説明

金属内部への侵入水素量の測定方法および移動体の金属部位内部へ侵入する水素量のモニタリング方法

【課題】環境の温度変化に伴うアノード側の残余電流の変化を考慮して、腐食に伴って金属内部へ侵入する水素量を正確に計測する。
【解決手段】被検体の片面を腐食環境に暴露し腐食反応により発生する水素の侵入面とし、該被検体の他面を水素検出面とし、該水素検出面側の電位を−0.1〜+0.3V vs SCEに保持した状態で該検出面に拡散してくる水素の流束をアノード電流として測定するに際し、該被検体の水素検出面側に、複数のセル群で構成された電気化学セルを配置し、該セル群のうち少なくとも一つのセルを残余電流を補正するための基準セルとし、該基準セルの水素侵入面側に対応する箇所には腐食環境との接触を遮断する保護膜を設け、該基準セル以外のセルで検出したアノード電流値を、該基準セルで検出した残余電流値により補正し、この補正したアノード電流値に基づいて腐食面側からの侵入水素量を算出する。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、腐食に伴い金属内部へ侵入する水素量を正確に検出することができる、金属内部への侵入水素量の測定方法に関するものである。
また、本発明は、上記の測定方法を利用することにより、自動車、船舶、鉄道車両などの移動体を構成する金属材料の各部位について、使用状態で曝される腐食環境下で腐食することに伴い発生し金属材料中に侵入する水素量を連続的に検出することができる、モニタリング方法に関するものである。
【背景技術】
【0002】
近年、地球温暖化防止の観点から、自動車の走行時に排出されるCO2の削減を狙いとした車体の軽量化が求められている。これに伴い、使用する鋼板を高強度化することによって板厚を低減する努力が進められている。
【0003】
上記した鋼板の高強度化に伴い、従来の自動車用部品では問題になることのなかった遅れ破壊に対する懸念が新たに浮上してきた。
遅れ破壊とは、高強度鋼部品が静的な負荷応力を受けた状態で、ある時間が経過したとき、外見的にはほとんど塑性変形を伴うことなしに、突然脆性的に破壊する現象であり、広義には液体金属接触割れや応力腐食割れなども含まれるが(非特許文献1)、自動車で問題になるのは腐食に伴い鋼中に侵入する水素によって引き起こされる水素脆化型の遅れ破壊である。
【0004】
従来から、引張り強さが1200MPa以上の高強度鋼製のボルトが大気環境中で遅れ破壊を起こすことは広く知られていて(非特許文献1)、かかる遅れ破壊は鋼中に侵入した微量の水素によって引き起こされると考えられている。この観点から、鋼中への水素侵入に着目した遅れ破壊の評価方法が種々提案されている。
【0005】
例えば、特許文献1には、電解溶液を保持する電解槽と、薄鋼板をU曲げ加工して負荷応力を付与したU字状の試験片に水素チャージを行う陰極と、この試験片のU曲げ部における水素濃度分布が、平均水素濃度の50%以内になるように配置された陽極と、電流発生手段を有することを特徴とする薄鋼板の水素脆化評価装置が提案されている。
【0006】
また、特許文献2には、鋼材に陰極チャージによって拡散性水素を含有させ、限界拡散性水素量を測定することによって、鋼材の遅れ破壊特性を評価する遅れ破壊特性の評価方法において、限界拡散性水素量の測定中に鋼材から水素が放出されることを防止するために、鋼材に亜鉛めっきを施す方法が提案されている。
【0007】
さらに、非特許文献2には、大気暴露環境下で一定期間腐食させた高強度ボルトを回収して、ボルトに吸蔵された水素濃度を測定した例が報告されている。また、この非特許文献2には、鋼板の片面を外部環境に暴露する試験装置を用いた電気化学的水素透過法によって、反対面側から検出されるアノード電流値の変化から、大気暴露環境下での腐食による水素侵入挙動を調査した結果が報告されている。
【0008】
