説明

量子暗号通信方法

【課題】量子暗号通信を行う送信機と受信機との間の相対的位置が変化する場合に、送信機と受信機との間で信号を同期させる。
【解決手段】送信機101である衛星は時刻T1において地上局A(102A)上に位置し、量子鍵αを生成し、量子鍵αをデータAに重畳してレーザ光を用いて地上局Aに送信する。送信機101は時刻T2において地上局B(102B)上まで移動し、量子鍵βを生成し、量子鍵βをデータBに重畳してレーザ光を用いて地上局Bに送信する。送信機101は、量子鍵αと量子鍵βの排他的論理和により第3の量子鍵γを生成し、通常の通信手段により地上局A及び地上局Bに送信する。地上局Aは、自己の保持する量子鍵αと第3の量子鍵γとの排他的論理和により、量子鍵βを生成する。地上局Bは、自己の保持する量子鍵βと第3の量子鍵γとの排他的論理和により、量子鍵αを生成する。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、特に、量子暗号通信方法に関し、特に、衛星等における移動体通信のように量子暗号通信を行う送信機と受信機との間の相対的位置が変化する場合に適した量子暗号通信方法に関する。
【背景技術】
【0002】
量子暗号通信において、送信機と受信機との間の同期のために、送信機と受信機とで折り返し用の同期信号を生成して送信する方法が提案されている(特許文献1、特許文献2参照)。
【0003】
また、量子暗号通信において、弱い量子信号の検出を確実に行うために、QKDステーションの間で同期パルスを交換して位相をロックする方法が提案されている(特許文献3参照)。
【0004】
更に、量子暗号通信において、光クロックを光検出器で検出し、その検出出力を狭帯域のフィルタを介してシンセサイザに入力してタイミングを生成する方法が提案されている(特許文献4参照)。
【先行技術文献】
【特許文献】
【0005】
【特許文献1】特開2005−260911号公報
【特許文献2】特開2005−117512号公報
【特許文献3】特表2006−513678号公報
【特許文献4】特開2004−356996号公報
【発明の概要】
【発明が解決しようとする課題】
【0006】
前記特許文献1及び特許文献2によれば、折り返し用の同期信号に基づいて、送信機側において、常に位相同期をとる必要があり、このために、古典的な通信経路、例えば光ファイバからなる折り返し伝送路が必須である。従って、衛星等における移動体通信のように送信機と受信機との間の相対的位置が変化する即ち光の到来角度が変化する通信(以下、移動体通信という)には、量子暗号通信を適用することができなかった。
【0007】
また、前記特許文献3によれば、同期パルスに基づいて、常に位相をロックする必要があり、このために、前述の古典的な通信経路である折り返し伝送路が必須である。従って、前述の場合と同様に、移動体通信には量子暗号通信を適用することができなかった。
【0008】
更に、前記特許文献4によれば、送信機及び受信機において同様の光クロック信号を受信する必要があり、また、クロック信号がデータ信号である場合には対応できない。
【0009】
以上に加えて、本発明者の検討によれば、移動体通信に量子暗号通信を適用しようとする場合、量子暗号に用いる偏光基底軸を、移動体通信を行う移動体間において、受信側で検出することができないという新たな問題が生じる。従って、量子暗号に用いる偏光基底軸を受信側で検出することができれば、移動体通信に量子暗号通信を適用することができると考えられる。
【0010】
また、本発明者の検討によれば、移動体通信に量子暗号通信を適用しようとする場合、量子鍵配布において光子(光子パルス)の到着時間を計測する際に、送信系と受信系に正確な時刻を刻む時計を持ち計測する必要があり、両者の時刻を合わせることが難しいという新たな問題が生じる。従って、送信系と受信系において正確に両者の時刻を合わる(又はこれに相当する手段を得る)ことができれば、移動体通信に量子暗号通信を適用することができると考えられる。
【0011】
本発明は、量子暗号通信を行う送信機と受信機との間で、送信機と受信機との間で信号を同期することができる量子暗号通信方法を提供することを目的とする。
【課題を解決するための手段】
【0012】
本発明の量子暗号通信方法は、送信機が、第1の量子鍵を生成し、前記第1の量子鍵を第1のデータに重畳して第1局にレーザ光を用いて送信し、前記第1局が、前記第1のデータ及び前記第1の量子鍵を受信して保持し、前記送信機が、第2の量子鍵を生成し、前記第2の量子鍵を第2のデータに重畳して第2局にレーザ光を用いて送信し、前記第2局が、前記第2のデータ及び前記第2の量子鍵を受信して保持し、前記送信機が、前記第1の量子鍵と前記第2の量子鍵の排他的論理和により第3の量子鍵を生成し、前記第1局及び前記第2局に送信し、前記第1局が、自己の保持する前記第1の量子鍵と前記第3の量子鍵との排他的論理和により、前記第2の量子鍵を生成し、前記第2局が、自己の保持する前記第2の量子鍵と前記第3の量子鍵との排他的論理和により、前記第1の量子鍵を生成する。
【0013】
また、好ましくは、本発明の量子暗号通信方法においては、前記送信機と前記第1局及び第2局とに設けられた第1通信手段が、前記送信機と前記第1局及び第2局との間において、オンの期間とオフの期間とを含む2値の光信号であって量子暗号信号と比較してその強度が比較的強いパルス光からなる通信信号を送受信し、前記送信機と前記第1局及び第2局とに設けられた第2通信手段が、前記送信機と前記第1局及び第2局との間において、前記通信信号の送受信中であって前記通信信号が前記オフの期間に、2値の光信号であって前記通信信号と比較してその強度が比較的弱いパルス光からなる量子暗号信号を送受信し、前記第1及び第2通信手段が、前記通信信号と前記通信信号に重畳された前記量子暗号信号とを同一の光軸で送受信する。
