説明

重合性官能基を有する薄片状チタン酸、その懸濁液及び塗膜

【課題】 重合性官能基を有する薄片状チタン酸、その懸濁液、及び密着性に優れたチタン酸塗膜及びチタン酸膜コーティング樹脂基板を得る。
【解決手段】 層状チタン酸塩を酸で処理し、次いで有機塩基性化合物を作用させて層間を膨潤または剥離して得られる薄片状チタン酸であって、有機塩基性化合物の少なくとも一部が、アクリル基またはメタクリル基などの重合性官能基を有する有機塩基性化合物であることを特徴としており、好ましくは、層状チタン酸塩が、式AxyzTi2-(y+z)4〔式中、A及びMは互いに異なる1〜3価の金属を示し、□はTiの欠陥部位を示す。xは、0<x<1を満たす正の実数であり、y及びzは0<y+z<1を満たす0または正の実数である〕で表されることを特徴としている。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、重合性官能基を有する薄片状チタン酸、その懸濁液、並びにそれを用いて形成したチタン酸塗膜及びチタン酸膜コーティング樹脂基板に関するものである。
【背景技術】
【0002】
近年、様々な機能を付与する目的で、無機皮膜を各種基材上に形成する手法が提案されている。その一手法として、特許文献1には、層状チタン酸塩を酸処理した後に塩基性化合物を作用させて層間を膨潤または剥離して得られる薄片状チタン酸懸濁液、及び該薄片状チタン酸懸濁液を樹脂フィルム等の基材に塗布し乾燥することにより得られるチタン酸塗膜が開示されている。このチタン酸塗膜は塗膜形成方法が非常に簡便であり、また前記特許文献に記載されているように、反射防止、高誘電率、光触媒、紫外線遮蔽、熱線反射などの効果が期待できる。
【0003】
特許文献2〜4は、後述するように、層状チタン酸塩の製造方法を開示している。また、特許文献5及び6は、後述するように、薄片状チタン酸懸濁液の製造方法を開示している。
【特許文献1】国際公開公報WO03/016218号公報
【特許文献2】特許第2979132号公報
【特許文献3】国際公開公報WO99/11574号公報
【特許文献4】特許第3062497号公報
【特許文献5】特許第2671949号公報
【特許文献6】国際公開公報WO03/037797号公報
【発明の開示】
【発明が解決しようとする課題】
【0004】
本発明の目的は、密着性に優れたチタン酸塗膜及びチタン酸膜コーティング樹脂基板、並びにこれらを形成することができる重合性官能基を有する薄片状チタン酸及びその懸濁液を提供することにある。
【課題を解決するための手段】
【0005】
本発明の薄片状チタン酸は、重合性官能基を有する有機塩基性化合物を層間または表面に有する薄片状チタン酸であり、層状チタン酸塩を酸で処理し、次いで有機塩基性化合物を作用させて層間を膨潤または剥離して得られる薄片状チタン酸であって、有機塩基性化合物の少なくとも一部が重合性官能基を有することを特徴している。
【0006】
本発明において薄片状チタン酸懸濁液は、層状チタン酸塩を酸で処理し、次いで有機塩基性化合物を作用させて層間を膨潤または剥離して得られる薄片状チタン酸であって、有機塩基性化合物の少なくとも一部が重合性官能基を有する有機塩基性化合物であることを特徴とする薄片状チタン酸の懸濁液である。この薄片状チタン酸懸濁液を基材に塗布した後、熱処理及び/またはUV照射処理をすることにより、重合性官能基を重合させることができるため、薄片状チタン酸同士が強固に結合したチタン酸塗膜が得られる。これにより、チタン酸塗膜の密着性は格段に向上する。
【0007】
本発明において用いる有機塩基性化合物の重合官能基は、反応性の観点及び入手のしやすさから、アクリル基またはメタクリル基から選ばれることが好ましい。
【0008】
本発明において用いる薄片状チタン酸は、有機塩基性化合物の重合官能基が一部セシウムイオンで置換されていることが好ましい。これにより、チタン酸塗膜の耐光性を向上させることができる。
【0009】
本発明において用いる層状チタン酸塩としては、式AxyzTi2-(y+z)4 〔式中、A及びMは互いに異なる1〜3価の金属を示し、□はTiの欠陥部位を示す。xは、0<x<1を満たす正の実数であり、y及びzは0<y+z<1を満たす0または正の実数である〕で表されるものであることが好ましい。例えば、具体的には、層状チタン酸塩が、K0.50.8Li0.27Ti1.733.854で表されるものが挙げられる。
【0010】