なお、上述したように、現時点で最も遅れ破壊の問題が懸念される金属材料は、実用材料として広範に使用されている鋼材であるが、その他の金属材料においても今後は遅れ破壊の問題が生じる可能性が指摘されている(例えば非特許文献3)。
【先行技術文献】
【特許文献】
【0009】
【特許文献1】特開2005-134152号公報
【特許文献2】特開2005-69815号公報
【非特許文献】
【0010】
【非特許文献1】「松山晋作:遅れ破壊、日刊工業新聞社、東京、(1989)」
【非特許文献2】「大村等:鉄と鋼、Vol.91、No.5、p.42 (2005)」
【非特許文献3】「高取等:鉄と鋼、Vol.78、No.5、p.149 (1992)」
【非特許文献4】「M.A.V.Devanathan, Z.Stachurski;Proc. Roy. Soc. London, Ser. A, 270, 90 (1962)」
【発明の概要】
【発明が解決しようとする課題】
【0011】
特許文献1に記載された技術は、薄鋼板のU曲げ部を陰極とした電解によって、外部から強制的に水素を侵入させる加速試験であることから、実際の使用環境とは異なる条件の下で、供試材の種類による遅れ破壊発現の優劣をつけることはできるものの、実際の使用環境での腐食に伴う水素侵入量で遅れ破壊が起こるか否かを推定するための判断材料にはならない。
【0012】
同様に、特許文献2も、鋼中への水素の侵入は、陰極チャージによるものであるため、実際の使用環境での腐食に伴う水素侵入量で遅れ破壊が起こるか否かを判断することはできない。
【0013】
さらに、非特許文献2に開示の大気暴露試験によって得られるデータは、いずれも地勢的な特定環境と結びついた環境因子の下での試験結果にすぎず、構造体の移動に伴い変化する種々の環境下における腐食を継続的に把握することについては、考慮が払われていない。
また、非特許文献2に示された鋼板の片面を外部環境に暴露する試験装置を用いた大気暴露における水素透過試験では、環境の温度変化に伴うアノード側の残余電流の変化が考慮されていないことから、測定値の定量性にも問題があった。
【0014】
上記したように、自動車のような移動体では、移動することによって地勢的な環境が変化し、さらに物理的要因(例えば振動、塵埃堆積−脱落、水・泥跳ね付着−乾燥など)が加わると、腐食環境が極端に変化する場合がある。
しかしながら、上記した振動などの物理的要因や地勢的な環境変化が避けられない移動体について、腐食に伴う水素侵入量を継続的かつ定量的に計測した例は、これまで皆無であった。
【0015】
本発明は、上記の現状に鑑み開発されたもので、環境の温度変化に伴うアノード側の残余電流の変化を考慮して、腐食に伴って金属内部へ侵入する水素量を正確に計測することができる金属内部への侵入水素量の測定方法を提案することを目的とする。
また、本発明は、上記の測定方法を用いることにより、環境が目まぐるしく変化する移動体を構成する金属材料の各部位について、使用状態で曝される腐食環境下での腐食に伴い発生し、金属材料中に侵入する水素量を連続して監視することができる移動体の金属部位内部へ侵入する水素量のモニタリング方法を提案することを目的とする。
【課題を解決するための手段】
【0016】
さて、本発明者らは、上記の目的を達成すべく鋭意検討を重ねた結果、電気化学的な原理に基づく侵入水素量の新たな測定方法を開発した。
そして、この測定方法を利用すれば、移動体を構成する金属部品の腐食に伴い侵入する水素を連続的にモニタリングできることも見出した。
本発明は、上記の知見に立脚するものである。
【0017】
すなわち、本発明の要旨構成は次のとおりである。
1.金属材料の腐食に伴って発生し金属内部に侵入する水素の量を、電気化学的水素透過法を用いて測定する方法であって、被検体の片面を腐食環境に暴露し腐食反応により発生する水素の侵入面とする一方、該被検体の他面を水素検出面とし、該水素検出面側の電位を−0.1〜+0.3V vs SCEに保持した状態で該検出面に拡散してくる水素の流束をアノード電流として測定するに際し、