【0014】
また、好ましくは、本発明の量子暗号通信方法においては、前記第2通信手段が、前記量子暗号信号を、前記通信信号が前記オフの期間において、前記通信信号の立ち下りに同期して当該立下りから予め定められた遅延時間の経過後に送受信する。
【0015】
また、好ましくは、本発明の量子暗号通信方法においては、前記第1又は第2通信手段が、前記通信信号の伝送速度に対応してインクリメントされ、前記通信信号の伝播遅延より長い周期でリセットされるカウンタを備え、前記カウンタを用いて、相対時間の遅延を検出する。
【0016】
また、好ましくは、本発明の量子暗号通信方法においては、前記第1通信手段が、前記第2通信手段により送受信される前記量子暗号信号の光子パルスの偏光基底に合わせて、前記通信信号の偏光変調を行う。
【発明の効果】
【0017】
本発明の量子暗号通信方法によれば、送信機が、第1の量子鍵を第1のデータに重畳してレーザ光を用いて第1局に送信し、第2の量子鍵を第2のデータに重畳してレーザ光を用いて第2局に送信すると共に、第1の量子鍵と第2の量子鍵の排他的論理和により生成した第3の量子鍵を第1局及び第2局に送信する。これにより、第1局が自己の保持する第1の量子鍵と第3の量子鍵との排他的論理和により第2の量子鍵を生成し、第2局が自己の保持する第2の量子鍵と第3の量子鍵との排他的論理和により第1の量子鍵を生成することができ、第1局及び第2局が量子鍵を共有することができる。
【0018】
また、本発明の量子暗号通信方法によれば、第1通信手段が比較的強いパルス光からなる通信信号を送受信し、第2通信手段が通信信号がオフの期間に比較的弱い量子暗号信号を送受信する。これにより、古典的な通信経路、例えば光ファイバからなる伝送路を不要とすることができ、衛星等における移動体通信に、量子暗号通信を適用することができる。また、通信信号の種類を問わないので、通信信号がデータ信号であっても量子暗号通信を適用することができる。また、本発明の量子暗号通信方法によれば、通信信号と通信信号に重畳された量子暗号信号とが同一の光軸で送受信される。これにより、調整すべき光軸が1本で良いので、送信機と受信機との間で容易に光軸を合わせることができる。
【0019】
また、本発明の量子暗号通信方法によれば、量子暗号信号が、通信信号がオフの期間において、通信信号の立ち下りに同期して当該立下りから予め定められた遅延時間の経過後に送受信される。これにより、比較的強いパルス光からなる通信信号に妨害されることなく、比較的弱い(実際には極微弱な)量子暗号信号を送受信することができる。
【0020】
また、本発明の量子暗号通信方法によれば、通信信号の伝送速度に対応してインクリメントされ通信信号の伝播遅延より長い周期でリセットされるカウンタを用いて、相対時間の遅延が検出される。これにより、量子鍵配布において光子の到着時間を計測する際に、送信系と受信系に正確な時刻を刻む時計を持つ必要を無くすことができ、両者の時刻を合わせる必要も無くすことができる。
【0021】
また、本発明の量子暗号通信方法によれば、送受信された量子暗号信号の光子パルスの偏光基底に合わせて、通信信号の偏光変調が行われる。これにより、量子暗号に用いる偏光基底軸を、移動体通信を行う移動体間において、受信側で検出することができる。
【図面の簡単な説明】
【0022】
【図1】本発明の量子暗号通信装置の構成図である。
【図2】本発明の量子暗号通信装置の送信機の構成図である。
【図3】本発明の量子暗号通信装置の受信機の構成図である。
【図4】本発明の量子暗号通信の説明図である。
【図5】本発明の量子暗号通信装置の他の構成図である。
【図6】本発明の量子暗号通信の適用例を示す図である。
【発明を実施するための形態】
【0023】
図1は本発明の量子暗号通信装置の構成図であり、本発明の量子暗号通信装置の構成の一例を示す。
【0024】
量子暗号通信装置は、送信機101と受信機102とからなり、これらの間において光信号(レーザ光)を用いた量子暗号通信を行う。送信機101は、例えば通信衛星101からなる。即ち、移動体である。受信機102は、例えば地上局(基地局)102からなる。即ち、固定局である。
【0025】
量子暗号通信装置は、第1通信手段103と第2通信手段104とを備える。第1通信手段103は、送信機101及び受信機102に設けられ、これらの間において、比較的強いパルス光からなる通信信号を送受信する。通信信号は、例えばデータ信号(例えば、動画像等)からなる。第2通信手段104は、送信機101及び受信機102に設けられ、これらの間において、通信信号がオフの期間に、比較的弱い(極微弱な)量子暗号信号を送受信する。
【0026】
図1から判るように、送信機101と受信機102との間の光路107は1本である。即ち、第1通信手段103による光路(伝送路又は通信経路)と第2通信手段104による光路とは、相互に一致する。即ち、同一の光軸107とされる。このために、送信機101には、第1通信手段103からの光信号と第2通信手段104からの光信号を重畳して出力する重畳手段105が設けられる。受信機102には、重畳して出力された光信号を受光して分離する分離手段106が設けられる。
