説明

量子情報システム

時間依存の複数のエンタングル光子の源と、前記複数のエンタングル光子のうちの1以上の放出時間に基づいて、前記複数のエンタングル光子のエンタングル状態を示すように構成されるタイミング手段と、具備する量子情報システム。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は量子情報システムおよび方法に関する。特に、本発明は、複数の光子をそれらのエンタングルメントへ時間に依存して放出する光子源を使用するようなシステムおよび方法に関する。
【背景技術】
【0002】
エンタングル光子は、量子計算のためのスケーラブル線形光学系および遠い距離にわたる量子鍵分配のための必須資源である。2つの光子がエンタングルである場合、両方の光子は2つの状態の重ね合せである状態を占める。1つの光子の測定によって、他の光子に関する状態を同様に設定する波動関数が崩壊する。エンタングルメントは長距離に及ぶ。現在の複数のエンタングル光源は、ペアになった光子間の時間平均関係に集中する。しかしながら、エンタングルメントは光子波束の期間中に発展することができ、光状態は同時に強い量子相関を示すことができるが、時間平均されれば古典的であるように見える。
【0003】
発明者は、驚いたことに、以前は古典的であると見なされている多くの状態は、時間の関数として解明された場合、実際エンタングルメントを示すことができることに気づいている。
【0004】
ほんの少数の関連する測定が以前に、エンタングル原子光子システムの発展(Wilk et al, Science 317, 488 (2007))に特に報告されている。しかしながら、これらの実験では発展は、原子を励起させ、2つの光子を発し、最終状態が固定された位相を有するエンタングルな2光子状態になり、時間発展しないために使用される2つのレーザパルス間の時間遅延を使用して制御される。同様にBlinovら、Nature 428、153、(2004)はまた、エンタングルな原子および光子システムに関連する。他の著作物では、非縮退の2光子干渉[Legero et al Phys. Rev. Lett 93, 070503 (2004)]は、時間平均された貧弱な干渉にもかかわらず、エンタングルしていない系に関して時間で解明される強い極大および極小を示した。
【発明の概要】
【0005】
このように、第1の態様では、本発明は、時間依存のエンタングル光子源と、エンタングル光子の1つ以上の放出時間に基づいてエンタングル光子のエンタングル状態を示すように構成されたタイミング手段と、を具備する量子情報システムを提供する。
【0006】
このように、エンタングル光子の1つ以上の放出時間に関する時間情報を提供することによって、量子情報システム用のそのような光子を適切に利用することが可能である。
【0007】
本発明では、タイミング手段は、時間依存のエンタングル状態の形成に寄与しない。タイミング手段は、時間依存のエンタングル光子が源によって放出された後、エンタングルメントの特性を判定するために使用される。
【0008】
本発明は、光子が位相、偏光、時間、エネルギー、角運動量、空間モードなどでエンタングルしている場合に、動作してもよい。
【0009】
本発明は、光子が放出され、この時からエンタングル状態を得る時を識別するように構成されてもよい。システムは異なるエンタングル状態を有する光子に適合するように構成されてもよい。例えば、1つのエンタングル状態を有する光子の測定は、異なるエンタングル状態を有する光子の測定とは異なって処理されてもよい。
【0010】
別の実施形態で、タイミング手段は、予め定義されるエンタングル状態を有する光子を選択するように構成される。例えばタイミング手段は、一定時間フレーム以内に放出される光子を単に伝送するように構成されてもよい。さらなる実施形態では、選択手段は、一度に1つの経路に沿って、および異なる時刻に他の経路にそって選択手段を通り抜ける光子を導くように構成されたスイッチでもよい。そのようなスイッチは音響光学装置あるいは高速光学スイッチを含んでもよい。
【0011】
さらなる実施形態では、望ましい状態を有していない光子をブロックする減衰器が提供される。
【0012】
タイミング手段は、光子源の出力を直接受け取るために提供されてもよく、または光子が様々な光学部品を通った後に提供されてもよい。
【0013】
好ましい実施形態では、タイミング手段は、光子がプロセスの終了時に実際に一時的に測定されるように、検出器をゲート制御するために提供される。このように、選択手段は、予め定められるエンタグル状態からの光子が検出器に到達すると予期される場合である検出器をゲート制御するために提供されてもよい。タイミング手段もまた、時間エンタングル状態を識別するために、検出器に到着するエンタングル光子間の遅れを判定するように構成されてもよい。エンタングルメントの性質に依存して、タイミング手段は、例えばシステムが3つ以上の光子を含むエンタングル状態に使用される場合に、光子間の遅れと到着時刻との組合せを測定するために、検出器をゲート制御するように構成されてもよい。
【0014】
予め定義されるエンタングル状態を有する時間依存のエンタングル状態のフィデリティは周期的に変化し、選択手段は2つ以上の期間から特別のエンタングル状態を有する光子を選ぶように構成されてもよい。
【0015】
特に有用なタイプのエンタングル光子源は、2励起子崩壊を使用して動作する量子ドットに基づいた源である。しかしながら、他のタイプの光子源は、パラメトリックダウンコンバージョン、CuCl結晶、2つの光子干渉を使用する光子源のように可能である。半導体量子ドットの利点は、それらの組立て技術が既存の商業生産技術と互換性をもつということである。
【0016】