該被検体の水素検出面側に、少なくとも2つに分割された複数のセル群で構成された電気化学セルを配置し、該セル群の個々のセルの内部にはpHが9〜13の電解質水溶液を充填すると共に、それぞれ独立した参照電極と対極を設置し、
該セル群のうち少なくとも一つのセルを残余電流を補正するための基準セルとし、該基準セルの水素侵入面側に対応する箇所には腐食環境との接触を遮断する保護膜を設け、
該基準セル以外のセルで検出したアノード電流値を、該基準セルで検出した残余電流値により補正し、この補正したアノード電流値に基づいて腐食面側からの侵入水素量を算出することを特徴とする金属内部への侵入水素量の測定方法。
【0018】
2.前記参照電極としてIr/Ir酸化物電極を用いることを特徴とする前記1記載の金属内部への侵入水素量の測定方法。
【0019】
3.前記被検体の水素検出面側の表面を、予めPdまたはPd含有合金あるいはNiで被覆しておくことを特徴とする前記1または2記載の金属内部への侵入水素量の測定方法。
【0020】
4.前記1〜3のいずれかに記載の侵入水素量の測定方法を、少なくともその一部が金属材料で構成される移動体の評価対象金属部位に適用し、該評価対象金属部位の腐食に伴い内部に侵入する水素の量を、該移動体の走行環境に伴い変化する腐食環境下において連続して測定することを特徴とする、移動体の金属部位内部へ侵入する水素量のモニタリング方法。
【0021】
5.前記移動体の評価対象金属部位の内部へ侵入する水素量から、該金属部位の遅れ破壊感受性を評価することを特徴とする、前記4に記載の移動体の金属部位内部へ侵入する水素量のモニタリング方法。
【発明の効果】
【0022】
本発明によれば、腐食に伴って金属の内部へ侵入する水素量を正確に検出することができる。
また、本発明によれば、自動車、船舶、鉄道車両などの移動体を構成する金属材料の各部位が、その使用状態で曝される腐食環境下で腐食することに伴い発生し、金属材料中に侵入する水素の量を連続的にモニタリングすることが可能となり、実際の使用環境での腐食に伴う水素侵入量で遅れ破壊が生じるか否かを判断するために必要な情報を得ることができる。
【図面の簡単な説明】
【0023】
【図1】電気化学的水素透過法の説明図である。
【図2】本発明の実施に用いて好適なセル構造を模式的に示した図である。
【図3】保護膜の無いセルの腐食面(水素侵入面)側および水素検出面側での反応を模式的に示した図である。
【図4】Ir線を0.2MのNaOH水溶液中に浸漬したときの電位の経時変化を示した図である。
【図5】実施例における温度および湿度の変化を示した図である。
【図6】各チャンネルで検出されたアノード電流の経時変化を示した図である。
【図7】実験後のサンプルの腐食面側の外観写真である。
【図8】測定装置を自動車に搭載してアノード電流の測定を行う際の計測システムを模式的に示した図である。
【図9】本発明に従う基準電極による補正を行った場合(発明例)と補正を行わなかった場合(比較例)とで、自動車の各部位において測定されたアノード電流密度の違いを比較して示した図である。
【発明を実施するための形態】
【0024】
本発明は、自動車、自動二輪車、鉄道などの各種車両や船舶、航空機など自力で移動可能な移動体のすべてに適用可能な技術であるが、以下、自動車を代表例として実施の形態について詳細に説明する。また、評価対象とする金属材料としては必ずしも鋼板に限定されるわけではないが、ここでは代表例として鋼板に適用した場合について説明する。
【0025】
本発明は、金属材料の腐食に伴い発生し内部に侵入する水素の量を、電気化学的水素透過法の測定原理を適用して測定するもので、水素侵入面側の鋼板表面を腐食環境に曝すことにより、腐食時に発生した水素が鋼中に侵入するので、反対面側から水素を取り出すことによって侵入水素量を測定する。
【0026】