【0027】
図2及び図3は、各々、本発明の量子暗号通信装置の送信機101及び受信機102の構成図である。図2及び図3において、太線は光信号を示し、細線は電気信号を示す。図4は、本発明の量子暗号通信の説明図であり、特に、通信信号への量子暗号信号の重畳と、量子暗号信号の時刻の同定について示す。
【0028】
最初に、図2を参照して、送信機101における第1通信手段103による通信信号の送信について説明する。送信機101における第1通信手段103は、基本的には、入力データレコーダ3、立下りトリガパルス生成回路(以下、トリガ生成回路)8、通信用レーザ16からなる。ビームスプリッタ17が重畳手段105である。
【0029】
入力データの送信に先立って、PN信号(擬似ノイズ信号又は擬似ランダム信号)が、スイッチSWを介して、トリガ生成回路8に入力される。従って、この時点では、スイッチSWは、後述するスイッチ制御信号に従って、PN発生器2とトリガ生成回路8とを接続するようにされる。PN発生器2は、例えば10MHzのクロック(発生器)1に同期して、予め定められたデータパターンを有するPN信号を発生して出力する。クロック1としては、例えばGPSクロックを用いる。PN信号は、トリガ生成回路8と一致検出回路7とに入力される。クロック1に代えて、同程度の高周波のクロックを用いても良い(以下の他の回路においても同じ)。
【0030】
トリガ生成回路8は、PN信号に基づいて、その立下りを検出して、当該立下りに同期して立下りトリガパルスを生成すると共に、PN信号を通信用レーザ16(レーザ光源)に入力する。検出される立下り(及び立下りトリガパルス)を、図4の変調波形(a)において矢印で示す。
【0031】
立下りトリガパルスは、データコントローラ5と、第1及び第2遅延パルス発生器9、10に入力される(後述する)。通信用レーザ16は、PN信号(電気信号)に基づいて、比較的強いパルス光からなる通信信号(2値の光信号)を生成して出力する。通信信号を、図4の変調波形(a)に示す。通信用レーザ16において、その波長λ1は経験的に予め定められ、その強度(パルス光の強度)は予め定められる。通信用レーザ16の出力光はビームスプリッタ17に入力される。
【0032】
ビームスプリッタ17は、通信用レーザ16からの波長λ1の光信号と、偏光ビームスプリッタ13からの波長λ2の光信号(後述する)とを重畳して、同一の光軸107に沿って出力する。ビームスプリッタ17は、波長λ1の光(通信信号)を(ほぼ)そのまま反射させ、波長λ2の光(量子暗号信号)をそのまま透過させるように設定される。
【0033】
前述のPN信号は、入力データに先立って、通信用レーザ16から出力される。これにより、当該所定のデータパターンのPN信号が受信機102に送信される。このPN信号は、入力データと同様に、通信用レーザ16から出力される。
【0034】
一方、PN発生器2の出力するPN信号は、一致検出回路7に入力される。一致検出回路7は、クロック1に同期して(図示せず)、当該PN信号と予め備えるデータパターン(図示せず)とを比較して、両者が一致する場合、リセット信号を形成して出力する。
【0035】
一致検出回路7からのリセット信号は、カウンタ6に入力される。カウンタ6は、リセット信号によりリセットされ、クロック1をカウントする。クロック1のカウントについては後述する。カウンタ6のカウント出力(カウント値)は、データコントローラ5に入力される。データコントローラ5は、カウンタ6からの最初のカウント値の入力に応じて、スイッチ制御信号を形成して出力する。
【0036】
スイッチ制御信号はスイッチSWに印加される。これにより、スイッチSWは、入力データレコーダ3とトリガ生成回路8とを接続するように、切替えられる。この結果、入力データレコーダ3に保持された入力データ(2値信号)が、スイッチSWを介して、トリガ生成回路8に入力される。このために、通信信号として送信すべきデータ(入力データ)が、予め入力データレコーダ3(例えば、メモリに保持され、又は、リアルタイムのストリームデータ等として)に用意される。入力データは、任意のデータであり、量子鍵共有がなされた後は、量子暗号(鍵データ)により暗号化されたデータ(例えば、動画像等)である。入力データレコーダ3は、図示しないが、スイッチ制御信号によりデータの送出を開始し、クロック1に同期して入力データを送出する。
【0037】
これにより、前述のPN信号と同様にして、通信用レーザ16は、入力データ(本来送信すべきデータ)に基づいて、通信信号(2値の光信号)を生成して出力され、量子暗号信号を重畳されてビームスプリッタ17から出力される。
【0038】
このように、所定のデータパターンのPN信号の送信(及び受信)により、本来の送信すべきデータの送受信が開始される。従って、所定のデータパターンのPN信号は、データ通信のスタート信号である。なお、スタート信号としてPN発生器2を用いることに代えて、入力データの先頭にスタート信号と同様の所定のデータパターンを有する擬似データを付加するようにしても良い。
【0039】
次に、図2を参照して、送信機101における第2通信手段104による量子暗号信号の送信について説明する。送信機101における第2通信手段104は、基本的には、ランダム発生器4、データコントローラ5、第1及び第2遅延パルス発生器9、10、第1及び第2量子用レーザ11、12、偏光ビームスプリッタ13、減衰器14、変調器15からなる。なお、第1及び第2通信手段103及び104を構成する要素以外の要素は、第1及び第2通信手段103及び104に共通の要素と考えて良い(受信機102においても同じ)。