2励起子崩壊によるエンタングル光子を放出する量子ドットでは、エンタングル状態は、2励起子崩壊により放出される光子と、中間の励起子の崩壊から放出される光子と間の遅延時間から判定されてもよい。あるいは、2励起子崩壊時間が励起子崩壊時間と比較して非常に短くなりえるので、タイミング手段は2励起子崩壊に続く励起子崩壊により放出される光子の放出時間を単に測定するように構成されてもよい。
【0017】
量子ドットでの2励起子崩壊では、励起子光子ペアの重ね合せ間の干渉は、エンタングル状態の時間依存型の発展を促進する。エンタングルメントは2光子寿命の時間スケールで発展する。検出時間にわたって統合されると、そのような状態は減少されたエンタングルメントどころか古典的な振る舞いを表す。
【0018】
いくつかの実施形態では、エンタングル光子のうちの1つあるいは両方は、ファイバーまたは自由空間の配置を介してリモートサイトへ伝送される。そのような配置では、盗聴者は潜在的にそのような通信を遮り、光子のエネルギーを測定することができる。このように、システムが安全でないファイバーまたは自由空間の光学系のような伝送手段を含む場合、システムは、伝送手段による送信に先立って光子の波束を時間制限するように構成された減衰器を好ましくはさらに具備する。時間依存の減衰器などによって波束を時間制限することは、波束のエネルギーでの不確定性を増加させる。もし減衰の前の伝送時間が十分な精度で時間を判定するのに十分に短ければ、時間制限手段はさらに光子の放出時間を識別する手段を提供することができる。
【0019】
さらなる実施形態では、光子のうちの1つを第1のサイトに伝送する第1の伝送手段と、他の光子を第2のサイトに伝送する第2の伝送手段とが提供される場合、システムは、光子が伝送手段に沿って伝送されるとして光子がエンタングルのままであるように、第1および第2の伝送手段を通る光子の伝送時間の差を補償する補償手段を好ましくはさらに具備する。
【0020】
好ましい実施形態では、システムは量子鍵分配用のシステムの一部として構成されてもよい。そのようなシステムは、光子に関する情報をエンコードするエンコーディング手段と、光子からその情報をデコードするように構成されたデコーディング手段と、を具備する。
【0021】
第2の態様では、本発明は以下を具備する量子情報方法を提供する。時間依存の複数のエンタングル光子の源を提供することと、複数のエンタングル光子のエンタングル状態を示すために、エンタングル光子のうちの1つ以上の放出時間でのタイミング測定を行うこと。
【0022】
エンタングル状態を判定するために、エンタングル状態がどのように時間にわたって発展するかを知ることが必要である。これは光子源の性質に非常に依存する。しかしながら、2つの時間関係を判定するために、最大にエンタングルした状態あるいは他のエンタングル状態を有する時間依存のエンタングル状態のフィデリティの測定を行なうことは可能である。他の手段は、例えば放出の偏光分裂を測定することによって、時間発展するエンタングル状態の時間依存の性質を推定するために存在する。
【図面の簡単な説明】
【0023】
本発明は、今、以下の図を参照して説明される。
【図1】本発明の実施形態にしたがうシステムの概略図である。
【図2】本発明の実施形態にしたがうさらなる装置を示し、(a)は本発明の実施形態にしたがうさらなる装置の概略図であり、(b)は図2(a)の源の出力のプロットであり、(c)は図2(a)のシステムに適用される減衰信号のプロットであり、(d)は図2(a)のシステムの出力である。
【図3】本発明の実施形態にしたがうさらなるシステムの概略図である。
【図4】時間依存のエンタングル光子を生成するための2励起子崩壊を示すプロットである。
【図5】最大にエンタングルした状態を有する時間依存のエンタングル状態のフィデリティを示し、(a)は最大にエンタングルした状態を有する時間依存のエンタングル状態のフィデリティを実証する実験結果を示し、(b)は対応する理論的な予測を示す。
【図6A】光子間の崩壊時間に対する理論的なフィデリティおよび出力強度のプロットである。
【図6B】1つのゲートおよび2つのゲートを使用してタイミングモジュールに関して正規化された計数に対するフィデリティのプロットである。
【図6C】ゲート幅の関数として量子ドットに関する、実験のフィデリティのプロットである。
【図7】本発明の実施形態にしたがうシステムの概略図である。
【図8】本発明のさらなる実施形態にしたがうシステムを示し、(a)は光子2に作用する時間選択で2励起子崩壊を介して動作する源を有する本発明のさらなる実施形態にしたがうシステムの概略図であり、(b)は図8(a)の源の出力のプロットであり、(c)は図8(a)のシステムに適用される減衰器信号のプロットであり、(d)は図8(a)のシステムの出力である。
【図9】両方の光子に作用する時間選択で2励起子崩壊を介して動作する源を有する本発明のさらなる実施形態にしたがうシステムの概略図である。
【図10】2励起子光子源および時間測定モジュールを有する本発明のさらなる実施形態にしたがうシステムの概略図である。
【図11】本発明の実施形態にしたがう量子通信システムの概略図である。
【発明を実施するための形態】
【0024】
図1のシステムは、時間依存のエンタングル光子の源1を含む。源1はN個のエンタングル光子を放出する。ここでNは整数である。その源は、時間依存のエンタングル光子の任意の源(例えば、パラメトリックダウンコンバージョン、CuCl結晶、2光子干渉、量子ドットなどを含むことを操作する源)でもよい。
【0025】
時間に非依存のエンタングルメントでは、光子はそれぞれ2状態の重ね合せである状態を有する。偏光を考慮する場合、時間に依存しないエンタングル状態は次の例によって表わされてもよい。
【数1】

