率についても、それぞれ98%以上と高い値を示した。なお、実施例1〜8のスパッタリングターゲットを用いて成膜する際に、アーキングやノジュールの発生は、ほとんどみられなかった。
【0081】
これに対して、Snの含有量が少ない比較例1および2のスパッタリングターゲットは、その相対密度が98%以上とならず、比抵抗も5×10-3Ω・cmを超えており、これらを用いて得られた透明導電膜は、透過率、比抵抗および抵抗変化率のいずれも不十分なものであった。
【0082】
一方、Snの含有量が多い比較例3〜5では、透明導電膜は結晶性が悪く、酸化コバルトの添加による結晶化促進の効果が薄れることが理解された。
【0083】
焼結温度が本発明の範囲から外れていた比較例6では、スパッタリングターゲットの相対密度が98%以上とならず、比抵抗も5×10-3Ω・cmを超えており、これらを用いて得られた透明導電膜は、比抵抗および抵抗変化率のいずれも不十分なものであった。
【0084】
比較例7および8のように酸化コバルトの含有量が、本発明の範囲外の場合には、抵抗変化率が大きくなった。特に、酸化コバルトの含有量が多い比較例8では、結晶性の悪化も確認された。
【0085】
平均粒径が1μm以上の原料粉末を1種以上用いた比較例9〜14では、スパッタリングターゲットの相対密度が98%以上とならず、スパッタリングターゲットおよび透明導電膜のいずれも比抵抗が5×10-3Ω・cmを上回ってしまった。
【0086】
また、これらの比較例のうち、スパッタリングターゲットの相対密が98%未満である比較例1、2、6、7および9〜14については、実施例1〜9と比べて、成膜時にアーキングやノジュールの発生が多く見られ、膜特性の悪化や生産効率の低下が確認された。
【0087】
【表1】

【0088】
【表2】

【産業上の利用可能性】
【0089】
本発明の酸化物焼結体は、太陽電池用透明導電膜、タッチパネル用透明導電膜、フラットパネルディスプレイなどの液晶表示装置用透明導電膜、有機EL透明導電膜などの高い透過率を必要とする用途に加え、近年透明プラスチックフィルム基板が必要とされているフィルムタッチパネル用途での透明導電膜を、直流スパッタリング法により得るためのスパッタリングターゲットとして好適である。


【特許請求の範囲】
【請求項1】
酸化インジウムを主成分とし、酸化スズおよび酸化コバルトを含有する酸化物焼結体であって、Inに対するSnの原子比:Sn/Inが0.019〜0.102であり、かつ、In、SnおよびCoの合計に対する各成分の原子比:In/(In+Sn+Co)が0.771〜0.967、Sn/(In+Sn+Co)が0.016〜0.091、Co/(In+Sn+Co)が0.015〜0.15であり、相対密度が98%以上であることを特徴とする、酸化物焼結体。
【請求項2】
比抵抗が5×10-3Ω・cm以下であることを特徴とする、請求項1に記載の酸化物焼結体。
【請求項3】
酸化インジウムを主成分とし、酸化スズおよび酸化コバルトを含有する透明導電膜であって、Inに対するSnの原子比:Sn/Inが0.019〜0.102であり、かつ、In、SnおよびCoの合計に対する各成分の原子比:In/(In+Sn+Co)が0.771〜0.967、Sn/(In+Sn+Co)が0.016〜0.091、Co/(In+Sn+Co)が0.015〜0.15であり、比抵抗が5×10-3Ω・cm以下であることを特徴とする酸化物透明導電膜。
【請求項4】
膜厚15〜40nmで、波長400〜800nmにおける膜単体の平均透過率が98%以上であることを特徴とする、請求項3に記載の酸化物透明導電膜。
【請求項5】
温度が95℃、湿度が95%の環境に、1000時間さらした前後における抵抗変化率が1.2以内であることを特徴とする、請求項3また4に記載の酸化物透明導電膜。


【公開番号】特開2013−67538(P2013−67538A)
【公開日】平成25年4月18日(2013.4.18)
【国際特許分類】
【出願番号】特願2011−208191(P2011−208191)
【出願日】平成23年9月22日(2011.9.22)
【出願人】(000183303)住友金属鉱山株式会社 (2,015)
【Fターム(参考)】