【0040】
ランダム発生器4は、クロック1に同期して、ランダムな値を取るランダム信号(2値信号)を生成して、データコントローラ5と変調器15とに入力する。このランダム信号が量子鍵(暗号鍵又は鍵データ)である。データコントローラ5は、ランダム信号に基づいて、出力信号を形成して出力する。出力信号は、第1及び第2遅延パルス発生器9、10に入力される。出力信号は、ランダム信号に従って(即ち、ランダムに)、第1又は第2遅延パルス発生器9、10のいずれか一方に(択一的に)、遅延パルスを出力させる制御信号である。この時、データコントローラ5は、例えばクロック1に同期して出力信号を形成し、トリガ生成回路8から出力される立下りトリガパルス(図4の変調波形(a)参照)に同期して出力信号を出力する。従って、出力信号は、立下りトリガパルスが入力された場合にのみ出力され、第1又は第2遅延パルス発生器9、10のいずれか一方にのみ遅延パルスを出力させる。
【0041】
データコントローラ5の出力信号は、第1及び第2遅延パルス発生器9、10の一方の入力端子に入力される。第1及び第2遅延パルス発生器9、10の他方の入力端子には、トリガ生成回路8から出力される立下りトリガパルスが入力される。
【0042】
第1遅延パルス発生器9は、データコントローラ5の出力信号が入力された場合にのみ、立下りトリガパルスに基づいて、これから遅延時間Dだけおくれて遅延パルスを発生し、これを第1量子(量子暗号)用レーザ11に入力する。遅延パルスを図4の光子伝送タイミング(b)に示す。遅延時間Dは、経験的に予め定められる。第1量子用レーザ11は、遅延パルスに基づいて、あまり強くないパルス光からなる量子暗号信号(2値の光信号)を生成して出力する。量子暗号信号(パルス光)の強度は予め定められ、通信信号と比べて弱いものとされる。量子暗号信号の波長λ2は、経験的に予め定められる。第1量子用レーザ11の出力は偏光ビームスプリッタ13に入力される。第2遅延パルス発生器10及び第2量子用レーザ12も同様である。
【0043】
遅延時間Dは、通信信号の送受信の1周期(従って、クロック1の1周期)よりも、十分に短い時間とされる。従って、第2通信手段104において、量子暗号信号は、通信信号がオフの期間において、通信信号の立ち下りに同期して(立ち下りを基準として)、当該立下りから予め定められた遅延時間Dの経過後に送受信される。
【0044】
ここで、第1量子用レーザ11の出力は、例えばその偏光がH(又はV)即ち偏光方向が0度(又は偏光方向が90度)とされる。これは、例えば2値信号の0(又は1)に対応する。第2量子用レーザ12の出力は、例えばその偏光がV(又はH)即ち偏光方向が90度(又は偏光方向が0度)とされる。これは、例えば2値信号の1(又は0)に対応する。
【0045】
偏光ビームスプリッタ13は、第1及び第2量子用レーザ11、12の出力を重畳して出力する。偏光ビームスプリッタ13は、第1量子用レーザ11の出力(偏光H)をそのまま透過させ、第2量子用レーザ12の出力(偏光V)をそのまま反射させるように設定される。実際には、第1及び第2量子用レーザ11、12はいずれか一方のみが光信号を出力するので、双方の出力のいずれか一方を出力する。以上のように、偏光ビームスプリッタ13は、量子鍵用のデータに基づいて偏光H又はVの光(光子)を出力する。
【0046】
偏光ビームスプリッタ13の光出力は、減衰器14を介して、変調器15に入力される。減衰器14により、偏光ビームスプリッタ13の光出力は、伝搬損失を考慮し受信機102において1パルスにつき1フォトン以下になるまで弱められる。これにより、量子暗号信号(パルス光)は、比較的弱い(極微弱な)パルス光からなる2値の光信号とされる。量子暗号信号の強度は予め定められ、通信信号と比べて微弱なものとされる。
【0047】
変調器15には、その変調信号としてランダム発生器4からのランダム信号が入力される。変調器15は、変調信号に基づいて、偏光ビームスプリッタ13の光出力の偏光方向を変調した上で、ビームスプリッタ17に入力する。即ち、変調器15は、偏光H(0度)又はV(90度)である偏光ビームスプリッタ13からの光出力の偏光方向を、ランダムに45度だけ変更する(変調する)。従って、変調器15からの光出力(量子暗号信号の偏光)は、その偏光方向が図5に示すようになる。
【0048】
以上により、通信用レーザ16からの光(通信信号)と変調器15からの光(量子暗号信号)とが重畳されて、所定の方向に出力される。即ち、第1及び第2通信手段104が、通信信号と量子暗号信号とを同一の光軸107で送受信することになる。これは、図4の変調波形(a)と光子伝送タイミング(b)とを重ねた信号と考えて良い。従って、鍵データに従って、第1及び第2量子用レーザ11、12からH又はVの偏光を持つ微弱な光信号(量子暗号信号)が、通信用レーザ16の出力の立下りのエッジから一定の遅延時間D後に偏光変調されて、通信用レーザ16と共に送信される。
【0049】
一方、量子暗号信号として送信された量子鍵(鍵データ)の元になるデータは、データコントローラ5に保持される。このために、データコントローラ5はメモリ(図示せず)を備える。
【0050】