【0026】
ここで、tは時間である。また、HHおよびVVは水平にあるいは垂直に偏光された光子のペアを表わす。例えば、多くの他の、時間に依存しないエンタングル光子状態が存在する(例えば位相にエンタングルしたものまたは反相関した変更によるもの)。しかしながら、一般にすべてにおいて
【数2】

【0027】
であり、ここでΨは時間に応じて変わらない。時間依存のエンタングルメントでは、エンタングル状態は時間にわたって発展する。そのような状態の1つの可能な表現は次のとおりである:
【数3】

【0028】
ここでφは定数であり、τは第1および第2の光子間の時間分離である。他の、時間依存エンタングル状態は、重ね合わされた2つの状態が異なり、かつ(または)エンタングルメントが光子間の時間分離以外の時間パラメータと共に変化し、かつ(または)エンタングル状態が異なる数学的関係を有している場合に可能である。
【0029】
時間に依存しないエンタングル光子ペアからの1つの光子が測定される場合、重ね合せが崩壊し、かつ光子のうちの他方は明瞭な偏光を要求する。例えば状態Ψを考えると、測定された第1の光子がH偏光であれば、他の光子もまたH偏光になる。さらに、円偏光を持つ1つの光子が測定されれば、他の光子も反対方向で円偏光される。
【0030】
光子が時間依存でエンタングルされている場合、エンタングル状態は常に変化しているので、光子のうちの1つをただ単に測定することによってエンタングルメントを使用することは不可能である。例えば、φ=2πn(ここでnは整数である)であるならば、状態Ψはちょうどそのときに状態Ψと同じである。しかしながら、φ=2πn+πであるならば、エンタングル状態は次のとおりである。
【数4】

【0031】
ここに、この状態では、光子は反対の円偏光ではなく同じものを有しいている。
【0032】
図1では、光子の少なくとも1つに関するタイミング情報が判定されることを可能にする時間識別モジュール3が提供される。例えば、タイミングモジュールはΨの2つの光子間の遅れを測定するように構成されてもよい。あるいは、エンタングル状態についての情報が判定されることを可能にする他のタイミング情報は得られてもよい。タイミングモジュール3は、光子のうちの1つ以上で実時間測定を行なうように構成されてもよい。あるいは、それは一定時間でモジュールを通り抜ける光子をブロックするか向きを変えるように構成されてもよい。図1では、タイミングモジュール3は源1からの直接出力を受け取ることを示される。しかしながら、タイミングモジュールは、システムのいかなる場所にも置くことができる。
【0033】
図2(a)は、本発明の実施形態にしたがうさらなるシステムの概略図である。図2(a)では、システムは、特別のエンタングル状態を持つために、タイミング情報から示される光子を単に伝送するように構成される。
【0034】
図2では、システムは、エンタングル光子21の源と、減衰器の形式をしているタイミングモジュール23を含む。エンタングル光子源21はN個の光子を生成する。ここでNは2以上の整数である。N個の光子は時間依存でエンタングルされている。図では、Nは2と5との間であり、経路はすべて減衰器23を通り抜ける。
【0035】
エンタングル光子源21の出力は図2(b)で示される。対数線形スケールでは、放出は直線的に崩壊する。すなわち、崩壊は均等な目盛りで指数関数的である。電気的なゲート、エンタングル光子源のタイプおよび他の環境要因によって、崩壊の形式を修正することができることは注意されるべきである。崩壊の形式は重要ではない。
【0036】
図2(c)は、減衰器23によって適用される減衰レベルを示す。減衰器23は、光子の寿命に相当する時間的尺度での強度を変調する。(図4から6Cを参照して説明される)量子ドットが、エンタングル光子源として使用される場合、寿命は通常オーダー〜1ナノ秒にあり、変調は<1ナノ秒の時間的尺度に生じる。
【0037】
図2(c)で概略的に示されるように、減衰器23は時間の関数として減衰パワーを変える。この例において、時間の関数として2つの減衰領域25および27が示される。減衰領域25と27では、光子は減衰器23を通り抜けることからブロックされる。しかしながら、時間依存変化の他の形式は、単一の減衰領域あるいはより多くの減衰領域のように、可能である。
【0038】
生じる出力信号は図2(d)に示され、減衰された光子の強度が変調されることが理解されうる。ディップ28および29は、減衰器23の動作による出力において見られる。この光子の検出は、時間の高強度領域中でのみ起こり得る。したがって、検出時間はよく知られているので、エンタングル状態を予測することができる。いくつかのありそうな検出時間ウィンドウはこの例において可能であるが、同じエンタングルした出力状態に対応させるために、エンタングルメントの発展の周期的な性質により、ウィンドウを選ぶことができることに注意すること。
【0039】
図2(a)のシステムは、所望のエンタングル状態を有していない光子をブロックすることにより特定のエンタングル状態を有している光子を使用するように構成される。システムは、光子が減衰器23を通り抜ける時から状態を判定する。さらに、そのタイミング情報が測定プロセスの一部として判定されることを提供する光子をすべて使用することも可能である。このように、存在するエンタングル状態を、タイミング情報から判定することができる。
【0040】
図3は、そのようなシステムを示し、エンタングル光子源31と時間測定モジュール33を含む。
【0041】
時間測定モジュール33の一例は、他のタイプの光検出器も使用されてよいが、タイマーと連動するアバランシェフォトダイオードである。発展するエンタングル状態に関係のある時間を判定することによって、エンタングル光子状態を知り、このように首尾よく使用することができる。
【0042】
通常、システムが1つ以上の光子の検出によって適切な時間情報を判定する前に、ある光プロセスの一部としてこれらの光子を使用することが必要である。一例として、量子鍵分配(QKD)システムで光子の偏光を選択することができるかもしれない。そのようなシステムは図11を参照して説明される。
【0043】
図3の単純なシステムでは、光子測定システム33を通り抜ける第1の光子(上部の矢)だけが検出される。エンタングルメントがどのように発展するかに依存して、光子のうちの1つの単一の時限測定はエンタングル状態を確立するのに十分かもしれない。そのような場合の一例は、Xの寿命と比較して、速いX寿命を有する量子ドットでありえる。したがって、Xの時間の測定は十分精度(t≫tXXに関してτ=[t−tXX]〜t)で判定するだろう。
【0044】
2励起子崩壊によりエンタングル光子を生産する量子ドットに関して、エンタングル光子状態の発展に関係のある時間は、第1の光子放出時間と第2の光子放出時間との差である。このように、両方の光子は好ましくは測定されなければならない。多数の光子の時間測定の他の組合せも可能であり、使用中の特定の源に合わせてもよい。
【0045】
様々な異なる方法(例えば、パラメトリックダウンコンバージョン、干渉計などの使用)を使用して、エンタングル光子を生成することができる。特に有用な1つの方法は、量子ドットで生成された2励起子あるいは高次励起子の崩壊からである。量子ドットは、大量半導体生産でほとんど使用される技術によって作り上げられてもよい。このように、それらは特に魅力的なエンタングル光子源である。
【0046】
図4は、エンタングルしたペアが2励起子崩壊からどのように生成されるか示す。2励起子は、2つの電子と2つの空孔を含む束縛状態であり、状態が崩壊して2つの光子が放出される。
【0047】
最初の2励起子状態41はXXとして示され、一方、最終状態(基底状態47)はGSとして示される。2励起子状態を生成する励起は、例えば、電気的または光学的でありうる。中間状態43、45(ラベル付けされるXとX)は、2励起子での1つの励起子が崩壊していて他方は崩壊していないときに発生する非縮退の励起子状態である。2つの非縮退の光学活性な励起子準位43および45は、偏光分裂Sと等しいエネルギー分裂を有している。
【0048】
崩壊は2つの経路のうちの1つを介して進んでもよい。第1の経路では、2励起子は、励起子準位43に崩壊しその後、基底状態47に崩壊する。第2の経路では、2励起子は、励起子準位43より低いエネルギーを有する励起子準位45に崩壊しその後、基底状態47に崩壊する。このように、中間の励起子準位43および45の選択によって特徴づけられる2つの代替経路がある。採用される経路に依存して、両方の光子は水平に偏光されるか、または垂直に偏光される。
【0049】
励起子状態は非縮退準位XおよびXの重ね合せであり、このように、放出された光子は偏光でエンタングルされる。しかしながら、生成されたエンタングルメントは時間に依存する。上に説明されるように、励起子状態は非縮退準位XおよびXの重ね合せであり、2つの経路間の位相差はそこで費やされた時間(τ)の間に発展する。第2の励起子光子の放出の後、さらに位相差は発展せず、またH偏光された光子ペア成分に比べたV偏光された光子ペア成分によって得られた合計の位相差は
【数5】

