説明

量子通信システム

【課題】1つの受信機と複数の送信機を具備した量子通信システムを提供する。
【解決手段】量子通信ネットワークは1つの受信機21と複数の送信機23〜23からなる。受信機21は検出器サブシステムを具備し、検出器サブシステムは少なくとも1つの検出器を具備する。複数の送信機のそれぞれが複数の放射パルスを放出すると検出器は複数の光パルスを検出する。さらに量子通信システムはタイミング制御モジュールを具備し、1つの送信機からのちょうど1つの光パルスがどの時点においても検出器サブシステムに到達するように、タイミング制御モジュールは検出器サブシステムによって受信される光パルスの数を制御する。タイミング制御モジュールはまた前記パルスを送信した送信機が識別されるようにする。

【発明の詳細な説明】
【技術分野】
【0001】
本明細書で説明する実施形態は、量子通信システム及び量子通信方法に一般に関係がある。
【0002】
この出願は、2011年6月17日に出願された英国特許出願1110364.5番からの優先権の利益に基づきかつ請求される。その全体の内容は参照することによってここに組み込まれる。
【背景技術】
【0003】
量子通信システムでは、情報は単一の複数の光子のような符号化された単一の複数の量子によって発信者と受信機との間で送信される。光子はそれぞれ、その偏光、位相あるいはエネルギー/時間のような光子の特性で符号化された1ビットの情報を運ぶ。光子は、例えば角運動量のような特性を用いることによって、1ビット以上の情報さえも運んでもよい。
【0004】
2つの団体の間での共有の暗号鍵を形成するための技術である量子鍵配布;(しばしば「アリス」と呼ばれる)送信機、及び(しばしば「ボブ」と呼ばれる)受信機との間で。この技術の魅力は、鍵の任意の部分が無許可の盗聴者(イブ)に知られたかどうかの検査を提供することである。量子力学の法則は、イブによる複数の光子の測定によって複数の光子のうちのいくつかの状態への不可避の変化を引き起こすことを命ずる。複数の光子の複数の状態へのこれらの変化は、アリスとボブの間で形成される複数のビット値における複数の誤差を引き起こす。それらの共通のビット列の部分を比較することによって、アリスとボブは、イブが情報を獲得したかどうかをこのように判定することができる。
【0005】
以前の量子鍵配布システムはポイントツーポイントリンクを用いていた。
【図面の簡単な説明】
【0006】
実施形態は、以下の複数の図を参照して説明される:
【図1】図1は、先行技術の単一の検出器サブシステムを持ったポイントツーポイントの量子通信システムの概略図である;
【図2】図2は、複数の送信機から複数の量子信号を受信する単一の量子受信機を有する本発明の実施形態に従う量子通信ネットワークの概略図である;複数の送信機からの複数の信号は、1つのN×1パッシブ光カプラーを用いて、一時的にインターリーブされる;
【図3】図3は、1つのN×1パッシブ光カプラーを用いて、各送信機からの複数の信号パケットが結合される場合に、複数の送信機及び1つの受信機から成るQKD量子通信ネットワークを示す本発明のさらなる実施形態に従う量子通信ネットワークの概略図である;
【図4】図4は、高速光スイッチを用いて、各送信機からの複数の信号パルスが一時的にインターリーブされる場合に、複数の送信機及び1つの受信機から成るQKD量子通信ネットワークを示す本発明のさらなる実施形態に従う量子通信ネットワークの概略図である;
【図5】図5は、それぞれの送信機が固有の波長で放射し、受信機に入る前に波長分割マルチプレクサを使用して、波長全ての送信機からの複数の信号が一時的にインターリーブされる場合に、一意的な複数の送信機及び1つの受信機から成るQKD量子通信ネットワークを示す本発明のさらなる実施形態に従う量子通信ネットワークの概略図である;
【図6】図6は、唯一の送信機の複数の信号が光ミラー(optical mirror)を使用して受信機へ回される場合に、複数の送信機及び1つの受信機から成るQKD量子通信ネットワークを示す本発明のさらなる実施形態に従う量子通信ネットワークの概略図である;
【図7】図7は、送信機がみな受信機と同期することを示す本発明のさらなる実施形態に従う量子通信ネットワークの概略図である;
【図8】図8は、非対称のマッハツェンダー干渉計(Mach-Zehnder interferometer)において位相変調方式(phase encoding)を用いて、送信機/受信機の詳細を示す本発明のさらなる実施形態に従う量子通信ネットワークの概略図である;
【図9】図9は、平面の光波回路に基づいた非対称のマッハツェンダー干渉計において位相変調方式を用いて、送信機/受信機の詳細を示す本発明のさらなる実施形態に従う量子通信ネットワークの概略図である;
【図10】図10(a)は、分散された位相変調方式を用いる送信機/受信機の詳細を示す本発明のさらなる実施形態に従う量子通信ネットワークの概略図であり、図10(b)は送信機によって送信された変調パルス列を図示する。
【図11】図11は、本発明の実施形態に従う量子通信システムの検出器サブシステムにおいて用いられてもよい検出器の概略図である;
【図12】図12は、本発明の実施形態に従う量子通信システムの概略図である;
【図13】図13は、スマートグリッドネットワークに適用された本発明の実施形態に従う量子通信システムの概略図である;及び
【図14】図14は、SCADAネットワークに適用された本発明の実施形態に従う量子通信システムの概略図である。
【発明を実施するための形態】
【0007】
一実施形態によれば、量子通信システムは、1つの受信機と複数の送信機を具備し、前記受信機は検出器サブシステムを具備し、前記複数の送信機のそれぞれは複数の放射パルスを放出し、前記検出器サブシステムは少なくとも1つの検出器を具備し、前記検出器は前記複数の光パルスを検出し、前記システムはタイミング制御モジュールを具備し、1つの送信機からのちょうど1つの光パルスがどの時点においても検出器サブシステムに到達するように、前記タイミング制御モジュールは検出器サブシステムによって受信される光パルスの数を制御し、タイミング制御モジュールはまた前記パルスを送信した送信機が識別されるようにする。
【0008】
いくつかの実施形態では、複数の送信機は複数の放射パルスを放射し、1つのパルスにおける光子の平均数は1未満である。いくつかの実施形態では、複数のパルスは量子情報で符号化される。
【0009】
いくつかの実施形態では、送信機は量子情報のみなら古典的な基準パルスもまた送信する。
【0010】
一実施形態では、複数の送信機と複数の受信機は量子通信プロトコルに従って鍵を形成するために用いられる。その後、この鍵は古典的チャンネル上で送られたデータを暗号化する、解読する、または認証するために用いることができる。古典的チャンネルは個別のファイバーによって提供されるか、あるいは無線チャンネルによってさえ提供されてもよい。さらなる実施形態では、古典的チャンネルは、鍵を分配するために用いられるものと同じファイバーにおいて提供されるが、古典的データは鍵を分配するために用いられるものとは異なる波長で送られる。
【0011】
一実施形態では、複数の送信機が信号合成デバイスによって前記受信機に接続される。
【0012】
さらなる実施形態では、タイミング制御モジュールは、1つの送信機からの1つのパルスだけが一度に結合したチャンネルに入るように、複数の光パルスを放射する複数の送信機を制御する。代わりの配置では、信号合成デバイスは、単一の送信機から前記受信機へ一度に複数の信号だけを渡す。したがって、1つの送信機からの複数のパルスだけが、どの時点(到達時刻)においても受信機に到着する。
【0013】
一実施形態では、送信機はそれぞれエンコーダを具備し、受信機はデコーダを具備する。しかしながら、複数のデコーダが各エンコーダごとに受信機で提供される別の実施形態は可能であるが、デコーダはすべて共通の検出器サブシステムを用いる。
【0014】
信号合成デバイスは、いくつかの異なるコンポーネント(例えば1つのN×1パッシブ光カプラー、高速N×1光スイッチ、光波長分割多重カプラー、または光学ミラーベースのN×1アクティブカプラーなど)から選択されてもよい。
【0015】
さらなる実施形態では、検出器サブシステムは少なくとも1つのゲート制御された検出器を具備する。また、前記タイミング制御モジュールは、受信機で複数の光パルスの到達時刻と、検出器のゲーティングとを同期させる。
【0016】
さらなる実施形態では、受信機はフィードバック制御ユニットを具備する。フィードバック制御ユニットは、送信機ごとにフィードバック信号を生成し、受信機はフィードバック信号を送信機へ送信し、送信機は受信機からのフィードバック信号によって制御される制御エレメントを具備する。例えば、量子情報が干渉計における位相として符号化されるならば、送信機から受信機へ送られた明るい基準パルスの位相は、受信機で測定され、位相は、送信機へ伝達され、干渉計の位相オフセットを確定するためにフィードバック信号として用いられる。さらなる実施形態では、受信機での複数のパルスの偏光は測定され、偏光は、送信機へ伝達され、受信機に到着する複数のパルスの偏光を確定するために、偏光制御へのフィードバック信号として用いられる。
【0017】
またさらなる実施形態では、フィードバック制御ユニットは、受信機で提供され、フィードバック制御ユニットは送信機ごとにフィードバック信号を生成し、受信機は送信機からの複数のパルスの到着時間の間にフィードバック信号によって制御される補償エレメントを具備する。
【0018】