電気化学的水素透過法は、1962年にDevanathanとStachurskiによって開発された手法(非特許文献4)で、図1に模式的に示すように、2つの電解槽1a,1bが1枚の試料2を挟んで向かい合わせに配置されている。同図の場合、左側の電解槽1aの試料面を定電位または定電流でカソード分極して、水素発生・水素チャージを行い、右側の電解槽1bでは試料2を定電位アノード分極することによって試料2を透過してきた水素を水素イオンに酸化し、その電流値から透過した水素の量を求めるものである。
図中、符号3a,3bは参照電極、4a,4bは電極であり、特に4bは対電極または係数電極という。そして、電極4aは、定電位を付与するポテンショスタットまたは定電流を付与するガルバノスタットと接続され、一方と電極4bは、定電位を付与するポテンショスタットと接続されている。なお、5a,5bは、対電極 4a,4bで発生するガス等の影響を除去するための焼結ガラスフリットである。
【0027】
上記した電気化学的水素透過法そのものは、「鋼板中の水素拡散係数の測定手法」として従来から良く知られた手法である。
本来の電気化学的水素透過法は、図1に示したように、試料の片面側を陰極にして水素を電解チャージし、反対面側を陽極にして引き抜く手法であるが、これを応用して、水素チャージ面側に相当する面を腐食環境に曝すという研究が報告されている(前掲非特許文献2)。
しかしながら、非特許文献2に開示された測定方法では、温度の変化による測定電流値の変化が考慮されていないという問題があったことは、前述したとおりである。また、電気化学的水素透過法によって水素検出面側で測定されるアノード電流には、水素の酸化電流の他に、供試材の不動態保持電流が重畳されている。この不動態保持電流は、残余電流の主体をなすもので、様々な因子に影響されるが、特に温度による変化が大きい。
【0028】
電気化学的水素透過法によって水素検出面側で測定されるアノード電流は微弱な電流であることから、残余電流の温度依存性を補正しないと正確なアノード電流を測定することはできない。
【0029】
上記の問題を解決するために、本発明者等は、種々検討を重ねた結果、水素検出面側に設ける電気化学セルを、同一の被検体の上に少なくとも2つ以上に分割された複数のセル群で構成し、その内の少なくとも一つのセルについては残余電流を補正するための基準セルとし、かつこの基準セルの水素侵入面側に対応する部分に腐食環境を遮断するための保護膜を設けることによって、残余電流の温度依存性の補正を可能としたのである。
【0030】
図2に、本発明のセル構造を模式的に示す。図2の例では、被検体としての鋼板6の水素検出面側に4つのセル7a,7b,7c,7dが設けられていて、一番左側のセル7aが残余電流を補正するための基準セルである。図中、符号8が対極(Pt線)、9が参照電極(Ir線)である。
同図において、各セルにおける鋼板の表面温度、セル内の電解質溶液の温度等はすべて同じ温度とする。また、基準セル7aの水素侵入面側には保護膜10が設けられている。このような保護膜10で被覆された部分は腐食せず、従って水素侵入も起こらないことから、基準セルの水素検出面側で測定される電流は残余電流そのものと考えられる。
【0031】
図3に、保護膜の無いセル(チャンネルともいう)の腐食面(水素侵入面)側および水素検出面側での反応を模式的に示す。
水素検出面側の表面電位を水素のイオン化反応に十分な電位に保持することで、拡散によって検出面側に到達した水素はすべて水素イオンとして取り出される。なお、本発明において、水素検出面側の鋼板の表面は不動態化されている。これにより、水素検出側で検出されるアノード電流が実質的に水素透過電流に相当すると考えることができる。
従って、かくして得られた電流値を、基準セルで求めた残余電流値で補正することにより、温度変化に伴う残余電流の変化にかかわらず、正確なアノード電流値を計測することができ、その結果、このアノード電流値に基づいて正確な侵入水素量を算出することが可能になるのである。