【0050】
である。生じる最終の光子ペア状態は両方の経路の重ね合せであり、次のものによって与えられる:
【数6】

【0051】
上記の状態は偏光でエンタングルしていて、エンタングルメントは時間で変化する。もしそうでなければ光子の偏光を識別することができる、経路情報がなければ、エンタングルメントは存在する。時間が統合された測定は、中間の励起子状態のどれが含まれていたかを識別する程度に、光子の放出エネルギーが正確に判定されることを可能にしてもよい。光子の時限測定が行なわれる場合、エンタングル状態は崩壊する。しかしながら、ここに記述されるように、光子のエネルギーが、エンタングル状態が判定されることを可能にする十分な精度で測定されないシステムを設計することは可能である。これは時間パラメータτの正確な判定によって達成される。ハイゼンベルク不確定性原理は、次の関係式を介して、時間の正確な決定はエネルギーでの大きな不確定性を導くことを指示する。
【数7】

【0052】
どちらの崩壊経路からの最終結果も、2つの光子が異なる偏光で放出されるということである。どちらの崩壊経路の下での最終結果も同一であるので、どの崩壊経路が辿られたかに関して利用可能な情報はない。結果として、光子の1つあるいは両方が例えば検出によって観測されるまで、2つの光子は両方の光子に関してのみ記述することができる状態で存在する。言いかえれば、光子はエンタングルしている。このように、光子はわずかに異なるエネルギーを持つが、もし時間統合された測定が行なわれなければ、エネルギーは光子の偏光を示すことができない。
【0053】
最大にエンタングルした状態と比較して、図5(a)は、時間依存のエンタングルした状態のフィデリティのプロットを示す:
【数8】

【0054】
S=13.5μeV、4.8μeV、3.6μeV、2.5μeVのスピン分裂値に関する。結果は、2励起子光子と励起子光子との間の遅延(τ)の関数としてプロットされる。
【0055】
最大にエンタングルした状態Ψは、スピン分裂のない理想的な量子ドットに関する期待される状態である。光子がそれぞれ検出器に到着する場合、2つの光子と各光子の偏光および検出時間の間の光子がそれぞれ検出器に到着するときに、2つの光子間の分離時間、各光子の偏光および検出時間の間の関数としてフィデリティを測定することは、線形の偏光光学系、アバランシェフォトダイオードおよび時間振幅変換器の組合せを使用して測定される。
【0056】
相関度は、直線(C)、対角(C)、円(C)偏光基底で測定される。フィデリティは次の方程式を使用して計算される:
f(τ)=(C(τ)+C(τ)+C(τ)+1)/4
偏光していない源が使用される場合、上記の方程式は有効である。これは実験的に確認される。
【0057】
技術の時間分解能は2つの要因によって制限される。1番目は、シリコンアバランシェフォトダイオードを使用して、1ペアの光子を検出することンに関連した系統的タイミングジッターである。図5(a)で示される実験結果では、システムの対応する応答は577ピコ秒のFWHMを持つために測定された。時間分解能を決める第2の要因は、S<4μeVでの測定では537ピコ秒になるように、S>4μeVでは293ピコ秒になるように選択される積分時間ウィンドウである。分裂Sは、量子ドットに面内磁場を適用することにより制御された。
【0058】
異なる分裂に関する測定は、明瞭さのために垂直に相殺される。フィデリティの著しい振動は、S=2.5μeVの最も小さな調査された分裂に関して最も明瞭に観察される。振動する振る舞いは、最大にエンタングルした状態Ψでの最大のフィデリティfを有する、0から離れて回転しその後2πに戻る重ね合わせ状態の位相による。fが最小である場合、エンタングルメントがシステムにこのときまだ存在し、状態
【数9】