本発明において用いる薄片状チタン酸懸濁液は、pHが6〜9の範囲であることが好ましい。これにより、チタン酸塗膜の耐光性を向上させることができる。
【0011】
本発明において用いる薄片状チタン酸懸濁液は、ラジカル開始剤及び/または光重合開始剤が含まれていることが好ましい。これにより、重合性官能基の重合効率を向上させることができる。
【0012】
本発明のチタン酸塗膜は、上記本発明の薄片状チタン酸懸濁液を基材に塗布した後、熱処理及び/またはUV照射処理し、重合性官能基を重合させることにより得られることを特徴としている。
【0013】
本発明のチタン酸膜コーティング樹脂基板は、上記本発明のチタン酸塗膜を、基材としての樹脂基板上に形成したことを特徴としている。
【0014】
樹脂基板は、密着性の観点から表面処理が施されていることが好ましい。
【発明の効果】
【0015】
本発明によれば、重合性官能基を有する薄片状チタン酸及びその懸濁液を得ることができ、これらを用いて密着性に優れたチタン酸塗膜及びチタン酸膜コーティング樹脂基板を得ることができる。
【発明を実施するための最良の形態】
【0016】
以下、本発明について、さらに詳細に説明する。
【0017】
<薄片状チタン酸懸濁液>
本発明において用いる薄片状チタン酸懸濁液は、薄片状チタン酸懸濁液は、層状チタン酸塩を酸で処理し、次いで有機塩基性化合物を作用させて層間を膨潤または剥離して得られる薄片状チタン酸であって、有機塩基性化合物の一部及び全てが重合性官能基を有する有機塩基性化合物であることを特徴とする薄片状チタン酸の懸濁液である。重合性官能基を有しない有機塩基性化合物を用いた薄片状チタン酸懸濁液を得る方法は、例えば、特許文献1及び特許文献5に記載されている。
【0018】
<層状チタン酸塩>
原料となる層状チタン酸塩は、例えば、特許文献2に開示の方法に従い、炭酸セシウムと二酸化チタンをモル比1:5.3で混合し、800℃で焼成することによりCs0.7Ti1.834が得られる。また、特許文献5に開示の方法に従い、炭酸カリウムと炭酸リチウムと二酸化チタンをK/Li/Ti=3/1/6.5(モル比)で混合して摩砕し、800℃で焼成することによりK0.80.27Ti1.734が得られる。更に、特許文献4に開示の方法に従い、アルカリ金属またはアルカリ金属のハロゲン化物もしくは硫酸塩をフラックスとし、フラックス/原料の重量比が0.1〜2.0となるように混合した混合物を700〜1200℃で焼成することにより、一般式AXYZTi2-(Y+Z)4〔式中、A及びMは互いに異なる1〜3価の金属を示し、□はTiの欠陥部位を示す。Xは0<X<1.0を満たす正の実数であり、Y及びZは0<Y+Z<1を満たす0または正の実数である〕で表される層状チタン酸塩を得ることもできる。上記一般式におけるAは、価数1〜3価の金属であり、好ましくは、K、Rb、及びCsから選ばれる少なくとも一種であり、Mは、金属Aとは異なる価数1〜3価の金属であり、好ましくは、Li、Mg、Zn、Cu、Fe、Al、Ga、Mn、及びNiから選ばれる少なくとも一種である。具体的な例としては、K0.800.27Ti1.734、Rb0.75Ti1.75Li0.254、Cs0.70Li0.23Ti1.774、Ce0.700.18Ti1.834、Ce0.70Mg0.35Ti1.654、K0.8Mg0.4Ti1.64、K0.8Ni0.4Ti1.64、K0.8Zn0.4Ti1.64、K0.8Cu0.4Ti1.64、K0.8Fe0.8Ti1.24、K0.8Mn0.8Ti1.24、K0.76Li0.22Mg0.05Ti1.734、K0.67Li0.2l0.07Ti1.734等が挙げられる。また、特許文献6に開示の方法に従い、K0.80.27Ti1.734を酸洗後、焼成して得られるK0.50.70.27Ti1.733.853.95も利用することができる。
【0019】
<層状チタン酸>
層状チタン酸は、例えば、上記層状チタン酸塩を酸処理し、交換可能な金属カチオンを水素イオンまたはヒドロニウムイオンで置換することにより得られる。酸処理に使用する酸は、特に限定されるものではなく、塩酸、硫酸、硝酸、リン酸、ホウ酸などの鉱酸、あるいは有機酸でも良い。層状チタン酸の種類、酸の種類及び濃度、層状チタン酸のスラリー濃度は、金属カチオンの交換率に影響する。一般に、酸濃度が低く、スラリー濃度が大きいほど、層間金属カチオンの残存量が多くなり、層間剥離しにくくなるため、剥離後の薄片状チタン酸の厚みが大きくなる。金属カチオンが除きにくい場合は、必要に応じて酸処理を繰り返し行ってもよい。