【0032】
以下、本発明を具体的に説明する。
本発明において、水素検出面側の鋼板を不動態の状態に保持するためには、アノード極室内の溶液はpH:9〜13の電解質溶液とすることが必要である。というのは、pHが9未満では所定の電位において鋼板の表面の不動態を保持することが困難であり、一方、pHが13を超えると、不慮の事故により漏洩した場合に、環境へのダメージが大きいからである。適正なpHの電解質溶液としては、0.1〜0.5M(モル/リットル)程度のNaOH水溶液が好適である。なお、本発明では、適正なpHの電解質溶液として、必ずしも0.1〜0.2MのNaOH水溶液に限定されるわけではなく、水素検出面の鋼板表面を水素のイオン化反応に十分な電位に保持する際に、鋼板の表面の不動態化状態を確保できる電解質溶液であればいずれでも良い。さらに、電解質溶液に代えて、ゲル状の電解質を用いることは、液漏れの防止だけでなく、取り扱いの容易さからも有利である。
【0033】
また、本発明において、水素検出面の電位は、常時、−0.1〜+0.3V vs SCEに保持しておく必要がある。というのは、水素検出面の電位がこの範囲を外れると、安定した水素のイオン化電流を得ることができなくなるからである。
ここで、SCEは、飽和カロメル電極のことであり、このSCEの標準水素電極(SHE)に対する電位は+0.244 V(vs SHE,25℃)で示される。
【0034】
なお、電位を制御するための参照電極としては、現在実用化されている各種電極が使用可能である。
ただし、Ag/AgCl電極のような塩化物を含む電極を用いる場合、アノード極室溶液中への塩化物イオンのコンタミにより、サンプル表面の不動態が破壊されて残余電流が大きくなり、測定値が不正確になるおそれがある。
【0035】
そこで、上記のような問題を回避できる参照電極について種々検討した結果、アノード極室溶液中にIr線を浸漬することでIr/Ir酸化物電極となり、長期間安定な電位が得られることが解明された。すなわち、参照電極として最も好適な電極はIr/Ir酸化物電極である。
図4に、Ir線を0.2MのNaOH水溶液中に浸漬したときの電位の経時変化について調べた結果を示す。浸漬初期に電位が変化しているのは、Ir線の表面にIr酸化物(IrO)が安定に形成されるまでの時間と考えられる。しかしながら、所定時間経過後は、−0.04 vs SSE程度の電位が安定して得らることが分かる。
ここで、SSEは、銀−塩化銀電極のことであり、このSSEの標準水素電極(SHE)に対する電位は+0.199 V(vs SHE,25℃)で示される。
【0036】
また、本発明において、水素検出面の表面は、水素拡散定数が大きく、かつ水素の酸化反応を促進させるような金属で被覆することが好ましく、かような金属としては、PdやPd合金、Niなどが挙げられる。これらの金属または合金を被覆することによって、水素検出面の残余電流を低い値に保持することが可能となるだけでなく、水素検出面側での侵入水素の酸化反応が促進されるので、水素のイオン化によるアノード電流の感度を高めることができる。なお、Pdは、Niに比べると、水素拡散定数が大きく、また残余電流の温度依存性を低減できるという利点がある。
【0037】
PdやPd合金で被覆する場合は、[Pd(NH3)4]Cl2・H2O等のパラジウムイオンを含有する水溶液中で陰極電解することで、めっきを行えばよい。Pd合金としては、Pd−NiやPd−Co合金などが使用可能である。ここに、PdめっきまたはPd合金めっきの膜厚は10〜100nmとすることが好ましい。
また、Niで被覆する場合は、ワット浴等の既知のめっき浴中で陰極電解することで、Niめっきを行えばよい。Niめっきの膜厚も10〜100nmにすることが好ましい。
さらに、Niめっきの上に、PdやPd合金をめっきすることもできる。
【0038】