【0059】
の高いフィデリティを有していることを強調することは重要である。
【0060】
方程式3から予想される振動の周波数は、分裂Sが増加するにつれて増加する。周波数を増加させることは、振動の振幅での減少を伴う。これは、振動を時間平均する傾向があるシステムの分解能限界に接近する振動の周波数に起因する。13.5μeVの測定された最大のSに関して、振動はもはや分解されえない。
【0061】
理論的な結果は図5(b)に示される。モデル状態は、全く源からだけ発している光のうちの78%と、その残りの、サンプルの他のエリアからの発光からの寄与である相関のない光とを備えるモデル化された振る舞いを示す。計算された振る舞いはさらに、集積時間ウィンドウおよび検出されたジッタの効果を含む。
【0062】
図6Aから6Cを参照すると、実験の制約はより詳細に理解されうる。
【0063】
図6Aは、2励起子および励起子の光子との間での分離に対するフィデリティfの理論的なプロットである。図6Aは、理論的なジッタがない検出器で測定される2.5μeVの分裂に関する計算されたフィデリティを示す。フィデリティは、分離時間に応じて周期的に変わる。
【0064】
2つのゲートが示される。ゲートは、望ましいエンタングルメント属性を有する光子対を選択するために時間情報を使用する。X軸は、第1の光子と第2の光子の放出の間の時間である。およそ0から0.5ナノ秒からのゲート1は、最大にエンタングルした状態Ψに近いエンタングル状態を生じさせる重ね合わせの状態に励起子がある時に関して選択されるために選ばれる。オプションのゲート2はゲート1に加えて使用される。ゲート2は、周期的に変化する信号でゲート1から1周期シフトされている。用語「ゲート」は、単一光子に関するリアルタイムでの識別ではなく、ペアの光子に関する時間遅延での識別を記述するために、ここで使用されることに注意すること。一般に、しかしながら、ゲートは、任意の時間依存のパラメータを使用し、かつ任意の数の光子に関して操作する、時間選択過程を記述することができる。
【0065】
光子ペア放出の強度は、右側軸上での点線として図6A上にプロットされる。2励起子光子は、励起子光子に先立って常に放出されなければならず、したがって、強度はτ<0ではゼロである。このように、第1のゲートはこの例においてτ=0で開始する。第2のオプションゲートの開始時間は、厳密に1サイクルだけ遅延され、スプリッティングSによって決定されると示される。これは最も単純な場合を表わし、両方のゲートの開始時間は、所望の最大にエンタングルした状態を有するフィデリティを最大限にするために、特定のアプリケーションに関して独立して最適化されるべきである。
【0066】
図6Bは、正規化された計数に対するフィデリティfを示す。検出器で受け取られた光子の正規化された計数率は、ゲート幅と関係がある。
【0067】
ゲート幅を減少させることによって正規化された計数率を1から0.75に減少させることは、fでの減少を引き起こす。しかしながら、計数率のさらなる減少はfを劇的に増加させる。fを0.6から0.9に増加させることは、およそ3倍だけ光子ペア検出率の減少に起因する。これは、エネルギー分解ポスト選択と比較して非常に効率的である。
【0068】
これは、時間分解ポスト選択は、放出強度がもっとも強い崩壊サイクルの最初に多数の光子をターゲットにしているので、理解されうる。このように、対照的に、エネルギー分解ポスト選択は、強度が最小となるVとVのこれらの間に放出されたエネルギーを有する多数の光子をターゲットにする。
【0069】
二重ゲートに関する結果は増加した効率を示す。これは、複数の光子が2つの時点で検出されることが期待される。両方の時点が理論的な最大フィデリティに基づいて選択される。
【0070】
フィデリティでのゲート幅を縮小する効果は、S=2.5μeVを有する量子ドットに関する図6Cに示される。点は、Ψを有するゲート放出の測定されたフィデリティfを示す。エラー限界はラインによって示される。ゲートの開始はτ=0で固定される。ゲート幅w=2ナノ秒については、フィデリティfは0.46±0.01であると測定される。それは、エンタングルメントを示すのに必要な0.5を超過しない。しかしながら、ゲート幅が〜1ナノ秒以下に縮小されると、フィデリティは、エンタングルメントを示す、w=49ピコ秒の最も小さなゲート幅に関して最高0.73±0.05まで、増加し始める。これは、状態が時間にわたって著しく発展する前に、エンタングルメントを分解する結果である。同等に、ゲート幅を縮小することは、2光子遅延τの不確定性を減少させ、それは分裂Sからのどの経路情報をマスクするために十分にエネルギーでの不確定性を増加させる。
【0071】
図7は、源61が時間依存のエンタングル光子のペアを2励起子崩壊から生成する本発明の実施形態にしたがうシステムの概略図である。複数の光子は2励起子崩壊から生成されるので、2つのエンタングル光子がある。図1を参照して説明されるように、複数のエンタングル光子は、エンタングル状態が決定されることを許容するタイミングモジュールであって、それを通過する複数の光子についてのタイミング情報を供給することができるタイミングモジュールを通過する。
【0072】
タイミングモジュールは、特定の時刻に放出された複数の光子をブロックするために、減衰器として構成されてもよい。さらに、それは時間情報を有する複数の光子を検出する手段として提供されてもよい。タイミングモジュールは、源61によって放出された複数の光子を操作する他の光学部品の後に提供されてもよい。
【0073】
図8(a)は、量子ドット源71からの励起子光子77が減衰システム73によってブロックされる発明の実施形態にしたがうシステムを示す。この特定のシステムでは、2励起子崩壊75による光子は減衰器73を通り抜けない。
【0074】
図8(b)は、時間に対する光子源の出力の強度(対数軸)の概略図である。
【0075】
量子ドットに関して、1番目の2励起子光子75の放出サイクルは、よく決定された時刻に始まり、それは量子ドット71の光学または励起によってトリガーされる。このように、トリガーに関連のある時間の関数としてこの光子69を減衰させることは、2励起子崩壊サイクルのよく定義された時間に対応する変調された光出力信号をもたらす。
【0076】
同様のことは、第2の励起子光子71に関しては正しくない。なぜならば、この放出サイクルは、時間について本来的に不確定である第1光子69の崩壊後に始まるからである。このように、強度変調は、トリガーに関連してではなく、2励起子検出時間(装置は不図示)に関連して行なわれるべきである。したがって、2励起子放出時間での不確定性が短ければ、トリガーか第1の光子のいずれかに対する第2の光子の放出時間は、本質的に等しい。このように、与えられた例において、システムは、励起子寿命と比較して短い2励起子寿命を有する量子ドット源を使用して最良に機能する。
【0077】
そのような状況は、2励起子遷移と共鳴する光キャビティに量子ドットを組み入れることにより達成されてもよい。
【0078】
図8(c)は、減衰器73に適用された信号を示す。減衰器は、より短い出力光学信号をもたらすトリガーからの時間wの後に本質的に励起子光子をブロックする。時間の長さwおよび図8(d)に示されるような対応する出力信号は、時間に独立の出力されるエンタングル状態を判定するために、時間を十分に制限するように十分に短い。
【0079】
減衰は、例えば、音響光学モジュレータ、あるいは速い光学的スイッチによって提供されてもよい。光学的スイッチの場合には、光子ビームの転換された部分も使用されてもよい。また、転換された光子の検出は、別のタイプのエンタングル状態の存在を示すことができる。
【0080】
図9は、量子ドット源71からの2励起子光子75および励起子光子77の両方が、独立した減衰システム73および74に入力する発明の実施形態にしたがうシステムを示す。システムは、両方の光子が時間の関数として減衰する以外は図8(a)のそれと同様な手法で動作する。