【0020】
<薄片状チタン酸懸濁液>
薄片状チタン酸懸濁液は、上記層状チタン酸に層間膨潤作用のある塩基性化合物を作用させ、層間を膨潤または剥離することにより得られるが、有機塩基性化合物の一部及び全てが重合官能基を有する有機塩基性化合物であることが必須である。この薄片状チタン酸懸濁液を得る方法としては、下記の3つの処方がある。
【0021】
(処方1)
層間膨潤作用を有し且つ重合性官能基を有する有機塩基性化合物(A)を層状チタン酸に作用させて薄片状チタン酸懸濁液とする。
【0022】
(処方2)
層間膨潤作用を有する一般の有機塩基性化合物(B)と、層間膨潤作用を有し且つ重合性官能基を有する有機塩基性化合物(A)を併用して層状チタン酸に作用させ、薄片状チタン酸懸濁液とする。
【0023】
(処方3)
層間膨潤作用を有する一般の有機塩基性化合物(B)を層状チタン酸に作用させて薄片状チタン酸懸濁液とし、その後、層間膨潤作用を有し且つ重合性官能基を有する有機塩基性化合物(A)を添加して薄片状チタン酸懸濁液とする。
【0024】
層間膨潤作用を有し且つ重合性官能基を有する有機塩基性化合物(A)としては、例えば、N,N−ジメチルアミノプロピルアクリレート、N,N−ジエチルアミノプロピルアクリレート、N,N−ジメチルアミノエチルメタクリレート、N,N−ジエチルアミノエチルメタクリレート、N,N−ジメチルアミノプロピルメタクリレート、N,N−ジエチルアミノプロピルメタクリレート、N,N−ジメチルアミノブチルメタクリレート、N,N−ジメチルアミノエチルアクリレート、N,N−ジメチルアミノプロピルアクリルアミド、N,N−ジメチルアミノエチルアクリルアミド、N,N−ジメチルアミノプロピルメタクリルアミド、アクリロイルモルホリン、N−2−ヒドロキシー3−アクリロイルオキシプロピルーN,N−ジメチルアミン、N−3−メタクリロイルオキシプロピル−2−ヒドロキシプロピルーN,N−ジエチルアミンなどが挙げられる。特に好ましいのは、N,N−ジメチルアミノプロピルアクリルアミド及びN,N−ジメチルアミノプロピルメタクリルアミドである。
【0025】
また、層間膨潤作用を有する一般の有機塩基性化合物(B)としては、例えば、1級〜3級アミン及びそれらの塩、アルカノールアミン及びそれらの塩、4級アンモニウム塩、ホスホニウム塩、アミノ酸及びそれらの塩等が挙げられる。1級アミン類としては、例えば、メチルアミン、エチルアミン、n−プロピルアミン、ブチルアミン、ペンチルアミン、ヘキシルアミン、オクチルアミン、ドデシルアミン、ステアリルアミン、2−エチルヘキシルアミン、3−メトキシプロピルアミン、3−エトキシプロピルアミン等及びこれらの塩が挙げられる。2級アミン類としては、例えば、ジエチルアミン、ジペンチルアミン、ジオクチルアミン、ジベンジルアミン、ジ(2−エチルヘキシル)アミン、ジ(3−エトキシプロピル)アミン等及びこれらの塩が挙げられる。3級アミン類としては、例えば、トリエチルアミン、トリオクチルアミン、トリ(2−エチルヘキシル)アミン、トリ(3−エトキシプロピル)アミン、ジポリオキシエチレンドデシルアミン等及びこれらの塩が挙げられる。アルカノールアミン類としては、例えば、エタノールアミン、ジエタノールアミン、トリエタノールアミン、イソプロパノールアミン、ジイソプロパノールアミン、トリイソプロパノールアミン、N,N−ジメチルエタノールアミン、2−アミノ−2−メチル−1−プロパノール等及びこれらの塩が挙げられる。水酸化4級アンモニウム塩類としては、例えば、水酸化テトラメチルアンモニウム、水酸化テトラエチルアンモニウム、水酸化テトラプロピルアンモニウム、水酸化テトラブチルアンモニウム等が挙げられる。4級アンモニウム塩類としては、例えば、ドデシルトリメチルアンモニウム塩、セチルトリメチルアンモニウム塩、ステアリルトリメチルアンモニウム塩、ベンジルトリメチルアンモニウム塩、ベンジルトリブチルアンモニウム塩、トリメチルフェニルアンモニウム塩、ジメチルジステアリルアンモニウム塩、ジメチルジデシルアンモニウム塩、ジメチルステアリルベンジルアンモニウム塩、ドデシルビス(2−ヒドロキシエチル)メチルアンモニウム塩、トリオクチルメチルアンモニウム塩、ジポリオキシエチレンドデシルメチルアンモニウム等が挙げられる。
【0026】
ホスホニウム塩類としては、例えば、テトラブチルホスホニウム塩、ヘキサデシルトリブチルホスホニウム塩、ドデシルトリブチルホスホニウム塩、ドデシルトリフェニルホスホニウム塩等の有機ホスホニウム塩等が挙げられる。また、12−アミノドデカン酸、アミノカプロン酸等のアミノ酸類及びこれらの塩や、ポリエチレンイミン等のイミン類及びこれらの塩も使用可能である。