一実施形態では、タイミング制御モジュールは受信機において提供され、どの送信機が受信機に複数のパルスを送信すべきかを制御するタイミング信号は、受信機から複数の送信機へ配信される。さらなる実施形態では、これは1つの1×Nパッシブカプラーを用いて達成される。実施形態では、タイミング制御モジュールは受信機において提供され、どの複数の送信機が受信機に複数のパルスを送信すべきかを制御するタイミング信号は、波長分割マルチプレクサ及び1つの1×Nパッシブカプラーを用いて、受信機から複数の送信機に配信される。
【0019】
検出器サブシステムは、ちょうど1つの単一光検出器を有していてもよく、あるいは量子通信システムによって用いられるプロトコルに依存して、複数の単一光子検出器を有していてもよい。複数の検出器は、ゲート制御された複数の単一光子検出器、フリーランニングの複数の単一光子検出器、あるいはその両方の組合せでもよい。
【0020】
実施形態では、複数の送信機からの複数のパルスは、送信機と複数の受信機を同期させるために使用される信号のクロックサイクルに一致する時間間隔を持った単一の規則的なパルス列を形成する。
【0021】
一実施形態では、複数の送信機のうちの1つの送信機は、暗号化されたデータを受信することができるユニットに接続し、ユニットは、ユニットに接続された送信機と検出器サブシステムとの間で確立される鍵を使用して暗号化されたデータを解読する。受信した解読データは、例えばSCADAネットワークでは、制御信号でもよい。
【0022】
まださらなる実施形態では、複数の送信機のうちの1つの送信機はデータを送ることができる1つのユニットに接続されていて、ユニットは、ユニットに接続した送信機と検出器サブシステムとの間で確立される鍵を使用してデータを暗号化する。さらなる実施形態では、ユニットは、鍵を用いて送るためのデータを暗号化し、さらに受信データを解読することができる。
【0023】
上記では、各送信機と受信機との間で形成された鍵は、送信機と受信機に接続される複数のユニット間での一方の方向に送られたデータを暗号化しかつ/または認証するために用いられる。
【0024】
監視制御及びデータ取得(SCADA)システムに適用された時、各送信機と受信機との間で形成された鍵は、送信機に接続された遠隔端末ユニット(Remote Terminal Units)と、受信機に接続された監視ステーションとの間でのどちらかの方向で送信されたデータを暗号化及び/または認証するために用いることができる。
【0025】
さらなる実施形態においては、複数の送信機、検出器サブシステム、及びタイミング制御モジュールは、最初のネットワークを形成し、量子通信システムは、さらに第2ネットワークを具備し、第2ネットワークは複数のノードを具備し、それぞれのノードは接続された複数のノードのうちの1組を形成するために少なくとも1つの他のノードに接続し、接続された複数のノードの内のそれぞれの組での1つのノードは、複数の放射パルスを放出する送信機を具備し、1つのパルスでの平均の光子数は1以下であり、複数のノードのうちの他のノードは、検出器サブシステムを具備し、検出器サブシステムは少なくとも1つの検出器を具備し、検出器は複数の光パルスを検出し、第2ネットワークの複数のノードの内の少なくとも1つは、情報を第1及び第2ネットワーク間でノードを介して転送することができるように、第1ネットワークの検出器サブシステムを具備する。
【0026】
本発明の複数の実施形態は、受信機及び複数の送信機を具備するネットワーク上で通信するために量子通信方法を提供し、複数の送信機のそれぞれは、複数の放射パルスを放出し、1パルス中の平均光子数は1以下であり、受信機は検出器サブシステムを具備し、検出器サブシステムは少なくとも1つの検出器を具備し、検出器は光パルスを検出し、
複数の送信機から複数の放射パルスを放出すること;
複数の送信機の出力を単一チャネルへ合成すること;
1つの送信機からのちょうど1つのパルスだけが一度にチャンネルに入るように、単一チャネルに入る複数のパルスを制御すること;
検出器サブシステムで複数のパルスを受信すること(パルスが検出器で受信された時、パルスごとの送信機は、タイミングによって識別される)。
【0027】
図1は、単一の検出器サブシステムを持った先行技術のポイントツーポイントの量子通信システムの概略図である。ポイントツーポイントの量子通信システムは、1つの送信機1(つまりアリス)及び1つの受信機3(つまりボブ)から成る。アリスとボブは量子チャネル(この場合は単一モードファイバー5)によって接続される。
【0028】
図1のポイントツーポイントの量子通信システムでは情報は、偏光または位相のような複数のパルスにおける複数の光子の1つのパラメータを変更することによって、複数の光パルス上に符号化される。複数の光パルスは、平均で1つ未満の光子を含む。
【0029】
送信機1は、複数の光パルス源7と、光学エンコーダ9とを具備する。源7はパルスレーザと光減衰器とを具備してもよい。いくつかの配置では、光減衰器はエンコーダの後に置かれる。いくつかのさらなる配置では、半導体の単一光子源、例えば量子ドットを具備する単一光子源が提供される。
【0030】
送信機(アリス)1は量子チャンネル5によって受信機3(ボブ)につながれる。受信機3はデコーダ11と検出器サブシステム13とを具備する。いくつかの既知の配置では、2つの単一光子検出器が検出器サブシステムを形成するために用いられる。それらの機能は送信機1からの複数の入射光子を検出することであり、共有される秘密のバイナリーシーケンス(すなわち、鍵)を形成するために、複数の検出結果は送信機1及び受信機3によって共同で用いられる。
【0031】
量子チャンネル5は光ファイバーによって提供されてもよい。
【0032】
多くの異なるプロトコルは、ポイントツーポイントの量子通信システムで情報を伝えることについて提案されている。複数の単一光子あるいは複数のコヒーレントパルスを用いて、秘密鍵を分配するための既知のプロトコルは、BB84として知られている。
【0033】
BB84では、ビット状態0あるいは1は、干渉計における位相遅れあるいは偏光のような光子のある物理的特性上に符号化される。各ビット(1または0)は、2つの非直交基底のうちの1つにおいて2つの直交状態を用いて表わされてもよい。各基底における状態のうちの1つは0を符号化し、他の状態は1を符号化する。例えば、位相変調方式については、第1基底は、干渉計を通り抜ける1つの光子に0°または180°の位相シフトを適用することによって定義されてもよく、一方、第2基底は、干渉計を通り抜ける1つの光子に90°または270°の位相シフトを適用することによって定義されてもよい。BB84プロトコルにおいて、複数の特別な量子ビット状態への複数のビット値の割り当ては、予め合意されかつ固定されている。偏光符号化については、1つの基底は垂直にあるいは水平に光子を偏光することによって定義されてもよく、そして別の基底は垂直及び水平の状態に対し45°での2つの偏光状態によって定義される。
【0034】
ボブが、特別の1つの光子に対して、符号化に使用されたアリスと同様に、彼の測定に関して同じ基底を選択する場合、彼は受信状態を決定論的に(または言い換えれば100%の理論的精度で)測定することができる。しかしながら、彼がアリスとは異なる基底を用いれば、彼が間違ったビット値を判定する有限の確率がある。2つの基底の状態間での重なり積分が0.5である場合(すなわち、複数の基底が位相変調方式の場合での90°によってオフセットされる場合)、かつボブがアリスとは異なる基底を選択する場合は、彼は正しい結果を判定する50%の見込みと誤った結果を判定する50%の見込みしかない。
【0035】
測定がなされた後、アリスとボブは古典的チャンネル上で互いに通信する。BB84プロトコルでは、ボブが適切な位相シフト(ふるい分けとして知られている処理)を用いた場合に、アリスとボブは、ボブによって適用された位相シフトに関する情報を交換し、結果を維持することのみに合意する。ボブによる正しくない位相シフトを用いて行なわれた任意の測定からの複数の結果は、廃棄される。これは典型的には、測定された複数の光子のうちの半分からの結果が廃棄されるということを意味する。
【0036】
他のプロトコルも存在し、例えば、隣接したパルス中で分配された位相差についての情報を符号化することは可能である。そのような技術は、差動位相シフト(differential phase shift)プロトコルにおいて用いられる。このプロトコルでは、位相コヒーレンスは送信機によって放射された複数のパルス中に存在する。エンコーダは単に位相変調器である。それは個々の光パルス上で0あるいは180°位相遅れをランダムに適用する。デコーダはそのとき、アリスによって放射された2つの隣接した光パルス間の時間遅れと正確に一致するアーム長の差を持った1ビットのマッハツェンダー干渉計である。検出器サブシステムは、2つの単一光子検出器を具備し、その各々は、1ビットのマッハツェンダー干渉計の1つの出力に接続する。
【0037】
全システムは単一クロック周波数で作動する。アリスとボブとの間の同期チャンネル(図示せず)は必要である。同期は、送信機1と受信機3との間で提供される光チャネルによって実現されてもよい。
【0038】
検出器サブシステムにおいて用いられる複数の単一光子検出器は、複数の半導体InGaAsアバランシェフォトダイオードあるいは超伝導を示すナノワイヤー構造に基づくことができる。InGaAs APDは、単一光子検出に関し−90℃から−10℃の温度範囲への熱電冷却でゲート制御されたガイガー計数管モードで通常操作される。高速単一光子検出については、それらをいわゆる自己差分モードあるいは正弦波ゲーティングで操作することができる。複数の超伝導体ナノワイヤー検出器は、超伝導性を許可するように低温への深部冷却を要求する。
【0039】