【0081】
時間の関数としての減衰は、各チャンネル上で固定されてもよいし、あるいはどちらかの光子のさらなる時間測定に依存して変化してもよい。
【0082】
両方の光子の放出を短時間ウィンドウに制限することによって、時間遅延τはエンタングル状態を判定するために十分な精度で推定することができる。
【0083】
この例において短くなるX寿命に関して必要なものはない。
【0084】
図10は、光子ペア源81を有する本発明のさらなる実施形態にしたがうシステムの概略図である。源81から出力される光子はアプリケーション光学部品83を通過する。
【0085】
アプリケーション光学部品は、それらがそのために設計される特定のアプリケーションのために求められるように、複数のエンタングル光子を操作する。アプリケーション光学部品の例は、量子鍵分配で要求される光学部品である。さらなる例は、量子論理ゲート、エンタングルメントスワッパー、量子中継器、量子メモリ記憶および検索システムである。
【0086】
その後、光子は、アプリケーション光学系83から時間識別モジュール85へ通過する。時間識別モジュールは、2励起子崩壊から生成された光子を受け取る第1のAPD87を含む。時間識別モジュールはさらに、励起子崩壊から生成された光子を受け取る第2のAPD89を含む。第1の87および第2の89のAPDは両方ともタイマー91に接続される。システムは、第1のAPD87が光子を検出するとAPD87がタイマーを開始し、第2のAPD89が光子を検出するとAPD89がタイマー91を止めるように構成される。このように、タイマー91は、2つの光子間の崩壊を測定することができ、したがって2つの光子が光子源81から出力されたときに存在する2つの光子間の一時的な分離を測定することができる。
【0087】
このように、以前に記述されたように、2つの光子間の遅延時間τについての知識はエンタングル状態が識別されることを可能にする。
【0088】
図10では、タイミングモジュール85は、アプリケーション光学部品83の出力を受け取る単一ユニットとして示される。しかしながら、タイミングモジュール85は、部分的にあるいは完全に光学系に統合され、おそらくは互いに通信できる2ユニット以上に分割されてもよい。
【0089】
図11は、本発明のさらなる実施形態にしたがうシステムを概略的に示す。システムは、図10のシステムに緊密に基づいている。しかしながら、図11では、アプリケーション光学部品はQKDシステムのものである。
【0090】
QKDでは、秘密キーデータは送り手(アリス)101からレシーバー(ボブ)103に光ファイバー105を下って伝送されてもよい。秘密キーの成功した形成においては、キーは、その後古典的リンク103を介して通信される情報を暗号化するために使用される。
【0091】
アリスの装置は、2励起子崩壊からの複数のエンタングル光子を生成するエンタングル光子源107を含む。エンタングル光子源は、2励起子崩壊から、2励起子光子の波束を時間制限する役目をする減衰器109までの第1の光子を出力する。
【0092】
時間測定は、公にアクセス可能な光ファイバー105を下って任意の複数の光子の送信の前に行なわれなければならない。これは、そうでなければ、盗聴者(あるいはハッカー)が光子を遮ることができ、光子の偏光を一意的に決定するためのエネルギー測定のように時間を統合された測定を行なうことができるからである。ここに示されたシステムでは、時間測定は、波束の長さが縮小され、エネルギーでの不確定性を増加させるような、第1の(2励起子)光子の減衰である。
【0093】
ファイバー105に沿った盗聴者による2励起子光子の傍受は、エラーをボブ測定に導入して、エンタングルメントの破壊でもたらす。このように、もしエラーがプライバシー増幅している間に検出されなければ、どんな送信も安全なことを保証することができる。
【0094】
励起子崩壊により放出される別の光子は、2励起子光子がボブの装置に入る前に、それが測定されないように、遅れループ111へ導かれる。そうでなければ、チャンネル105を下へ伝播する光の状態はもはやエンタングルしない。また、システムは安全でない。代わりの崩壊システムは量子メモリを含んでいる。その後、光子はアリスの測定モジュール113に入る。
【0095】
その後、励起子崩壊により発せられた光子信号は、アリスの測定モジュール113である50/50の非偏光ビームスプリッター115へ導かれる。
【0096】
非偏光ビームスプリッター115は、第1の偏光ビームスプリッター117あるいは第2の偏光ビームスプリッター119へ光子を導くことができる。第1の偏光ビームスプリッター117は直線偏光ビームスプリッターである。また、第2の偏光ビームスプリッター119は対角偏光ビームスプリッターである。このように、非偏光ビームスプリッター115は、直線である第1の偏光測定基準、あるいは対角である第2の偏光基準のいずれかで測定される光子をランダムに導く。
【0097】
第1の偏光ビームスプリッター117は、アバランシェフォトダイオード(APD)121あるいはAPD123のいずれかにその出力を導く。第2の偏光ビームスプリッター119は、APD125あるいはAPD127のいずれかにその出力を導く。4つのAPD121、123、125および127はすべて、タイミングモジュール129に接続される。タイミングモジュール129は古典的チャンネル131上でレシーバーボブ103と通信するように構成される。
【0098】
第2の偏光ビームスプリッターは、偏光ビームスプリッターおよび半波長板を使用して、あるいは適切な角度(通常45°)で偏光ビームスプリッターに偏光維持ファイバーをつないで構築されてもよい。
【0099】
4つの可能な偏光の組合せから光子を検出するために使用される4つのAPDが示されるが、多重化される単一の検出器が使用されてもよい。検出時間は、光子の偏光およびクロックサイクルと共にタイマー129を使用して記録される。
【0100】
2励起子崩壊によって生成される光子は、ボブのレシーバー103に光ファイバー109を通して伝送される。ボブのレシーバーの装置はアリスの測定モジュール113でのそれに似ている。最初に、光子は非偏光ビームスプリッター135に影響を与える。再び、この偏光ビームスプリッターは、この例において直線偏光ビームスプリッターである第1の偏光ビームスプリッター137へ、またはこの例において対角の偏向ビームスプリッターである第2の偏向ビームスプリッター139へ光子を導くことができる。ビームスプリッターは、アリスのモジュール113に関して記述されるように、構成されてもよい。
【0101】
第1の偏光ビームスプリッター137はAPD141あるいはADP143のいずれかに光子を導く。第2の偏光ビームスプリッター139は第1のADP145あるいはADP147のいずれかに光子を導く。4つのAPD141、143、145および147はすべてタイマー149に接続される。タイマー149はアリスのタイマー129と通信する。タイマー149および129は、図10に関して記述されたタイマー91と同じ方法で構成されてもよい。検出器は、アリスおよびボブの光子の絶対的な到着時刻を記録する。遅延時間τは、下記に述べられるように、後でアリスによって計算される。
【0102】
キーを形成するために、アリス101はボブ103の測定を予測することができなければならない。このように、アリス101は、ボブ103の測定の基準および時間の両方を、彼が受け取る光子ごとに知っていなければならない。この情報は古典的チャンネル131を横切って伝送させることができる。既知のQKD方法でのように、盗聴者はこのデータだけからボブ103の測定を予測することができない。アリス101は、ボブ103と自分の時間測定の間の差から、光子1と2の間の時間を計算する。彼女101はその後、対応する時間でのエンタングル状態がボブ103の測定を予測するために有用な期間(光子対)を選択する。
【0103】
適切な期間の例は、
【数10】