前述のように、一致検出回路7からのリセット信号がカウンタ6に入力される。カウンタ6はクロック1をカウントする。クロック1に同期して入力データが送信されるので、カウンタ6は通信信号の伝送速度(即ち、伝送クロック)に対応してインクリメントされる。カウンタ6のインクリメントの様子を、図4のカウンタ値(c)に示す。カウンタ6は、リセット信号によりリセットされ、具体的には、通信信号の伝播遅延より長い周期でリセットされる。これを、図4のカウンタ値(d)に示す。通信信号の伝播遅延は、経験的に予め知ることができる。図4に点線で示すように、カウンタ値(c)は、カウンタ値(d)の1周期の一部を時間的に拡大して示している。
【0051】
前記リセットのために、PN発生器2は、通信信号の伝播遅延より長い周期で、所定のデータパターンのPN信号を形成して出力する。従って、カウンタ6は、通信信号の伝播遅延より長い周期でリセットされる。この結果、カウンタ6のカウンタ値は、カウンタ値(d)に示すように、鋸波状になる。リセットのタイミング(周期)を、図4のリセットタイミング(e)に示す。以上は、後述するカウンタ30についても同様である。これにより、カウンタ6(及び30)を用いて、絶対時刻を示す時計無しであっても、通信信号及び量子暗号信号の送受信における相対時間の遅延を検出することができる。
【0052】
なお、実際には、PN発生器2は、所定のデータパターンのPN信号を量子鍵共有がなされるまで続けて出力する。量子鍵共有がなされると、スイッチSWが入力データレコーダ3側に切り替えられる。この後、データパターンが通信用レーザ16から受信機102へ送信される。送信機101において、スイッチSWが入力データレコーダ3側に切り替えられ、入力データレコーダ3から入力データが送信されている間、準リアルタイムに鍵共有を行うことができる。
【0053】
カウンタ6のカウント出力(カウント値)は、データコントローラ5に入力される。データコントローラ5は、図示しないが、鍵用のデータ(暗号鍵の元となるデータ)を生成する。データコントローラ5は、その鍵用のデータの信号と、ランダム発生器4からのランダム信号とを、その時点におけるカウンタ6からのカウント値と共に(対応付けて)、保持する(記録する)。即ち、カウンタ6のカウント値の各々における鍵データとランダムに偏光変調したデータが記録される。これにより、通信信号の送信を開始した後のどのタイミングで(何番目のクロック)で、H又はVのいずれの偏光の光信号が形成されたかを記録することができる。即ち、送信機101における暗号鍵を知ることができる。
【0054】
なお、送信機101において、変調器15を省略して、量子用レーザを4台設けるようにしても良い。即ち、H及びV用の第1及び第2量子用レーザ11、12に加えて、H+45度の偏光を持つ光を出力する量子用レーザと、V+45度の偏光を持つ光を出力する量子用レーザとを設けるようにしても良い。また、送信機101において、変調器15を省略して、非直交の2値の偏光(H、H+45度)を持つ2台の量子用レーザを設けるようにしても良い。
【0055】
また、送信機101において、量子用レーザを1台だけ設け、変調器15により、当該量子用レーザからの出力を4値(H、V、H+45度、V+45度)で変調するようにしても良い。また、送信機101において、量子用レーザを1台だけ設け、変調器15により、当該量子用レーザからの出力を非直交の2値(H、H+45度)で変調するようにしても良い。
【0056】
次に、図3を参照して、受信機102における第1通信手段103による通信信号の受信について説明する。ビームスプリッタ20が分離手段106である。受信機102における第1通信手段103は、基本的には、通信用受信機21、クロック抽出回路22、通信用データレコーダ23からなる。
【0057】
前述のように、送信機101からの光信号は、通信用レーザ16から通信信号と変調器15からの量子暗号信号とが重畳されている。これを、ビームスプリッタ20により受光する。送信機101からの光信号は、ビームスプリッタ20により分配されて、通信用受信機21と変調器24とに入力される。ビームスプリッタ20は、波長λ1の光(通信信号)をそのまま透過させ、波長λ2の光(量子暗号信号)をそのまま反射させるように設定される。従って、通信信号は通信用受信機21に入力され、量子暗号信号は変調器24に入力される。
【0058】
通信用受信機21は、入力された光信号(通信信号)を電気信号に変換して出力する。通信用受信機21の出力は、クロック抽出回路22と遅延パルス発生器28に入力される。クロック抽出回路22は、周知のクロック抽出手段により、入力された通信信号からクロックを抽出して、通信信号(以下、データという)とクロックとを出力する。データとクロックは、通信用データレコーダ23に入力され保持(記録)される。これが、送信結果として得られた、任意のデータであり、量子鍵共有がなされた後は、量子暗号(鍵データ)により暗号化された通信信号即ちデータ(例えば、動画像等)である。
【0059】
前述のように、通信信号としては、入力データに先立って、所定のデータパターンのPN信号が送信される。従って、保持されたデータは、その先頭に所定のデータパターンのPN信号を含む。しかし、PN信号のデータパターンは所定のものであるので、これを保持されたデータから除くことは容易であり、これにより、本来のデータを得ることができる。
【0060】