図2は、複数の送信機23,23,23....23から複数の量子信号を受信する単一の量子受信機21を備えた本発明の実施形態に従う量子通信ネットワークの概略図である。複数の送信機からの複数の信号は、1つのN×1パッシブ光カプラー24を用いて、一時的にインターリーブされる。受信機21は、図1を参照して説明されるように、デコーダと検出器サブシステム(図示せず)とを具備する。
【0040】
この実施形態では、N個の送信機23,23,23....23は、1つのパッシブなN×1パッシブ光カプラー24を用いて、単一の受信機21ボブに接続される。各送信機23,23,23....23は、ファイバーリンク25、25、25....25によってパッシブカプラー24の1つの入力に接続される。カプラー24の結合した出力は、受信機21に接続している。
【0041】
この実施形態では、受信機は、送信機23,23,23....23がそれぞれ同期されるマスタークロック信号を提供する。任意の受信機クロック周期で、最大で1つの送信機23,23,23....23が、量子情報で符号化された1つのパルスを送信することを許される。複数の送信機は放射パルスを放出してもよいが、1パルスにおける光子の平均数は1未満である。受信機は、マスタークロック信号を出力し、どの送信機がたった今受信したパルスを送信したかを受信機が識別することを可能にするタイミング制御モジュール(図示せず)を具備する。
【0042】
複数のパルスの出力が遅延され、受信機のマスタークロックによって調整された時間間隔を持った複数のパルスの1つの列であるN×1カプラー24の後に結合した1つの光信号を生成するように、各送信機23,23,23....23内での源を制御することができる。
【0043】
複数の送信機と受信機との間で複数のパルスの衝突を避けるために、各送信機23,23,23....23ごとの各放射に関するタイムスロットを予め合意することができる。この実施形態では、これを達成するために、受信機21は各送信機23,23,23....23にタイムスロットを割り当てることができる。図2では、送信機はそれぞれ、マスタークロック周波数の1/Nで順番にパルスを送信する。
【0044】
規則的な到着を持ったこれらのパルスを、受信機21での検出器サブシステムによって容易に検出することができる。検出器サブシステムでは、複数の単一光子検出器をゲート制御、あるいはフリーランニングすることができる。
【0045】
各検出イベントに従って、受信機21はまず、光子の到達時刻から、検出イベントを生じさせた光子を送った送信機23,23,23....23を識別する。その後、受信機21は、図1に関して表されるのと同じ方法で、識別された送信機と、到着時間及び彼のデコード基底を通信することにより、シフティング処理を開始する。この処理を検出された光子ごとに繰り返し、送信機23,23,23....23のうちの1つ及び受信機21が、例えば少なくとも数千ビットの長さを持つシフトされた鍵シーケンスを形成する。その後、送信機と受信機は、それらの間での完全に秘密の鍵を抜き出すために、誤り訂正及びプライバシー増幅の処理を開始することができる。この後処理は知られており、ここでさらに説明はしない。
【0046】
実施形態では、シングルアクセスネットワークは、200km以内の光ファイバーを有していてもよい。1km、10km、20kmを越えたファイバー長さが用いられてもよい。
【0047】
ただ一つの検出器サブサブシステムだけがこのネットワークに必要であるので、1つの受信機に対し多くの送信機を有する上に説明した実施形態に従うネットワークは利点がある。複数の検出器はQKDシステムの最も高価な部分である。さらに、多くのタイプの適切な検出器は、冷却及び著しい量のメンテナンスを必要とする。検出器の数を低減しそれらを一つの位置に置くことによって、著しくコストを低下させて、メンテナンスを緩和する。
【0048】
上記の実施形態に従う複数のシステムによって、複数ユーザが、量子鍵配布にアクセスすることを可能にし、少量の検出器を用いる。
【0049】
上記の実施形態に従うシステムは、セントラルステーションといくつかの分散ノード(QKDのユーティリティを拡張するために必要)との間の個別の鍵を形成するのにふさわしいネットワークアーキテクチャーを提供する。複数の高速な単一光子検出器の最近の開発によれば、新しいアーキテクチャが許容され、複数の検出器はセントラルステーションに位置し、それぞれのエンドポイントは送信機を有する。このアプローチは、マルチポイントシステムが開発されることを許容し、エンドポイントは、非常にコンパクトかつ安価である実に単純なテレコムコンポーネントを含んでいる。セントラルステーションに検出器を配置することはまた、メンテナンスを緩和し、システムの信頼性を改善する。
【0050】
図3は、複数の送信機及び1つの受信機から成るQKD量子通信ネットワークを示す本発明のさらなる実施形態に従う量子通信ネットワークの概略図である。ここで、1つのN×1パッシブ光カプラーを用いて、各送信機からの複数の信号パケットが連結される。
【0051】
図3のネットワークシステムは、図2のそれに似ている。また任意の不必要な反復を回避するために、同様な参照数字は同様な特徴を示すために使用される。しかしながら、図3のネットワークシステムは各送信機23,23,23....23ごとの異なる送信パターンを有する。ここで、それぞれの送信機が受信機へ送信するためにその動作を受信するとき、それぞれの送信機が1つのパルスを送信する代わりに、複数のパルスが送信される。この送信時間スロット割り当ては、差動位相シフト及びコヒーレントワンウェイ(coherent one-way)などのように、隣接したパルス間での位相コヒーレンスを用いる複数の量子通信プロトコルのために有利である。BB84のような他のプロトコルについては、この配置は絶対に必要ではなく、受信機内の送信スロット管理を単純化してもよい。
【0052】
図3は、パッシブ光ネットワークに基づいた量子アクセスネットワークの一例である。パッシブ光ネットワークは、マルチポイントファイバー光ネットワークへのポイントであり、信号を分離する/結合することは複数のパッシブコンポーネントに基づいている。
【0053】
GHzクロックレートで作動する単一光子検出器を用いることは、複数の検出器がセントラルステーションに位置することを可能にし、エンドポイントはそれぞれレーザー源を有している。このアプローチによれば、量子アクセスネットワーク(Quantum Access Network)が発展することを可能にし、複数のエンドポイントは、非常にコンパクトかつ安価である実に単純な複数のテレコムコンポーネントを含んでいる。セントラルステーションに複数の検出器を配置することはさらに、メンテナンスを緩和し、システムの信頼性を改善する。
【0054】
単純な1つの1×8パッシブ光カプラーに関して、約9dBの挿入損失を見込むことができる。したがって、低損失標準ファイバーの典型的な20kmの低下については、ユーザ当たり約500kbit/sまたは85kbit/sの受信機でのアグリゲートセキュアビットレートを見込むことができる。
【0055】
図4は、複数の送信機23,23,23....23及び1つの受信機21からなるQKD量子通信ネットワークを示す本発明のさらなる実施形態に従う量子通信ネットワークの概略図である。ここで各送信機からの複数の信号パルスは高速光スイッチを使用して一時的にインターリーブされる。
【0056】
図4のネットワークシステムは図2のそれに似ていて、任意の不必要な反復も回避するために、同様な参照数字は同様の特徴を示すために使用される。しかしながら、図4のネットワークシステムは、(図2及び3の)パッシブなN×1光カプラーを、全ての送信された信号を合成するためにアクティブな高速光スイッチ27に置き換える。そのような配置は、ビーム結合における信号透過率を改善する。理論上、完全な光スイッチは100%の信号透過率を有することができる。一方、1つのパッシブなN×1光カプラーはチャンネルごとに1/Nの平均透過率を持っている。
【0057】
高速光スイッチは、図2及び3に示されるもののような任意の種類の送信スロットパターンを合成するために適切である。その活発な性質のために、この実施形態ではスイッチ27も、受信機のマスタークロックに同期され、信号を切り替えるための受信機21によって制御される。
【0058】
図5は、複数の送信機及び1つの受信機から成るQKD量子通信ネットワークを示す本発明のさらなる実施形態に従う量子通信ネットワークの概略図である。ここで、各送信機は単一の波長で放射し、全ての送信機からの複数の信号は、受信機に入る前に、波長分割マルチプレクサ(WDM)を使用して一時的にインターリーブされる。図5のネットワークシステムは、図2のそれに似ていて、任意の不必要な反復を回避するために、同様な参照数字は同様な特徴を示すために使用される。しかしながら、異なる波長の送信された信号をすべて合成するために、図5のネットワークシステムは、N×1光カプラーをWDMカプラーに取り替える。そのような配置は、ビーム合成における固定された信号透過率を与えるかもしれない。典型的には、WDMカプラーは、送信約3dBを有していて、チャネルごとに透過率は50%に到達する。
【0059】
WDMカプラーは、図2及び3に示されるもののように、任意の種類の送信スロットパターンを合成するのに適切である。
【0060】
薄膜WDM分波器あるいはアレイ導波路回折格子(AWG: Array Waveguide Grating)を使用して、複数のWDMカプラーを形成することができる。3dBの典型的な薄膜WDM分波器挿入損及び20kmの低下ファイバー長さを採用すると、ユーザ当たり約250kbit/秒のセキュアビットレートを8ユーザに関して達成することができる。AWG分波器はより高価で、わずかに高いロスを持っているが、128人までのユーザがネットワークに接続されることを可能にすることができる。