水素侵入面に設ける保護膜については、特に制限はなく、腐食環境を遮断できるものであればいずれでもよい。具体的手段としては、ステンレス箔の貼着が挙げられる。
【0039】
上記したように、本発明では、温度変化などの環境の変化の如何にかかわらず、腐食に伴って金属の内部へ侵入する水素量を正確に検出することができる。
従って、本発明の測定方法を、自動車、船舶、鉄道車両などの移動体に適用すれば、移動体を構成する金属材料の各部位が、その使用状態で曝される環境の変化に左右されることなく、金属材料中に侵入する水素量を連続的かつ正確にモニタリングすることができる。
その結果、各種移動体にについて、それらの実際の使用環境での腐食に伴う水素侵入量で遅れ破壊が生じるか否かを的確に判断することが可能となる。
【実施例】
【0040】
実施例1
実験は、図2に示した構造になるセル数4個(CH1〜4)の測定装置を用いて行った。被検体としては、水素検出面側にPdを厚み:100nmでめっきした板厚:1.0mmの軟鋼板を用いた。基準セルはチャンネル3(CH3)であり、このCH3の腐食面側に対応する箇所には保護膜としてステンレス箔を貼着した。各セルの腐食面側の表面に0.5M NaClを300mL 滴下、ついで25℃,35%RH(相対湿度)で4時間以上乾燥したのち、25℃,85%RH(相対湿度)に24時間以上保持し、その後、段階的に温度を上昇させた。水素検出面の電位は0V vs SCEに保持した。この時の温度変化および湿度変化を図5に示す。
【0041】
図5に示した温度変化に対応して、各チャンネルで検出されたアノード電流密度の変化を図6に示す。
本来、鋼板表面で腐食の起こっていない基準電極(CH3)のアノード電流密度値も、温度の上昇に伴って上昇していることが分かる。これは、水素検出面側のPdの酸化電流による残余電流が温度の上昇により増加したためと考えられる。このように、残余電流の温度依存性は、無視できないレベルである。
【0042】
実験後のサンプルの腐食面側の外観写真を図7に示す。
4Chのアノード電流密度値が他のChに比べて小さかったのは、最初に滴下した0.2M NaClの位置がずれていたために、検出面に対応する水素侵入面側の腐食面積が小さかったためである。
【0043】
従って、CH1およびCH2で得られたアノード電流密度値から、基準電極(CH3)のアノード電流密度値をそれぞれ差し引けば、各セル(CH1,CH2)における正確な透過水素電流密度値を得ることができ、さらにこれらの値を平均することにより、被検体鋼板の透過水素電流密度値を求めることができる。
そして、上記のようにして求めた透過水素電流密度値から、次式により、透過水素量(侵入水素量)を算出する。
かくして、温度変化の如何にかかわらず、正確な透過水素電流値ひいては透過水素量(侵入水素量)を検出することができる。
【0044】
透過水素量の換算は以下の式に従う。
透過水素電流密度 iH(mA/cm2=10-6A/cm2
単位面積当たりの透過水素量 MH(mol/scm2),mH(個/scm2
H = iH ×1.036×10-11 (mol/scm2),
H = iH × 6.24×1012(個/scm2
【0045】
実施例2
実施例1で用いた測定装置を、実際に自動車に搭載し、図8に模式的に示す計測システムを構築した。4チャンネルセルの設置箇所は、a)フェンダー、b)室内、c)床下(フロア下面)の3箇所とした。バッテリー駆動のマルチチャンネルポテンショスタットを作成し、専用バッテリーと一緒にトランク内に収納した。供試材は、実施例1と同じ板厚:1.0mmの軟鋼板とし、月曜日から金曜日までの5日間、毎日、9:00〜15:00の6時間にわたって製鉄所の構内を平均時速:40km/hで走行する。なお、15:00から翌日の9:00までは駐車場に停車する。
【0046】
この間に検出されたアノード電流密度の最大値について、基準電極による補正を行ったものを発明例とし、補正を行わなかったものを比較例として、図9に比較して示す。