【0027】
特に好ましいのは、エチルアミン、n−プロピルアミン、ジメチルエタノールアミンである。
【0028】
そしてこれらの塩基性化合物は、目的に応じて、1種類あるいは数種類を混合して用いても良い。特に、疎水性の高い塩基性化合物単独では剥離が十分に進まないため、親水性の高い塩基性化合物と併用することが好ましい。
【0029】
層間膨潤作用のある塩基性化合物を作用させるためには、酸処理または温水処理後の層状チタン酸を水系媒体に分散させた懸濁液に、撹拌下、塩基性化合物または塩基性化合物を水系媒体で希釈したものを加えれば良い。あるいは塩基性化合物の水系溶液に、撹拌下、該層状チタン酸、またはその懸濁液を加えても良い。
【0030】
水系媒体または水系溶液とは、水、水に可溶な溶媒、または水と水に可溶な溶媒との混合溶媒、あるいはその溶液を意味する。
【0031】
水に可溶な溶媒としては、例えば、メチルアルコール、エチルアルコール、イソプロピルアルコールなどのアルコール類、アセトン等のケトン類、テトラヒドロフラン、ジオキサン等のエーテル類、アセトニトリル等のニトリル類、酢酸エチル、プロピレンカーボネート等のエステル類を挙げることができる。
【0032】
塩基性化合物の添加量は、層状チタン酸塩のイオン交換容量の0.3〜10当量、好ましくは0.5〜2当量とするのがよい。ここで、イオン交換容量とは、交換可能な金属カチオン量であり、例えば層状チタン酸塩が一般式AXYZTi2-(Y+Z)4で表される場合、Aの価数をm、Mの価数をnとするときのmx+nyで表される値をいう。
【0033】
前記処方(1)の薄片状チタン酸懸濁液を得る場合は、層間膨潤作用を有し且つ重合性官能基を有する有機塩基性化合物(A)を層状チタン酸に作用させればよい。
【0034】
前記処方(2)の薄片状チタン酸懸濁液を得る場合は、層間膨潤作用を有し且つ重合性官能基を有する有機塩基性化合物(A)と、層間膨潤作用を有する一般の有機塩基性化合物(B)とを併用して層状チタン酸に作用させればよい。この場合、有機塩基性化合物(A)と(B)の総量が、層状チタン酸塩のイオン交換容量の0.3〜2当量、好ましくは0.5〜1当量とするのがよい。有機塩基性化合物(A)の添加量は、層状チタン酸塩のイオン交換容量の0.3当量以上であることが好ましく、さらには0.5当量以上であることが好ましい。
【0035】
前記処方(3)の薄片状チタン酸懸濁液を得る場合は、層間膨潤作用を有する一般の有機塩基性化合物(B)を層状チタン酸に作用させて薄片状チタン酸懸濁液とし、さらに層間膨潤作用を有し且つ重合性官能基を有する有機塩基性化合物(A)を添加すればよい。この場合、有機塩基性化合物(B)は、層状チタン酸塩のイオン交換容量の0.3〜2当量、好ましくは0.5〜1当量とするのがよい。また、有機塩基性化合物(A)の添加量は、層状チタン酸塩のイオン交換容量の0.3当量以上であることが好ましく、さらには0.5当量以上であることが好ましい。
【0036】
薄片状チタン酸の平均長径は1〜100μmが好ましく、更に好ましくは10〜50μmであり、平均厚みは0.5nm〜2μmが好ましく、更に好ましくは1nm〜1μmである。
【0037】
薄片状チタン酸の平均長径は、塩基性化合物を作用させて層間剥離を行う行程で強い剪断力での攪拌を行わない限り、原料である層状チタン酸塩の平均長径をほぼ保つ。
【0038】
薄片状チタン酸の平均長径が1μm未満では均一な塗膜が形成しにくく、100μmを超えると原料である層状チタン酸塩の合成が困難となる。
【0039】
また、薄片状チタン酸の平均厚みは単層まで剥離した際の厚みが0.5nm程度であり、2μmを超えると薄片状チタン酸懸濁液が均一分散状態を保てず、薄片状チタン酸が沈降を起こす可能性がある。
【0040】
薄片状チタン酸懸濁液の濃度は、薄片状チタン酸の固形分濃度として、0.01〜50重量%が好ましく、更に好ましくは0.1〜10重量%である。0.01重量%未満では粘度が低いため塗膜が形成しにくく、50重量%を超えると粘度が高いため扱いが困難となる。
【0041】