【0061】
図6は、複数の送信機及び1つの受信機から成るQKD量子通信ネットワークを示す本発明のさらなる実施形態に従う量子通信ネットワークの概略図である。ここで、唯一の送信機の複数の信号は、光ミラー31を用いて受信機21にルーティングされる。
【0062】
図6のネットワークシステムは、図2のそれに似ていて、任意の不必要な反復を回避するために、同様な参照数字は同様な特徴を示すために使用される。しかしながら、図6のネットワークシステムは、N×1光カプラーを、ただ一つの送信機を受信機21へ同時にルーティングするためのスイッチに基づく光ミラー31に交換する。
【0063】
この種のスイッチは光ミラー31を回転させることに依存するので、スイッチング時間は(図4の)高速光スイッチより典型的にはるかに遅い。スイッチング時間は典型的に約10ミリ秒以上のオーダーであり、それは高速の複数の光パルスパケットを切り替えるのに適していない。代わりにそれは、スイッチング時間と同程度かまたははるかに長い持続時間の1対1の量子通信について同時に、ただ一つの送信機を受信機に接続するルーティングデバイスとして使用される。例えば、1接続時間は、別の送信機へのスイッチング前に、100ミリ秒から1000秒まで続いてもよい。
【0064】
ミラースイッチは、基底付き微小電気機械システム(MEMS)になりえる。複数のMEMSスイッチは、低い送電損失(<1dB)及び約10ミリ秒のスイッチング時間を特徴とする。
【0065】
個々の光カプラーあるいはスイッチを用いることは別として、複数のカプラーと複数のスイッチとの組合せを、より複雑な量子通信ネットワークを形成するためにともに用いることができる。例えば、多くのWDMカプラー及びMEMSベースのミラースイッチを、さらに多くの送信機が単一の受信機に接続することを可能にするネットワークを形成するために用いることができる。
【0066】
図7は、複数の送信機がどのように受信機に同期するかを示す本発明のさらなる実施形態に従う量子通信ネットワークの概略図である。
【0067】
図7のネットワークでは、図2から図6までごとのように、N個の送信機53...53からの複数の信号を受信する単一の受信機51がある。受信機51の内部では、制御電子回路55、デコーダ57及び検出器サブシステム59を具備する複数の機能モジュールがある。制御電子回路モジュール55は、システムマスタークロック(図示せず)を提供し、デコーダ57で任意の変調器(図示せず)を駆動し、検出器サブシステム59に起因する光子検出を受け入れる。さらに制御電子回路55は、送信機53...53と受信機51との間で用いられる古典的通信に関与して、かつ誤り訂正及びプライバシー増幅に関与している。
【0068】
送信機53それぞれは、制御電子回路61、源63及びエンコーダ65を具備する。制御電子回路61は、マスタークロック信号を受信し、源63を駆動するためにこれを用いる。制御電子回路61はさらに、エンコーダ65内に提供される任意の変調器も制御する。
【0069】
この実施形態では、受信機51はシステムマスタークロックのためのプロバイダーである。マスタークロックは、検出器サブシステムにおける複数の単一光子検出器の速度によって通常判定される。例えば、自己差分InGaAs APDベースの複数の単一光子検出器については、マスタークロックを1GHz以上で操作することができる。このマスタークロックは、デコーダと検出器を駆動し、光子到着のための時間照会先を提供する。
【0070】
受信機51と各送信機53...53との間のファイバーを光学的に用いて、このマスタークロックの送信を実現することができる。量子チャンネルからこれらのファイバーを分離することができる。例えば、送信機は、1つの1×Nパッシブカプラー及びファイバーによってすべての送信機にマスタークロックを同時に配信することができる。この同期配置は、図2から図6を参照して説明されたすべてのネットワークに適している。
【0071】
WDMカプラーが用いられている図5に示される場合では、全ての送信された複数の量子信号を合成し、任意の送信機とは異なるがWDMカプラーのグリッドと同程度の波長でマスタークロックは光学的に送信されてもよい。このように、それはWDMカプラーを通過しすることができ、単一モードファイバーに結合することができる。その後、1つのパッシブな1×Nカプラーによってクロック信号を各送信機に配布することができる。
【0072】
マスタークロックもカスケードモードで送信することができる。例えば、受信機51はアリス_1 53にクロックを送信し、アリス_1 53はアリス_2 53にクロックを送信する等である。
【0073】
クロック安定を提供するために、位相ロックループ(PLL)は、クロックプロバイダーとクロックアクセプターとの間で用いられてもよい。PLLと共に、マスタークロックをも、送信の前に周波数に関して減らし、次にクロックアクセプターで再合成することができる。
【0074】
図8は、非対称のマッハツェンダー干渉計において位相変調方式を用いて、送信機/受信機の詳細を示す本発明のさらなる実施形態に従う量子通信ネットワークの概略図である。簡単のために、1つの送信機だけが図面で示される。
【0075】
送信機の設備はレーザーダイオード107、強度変調器108、エンコーダに基づく非対称マッハツェンダー干渉計(AZMI)133、偏光コントローラー139、減衰器137及び制御電子回路109を含んでいる。強度変調器108は偏光の維持である。
【0076】
制御電子回路109による各トリガー信号の間に、レーザーダイオード107は1つの光パルスを出力する。複数のレーザーパルスの偏光は、強度変調器108のファイバーを維持する偏光の特別な軸(通常は遅軸(slow axis))に平行になるように整列される。強度変調器108は、パルスごとの基底上で各パルスの強度を変調する。強度変調器108は直接の強度変調を許容するレーザーダイオードを用いることにより省略されてもよい。直接の変調は、レーザーダイオード107に適用される複数の信号を駆動する振幅を変化させることにより実現することができる。
【0077】
強度変調器108の後に、複数の信号パルスは、ファイバーカプラー130を維持する偏光によってアンバランスなマッハツェンダー干渉計133に供給される。複数の信号は、1つの軸(通常はファイバーを維持する偏光の遅軸である)へ連結される。
【0078】
干渉計133の長いアーム132は、光ファイバー遅延ループ135及び可変遅延線140を含んでいる。一方、短いアーム131は光ファイバー位相変調器134を含んでいる。2つのアーム131及び132の長さの差は、tdelayの光伝播遅延に対応する。
【0079】
2つのアーム131及び132は、単一モードファイバー138の中への偏光ビーム結合器136と一緒に結合される。ファイバーを維持する偏光の特別の軸に沿って伝播する複数の光子だけが、結合器136から出力されるように、偏光ビーム結合器136の複数のファイバー入力は整列する。典型的には、遅軸または速軸に沿って伝播する光子は、結合器136によって単一モードファイバー138へ出力される。
【0080】
偏光ビーム結合器136には2つの入力ポート、インライン入力ポート及び90°入力ポートがある。入力ポートのうちの1つは干渉計133の長いアーム132に接続され、別の入力ポートは干渉計133の短いアーム131に接続される。
【0081】
インライン入力ポートのインライン入力ファイバーの遅軸に沿って偏光された複数の光子だけが、偏光ビーム結合器によって伝達され、ファイバー138へ入る。入力ポートのインライン入力ファイバーの速軸に沿って偏光された複数の光子は反射され失われる。
【0082】
その間に、ビームカプラー136の90°入力ポートでは、90°入力ファイバーの遅軸に沿って偏光された光子だけが、ビーム結合器136によって反射され出力ポートに入る。一方、速軸に沿って偏光されたものは、ビーム結合器136から伝達され失われる。
【0083】
これは、2つの入力ファイバーのうちの1つの遅軸が、出力ポートに対して90°だけ回転していることを意味している。あるいは偏光は、偏光ビーム結合器の複数の入力ポートのうちの1つの前に、偏光回転子を用いて回転してもよい。
【0084】
したがって、長い及び短いアーム132、131を通り抜けた複数の光子パルスは、直交の偏光を持つ。
【0085】
長いアーム132を介して移動する光子は、短いアーム131によって移動するそれよりも、干渉計133の出口138でtdelayの時間だけ遅れる。
【0086】
その後、偏光コントローラー139の後でパルス当たりの平均光子数μ<1であるように、信号は減衰器137によって強く減衰される。その後、減衰される複数のパルスは、光ファイバーリンク105及び結合/ルーティングデバイス144に沿って受信機ボブ103へ送信される。デバイス144は、パッシブカプラー、WDMカプラー、高速スイッチあるいはMEMSに基づいたスイッチになり得る。
【0087】
ボブの設備103は、非対称のマッハツェンダー干渉計156、干渉計156の2つの出力に接続された2つの単一光子検出器を含んでいる検出器サブシステム161、及び制御電子回路143を具備する。
【0088】
ボブの干渉計156は、入射偏光ビームスプリッター151と、ビームスプリッター151の出力に接続する遅延ループ154を含む長いアーム153と、ビームスプリッター151の他の出力に接続する位相変調器155を含む短いアーム152と、長い及び短いアーム153及び152からの出力に結合する射出偏光維持50/50ファイバーカプラー158と、を含む。ボブの干渉計156におけるコンポーネントはすべて偏光維持である。
【0089】