データとクロックは、一致検出回路29に入力される。一致検出回路29には、PN発生器33の出力であるPN信号が入力される。このために、PN発生器33は、クロック32に同期して、予め定められたデータパターンを有するPN信号を発生して出力する。クロック32としては、例えばGPSクロックを用いる。一致検出回路29は、入力されたクロックに同期して、当該PN信号と入力されたデータとを比較して、両者が一致する場合、リセット信号を形成して出力する。従って、リセット信号は、入力データに先立って送信された所定のデータパターンのPN信号が一致検出された場合に出力される。
【0061】
なお、例えば、図示しないが、通信用データレコーダ23が、リセット信号により、その時点までに保持されたデータ(PN信号)を廃棄するようにしても良い。これにより、通信用データレコーダ23は、PN信号を除いて、本来のデータである入力データのみを記録することができる。
【0062】
次に、図3を参照して、受信機102における第2通信手段104による量子暗号信号の受信について説明する。受信機102における第2通信手段104は、基本的には、変調器24、偏光ビームスプリッタ25、第1及び第2単一光子受信機26、27、遅延パルス発生器28、データコントローラ31、ランダム発生器34からなる。
【0063】
ランダム発生器34は、クロック32に同期して、ランダムな値を取るランダム信号(2値信号)を生成して、変調器24とデータコントローラ31とに入力する。変調器24は、ランダム発生器34からのランダム信号(変調信号)に基づいて、ビームスプリッタ20からの光の偏光方向を変調した上で、偏光ビームスプリッタ25に入力する。即ち、変調器24は、偏光H(0度)又はV(90度)である光の偏光方向をランダムに45度だけ変調した光を、ランダムに45度だけ変調して、偏光ビームスプリッタ25に入力する。従って、変調器24からの光出力(量子暗号信号の偏光)は、その偏光方向が図5に示すようになる。
【0064】
変調器24で変調された光信号は、偏光ビームスプリッタ25により分配されて、第1及び第2単一光子受信機26、27に入力される。偏光ビームスプリッタ25は、例えば、偏光Hの光信号(第1量子用レーザの出力)をそのまま反射させ、偏光Vの光信号(第2量子用レーザの出力)をそのまま透過させるように設定される。これにより、偏光Hの光信号は第1単一光子受信機26に入力され、偏光Vの光信号は第2単一光子受信機27に入力される。
【0065】
遅延パルス発生器28には、通信用受信機21の出力が入力される。遅延パルス発生器28は、通信用受信機21の出力に基づいて、その立下りを検出して、これから遅延時間Dだけおくれてゲート信号を形成し、これを第1及び第2単一光子受信機26、27に制御信号として入力する。この遅延パルス発生器28は、第1及び第2単一光子受信機26、27に共通の回路であり、トリガ生成回路8に相当する回路を含む。
【0066】
第1単一光子受信機26は、ゲート信号に従って、そのゲートを開いて、当該ゲートの開いている期間だけ偏光ビームスプリッタ25からの光を受光し、電気信号に変換して出力する。第1単一光子受信機26の出力は、データコントローラ31に入力される。第2単一光子受信機27も、同様である。
【0067】
以上のように、微弱な量子暗号信号とは異なる比較的強い通信信号(のビット)に同期して、通信信号の光信号がオフの時に量子暗号信号(光子)を送信し、通信信号に同期したタイミングでゲートを開き、微弱な量子暗号用光子パルスを検出する。これにより、背景光雑音を抑え、光通信路と量子通信路とをアイソレーションすることができる。特に、通信信号(のオンの期間)から相対的に遅延時間Dをとることにより、ゲートを用いて光子パルスを検出することができ、空間伝送のような背景光がある状況下でも、本発明を適用することができる。また、これにより、伝送遅延があっても、微弱な量子暗号用光子パルスを検出することができる。従って、通信信号として任意のコンテンツデータを送信しても、データ信号と量子暗号信号とを共存させることができる。
【0068】
データコントローラ31は、メモリ(図示せず)を備え、クロック1に同期して、第1及び第2単一光子受信機26、27の出力を保持(記録)する。
【0069】
前述のように、一致検出回路29からのリセット信号がカウンタ30に入力される。カウンタ30はクロック抽出回路22からのクロックをカウントする。カウンタ30はリセット信号によりリセットされる。カウンタ30のカウント出力(カウント値)は、データコントローラ31に入力される。
【0070】
データコントローラ31は、その時点でのカウンタ30のカウント出力(カウント値)を、当該第1及び第2単一光子受信機26、27の出力に対応付けて保持する。これが、送信結果として得られた暗号鍵の元になるデータである。このために、データコントローラ31はメモリ(図示せず)を備える。これにより、通信信号の送信を開始した後のどのタイミングで(何番目のクロック)で、H又はVのいずれの偏光の光信号が形成されたかを記録することができる。即ち、受信機102における暗号鍵の元になるデータを記録することができる。量子鍵は、ランダムに偏光したデータが送受信で一致することを一般通信手段で確認した後、データ処理することにより得られる。即ち、データコントローラ5及び31が、当該通信を行って、各々が記録した量子鍵の元になったデータが一致することを確認する。
【0071】
以上のように、データ伝送速度でインクリメントされるカウンタ30(及び6)において、伝搬遅延よりも長い周期でリセットすることにより、カウンタ30のビット数を減らすことができ、また、移動体通信において、伝搬距離が変化しても、カウンタ30により相対時間の遅延を検出することができる。
【0072】