本発明において用いる薄片状チタン酸懸濁液は、塩基性化合物を作用させて層間を膨潤または剥離した後、一般的にpHが6〜12の範囲内となるが、更に水で洗浄して過剰の塩基性化合物を除去するか、あるいはリン酸類、水溶性カルボン酸化合物類、ホウ酸、炭酸ガスから選ばれる少なくとも1種の酸によって過剰の塩基性化合物を中和することにより、薄片状チタン酸懸濁液のpHを6〜9の範囲内に調整したものであることがさらに好ましい。pHが6〜9の範囲内のものを用いることにより、形成したチタン酸膜の耐光性を向上させることができる。pHが6未満になると、薄片状チタン酸が凝集を起こし、分散性が損なわれる。また、上記以外の酸、例えば塩酸や硫酸などの鉱酸を中和に用いても、同様に薄片状チタン酸が凝集を起こし、分散性が損なわれる。
【0042】
水で洗浄して過剰の塩基性化合物を除去する場合は、薄片状チタン酸懸濁液を遠心して上澄みを分取後、沈降した濃縮薄片状チタン酸分散液を脱イオン水で再希釈する操作を数回繰り返せばよい。遠心の条件としては、5000〜20000rpmで5分〜1時間が好ましい。
【0043】
また、中和する場合は、リン酸類、水溶性カルボン酸化合物類、ホウ酸、炭酸ガスから選ばれる少なくとも1種の酸を用いることができる。リン酸類としては、例えば、オルトリン酸、ピロリン酸、メタリン酸、ポリリン酸などを用いることができる。水溶性カルボン酸化合物類としては、例えば、ギ酸、酢酸、プロピオン酸、シュウ酸、マロン酸、グリコール酸、乳酸、リンゴ酸などを用いることができる。
【0044】
中和する場合には、薄片状チタン酸懸濁液の攪拌下に、上記より選ばれる少なくとも1種の酸、またはその水溶液を添加するか、炭酸ガスをバブリングすればよい。また、生成する塩基性化合物の中和塩は遠心洗浄等により除去することが好ましい。
【0045】
本発明における薄片状チタン酸は、有機塩基性化合物を作用させて層間を膨潤または剥離した後、水性媒体中で有機塩基性化合物を一部セシウムイオンで置換して得られる薄片状チタン酸であってもよい。このようにセシウムイオンで置換した薄片状チタン酸を用いることにより、形成した複合チタン酸膜の耐光性を向上させることができる。有機塩基性化合物をセシウムイオンに置換するには、薄片状チタン酸懸濁液に水溶性のセシウム塩を添加し、1時間程度攪拌すれば良い。水溶性のセシウム塩としては、例えば、炭酸セシウム、塩化セシウム、硝酸セシウム、酢酸セシウム、硫酸セシウム、フッ化セシウム、水酸化セシウムなどを用いることができ、最も好ましいのは炭酸セシウムである。セシウム塩の添加量は、後述する層状チタン酸塩のイオン交換容量の0.1〜0.5当量が好ましく、さらに好ましくは0.1〜0.3当量とするのがよい。0.1当量未満では有機塩基性化合物のセシウムイオンへの置換量が不十分となり、0.5当量を超えると、有機塩基性化合物(A)が残存できない可能性がある。
【0046】
また、過剰のセシウム塩及び脱離した有機塩基性化合物は、処理後に遠心洗浄等により除去することが望ましい。
【0047】
本発明において用いる薄片状チタン酸懸濁液は、ラジカル重合開始剤及び/または光重合開始剤が含まれていることが好ましい。これにより、重合性官能基の重合効率を向上させることができる。
【0048】
ラジカル重合開始剤としては、例えば、過硫酸アンモニウム塩などの過硫酸塩、過酸化水素あるいはこれらと亜硫酸ナトリウム、チオ硫酸ナトリウムなどの還元剤との組み合わせからなるレドックス開始剤、ジコハク酸パーオキシド、ジグルタール酸パーオキシド、ベンゾイルパーオキサイド、ジーt−ブチルパーオキサイド、クメンハイドロパーオキサイドなどの過酸化物、2,2'−アゾビスイソブチロニトリル、2,2'−アゾビスー(2,4−ジメチルバレロニトリル)、2,2'−アゾビスー(4−メトキシー2,4−ジメチルバレロニトリル)、イソブチロニトリルアゾビスイソブチルアミジン二塩酸塩、2,2'−アゾビス(2―メチルプロピルアミジン)二塩酸塩及び4,4'−アゾビスー4−シアノ吉草酸などのアゾ化合物が挙げられるが、特に2,2'−アゾビス(2―メチルプロピルアミジン)二塩酸塩及び4,4'−アゾビスー4−シアノ吉草酸が好ましい。
【0049】
光重合開始剤としては、例えば、ベンゾインメチルエーテル、ベンゾインエチルエーテル、ベンゾインブチルエーテル、ジエトキシアセトフェノン、ベンジルジメチルケタール、2−ヒドロキシー2−メチルプロピオフェノン、ベンゾフェノン、2,4,6−トリメチルベンゾインジフェニルホスフィンオキサイド、2−ベンジルー2−ジメチルーアミノー1−(4−モルフォリノフェニル)−ブタンー1−オン、エトキシ化2−ヒドロキシー2−メチルー1−フェニループロパンー1−オン、1−〔4−(2−ヒドロキシエトキシ)−フェニル〕−2−ヒドロキシー2−メチルー1―プロパンー1−オン、ミヒラーズケトン、N,N−ジメチルアミノ安息香酸イソアミル、2−クロロチオキサントンなどが挙げられるが、特にエトキシ化2−ヒドロキシー2−メチルー1−フェニループロパンー1−オン及び1−〔4−(2−ヒドロキシエトキシ)−フェニル〕−2−ヒドロキシー2−メチルー1―プロパンー1−オンが好ましい。
