説明

金属含有フッ素ガスを減少させるための装置

【課題】効率的な誘導結合によるトロイダルプラズマ発生と金属含有フッ素ガス処理装置を提供する。
【解決手段】金属含有フッ素ガスを減少させるための装置は、金属含有フッ素ガスを閉じ込めるプラズマチャンバ20と、プラズマチャンバ20の一部分を取り囲む一次巻線18および磁心16を有する変圧器12を備え、一次巻線18に結合されたスイッチング電源26がトロイダルプラズマを直接生成し、トロイダルプラズマが、変圧器12の二次回路を完成させ、金属含有フッ素ガスと反応し、固体金属材料、固体金属酸化物材料又は固体金属窒化物材料の少なくとも1つを生成する。さらに、生成材料をプラズマチャンバから出力する出口と、出口と流体連通し収集するための交換可能な構成要素とを構成要素とを備える。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、一般に、イオン、遊離基、原子、および分子を含む活性化ガスを発生させる分野、ならびに活性化ガスを用いて材料を処理する装置および方法に関する。
【背景技術】
【0002】
プラズマ放電を使用してガスを励起し、イオン、遊離基、原子、および分子を含む活性化ガスを生成することができる。活性化ガスは、半導体ウェハなどの固体材料、粉末、および他のガスを処理することを含めた、多くの産業上および科学上の用途に使用される。プラズマのパラメータ、および処理される材料へのプラズマの照射の条件は、用途によって大きく異なる。
【0003】
例えば、いくつかの用途は、処理される材料が損傷を受けやすいので、低い運動エネルギー(すなわち、数電子ボルト)を有するイオンの使用を必要とする。異方性エッチングや平坦化誘電体堆積など他の用途は、高い運動エネルギーを有するイオンの使用を必要とする。反応性イオンビームエッチングなどさらに他の用途は、イオンエネルギーの精密な制御を必要とする。
【0004】
いくつかの用途は、処理される材料を高密度プラズマに直接露出することを必要とする。1つのそのような用途は、イオン活性化化学反応を発生させることである。他のそのような用途は、高アスペクト比構造のエッチング、および高アスペクト比構造への材料の堆積を含む。他の用途は、処理される材料をプラズマから遮蔽することを必要とする。これは、イオンによって引き起こされる損傷を材料が受けやすいため、またはプロセスが高い選択性要件を有するためである。
【0005】
プラズマは、DC放電、無線周波(RF)放電、およびマイクロ波放電を含めた様々な方法で発生させることができる。DC放電は、ガス中で2つの電極間に電位を印加することによって実現される。RF放電は、電源からプラズマにエネルギーを静電または誘導結合することによって実現される。典型的には、プラズマにエネルギーを静電結合するために平行板が使用される。典型的には、プラズマに電流を誘導するために誘導コイルが使用される。マイクロ波放電は、マイクロ波透過窓を通して、ガスを閉じ込める放電チャンバ内にマイクロ波エネルギーを直接結合することによって実現される。マイクロ波放電は、高イオン化電子サイクロトロン共鳴(ECR)プラズマを含めた広い範囲の放電条件をサポートするために使用することができるので有利である。
【0006】
RF放電およびDC放電は、本来的に高エネルギーイオンを生成し、したがって、処理される材料がプラズマと直接接触する用途でプラズマを発生するために使用されることが多い。マイクロ波放電は、高密度の低イオンエネルギープラズマを生成し、したがって、「下流」処理のための活性化ガスの流れを生成するために使用されることが多い。また、マイクロ波放電は、低エネルギーでイオンを発生し、その後、印加電位によってプロセス表面に対してイオンを加速することが望ましい用途で有用である。
【0007】