【0104】
あるいは
【数11】

【0105】
に関する時間を含む。期間のこの部分集合内では、その後、アリス101は、アリス101およびボブ103によって選ばれた測定基準の組合せが、アリス101がボブ103の測定を予測することを可能にする期間を選択する。上記の例については、これは、アリス101およびボブ101が同じ測定基準で検出する期間になる。しかしながら、これは必ずしもそうだとは限らない。例えば、
【数12】

【0106】
に関しては、対角基準での第1の光子の測定は、第2の光子が円基準にあることを保証するだろう。このように、アリス101は、選ばれた基準がアリス101とボブ103との間で異なっていた期間だけを受け入れる。
【0107】
いったんボブ103の結果を予測することができる期間(光子対)がアリス101によって判定されると、両方の関係者は、あらかじめ同意された方法でボブ103の測定(あるいは予測された測定)に1と0の値を割り当てる、彼らの測定に基づいたキーを形成することができる。その後、QKDは、プライバシー増幅、および盗聴者によって導入されたエラーを検出するためにキーのある部分の比較によって、標準的技法にしたがって始めてもよい。
【0108】
時間依存のエンタングル光子も光学の量子論理ゲートを実行するために使用することができる。論理ゲートに要求される変更は、光子の検出時間を判定するか制限する追加の手段を含んでいる。これは測定の瞬間でエンタングル状態の形式を突き止めるために要求される。エンタングル状態の形式についての知識はその後、ゲートが正確な結果を返すために、システムへフィードバックされる。