ボブは、結合/ルーティングデバイス144から受信された、送信信号を受信する。複数の信号パルスはボブの干渉計156に供給される。入射偏光ビームスプリッター151は、複数の入射パルスを複数の直交する直線偏光に分割する。2つの出力偏光が両方とも偏光維持ファイバーの特別な軸(通常、遅軸)に連結されるように、入射偏光ビームスプリッター151の2つの出力は整列する。これは、一方のアームを利用する複数の信号パルスが、射出50/50偏光維持カプラー158で同じ偏光を有することを保証する。ボブの干渉計156の長いアーム153は、光ファイバー遅延ループ154を含んでいる。また、短いアーム152は位相変調器155を含んでいる。2つのアーム152及び153は、それぞれの出力アームに取り付けられている単一光子検出器を有する50/50偏光維持ファイバーカプラー158に接続される。2つの単一光子検出器が検出器サブシステム161を形成する。
【0090】
複数の偏光コンポーネントの使用により、理想的な場合には、アリスの符号化干渉計133の入口からボブの干渉計156の出口まで移動する単一パルスに関する2つのルートだけがある:
i.アリスの長いアーム132−ボブの短いアーム152(L−S)及び
ii.アリスの短いアーム131−ボブ長いアーム153(S−L)。
【0091】
アリスの干渉計132での可変遅延線140は、半導体分布帰還型(DFB:distributed feed back)レーザーダイオードに関して典型的には数ピコ秒である信号レーザーコヒーレンス時間内で、経路(i)及び(ii)に沿った伝播時間がほとんど等しくなるように調整され、それによって2つの経路の干渉を保証する。
【0092】
検出器サブシステム161における検出器は、ゲート制御またはフリーランニングすることができる。ゲート制御された複数の検出器の場合には、複数の検出器が、干渉を受けているこれらの光子(すなわち、1つの干渉計の短いアームと他の干渉計の長いアームとを介して移動する複数の光子)の到着の間に、ゲート制御されねばならない。自己差分アバランシェフォトダイオード、あるいは正弦波ゲートアバランシェフォトダイオードは、この応用での単一光子検出に適している。
【0093】
非理想的な偏光により、いくつかの光子は両方の短いアームあるいは両方の長いアームのいずれかを移動し、それにより、干渉する光子それぞれ±tdelayの時間遅れで検出器サブシステム161に到着する。これらの干渉しない光子は、鍵レートの鍵生成に寄与しない。したがって、これらの光子の検出結果は廃棄されるべきである。
【0094】
干渉する光子の汚染を回避するために、適切なtdelayは、(1)tdelayは検出器時間分解能より長く、及び(2)tdelayは受信機のシステムクロック期間より短い、ことを保証するために選択されなければならない。高速QKDシステムでは、tdelayの便利な選択はシステムクロック期間の半分である。例えば、1GHzの受信機にとって、tdelayは500ピコ秒である。
【0095】
図7の記述に示されるように送信機と受信機との間のクロック同期を実現することができる。
【0096】
図8でのシステムは、標準4状態BB84プロトコル、またはおとり状態BB84プロトコルを実装するのに適している。標準BB84プロトコルは、送信機の装置における強度変調器108を必要としない。一方でおとり状態BB84は、おとりパルスを生成する強度変調器を必要としている。
【0097】
(時々BB84と呼ばれる)4状態プロトコルでは、アリスは、0°、90°、180°及び270°の位相シフトに対応して、彼女の位相変調器上で4つの異なる値のうちの1つに電圧を設定する。位相0°及び180°は最初の符号化基底ではビット0及び1に関連し、一方、90°及び270°は2回目の符号化基底では0及び1に関連する。第2の符号化基底は1番目に非直交であることが選ばれる。位相シフトは、各信号パルスについて任意に選ばれる。またアリスは、各クロックサイクルについて適用された位相シフトを記録する。
【0098】
その間に、ボブは、0°及び90°に対応する2つの値の間で彼の位相変調器に加えられた電圧を任意に変える。これは、第1測定基底と第2測定基底との間でそれぞれ選択することになる。ボブは、適用された位相シフト及び測定結果を記録する。
【0099】
光子数分裂アタックに対して保護するために、送信機はいくつかの彼女の信号パルスを、異なる平均強度の複数のおとりパルスに代える。おとりプロトコルに従って、送信機と受信機は、信号とおとりパルスの透過率及び量子ビットエラー比率の測定により、盗聴者に漏らす可能性がある情報を制限することができる。
【0100】
量子通信中に、多くの物理パラメータは、非対称のマッハツェンダー干渉計と光子偏光と光子到達時刻との間で一致するアーム長を含んで、積極的に安定させる必要がある。
【0101】
ボブによって送信されたフィードバック信号に基づいて調整可能な遅延線140を積極的に調節することによって、アーム長マッチングを実現することができる。このフィードバックは、量子ビットエラーレート(QBER)になりえる。調整可能な遅延線140を調整することによって最小化される。QBERは各誤り訂正処理後にだけアリスに利用可能である。QBERを判定する際での待ち時間は、アーム長の遅い変化だけの補償を可能にする。複数の信号/おとりパルスのごく一部分を代用する複数の強い基準パルスを送ることにより、より高速の補償を達成することは可能である。これらの基準パルスは、アリスまたはボブのいずれかによって変調されない。また複数の基準パルスの干渉は、アーム長マッチングの状況を示す。アリスが彼女の調整可能な遅延線140を調節するフィードバックとして使用されるために、複数の基準パルスの検出結果を、ボブによってアリスに送信することができる。
【0102】
可変ファイバー遅延線140は、制御装置として働き、圧電アクチュエータによって駆動される、エアギャップ、またはファイバーストレッチャーになり得る。あるいは、2つの遅れは、アリス及びボブの干渉計133、156のファイバーの長さを注意深く制御することによりバランスを保つことができる。アリスの位相変調器134におけるDCバイアスを調整するか、あるいは位相変調器134に適用した駆動信号にACオフセットを加えることを介して、2つの光経路の長さの微調整を達成することができる。
【0103】
ボブ103が彼の位相変調器155を使用して位相遅延を変える場合、可変遅延線140も省略することができる。この場合、ボブの受信機は、複数の送信機に関するアーム長の変化を補償する制御部(図示せず)を具備し、異なるACオフセットは、パルスの起源によるそれぞれの入射パルスに適用されなければならない。これらのACオフセットは振幅において可変である。
【0104】
偏光ドリフトは積極的に偏光コントローラー139を用いて安定させることができる。理想的には、エンコーダとデコーダを通り抜けるすべての光子は、カプラー158での干渉を経験し、鍵形成に寄与する。しかしながら、2つの干渉計のうちの2つの長いアームまたは2つの短いアームのいずれかを光子が通るように、ファイバー105における偏光ドリフトによって、光子が干渉されない経路へルーティングされる。これらの干渉しない光子は、鍵形成に寄与しない。それらは、ゲート制御された光子検出器の場合に自動的に拒絶されるか、あるいは、フリーランニングの複数の単一光子検出器を持った検出器サブシステムにおいてタイミング弁別ウィンドウを用いて拒絶することができる。いずれの場合でも、偏光ドリフトは、複数の干渉光子の光子計数率を減少させる。この計数率の最適化によって、アリスは偏光コントローラー139を調整することにより偏光ドリフトを修正することができる。
【0105】
別のドリフトは検出器サブシステム161での光子到達時刻である。検出器サブシステム161における光子検出結果に基づいて、レーザーダイオード107にトリガー時間を合わせることにより、これについて修正することができる。
【0106】
図9は、複数の平面光波回路(PLC)に基づいて非対称のマッハツェンダー干渉計において位相変調方式を用いて、送信機/受信機の詳細を示す本発明のさらなる実施形態に従う量子通信ネットワークの概略図である。簡単のため、1つの送信機だけが図面において示される。
【0107】
図9のネットワークシステムは、図8のシステムに似ている。また、任意の不必要な繰り返しを避けるため、同様な参照数字は同様な特徴を示すために使用される。しかしながら、図9の送信機及び受信機は、ファイバーベースの非対称のマッハツェンダー干渉計133及び153を、PLCベースの干渉計171及び172に代えている。
【0108】
送信機の設備は、レーザーダイオード107、PLCベースの非対称マッハツェンダー干渉計(AZMI)、位相変調器134、偏光スクランブラー175、減衰器137、及びまた制御電子回路109を含んでいる。
【0109】
制御電子回路109による各トリガー信号の間にレーザーダイオードは、可変強度の1つの光パルスを出力する。各パルスの強度は、制御電子回路109によって制御される。
【0110】
標準のBB84プロトコルを実装するために、パルスはすべて同じ強度を持っている。おとり状態BB84プロトコルを実装するために、パルスはそれぞれいくつかの異なる強度のうちの1つに設定することができる。これは、ダイオードレーザー107に異なる電圧振幅の駆動パルスを出力することによって実現することができる。
【0111】
レーザーダイオード107の出力はPLC171に供給される。
【0112】
PLC171は非対称のマッハツェンダー干渉計である。図8のAZMI133に似て、PLC171には短いアーム及び長いアームもある。入口および出口のビームスプリッターは共に、50/50分割比を有する。
【0113】
PLC171を通過した後、それぞれのレーザーパルスは等しい強度のパルスペアに分けられ、アーム長の差に対応する時間遅延tdelayによって分離される。