しかし、マイクロ波および誘導結合プラズマ源は、高価で複雑な電力送達システムを必要とする。これらのプラズマ源は、精密なRFまたはマイクロ波電力発生装置と、発生装置のインピーダンスをプラズマ源に整合させるための複雑な整合ネットワークとを必要とする。さらに、プラズマに達する実際の電力を保証および制御するために、精密な計器が通常必要とされる。
【0008】
RF誘導結合プラズマは、半導体ウェハ処理などの用途で大面積プラズマを発生するのに特に有用である。しかし、従来技術のRF誘導結合プラズマは、駆動電流がプラズマに対して弱くしか結合されないので、純粋に誘導性ではない。したがって、RF誘導結合プラズマは非効率的であり、駆動コイルでの高電圧の使用を必要とする。高電圧は、反応器表面の高エネルギーイオン衝撃を引き起こす高い静電界を生成する。イオン衝撃は、反応器を劣化させ、プロセスチャンバおよび処理される材料を汚染する可能性がある。また、イオン衝撃は、処理される材料に対する損傷を引き起こす可能性がある。
【0009】
高い静電界を含むために、誘導結合プラズマ源においてファラデーシールドが使用される。しかし、プラズマに対する駆動コイル電流の比較的弱い結合により、大きな渦電流がシールド内に生じ、かなりの電力損失をもたらす。コスト、複雑さ、低い電力効率が、ファラデーシールドの使用を魅力的でないものにする。
【発明の概要】
【課題を解決するための手段】
【0010】
本発明は、一実施形態では、金属含有ガスを処理するための装置を特徴とする。装置は、入口と、金属含有ガスを閉じ込めるためのプラズマチャンバとを含む。また、装置は、プラズマチャンバの一部分を取り囲む一次巻線および磁心を有する変圧器を含む。また、装置は、電源に結合された1つまたは複数のスイッチング半導体デバイスを備え、かつ一次巻線に結合された出力を有する固体スイッチング電源を含み、スイッチング電源は、一次巻線で電流を駆動し、電流がチャンバ内部で電位を誘導し、電位がトロイダルプラズマを直接生成し、トロイダルプラズマが、変圧器の二次回路を完成させ、金属含有ガスと反応する。
【0011】
一実施形態では、少なくとも第2のガス(例えば、H、HO、およびOの1つまたは複数)が、入口を通してプラズマチャンバに提供される。金属含有ガスと1つまたは複数の第2のガスとの反応が、金属含有ガスを、金属、金属酸化物、または金属窒化物などの固体形態に変換することができる。別法として、反応は、金属含有ガスを、後で利用または処理することができる様々な気体化合物に変換することもできる。装置は、プラズマと金属含有ガスとの相互作用によって生成される金属材料、金属酸化物材料、または金属窒化物材料を収集するためのデバイスを含むことができる。デバイスは、例えば、フィルタ、粒子トラップ、サイクロントラップ、および静電トラップであってよい。いくつかの実施形態では、デバイスは、プラズマチャンバの外部に位置される。いくつかの実施形態では、プラズマチャンバの一部分(例えば、プラズマチャンバの交換可能な構成要素)が、プラズマと金属含有ガスとの相互作用によって生成される金属材料、金属酸化物材料、または金属窒化物材料を収集する。
【0012】
金属含有ガスは、フッ素を含むことができる。金属含有ガスは、例えばWF、UF、SF、または金属有機物であってよい。プラズマチャンバは、金属材料、被覆金属材料、または誘電体材料の少なくとも1つを含むことができる。いくつかの実施形態では、プラズマチャンバは、セラミックまたは石英材料を含む。
【0013】
本発明は、別の態様では、金属含有ガスを処理するための装置を特徴とする。装置は、入口と、金属含有ガスを閉じ込めるためのプラズマチャンバとを含む。プラズマチャンバは、導電材料と、プラズマチャンバ内に電気的な不連続を形成する少なくとも1つの誘電体領域とを含む。また、装置は、プラズマチャンバの一部分を取り囲む一次巻線および磁心を有する変圧器を含む。また、装置は、一次巻線に電気的に接続された出力を有する電源を含み、電源は、一次巻線で電流を駆動し、電流がチャンバ内部で電位を誘導し、電位がトロイダルプラズマを生成し、トロイダルプラズマが、変圧器の二次回路を完成させ、金属含有ガスと反応する。