即ち、受信機102において、一定の周期でカウンタ30(及び6)をリセットすることにより、データの先頭を知ることができる。その上で、当該周期を、送信から受信までの伝搬遅延時間よりも長くなるようにする。これにより、相対的な伝搬遅延により、送受信データを同定することができる。従って、受信機102(及び送信機101)が、絶対時刻を持っていなくても、微弱な量子暗号用光子パルスの時刻を同定することができ、カウンタ30のビット数を削減することができる。
【0073】
以上により、通信用レーザ16からの光(通信信号)と変調器15からの光(量子暗号信号)とが分離されて、通信信号からデータとクロックとが検出され、クロックの立下りエッジから一定の遅延時間Dの後に単一光子受信機26、27のゲートを開いて、H又はVの偏光を持つ微弱な光信号を検出する。
【0074】
なお、受信機102において、変調器24を省略して、単一光子受信機を4台設けるようにしても良い。即ち、H、V、H+45度、V+45度の偏光を持つ光を受光する単一光子受信機を設けるようにしても良い。
【0075】
図5は、本発明の量子暗号通信装置の他の構成図である。この例は、特に、図1〜図4の例において、更に、第1通信手段103が、第2通信手段104により送受信される量子暗号信号の光子パルスの偏光基底に合わせて、通信信号の偏光変調を行う例である。
【0076】
図5(A)に示すように、送信機101が、データ信号に同期して(例えば、前述のカウンタ6のリセットのタイミングで)、量子暗号信号の偏光基底に合わせて、通信信号(光信号)の偏光変調を行う。例えば、偏光方向を0度(偏光H)と90度(偏光V)とする。
【0077】
受信機102において、相対的に偏光方向の位相差がΔθだけずれているとすると、図5(B)〜図5(E)のようになる。即ち、受信機102において、偏光子(偏光ビームスプリッタ)20の後段において、受信光の交流成分が最大になるように半波長板等を調整することにより、送信機101の選択した偏光基底軸に合わせることが可能である。
【0078】
例えば、偏光子が0度(水平方向)に設置されている場合、位相差Δθが0度であるとすると、図5(B)に示すように、受信した信号の極性は反転するが、信号の振幅(強度)は変化しない。位相差Δθが0度〜45度であるとすると、図5(C)に示すように、受信した信号の極性が反転すると共に、信号の振幅(強度)もやや小さくなる。位相差Δθが45度〜135度であるとすると、図5(D)に示すように、受信した信号の極性は反転しないが、信号の振幅(強度)がやや小さくなる。位相差Δθが135度〜180度であるとすると、図5(E)に示すように、受信した信号の極性が反転すると共に、信号の振幅(強度)もやや小さくなる。なお、Δθ=90度である場合でも、受信信号の交流成分は最大となるが、位相が180度反転するため90度偏光方向が異なっていることは識別することができる。
【0079】
以上のように、通信信号(データ)のタイミングに同期して、量子暗号用光子パルスの偏光基底に合わせて通信信号(光信号)の偏光変調を行うことにより、移動体通信のように相対的に到来角度の関係が変化する場合であっても、偏光子の後段の光信号の交流成分を最大にするように半波長板等を調整して、偏光軸方向を検出し送信側の選択した偏光基底軸に合わせることができる。また、微弱な量子暗号用光子パルスの偏光方向を検出することができる。これにより、通信信号の受信信号により微弱な量子暗号用光子パルスの偏光基底を知ることができる。偏光変調を通信信号に施すことで、微弱な量子暗号用光子パルスの偏光基底を検出できる。
【0080】
図6は、本発明の量子暗号通信の適用例を示す図である。
【0081】
送信機101である衛星が、時刻T1において、地上局A上に位置する。この時、衛星は、量子鍵α(例えば、1001)を生成し、データAに重畳して、地上局Aに送信する。地上局Aは、データA及び量子鍵αを受信して保持する。
【0082】
この後、衛星が移動して、時刻T2において、地上局B上に位置する。この時、衛星は、量子鍵β(例えば、1010)を生成し、データBに重畳して、地上局Bに送信する。地上局Bは、データB及び量子鍵βを受信して保持する。
【0083】
更に、衛星は、量子鍵α及びβの排他的論理和(γ=αXORβ)により量子鍵γ(この場合、0011となる)を生成し、これを例えば通常の通信手段により基地局A及びBに送信する。これは盗聴されても良い。
【0084】
この後、地上局Aは、自己の保持する量子鍵αと量子鍵γとを用いて、その排他的論理和(β=αXORγ)により、相手方の地上局Bの量子鍵βを生成する。即ち、例えば、β=1010を知ることができる。例えば、データAが地上局Bからのデータであり、その量子鍵がβとされる。同様に、基地局Bは、自己の保持する量子鍵βと量子鍵γとを用いて、その排他的論理和(α=βXORγ)により、相手方の地上局Aの量子鍵αを生成する。即ち、例えば、α=1001を知ることができる。例えば、データBが地上局Aからのデータであり、その量子鍵がαとされる。これにより、地上局A及びBが量子鍵を共有することができる。
【0085】
以上、本発明をその実施の態様に従って説明したが、本発明は、その主旨の範囲内において種々の変形が可能である。
【0086】
例えば、以上の説明は地上及び衛星を用いた光通信について説明したが、本発明において、送信機101は衛星に限られない。例えば、飛行機、船舶、自動車等の移動体であって、通信機能を備え、移動体通信を行うものであれば良い。また、送信機101側のみならず、受信機102側も移動体であっても良い。即ち、本発明は衛星間の光通信に適用することができる。更に、送信機101側は、移動体に限られず、固定された地上局であっても良い。即ち、地上の固定局の間での光通信(地上の光通信)であっても良い。