試験片をセットしてから初期の5日間で、各部位での腐食はまだほとんど起きておらず、図9に示したとおり、発明例のアノード電流密度は設置部位による違いは見られなかった。これに対し、比較例では、設置部位によるアノード電流密度の違いが見られた。この違いは、設置部位により、昼間の日照で温度が上昇した部位(フェンダー)と、あまり温度が上昇しなかった(床下)部位の違いと考えられる。
実測されたアノード電流密度値について、本発明に従い、基準電極による補正を行うことにより、温度変化の影響を受けることなしに正確なアノード電流密度値(透過水素電流密度値)が得られることが分かる。
【産業上の利用可能性】
【0047】
本発明により、環境が絶え間なく変化する移動体について、それを構成する金属材料の各部位が使用状態で曝される腐食環境下での腐食に伴い発生し、金属材料中に侵入する水素の量を、連続的かつ正確にモニタリングすることが可能となる。
【符号の説明】
【0048】
1 電解槽
2 試料
3 参照電極
4 電極
4b 対電極
5 焼結ガラスフリット
6 被検体(鋼板)
7 セル
7a 基準セル
8 対極
9 参照電極
10 保護膜

【特許請求の範囲】
【請求項1】
金属材料の腐食に伴って発生し金属内部に侵入する水素の量を、電気化学的水素透過法を用いて測定する方法であって、被検体の片面を腐食環境に暴露し腐食反応により発生する水素の侵入面とする一方、該被検体の他面を水素検出面とし、該水素検出面側の電位を−0.1〜+0.3V vs SCEに保持した状態で該検出面に拡散してくる水素の流束をアノード電流として測定するに際し、
該被検体の水素検出面側に、少なくとも2つに分割された複数のセル群で構成された電気化学セルを配置し、該セル群の個々のセルの内部にはpHが9〜13の電解質水溶液を充填すると共に、それぞれ独立した参照電極と対極を設置し、
該セル群のうち少なくとも一つのセルを残余電流を補正するための基準セルとし、該基準セルの水素侵入面側に対応する箇所には腐食環境との接触を遮断する保護膜を設け、
該基準セル以外のセルで検出したアノード電流値を、該基準セルで検出した残余電流値により補正し、この補正したアノード電流値に基づいて腐食面側からの侵入水素量を算出することを特徴とする金属内部への侵入水素量の測定方法。
【請求項2】
前記参照電極としてIr/Ir酸化物電極を用いることを特徴とする請求項1記載の金属内部への侵入水素量の測定方法。
【請求項3】
前記被検体の水素検出面側の表面を、予めPdまたはPd含有合金あるいはNiで被覆しておくことを特徴とする請求項1または2記載の金属内部への侵入水素量の測定方法。
【請求項4】
請求項1〜3のいずれかに記載の侵入水素量の測定方法を、少なくともその一部が金属材料で構成される移動体の評価対象金属部位に適用し、該評価対象金属部位の腐食に伴い内部に侵入する水素の量を、該移動体の走行環境に伴い変化する腐食環境下において連続して測定することを特徴とする、移動体の金属部位内部へ侵入する水素量のモニタリング方法。
【請求項5】
前記移動体の評価対象金属部位の内部へ侵入する水素量から、該金属部位の遅れ破壊感受性を評価することを特徴とする、請求項4に記載の移動体の金属部位内部へ侵入する水素量のモニタリング方法。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図8】
image rotate

【図9】
image rotate

【図7】
image rotate


【公開番号】特開2011−179893(P2011−179893A)
【公開日】平成23年9月15日(2011.9.15)
【国際特許分類】
【出願番号】特願2010−42800(P2010−42800)
【出願日】平成22年2月26日(2010.2.26)
【出願人】(000001258)JFEスチール株式会社 (8,589)
【出願人】(304021417)国立大学法人東京工業大学 (1,821)
【Fターム(参考)】