【0014】
本発明は、別の態様では、金属含有ガスを処理するための方法に関する。方法は、入口を通して圧力下でプラズマチャンバ内に金属含有ガスを受け取るステップを伴う。また、方法は、プラズマチャンバの一部分を取り囲む磁気コイルを有する変圧器の一次巻線を介して、1つまたは複数のスイッチング半導体デバイスを備える固体スイッチング電源によって発生される電流を通すことによって、プラズマチャンバ内部にトロイダルプラズマを生成するステップを伴い、トロイダルプラズマは、金属含有ガスと反応して、金属材料、金属酸化物材料、または金属窒化物材料の少なくとも1つを生成する。
【0015】
また、方法は、少なくとも第2のガスをプラズマチャンバに提供するステップを伴うことができる。また、方法は、プラズマと、金属含有ガスと、第2のガスとの相互作用によって、金属酸化物材料または金属窒化物材料を生成するステップを伴うことができる。また、方法は、プラズマチャンバから金属材料、金属酸化物材料、または金属窒化物材料の少なくとも1つを出力するステップを伴うことができる。
【0016】
また、方法は、プラズマと金属含有ガスとの相互作用によって生成される金属材料、金属酸化物材料、または金属窒化物材料の少なくとも1つを収集するステップを伴うことができる。また、方法は、プラズマチャンバの出力から金属材料、金属酸化物材料、または金属窒化物材料の少なくとも1つをフィルタするステップを伴うことができる。
【0017】
本発明は、別の態様では、金属含有ガスを処理するための装置を特徴とする。装置は、入口を通して圧力下でプラズマチャンバ内に金属含有ガスを受け取るための手段を含む。また、装置は、プラズマチャンバの一部分を取り囲む磁心を有する変圧器の一次巻線を介して、1つまたは複数のスイッチング半導体デバイスを備える固体スイッチング電源によって発生される電流を通すことによって、プラズマチャンバ内部にトロイダルプラズマを生成するための手段を含み、トロイダルプラズマは、金属含有ガスと反応して、金属材料、金属酸化物材料、または金属窒化物材料の少なくとも1つを生成する。
【0018】
本発明は、別の態様では、金属含有ガスまたは珪素含有ガスと反応するトロイダルプラズマを生成するプラズマ源を特徴とする。プラズマ源は、低出力プラズマ源であってよく、かつ/または低電圧レベルで動作することができる。
【0019】
本発明は、別の態様では、プラズマチャンバを取り囲む複数の高透磁率磁心を含むプラズマ源を特徴とする。一実施形態では、各高透磁率磁心の一次巻線に別個のスイッチング電源が結合される。別の実施形態では、単一の電源が、各高透磁率磁心の一次巻線に結合される。
【0020】
一実施形態では、プラズマチャンバは、プラズマチャンバの温度を制御する流体を通すための組込型の冷却チャネルを含む。別の実施形態では、プラズマチャンバは、石英から形成され、流体冷却支持構造に熱的に結合される。別の実施形態では、プラズマチャンバは、陽極処理アルミニウムから形成され、流体冷却支持構造に熱的に結合される。
【0021】
一実施形態では、プラズマチャンバは、金属から形成される。金属プラズマチャンバは、誘導電流の流れがプラズマチャンバ内に生じるのを防止する複数の誘電体領域を含む。一実施形態では、金属プラズマチャンバは、複数の誘電体ギャップによって区分されて、プラズマと金属プラズマチャンバとの間の電位差を低減し、それにより複数の誘電体ギャップにわたってプラズマループ電圧を分布させる。区分されたプラズマチャンバは、比較的高いループ電圧でプラズマ源を動作させるのを容易にし、その一方で、プラズマチャネル表面侵食を低減する、またはなくす。別の実施形態では、金属プラズマチャンバにわたる電圧分布を制御するために回路素子が使用される。