【0087】
本発明により送受信される信号は、軍事的、個人的、商業的な秘匿通信の分野等の種々の分野のデータ信号又はそれ以外の信号であっても良い。
【産業上の利用可能性】
【0088】
以上説明したように、本発明によれば、量子暗号通信方法において、古典的な通信経路、例えば光ファイバからなる伝送路を不要とすることができ、衛星等における移動体通信に、量子暗号通信を適用することができ、通信信号の種類を問わずに量子暗号通信を適用することができる。
【符号の説明】
【0089】
1、32 クロック
2、33 PN発生器
3 入力データレコーダ
4、34 ランダム発生器
5、31 データコントローラ
6、30 カウンタ
7、29 一致検出回路
8 立下りトリガパルス生成回路(トリガ生成回路)
9、10 遅延パルス発生器
11、12 量子用レーザ
13、25 偏光ビームスプリッタ
14 減衰器
15、24 変調器
16 通信用レーザ
17、20 ビームスプリッタ
21 通信用受信機
22 クロック抽出回路
23 通信用データレコーダ
26、27 単一光子受信機
28 遅延パルス発生器

【特許請求の範囲】
【請求項1】
送信機が、第1の量子鍵を生成し、前記第1の量子鍵を第1のデータに重畳して第1局にレーザ光を用いて送信し、
前記第1局が、前記第1のデータ及び前記第1の量子鍵を受信して保持し、
前記送信機が、第2の量子鍵を生成し、前記第2の量子鍵を第2のデータに重畳して第2局にレーザ光を用いて送信し、
前記第2局が、前記第2のデータ及び前記第2の量子鍵を受信して保持し、
前記送信機が、前記第1の量子鍵と前記第2の量子鍵の排他的論理和により第3の量子鍵を生成し、前記第1局及び前記第2局に送信し、
前記第1局が、自己の保持する前記第1の量子鍵と前記第3の量子鍵との排他的論理和により、前記第2の量子鍵を生成し、
前記第2局が、自己の保持する前記第2の量子鍵と前記第3の量子鍵との排他的論理和により、前記第1の量子鍵を生成する
ことを特徴とする量子暗号通信方法。
【請求項2】
前記送信機が衛星であり、前記第1局が第1の地上局であり、前記第2局が第2の地上局であり、
前記送信機である衛星が、第1の時刻において、前記第1の地上局上に位置し、前記第1の量子鍵を前記第1のデータに重畳して前記第1の地上局に送信し、
前記送信機である衛星が、前記第1の時刻の後の第2の時刻において、前記第2の地上局上に位置し、前記第2の量子鍵を前記第2のデータに重畳して前記第2の地上局に送信し、
前記送信機である衛星が、前記第3の量子鍵を、前記第1の地上局及び前記第2の地上局に送信する
ことを特徴とする請求項1記載の量子暗号通信方法。
【請求項3】
前記第1のデータが前記第2の地上局からのデータであり、前記第2のデータが前記第1の地上局からのデータである
ことを特徴とする請求項2記載の量子暗号通信方法。
【請求項4】
前記送信機と前記第1局及び第2局とに設けられた第1通信手段が、前記送信機と前記第1局及び第2局との間において、オンの期間とオフの期間とを含む2値の光信号であって量子暗号信号と比較してその強度が比較的強いパルス光からなる通信信号を送受信し、
前記送信機と前記第1局及び第2局とに設けられた第2通信手段が、前記送信機と前記第1局及び第2局との間において、前記通信信号の送受信中であって前記通信信号が前記オフの期間に、2値の光信号であって前記通信信号と比較してその強度が比較的弱いパルス光からなる量子暗号信号を送受信し、
前記第1及び第2通信手段が、前記通信信号と前記通信信号に重畳された前記量子暗号信号とを同一の光軸で送受信する
ことを特徴とする請求項1記載の量子暗号通信方法。
【請求項5】
前記第2通信手段が、前記量子暗号信号を、前記通信信号が前記オフの期間において、前記通信信号の立ち下りに同期して当該立下りから予め定められた遅延時間の経過後に送受信する
ことを特徴とする請求項4記載の量子暗号通信方法。
【請求項6】
前記第1又は第2通信手段が、前記通信信号の伝送速度に対応してインクリメントされ、前記通信信号の伝播遅延より長い周期でリセットされるカウンタを備え、前記カウンタを用いて、相対時間の遅延を検出する
ことを特徴とする請求項4記載の量子暗号通信方法。
【請求項7】
前記第1通信手段が、前記第2通信手段により送受信される前記量子暗号信号の光子パルスの偏光基底に合わせて、前記通信信号の偏光変調を行う
ことを特徴とする請求項4記載の量子暗号通信方法。
【請求項8】
前記送信機に設けられた重畳手段が、前記通信信号に前記量子暗号信号を重畳する
ことを特徴とする請求項4記載の量子暗号通信方法。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate


【公開番号】特開2012−165455(P2012−165455A)
【公開日】平成24年8月30日(2012.8.30)
【国際特許分類】
【出願番号】特願2012−101939(P2012−101939)
【出願日】平成24年4月27日(2012.4.27)
【分割の表示】特願2007−229604(P2007−229604)の分割
【原出願日】平成19年9月5日(2007.9.5)
【出願人】(301022471)独立行政法人情報通信研究機構 (1,071)
【Fターム(参考)】