【0050】
これらの開始剤は単独で用いても良いし、2種以上を適宜併用しても良い。使用量は薄片状チタン酸の固形分に対して0.1〜10重量%、好ましくは1〜5重量%である。
【0051】
<チタン酸膜の形成>
本発明におけるチタン酸膜の形成は、一般的な方法、例えば、ロールコート、グラビアコート、ナイフコート、ディップコート、スプレーコートなどが利用できる。本発明の薄片状チタン酸懸濁液を基材に塗布後、熱処理及び/またはUV照射処理し、溶媒を除去すると同時に、重合性官能基が重合することにより、薄片状チタン酸同士が強固に結合したチタン酸塗膜を得ることができる。
【0052】
熱処理の温度は60〜200℃、好ましくは80〜120℃であり、熱処理の時間は1分〜3時間、好ましくは5分〜1時間である。
【0053】
また照射するUVは10〜5000mJ/cm2、好ましくは100〜2000mJ/cm2であり、光源としては、キセノンランプ、高圧水銀灯、低圧水銀灯、メタルハライドランプ、カーボンアーク灯、タングステンランプなどを用いることができる。
【0054】
チタン酸膜の形成において、塗布した薄片状チタン酸懸濁液の溶媒を除去する必要があるため、熱処理は必須である。熱処理後または熱処理と同時にUV照射してもかまわない。
【0055】
複合チタン酸膜の膜厚は0.01〜100μmが好ましく、更に好ましくは0.1〜20μmである。0.01μm未満では期待の効果が得られない場合があり、100μmを超えると重合反応に伴う体積収縮により、塗膜にクラックが発生する場合がある。
【0056】
<樹脂基板>
本発明に使用される基材は特に限定されるものではなく、ガラス、セラミックス、金属、樹脂フィルムなどを用いることができるが、チタン酸塗膜に期待される効果から、特に樹脂基板が好ましい。樹脂基板は、特に限定されるものではない。具体的には、例えば、ポリオレフィン系樹脂、アクリル系樹脂、ポリアミド系樹脂、ポリウレタン系樹脂、ポリエステル系樹脂、ポリスチレン系樹脂、ポリアセタール系樹脂、ポリスチレン系樹脂、ポリカーボネート系樹脂、シリコーン系樹脂、エポキシ系樹脂、メラミン系樹脂、セルロース系樹脂、ポリビニルアルコール系樹脂、尿素系樹脂、フェノール系樹脂、フッ素系樹脂、ポリブタジエン系樹脂などの単独樹脂、及びそれらの複合系樹脂などが挙げられる。
【0057】
また、密着性の観点から、樹脂基材は表面処理されていることが好ましい。表面処理方法は特に限定されるものではなく、例えば、紫外線処理、コロナ放電処理、グロー放電処理、火焔処理、高周波処理、活性プラズマ処理、レーザー処理、機械的処理、混酸処理、オゾン酸化処理、などを用いることができる。
【0058】
また、目的を損なわない範囲で、薄片状チタン酸懸濁液にポリマー、分散剤、界面活性剤、有機及び無機性のゾル等を添加し、チタン酸膜としてもよい。
【実施例】
【0059】
以下に実施例及び比較例を挙げ、本発明を具体的に説明するが、本発明は以下の実施例に何ら限定されるものではない。なお、以下において「%」及び「部」とあるのは、特に断らない限り重量基準を意味するものとする。
【0060】
<薄片状チタン酸懸濁液の合成>
(合成例1)
酸化チタン67.01g、炭酸カリウム26.78g、塩化カリウム12.04g及び水酸化リチウム5.08gを乾式で粉砕混合した原料を1020℃にて4時間焼成した。得られた粉末の10.9%水スラリー7.9kgを調製し、10%硫酸水溶液470gを加えて2時間攪拌し、スラリーのpHを7.0に調製した。分離、水洗したものを110℃で乾燥した後、600℃で12時間焼成した。得られた白色粉末は層状チタン酸塩K0.6Li0.27Ti1.733.9であり、平均長径15μmであった。
【0061】
この層状チタン酸塩65gを3.5%塩酸5kgに分散攪拌し、40℃で2時間反応させた後、吸引濾過で分離し、水洗した。得られた層状チタン酸のK2O残量は2.0%であり、金属イオン交換率は94%であった。
【0062】