【0114】
その後、パルスペアは位相変調器134に供給される。位相変調器134へ流れ込む複数の光子が固定された偏光を有するように、レーザーダイオード107及びPLC 171は並べられる。この固定された偏光は典型的に、位相変調器134の入力ファイバーの遅軸に沿って直線的に偏光される。各ペアの初期のパルスだけが変調されるように、位相変調器134は制御電子回路109によって駆動される。
【0115】
PLC171と位相変調器134との組合せは信号エンコーダを構築する。
【0116】
複数の信号はその後、減衰器137によって強く減衰される前に、偏光スクランブラー175によって偏光スクランブルされて、その結果アリスの装置を離れた後はパルス当りの平均光子数μ<1になる。減衰された複数のパルスはその後、光ファイバーリンク105及び結合/ルーティングデバイス144に沿って受信機ボブ103に送信される。デバイス144は、パッシブカプラー、WDMカプラー、高速スイッチ、あるいはMEMSベースのスイッチになりえる。
【0117】
ボブの設備103は、PLC非対称のマッハツェンダー干渉計172、2つの単一光子検出器を含んでいる検出器サブシステム161、及び制御電子回路143を具備する。
【0118】
ボブのPLC172は、アリス101内でのPLC171と同一である。
【0119】
ボブは、結合/ルーティングデバイス144から受信された、送信信号を受信する。複数の信号パルスは、位相変調器155によって変調された偏光子174によって最初にフィルタリングされ、次に、PLC172を介して供給される。PLC172の2つの出力は、2つの単一光子検出器を具備する検出器サブシステム161に接続される。
【0120】
位相変調器155は、制御電子回路143によって制御される。また、アリスから送信された各パルスペアのうちの遅いパルスだけが変調される。
【0121】
レーザーダイオード107からボブの検出器サブシステム161の入力まで移動する信号パルス用の3つのルートがある:
i.アリスのPLC171の短いアーム−ボブのPLC172の短いアーム(S−S)
ii.アリスのPLC171の短いアーム−ボブのPLC172の長いアーム(S−L)
iii.アリスのPLC171の長いアーム−ボブのPLC172の短いアーム(L−S)
iv.アリスのPLC171の長いアーム−ボブのPLC172の長いアーム(L−L)
アリスとボブは同一のアーム長差のPLCを持っているので、ルートS−L及びL−Sは、判別不能であり、したがって干渉を受ける。
【0122】
複数の光子は、共に短いアーム(S−S)あるいは共に長いアーム(L−L)のいずれかを移動し、それにより、干渉する複数の光子(S−L及びL−S)でそれぞれの±tdelayの時間遅れで検出器サブシステム161に到着する。これらの干渉しない光子は鍵生成に寄与しない。したがって、これらの光子の検出結果は廃棄されるべきである。
【0123】
検出器サブシステム161における複数の検出器は、ゲート制御することができる、あるいはフリーランニングすることができる。
【0124】
干渉する複数の光子の汚染を回避するために、適切なtdelayは、(1)tdelayが検出器時間分解能よりも長く、かつ(2)tdelayが受信機のシステムクロック周期よりも短いことを保証するために、選択されなければならない。高速QKDシステムでは、tdelayの便利な選択はシステムクロック周期の半分である。例えば、1GHzの受信機にとって、tdelayは500ピコ秒である。そのような遅れは、容易にPLCについて設計することができる。
【0125】
図7の記述で示されるように送信機と受信機のと間のクロック同期を実現することができる。
【0126】
図9内でのシステムは、標準の4状態BB84プロトコルを実装するか、おとり状態BB84プロトコルを実装するのに適している。
【0127】
QKDの間に、PLC171及び172は、位相変調器134及び174に適用される位相変調が0位相差である場合に、ルートS−L及びL−Sとの間での建設的干渉を維持するために温度制御されている。
【0128】
偏光スクランブラー175と偏光子174との組合せの使用によって、追加の3dBのチャネルロスを犠牲にして偏光安定化の必要はなくなる。
【0129】
検出器サブシステム161でのルートS−L及びL−Sを採用する複数の光子の到達時刻でのドリフトを、検出器サブシステム161での光子検出結果に基づいてトリガー時間をレーザーダイオード107に合わせることによって、修正することができる。
【0130】
図10(a)は、分散された位相変調方式を用いて、送信機/受信機の詳細を示す本発明のさらなる実施形態に従う量子通信ネットワークの概略図である。特に図面は差動位相シフトプロトコルを実装することに関する光学を示す。簡単のために、1つの送信機だけが図面において示される。
【0131】
図10(a)の通信システムは、セキュリティ鍵を配布するために、隣接したパルス間のコヒーレンスを用いる。
【0132】
送信機201は、位相変調器211を後に続けて、強度変調器208に出力する連続波コヒーレントのレーザーダイオード207を具備する。強度変調器208は、制御電子回路によって制御されて、複数の光パルスへcw入力レーザー放射を変調する。その後、複数の光パルスは、変調器211でランダムに0度または180度によってさらに位相変調される。その後、信号は、各パルスにつき1パルス当り1つ未満の光子があることを保証する減衰器213によって減衰される。これはその後、ファイバー205を下って、パッシブカプラー、WDMカプラーまたは光スイッチになりうるビーム結合/ルーティングデバイス244を介して受信機203へ送信される。
【0133】
受信機203は干渉計253を具備する。干渉計253は、短いアーム256あるいは長いアーム257のいずれかを下って光子を指図する、最初のビームスプリッター215を具備する。長いアーム257及び短いアーム256は、半導体アバランシェフォトダイオードまたは超伝導デバイスのいずれかに基づくことが可能な2つの単一光子検出器を具備する検出器サブシステム261へその後出力される第2のビームスプリッター258で再結合される。
【0134】
発信者201は、Mパルス(M≧2)を有するパルス列を送信し、それぞれのパルスは図10(b)に示されるように0位相シフトまたは180度の位相シフトのいずれかによって変調される。受信機側では、受信パルス列は、2つの経路へ分裂される:短いアーム256及び長いアーム257の2つ。
【0135】
短いアーム256と長いアーム257との間の時間遅延は、システムマスタークロックの正確に1クロック周期に対応し、その結果、短いアーム256を通過するパルス列は、50/50カプラー258での長いアーム257を通過するその同一な(しかし1クロック周期だけ遅延された)コピーを干渉する。ファイバーカプラー258のトップ出力またはボトム出力から出る1つの光子は、隣接する光パルスの間の位相差に依存する。
【0136】
検出器サブシステム261は、M−1パルスの干渉結果を記録する。受信機は、送信機に各検出された光子の到達時刻を通知するが、対応する送信機へどの検出器が光子を記録するかの情報は通知しない。光子検出及び変調情報を用いると、受信機及び対応する送信機は共有されるロー鍵(raw key)を形成することができる。もし量子ビットエラー比率があるしきい値未満ならば、完全に秘密の鍵は誤り訂正及びプライバシー増幅の後に引き出すことができる。
【0137】
Mパルスを含んでいる各パルス列については、受信機は、光子干渉を検出するためのM+1のクロックサイクルスロットを割り当てなければならない。したがって、差動位相シフトプロトコルには、M/(M+1)の固有効率がある。より高い効率はMを増加させることにより達成することができる。例えば、M=1000は、99.9%の効率を与える。
【0138】
図8、図9及び図10のシステムは、単一の受信機を共有する複数の送信機を持つQKDネットワークを実装する方法に関するちょっとした例である。他の量子通信プロトコル及び光学装置も、例えばコヒーレントの一方向のプロトコルを実装することができる。そのようなプロトコルを実装することは、関連する光源、エンコーダ及びデコーダの使用を必要とする。複数の送信機からの複数の信号の多重化は、図2から図6に示されるものと同じままである。
【0139】
図11は、本発明の実施形態に従ってシステムで使用されてもよい高速の単一光子検出器を示す。より高速な検出器が使用される場合には、ネットワークが有益な時間スケールで機能するように許容されながら、使用される送信器数を増加することができる。
【0140】
キャパシター501及びインダクタ503は、AC電圧源509からのAC変調電圧Vac507と、DCバイアス源513からの固定されたDCバイアスVdc511とを合成するために使用されるバイアスティー(bias-tee)505を具備している。AC電圧はキャパシター501を具備するバイアスティーのアームに印加され、DC電圧はインダクタ503を具備するバイアスティーのアームに印加される。結合されたAC及びDCのバイアスは、アバランシェフォトダイオード(APD)バイアス電圧Vapd515を形成する。ある実施形態では、このAPDバイアス電圧515は、APD材料タイプはインジウムガリウム砒素(InGaAs)に限定されないが、InGaAsベースのAPD517に印加される;それは、所望の波長感度に依存するゲルマニウムあるいはシリコンでありえる。
【0141】
光子検出から発生するアバランシェによって引き起こされた光電流は、直列抵抗519への電圧に帰着する。それは出力電圧Vout521に対応する。
【0142】