【特許請求の範囲】
【請求項1】
時間依存の複数のエンタングル光子の源と、
前記エンタングル光子のうちの1つ以上の放出時間に基づいて、前記エンタングル光子のエンタングル状態を示すように構成されたタイミング手段と、を具備する量子情報システム。
【請求項2】
前記エンタングル光子は、偏光、位相、時間、エネルギー、角運動量および空間モードから選ばれた少なくとも1つでエンタングルされている請求項1に記載の量子情報システム。
【請求項3】
前記システムは、エンタングル状態を識別し、かつそれ自身を、前記識別されたエンタングル状態に依存する複数の光子の測定から導かれる結果またはプロセス光子に適応するように構成される請求項1または請求項2に記載の量子情報システム。
【請求項4】
前記タイミング手段は、特別のエンタングル状態を有する複数の光子を選択するように構成される選択手段を具備する請求項1または請求項2に記載の量子情報システム。
【請求項5】
予め決定されるエンタングル状態を有する前記時間依存のエンタングル状態のフィデリティは、周期的に変わり、前記選択手段は2つ以上の期間から特別のエンタングル状態を有する複数の光子を選択するように構成される請求項4に記載の量子情報システム。
【請求項6】
前記選択手段は時間依存のスイッチを具備する請求項4または請求項5の量子情報システム。
【請求項7】
前記スイッチは音響光学装置あるいは速い光学的スイッチを具備する請求項6に記載の量子情報システム。
【請求項8】
前記選択手段は、予め定義されるエンタングル状態がない複数の光子をブロックするように構成された減衰器である請求項4または請求項5に記載の量子情報システム。
【請求項9】
検出器をさらに具備し、
前記選択手段は、前記検出器があらかじめ決定されるエンタングル状態からの光子が前記検出器に到着すると期待されるときに動作中になるように、前記検出器にタイミング信号を適用するように提供される請求項4または請求項5に記載の量子情報システム。
【請求項10】
検出器をさらに具備し、
前記タイミング手段は、エンタングル状態を識別するために、前記検出器に到着するエンタングル光子の間での遅延を判定するように構成される請求項3に記載の量子情報システム。
【請求項11】
エンタングル光子の前記源は、量子ドット内に閉じこめられた1以上の2励起子の崩壊の結果としてエンタングル光子ペアを放出するのに操作可能な量子ドット装置を具備する請求項1から請求項10のうちのいずれか1項に記載の量子情報システム。
【請求項12】
前記タイミング手段は、2励起子崩壊に続く励起子崩壊により放出された光子の放出時間を測定だけするように構成される請求項11に記載の量子情報システム。
【請求項13】
前記複数のエンタングル光子のうちの1つを伝送する伝送手段と、
前記伝送手段による伝送に先立って光子の波束を時間制限するように構成された減衰器と、をさらに具備する請求項1から請求項12のうちのいずれか1項に記載の量子情報システム。
【請求項14】
第1のサイトに前記複数の光子のうちの1つを伝送する第1の伝送手段と、
第2のサイトに前記複数の光子のうちの他方を伝送する第2の伝送手段と、をさらに具備し、
前記複数の光子がエンタングルし続けるように、それらが前記伝送手段に沿って伝送されるとともに、前記第1および第2の伝送手段を介する前記光子の伝送時間での差を補償する補償手段をさらに具備する請求項1から請求項13のうちのいずれか1項に記載の量子情報システム。
【請求項15】
前記複数の光子についての情報をエンコードするエンコーディング手段と、
前記複数の光子から前記情報をデコードするように構成されたデコーディング手段と、をさらに具備する請求項1から請求項14のうちのいずれか1項に記載の量子情報システム。
【請求項16】
時間依存の複数のエンタングル光子の源を提供することと、
前記複数のエンタングル光子のエンタングル状態を示すために、前記複数のエンタングル光子のうちの1以上の放出時間に関するタイミング測定をおこなうことと、を具備する量子情報方法。
【請求項17】
前記エンタングル状態を識別することと、
前記識別されたエンタングル状態に依存する複数の光子の前記測定から導かれる結果または複数の光子を処理することと、をさらに具備する請求項16に記載の量子情報方法。
【請求項18】
予め定義されるエンタングル状態を有する複数の光子を選択することを具備する請求項16に記載の量子情報方法。
【請求項19】
予め決定されるエンタングル状態がない複数の光子をブロックすることを具備する請求項18に記載の量子情報方法。
【請求項20】
予め決定されたエンタングル状態からの光子が光子検出器に到着したと期待されるとき前記検出器が動作するように、タイミング信号を前記光子検出器に適用することを具備する請求項17に記載の量子情報方法。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6A】
image rotate

【図6B】
image rotate

【図6C】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate

【図11】
image rotate


【公表番号】特表2011−511952(P2011−511952A)
【公表日】平成23年4月14日(2011.4.14)
【国際特許分類】
【出願番号】特願2010−527676(P2010−527676)
【出願日】平成21年1月14日(2009.1.14)
【国際出願番号】PCT/JP2009/050788
【国際公開番号】WO2009/091069
【国際公開日】平成21年7月23日(2009.7.23)
【出願人】(000003078)株式会社東芝 (54,554)
【Fターム(参考)】