得られた層状チタン酸全量を脱イオン水1.6Kgに分散して攪拌しながら、N,N−ジメチルアミノプロピルメタクリルアミド63.4g(層状チタン酸塩のイオン交換容量の1当量に相当)を脱イオン水0.4kgに溶解した液を添加し、40℃で12時間攪拌してpH9.5の薄片状チタン酸分散液を得た。10000rpmで10分間遠心することにより濃度5.0重量%に調製し、光重合開始剤としてエトキシ化2−ヒドロキシ-2−メチルー1−フェニループロパン-1−オン(DOUBLE BOND CHEICAL社製;商品名 Chivacure 73W)を薄片状チタン酸の固形分に対して5重量%添加した。得られた薄片状チタン酸分散液Aは長時間静置しても固形分の沈降は見られず、110℃で12時間乾燥した固形物は、TG/DTA分析により200℃以上の重量減少が28.9重量%、XRD分析により層間距離が15.4Åであった。
【0063】
(合成例2)
有機塩基性化合物をn−プロピルアミン11.4g(層状チタン酸塩のイオン交換容量の0.5当量に相当)とN,N−ジメチルアミノプロピルメタクリルアミド31.7g(層状チタン酸塩のイオン交換容量の0.5当量に相当)の併用に変える以外は、合成例1と同様の方法でpH10.8、濃度5.0重量%の薄片状チタン酸分散液を調整し、合成例1と同様の光重合開始剤を5重量%添加した。得られた薄片状チタン酸分散液Bは長時間静置しても固形分の沈降は見られなかった。
【0064】
(合成例3)
合成例1と同様の方法で有機塩基性化合物としてn−プロピルアミン22.8g(層状チタン酸塩のイオン交換容量の1.0当量に相当)を用いて薄片状チタン酸を得た後、N,N−ジメチルアミノプロピルメタクリルアミド31.7g(層状チタン酸塩のイオン交換容量の0.5当量に相当)を添加して、合成例1と同様の方法でpH11.3、濃度5.0重量%の薄片状チタン酸分散液を調整し、合成例1と同様の光重合開始剤を5重量%添加した。得られた薄片状チタン酸分散液Cは長時間静置しても固形分の沈降は見られなかった。
【0065】
(合成例4)
光重合性開始剤をラジカル重合性開始剤2,2'−アゾビス(2―メチルプロピルアミジン)二塩酸塩に変える以外は、合成例1と同様の方法でpH9.6、濃度5.0重量%の薄片状チタン酸分散液を調整した。得られた薄片状チタン酸分散液Dは長時間静置しても固形分の沈降は見られなかった。
【0066】
(合成例5)
合成例1で得られた薄片状チタン酸分散液に炭酸ガスをバブリングすることによりpHを7.9に調製し、10000rpmで10分間遠心して上澄みを分取後、脱イオン水で再希釈することにより濃度を5.0重量%に調製し、合成例1と同様の光重合開始剤を5重量%添加した。得られた薄片状チタン酸分散液Eは長時間静置しても固形分の沈降は見られなかった。
【0067】
(合成例6)
合成例1の薄片状チタン酸分散液200gを脱イオン水で濃度1.7重量%に調製し、攪拌しながら5重量%炭酸セシウム水溶液72g(層状チタン酸塩のイオン交換容量の0.3当量に相当)を添加し、室温で1時間攪拌して、薄片状チタン酸の層間イオンをN,N−ジメチルアミノプロピルメタクリルアミドからセシウムイオンに置換した。10000rpmで10分間遠心して上澄みを分取後、沈降した濃縮薄片状チタン酸分散液を脱イオン水で再希釈する操作を3回繰り返すことにより、過剰の炭酸セシウム及び脱離したN,N−ジメチルアミノプロピルメタクリルアミドを上澄みと共に除去し、濃度を5.0重量%に調製したpH8.5の薄片状チタン酸分散液を得た。さらに炭酸ガスをバブリングすることによりpHを7.9に調製し、再遠心することにより濃度を5.0重量%に調製した後、合成例1と同様の光重合開始剤を5重量%添加した。得られた薄片状チタン酸分散液Fは長時間静置しても固形分の沈降は見られず、110℃で12時間乾燥した固形物は、TG/DTA分析により200℃以上の重量減少が9.6重量%、XRD分析により層間距離が9.3Å、蛍光X線分析によりCs2Oの含有量が17.6重量%(層状チタン酸塩のイオン交換容量の0.2当量に相当)であった。
【0068】
(合成例7)
有機塩基性化合物をジメチルエタノールアミン34.5g(層状チタン酸塩のイオン交換容量の1当量に相当)に変える以外は、合成例1と同様の方法でpH9.8、濃度5.0重量%の薄片状チタン酸分散液を調整した。得られた薄片状チタン酸分散液Gは長時間静置しても固形分の沈降は見られなかった。
【0069】
<チタン酸塗膜の調製>
(実施例1)
合成例1で得られた薄片状チタン酸懸濁液Aを表面コロナ処理されたPET(ポリエチレンテレフタレート)基板(75μm厚)上にフィルムアプリケーターで塗布し、100℃で10分間熱処理した後、出力密度120W/cmの高圧水銀灯を用い、光源下10cmの位置で600mJ/cm2のUV照射を行い、厚みが2μmであるチタン酸塗膜を調製した。