APDの高速な操作に起因する大きな周期的な容量性応答は、任意の弱いアバランシェを隠す。自己差分回路523はアバランシェから信号を分離するために使用される。自己差分回路は、分割された信号を出力する2つの電線527及び529に接続している信号分割器525と、2つの出力線からの信号を合成するための信号合成器531とを具備している。出力電線527及び529のうちの1つは、線のうちの1つからの信号が合成される前に遅延するように、遅延を具備する。
【0143】
APD出力電圧Vout521は、信号分割器525に入力される。それは信号を2つの厳密に等しい成分に分割する。電位差計535は、分割する比率の平衡を保ち、かつさらに2つの成分を均等にするために用いられる。電気的な遅延線527のうちの1つが他の529より長いので、これらの成分のうちの1つは必ず遅れる。
【0144】
遅れは、AC電圧源513によって供給された、ゲート周期Tの整数であるように選択され、遅延線527はTに独立に遅延を合わせるために調整可能に選択される。
【0145】
これらの2つの信号が信号差分器531に入力される場合、それらは他方からの減算されたものであり、また、強い周期的な容量性応答は、弱い自己差分器出力電圧Vsd533のままで、大部分は取り消される。
【0146】
さらにVsd533の質を改善するために、1GHzのローパスフィルタ537及び比例増幅器539を用いることは一般的である。
【0147】
これは、弱いアバランシェが自己差分器出力Vsd533で明らかにされることを可能にする。しかしながら、容量性応答の成功する取り消しは、APD AC駆動信号の周期サイクルトゥサイクルジッタ(cycle-to-cycle jitter、周波数安定度)に強く依存する。
【0148】
次に、ネットワークの応用が議論される。
【0149】
図12は、量子鍵の配布について用いることができるネットワークを示す。ネットワークは2つのサブネットワークを具備する:量子コアネットワーク301及び複数の量子アクセスネットワーク303である。
【0150】
量子コアネットワーク301は複数のセキュアノード305を具備する。この特別な実施形態では、各ノード305はその隣接ノードの各々に直接接続される。しかしながら、他のネットワークは想定されうる。複数のノード305は光ファイバーケーブルを用いて一緒に接続される。それは高いビットレートのポイントツーポイントリンクを提供する。この実施形態では、リンクの1つの終端での1つのノードは検出器を持ち、リンクの他端のノードは光子源を持つ。
【0151】
2つのノード307及び309は、量子アクセスネットワーク303へのリンクを提供する。これらのノードは量子ネットワークユニットと名付けられる。量子ネットワークユニット307、309、それぞれは、図2から図5を参照して説明された検出器21である検出器を具備する。ネットワークはさらに複数のいわゆる量子終端ユニット311を具備する。量子終端ユニットは各々、QNU307及び309に符号化された複数の光子を送ることができる源を具備する。
【0152】
複数の量子終端ユニットを、図2から図5の光子源23によって提供することができる。
【0153】
図11のシステムでは、量子コアネットワーク(Quantum Core Network)301は、メッシュあるいは輪配置における、メッシュまたはリング配置での組織あるいはサービスプロバイダーのセキュアされたノード305、307、309を接続する。その間に、量子アクセスネットワーク(Quantum Access Networks)303は、これらのセキュアなノードを顧客/エンドユーザプレマス(premise)にリンクする。そのようなアーキテクチャは、多くのユーザが費用効率の良いやり方でネットワークに接続されることを可能にするという利点を持つ。
【0154】
個々の秘密鍵は、上述したQKDプロトコルを使用して、QNU307、309の中央局と、それの接続された終点またはQTU311のそれぞれとの間で形成される。プロトコルは、各QTU311によって形成された鍵の各々が他のQTU311から、一意的であり秘密である、と規定する。同様に、複数の秘密鍵は、QKDによって、量子コアネットワークでの任意の直接接続された隣接したノードの間で形成されてもよい。QKDネットワークにおける直接接続しているポイントの間で形成された鍵は、「ローカル」鍵と名付けられる。「グローバル」鍵は、グローバル鍵の1回限りのパッド暗号化(pad encryption)を行うために隣接ノード間で形成されたローカル鍵を使用することによって、ネットワークでの任意の2つのエンドポイント間で配布されてもよい。その後これは、同じQNU307、309に接続された2つのQTU311の間、または異なったQNU307、309に接続された2つのQTU311の間で、グローバル鍵を形成するために用いられてもよい。
【0155】
これらの鍵は、複数のQTUを含んでいる対応するエンドポイント間で送られたデータの暗号化及び認証のような後の暗号のタスクに用いることができる。
【0156】
一旦鍵が確立されれば、それは古典的チャンネル上に送られるデータを暗号化し解読するために用いられる。古典的チャンネルは、量子通信に用いられたファイバーへ、個別の光ファイバーにおいて提供されてもよい。または、同じファイバーが使用されてもよいが、古典的なデータは異なる波長で送信される。
【0157】
QKDに関する当面の応用は、銀行、保険会社、政府省庁、大企業、医療サービス提供者及び公益事業会社のネットワークにおいてであると見なされる。これらの通信ネットワークを通って送られた情報の多くは、何年にも渡って機密事項のままである。例えば個人的かつ健康の問題、または極秘な会社情報がある。しかしながら、計算の複雑性に基づいている今日使用される暗号化システムは、歴史がいくつかの事例で示しているように、演算能力での絶え間ない増加のおかげでほとんど確実に将来破壊されるであろう。さらに、数学的なアルゴリズムが発見される、あるいは量子コンピューターが開発されるかもしれないという懸念がある。それは今日の暗号手法を一夜にして時代遅れにするだろう。対照的に、QKDのセキュリティは、コンピューティング、数学あるいは工業技術における今後の進展には弱くない。セキュアな通信に頼っている我々の経済及び社会の非常に多くでは、古くならないセキュリティパラダイムの差し迫った必要性がある。
【0158】
QKDは一般的なテレコムネットワークに適用することができる。量子鍵がこのシナリオにおいてどのように用いられてもよいかの1つの例は、従来のパッシブ光アクセスネットワーク(Passive Optical Access Network)上のデータを暗号化する/認証することである。データは、PONの上の意図した受信者のために典型的に暗号化され、次にすべてのユーザにブロードキャストされる。上に表された量子アクセスネットワーク(Quantum Access Network)は、AES256暗号化または認証鍵が暗号解読の危険を大幅に低減して、1−2ミリ秒ごとにリフレッシュされることを可能にするだろう。
【0159】
図13は、量子鍵配布を用いて実現されたスマートグリッドネットワークを示す。ネットワークは、複数のスマートメーターを具備し、その各々は量子終端ユニット251を具備する。QTU251はカプラー253を介して量子ネットワークユニット255に接続される。量子ネットワークユニット255は図2から図5を参照して以前に説明したような検出器を具備する。複数のQTUは図2から図5のエミッター23に構築において類似している。
【0160】
既に述べたように、一旦鍵が確立されると、それは古典的チャンネル上に送信されるデータを暗号化し解読するために用いられる。古典的チャンネルは量子通信に用いられたファイバーへ個別の光ファイバーで提供されてもよく、または同じファイバーが使用されてもよいが、古典的データは異なる波長で送られる。
【0161】
上に表された量子の単一対マルチポイントネットワークはスマートグリッドネットワークの配布部(distribution part)内のセキュアな接続をするために用いられる。今後のエネルギー供給システムは各消費者またはビジネスプレマス(premise)でスマートメーター(Smart Meter)を組込むだろう。このスマートメーターは、プレマス(premise)でのエネルギー消費及び生成に関する大量のデータを集める。それは公益事業会社の制御機能に送信される。この情報の多くは、個人的なであり、かつ/または、事実上機密であり、かつ、セキュアであるはずである。ある国内状況では、それは、電気器具または電気自動車の使用法に関する情報を含んでいてもよい。それは、例えば工場用地での建物またはプロセスの占有についての情報を得るために、不当に用いることができるかもしれない。
【0162】
量子鍵配布は、供給ネットワークでのデータの機密性(それが意図した受信者に理解できるだけであることを保証する)、正当性(メッセージが正当な送信者から由来していることを保証する)、及び完全性(メッセージが悪意を持って変更されていないことを保証する)を保証するために使用されてもよい。上に表された単一対マルチポイントネットワークは、公益事業会社のメーターデータ管理システム(Meter Data Management System)から顧客のスマートメーター(Smart Meter)へのセキュアな接続を形成するために使用されてもよい。あるいは、単一対マルチポイントネットワークは、MDMSから、地域コミュニティー内での通りまたはその他に位置したメーターデータ集信装置ポイントまで接続するために使用されてもよい。
【0163】