【0070】
(実施例2、3)
合成例2及び3の薄片状チタン酸分散液B及びCを用いて、実施例1と同様の方法でチタン酸塗膜を調製した。
【0071】
(実施例4)
合成例4の薄片状チタン酸分散液Dを用いて、表面コロナ処理されたPET基板(75μm厚)上にフィルムアプリケーターで塗布し、100℃で1時間熱処理してチタン酸塗膜を調製した。
【0072】
(実施例5、6)
合成例5及び6の薄片状チタン酸分散液E及びFを用いて、実施例1と同様の方法でチタン酸塗膜を調製した。
【0073】
(比較例)
合成例7の薄片状チタン酸分散液Gを用いて、実施例4と同様の方法でチタン酸塗膜を調製した。
【0074】
<塗膜硬度及び密着性の評価>
実施例1〜6、及び比較例1のチタン酸塗膜について、塗膜硬度、密着性及び耐光性を下記試験方法で評価した。その結果を表1に示す。
【0075】
〔塗膜硬度〕
JIS S−6006に準じて鉛筆硬度試験を行い、塗膜硬度を評価した。
【0076】
〔密着性〕
JIS D−0202に準じてクロスカットテープ試験を行った。すなわち、ナイフを用いてチタン酸塗膜表面に1mm2のマス目を100個形成し、その上に粘着テープを強く押しつけ、表面から90°方向に急に引っ張り剥離した後、チタン酸塗膜上に残っているマス目の数の割合を密着性の指標とした。
【0077】
〔耐光性〕
チタン酸塗膜をデューサイクルサンシャインウェザーメーターWEL−SUN−DC(スガ試験機株式会社製、ブラックパネル温度60℃)で300時間の促進耐光性試験を行い、初期からの色差変化量(△E)にて耐光性を評価した。
【0078】
【表1】

【0079】
表1に示すように、本発明に従う実施例1〜6は、比較例に比べ、塗膜硬度及び密着性が向上していることがわかる。また、実施例5及び6は、耐光性に優れており、中和処理またはセシウムイオンによる置換処理を行うことにより、耐光性が向上することがわかる。

【特許請求の範囲】
【請求項1】
層状チタン酸塩を酸で処理し、次いで有機塩基性化合物を作用させて層間を膨潤または剥離して得られる薄片状チタン酸であって、有機塩基性化合物の少なくとも一部が重合性官能基を有する有機塩基性化合物であることを特徴とする薄片状チタン酸。
【請求項2】
重合性官能基がアクリル基またはメタクリル基から選ばれることを特徴とする請求項1に記載の薄片状チタン酸。
【請求項3】
有機塩基性化合物の一部がセシウムイオンで置換されていることを特徴とする請求項1または2に記載の薄片状チタン酸。
【請求項4】
層状チタン酸塩が、式AxyzTi2-(y+z)4〔式中、A及びMは互いに異なる1〜3価の金属を示し、□はTiの欠陥部位を示す。xは、0<x<1を満たす正の実数であり、y及びzは0<y+z<1を満たす0または正の実数である〕で表されることを特徴とする請求項1〜3のいずれか1項に記載の薄片状チタン酸。
【請求項5】
層状チタン酸塩が、K0.50.8Li0.27Ti1.733.854で表されることを特徴とする請求項1〜4のいずれか1項に記載の薄片状チタン酸。
【請求項6】
請求項1〜5のいずれか1項に記載の薄片状チタン酸が水性媒体に分散されていることを特徴とする薄片状チタン酸懸濁液。
【請求項7】
薄片状チタン酸懸濁液のpHが6〜9の範囲であることを特徴とする請求項6に記載の薄片状チタン酸懸濁液。
【請求項8】
ラジカル重合開始剤及び/または光重合開始剤を含むことを特徴とする請求項6または7に記載の薄片状チタン酸懸濁液。
【請求項9】
請求項6〜8のいずれか1項に記載の薄片状チタン酸懸濁液を基材に塗布した後、熱処理及び/またはUV照射処理し、重合性官能基を重合させることにより得られることを特徴とするチタン酸塗膜。
【請求項10】
請求項9に記載のチタン酸塗膜を、基材としての樹脂基板上に形成したことを特徴とするチタン酸膜コーティング樹脂基板。
【請求項11】
樹脂基板が表面処理されていることを特徴とする請求項10に記載のチタン酸膜コーティング樹脂基板。


【公開番号】特開2007−55859(P2007−55859A)
【公開日】平成19年3月8日(2007.3.8)
【国際特許分類】
【出願番号】特願2005−244673(P2005−244673)
【出願日】平成17年8月25日(2005.8.25)
【出願人】(302060306)大塚化学株式会社 (88)
【Fターム(参考)】