図14は、工業、インフラストラクチャーまたは設備ベースの処理を制御及び監視するためにしばしば使用される分散制御システム(Distributed Control Systems;DCS)または監視制御データ収集ネットワーク(いわゆるSCADAネットワーク)に適用された上記の表された量子通信システムの概略図である。この量子ネットワークは複数の遠隔端末ユニット271を具備する。遠隔端末ユニットはそれぞれ、物理的機器(この特別な例においてはセンサー273)に接続される。複数の遠隔端末ユニットは、物理的機器273からデータを集めて、それをディジタル形式に変換する。遠隔端末ユニット271は量子終端ユニット275に接続される。量子終端ユニットは、図12及び13を参照して説明されたものと同じである。量子終端ユニットは、ネットワークを介して複数の信号を送る光子源を具備する。複数の信号は合成器277で合成され、次に量子ネットワークユニット279に向けられる。
【0164】
一旦鍵が確立されれば、それは古典的チャンネル上に送信されるデータを暗号化し解読するために用いられる。古典的チャンネルは、量子通信に用いられたファイバーへ、個別の光ファイバーにおいて提供されてもよい。または、同じファイバーが使用されてもよいが、古典的なデータは異なる波長で送信される。
【0165】
SCADAネットワークを実装する工業プロセスは、製造プラント、精製所、組立て施設及び発電施設を含んでいる。SCADAに依存する重要なインフラストラクチャーは、電力送信及び分配、風力発電地帯、太陽光発電地帯、水処理設備、石油及びガスのパイプラインを含んでいる。SCADAによって監視される公共設備は、鉄道、空港、船及び建物を含んでいる。
【0166】
重要なインフラストラクチャーがますます接続されるようになるとともに、伝達される情報のセキュリティを保護することが絶対不可欠である。量子鍵配布は、データが、機密であり(意図したユーザ以外の誰でも理解不能)、正当であり(正当な源から由来する)、完全性を維持する(悪意を持って変更されていない)ことを保証するために用いることができる。独自にQKDは、さらに通信ネットワーク上での侵入検出を許可する。
【0167】
この応用では、上に表された単一対マルチポイントネットワークは、監視ステーションから、物理的機器273に接続する遠隔端末ユニット(Remote Terminal Units;RTU)271への接続を保証するために用いられてもよい。複数のRTUは、物理的機器273からデータを集めて、それをディジタル形式に変換し、監視ステーション279へこのデータを送信する。さらにそれらは、設備上の監視ステーションからの指示を実行する。量子鍵配布はこの情報の流れを認証し暗号化するために用いられてもよい。図14はSCADAネットワークに接続された8つのセンサーを示すが、実際にはネットワークは、機器のセンシング及び制御に関して両方のエレメントを具備する。
【0168】
ある実施形態が説明されているが、これらの実施形態はほんの一例として示されており、発明の範囲を制限するようには意図されない。実際は、本明細書で説明する新しい方法及びシステムは様々な他の形で具体化されてもよい;さらに、本明細書で説明する方法及びシステムの形での様々な省略、置換及び変更は、発明の精神から外れずになされてもよい。添付のクレーム及びその均等物は、発明の範囲及び精神の内にあるように、変更のそのような形をカバーするように意図される。

【特許請求の範囲】
【請求項1】
1つの受信機と複数の送信機を具備し、前記受信機は検出器サブシステムを具備し、前記複数の送信機のそれぞれは複数の放射パルスを放出し、前記検出器サブシステムは少なくとも1つの検出器を具備し、前記検出器は複数の光パルスを検出し、前記システムはタイミング制御モジュールを具備し、1つの送信機からのちょうど1つの光パルスがどの時点においても検出器サブシステムに到達するように、前記タイミング制御モジュールは検出器サブシステムによって受信される光パルスの数を制御し、タイミング制御モジュールはまた前記パルスを送信した送信機が識別されるようにする、量子通信システム。
【請求項2】
前記複数の送信機は、信号合成デバイスを介して前記受信機に接続される請求項1の量子通信システム。
【請求項3】
前記タイミング制御モジュールは、単一の送信機だけが、前記検出器サブシステムでのそれぞれの到着時刻ごとに光パルスを放射すること可能にする請求項1の量子通信システム。
【請求項4】
前記タイミング制御モジュールは、前記信号合成デバイスを制御して、単一送信機から前記受信機への複数の信号だけを、前記検出器サブシステムでのそれぞれの到着時刻ごとに、通過させる請求項2の量子通信システム。
【請求項5】
前記受信機はデコーダを具備し、少なくとも2つの前記送信機はそれぞれがエンコーダを具備する請求項2の量子通信システム。
【請求項6】
前記信号合成デバイスは、N×1パッシブ光カプラーである請求項2の量子通信システム。
【請求項7】
前記信号合成デバイスは、高速N×1光スイッチである請求項2の量子通信システム。
【請求項8】
前記信号合成デバイスは、波長分割多重カプラーである請求項2の量子通信システム。
【請求項9】
前記信号合成デバイスは、光ミラーベースのN×1アクティブカプラーである請求項2の量子通信システム。
【請求項10】
前記検出器サブシステムは少なくとも1つのゲート制御された検出器を具備し、前記タイミング制御モジュールは、前記複数の送信機からの複数の光パルスの到達時刻と、前記検出器のゲーティングとを同期させる請求項1の量子通信システム。
【請求項11】
前記タイミング制御モジュールは前記受信機において提供され、どの複数の送信機が前記受信機に複数のパルスを送信すべきかを制御するタイミング信号は、前記受信機から前記複数の送信機へ配信される請求項1の量子通信システム。
【請求項12】
前記タイミング制御モジュールは前記受信機において提供され、どの複数の送信機が前記受信機に複数のパルスを送信すべきかを制御するタイミング信号は、波長分割マルチプレクサ及び1つの1×Nパッシブカプラーを用いて、前記受信機から前記複数の送信機に配信される請求項8の量子通信システム。
【請求項13】
前記検出器サブシステムは、複数のゲート制御された複数の単一光子検出器を具備する請求項1の量子通信システム。
【請求項14】
前記検出器サブシステムは、フリーランニングの複数の単一の光子検出器を具備する請求項1の量子通信システム。
【請求項15】
前記受信機は、フィードバック制御ユニットを具備し、前記フィードバック制御ユニットは、送信機ごとに前記フィードバック信号を生成し、前記受信機は前記フィードバック信号を前記送信機へ送信し、前記送信機は前記受信機からの前記フィードバック信号によって制御される制御エレメントを具備する請求項1の量子通信システム。
【請求項16】
前記複数の送信機のうちの1つの送信機は、暗号化されたデータを受信することができるユニットに接続し、前記ユニットは、前記ユニットに接続された送信機と検出器サブシステムとの間で確立された鍵を使用して暗号化されたデータを解読する請求項1の量子通信システム。
【請求項17】
前記ユニットは制御信号によって制御されることが可能であり、前記制御信号は暗号化される請求項16の量子通信システム。
【請求項18】
複数の送信機のうちの1つの送信機は、データを送ることができる1つのユニットに接続されていて、前記ユニットは、前記ユニットに接続した前記送信機と前記検出器サブシステムとの間で確立される鍵を使用して前記データを暗号化する請求項1の量子通信システム。
【請求項19】
前記複数の送信機、検出器サブシステム、及びタイミング制御モジュールは、最初のネットワークを形成し、前記量子通信システムは、第2ネットワークをさらに具備し、前記第2ネットワークは複数のノードを具備し、それぞれのノードは接続された複数のノードのうちの1組を形成するために少なくとも1つの他のノードに接続し、接続された複数のノードの内のそれぞれの組での1つのノードは、複数の放射パルスを放出する送信機を具備し、複数のノードのうちの他のノードは、検出器サブシステムを具備し、前記検出器サブシステムは少なくとも1つの検出器を具備し、前記検出器は前記複数の光パルスを検出し、前記第2ネットワークの前記複数のノードの内の少なくとも1つは、情報を前記第1及び第2ネットワーク間で前記ノードを介して転送することができるように、前記第1ネットワークの検出器サブシステムを具備する請求項1の量子通信システム。
【請求項20】
1つの受信機と複数の送信機を具備し、前記複数の送信機のそれぞれは複数の放射パルスを放出するネットワーク上で通信する量子通信方法であって、前記受信機は検出器サブシステムを具備し、前記検出器サブシステムは少なくとも1つの検出器を具備し、前記検出器は複数の光パルスを検出する方法であって、
前記複数の送信機から複数の放射パルスを放出すること;
前記複数の送信機の出力を単一チャネルに合成すること;
1つの送信機からのちょうど1つのパルスだけが一度に前記チャンネルに入るように、前記単一チャネルに入る前記複数のパルスを制御すること;
前記検出器サブシステムで前記複数のパルスを受信すること、と具備し、パルスごとの送信機は、前記パルスが前記検出器で受信されたタイミングによって識別される量子通信方法。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate

【図11】
image rotate

【図12】
image rotate

【図13】
image rotate

【図14】
image rotate


【公開番号】特開2013−13073(P2013−13073A)
【公開日】平成25年1月17日(2013.1.17)
【国際特許分類】
【外国語出願】
【出願番号】特願2012−136553(P2012−136553)
【出願日】平成24年6月18日(2012.6.18)
【出願人】(000003078)株式会社東芝 (54,554)
【Fターム(参考)】