【0022】
一実施形態では、高出力源の電源は、電圧調整器回路を含み、電圧調整器回路は、安定なDCバス電圧を提供し、使用者が、プラズマに供給される全電力を精密に制御できるようにする。一実施形態では、本発明の高出力トロイダルプラズマ源は、プラズマに確実に点火するための装置を含む。
【0023】
本発明は、別の態様では、高出力トロイダルプラズマ源を特徴とする。高出力トロイダルプラズマ源は、本発明の一実施形態では、多くの利点を有する。高出力プラズマ源は、より高い動作電圧を有する比較的高出力のプラズマを発生し、これは、高い解離率を有し、より広い動作圧力範囲を可能にする。また、高出力プラズマ源は、精密なプロセス制御を有する。さらに、高出力プラズマ源は、比較的低いプラズマチャンバ表面侵食を伴う。
【0024】
したがって、本発明は、ガスを備えるプラズマチャンバを含む、ガスを解離または活性化するための装置を特徴とする。一実施形態では、プラズマチャンバは、プロセスチャンバの外面の一部分を備えることができる。一実施形態では、プラズマチャンバは、誘電体材料を備える。例えば、誘電体材料は、石英であってよい。誘電体材料は、支持構造に熱的に結合されることができる。支持構造は、冷却流体を輸送する冷却チャネルを含むことができる。
【0025】
別の実施形態では、プラズマチャンバは、導電材料と、導電材料内に電気的な不連続を形成する少なくとも1つの誘電体領域とから形成される。導電材料は、アルミニウムであってよく、アルミニウムは陽極化されることができる。導電材料は、少なくとも2つの誘電体ギャップによって区分されることができる。誘電体ギャップは、プラズマと金属プラズマチャンバとの間の電位差を低減し、それにより、少なくとも2つの誘電体ギャップにわたってプラズマループ電圧を分布させる。少なくとも2つの誘電体ギャップにわたってプラズマループ電圧を分布させるために、電圧ドライバ回路が、少なくとも2つの誘電体ギャップにわたって電気的に結合されることができる。
【0026】
装置は、第1および第2の変圧器を含む。第1の変圧器は、プラズマチャンバの第1の部分を取り囲む第1の磁心を有し、かつ第1の一次巻線を有する。第2の変圧器は、プラズマチャンバの第2の部分を取り囲む第2の磁心を有し、かつ第2の一次巻線を有する。また、装置は、第1および第2の固体ACスイッチング電源を含む。
【0027】
第1の固体ACスイッチング電源は、1つまたは複数のスイッチング半導体デバイスを含み、スイッチング半導体デバイスは、第1の電圧供給源に結合され、第1の出力を有し、第1の出力は、第1の一次巻線に結合される。第2の固体ACスイッチング電源は、1つまたは複数のスイッチング半導体デバイスを含み、スイッチング半導体デバイスは、第2の電源供給源に結合され、第2の出力を有し、第2の出力は、第2の一次巻線に結合される。電圧供給源は、電圧調整器回路を含むことができる。
【0028】
1つまたは複数のスイッチング半導体デバイスは、スイッチングトランジスタであってよい。一実施形態では、1つまたは複数のスイッチング半導体デバイスの出力は、一次巻線に直接結合される。固体ACスイッチング電源は、実質的に同一であってよい。また、固体ACスイッチング電源は、単一の電源ユニットを備えることもできる。
【0029】
動作時、第1の固体ACスイッチング電源は、第1の一次巻線で第1のAC電流を駆動する。第2の固体ACスイッチング電源は、第2の一次巻線で第2のAC電流を駆動する。第1のAC電流と第2のAC電流とが、プラズマチャンバ内部に合成AC電位を誘導し、これがトロイダルプラズマを直接生成し、トロイダルプラズマが、変圧器の第2の回路を完成させ、ガスを解離する。
【0030】
一実施形態では、装置は、プラズマに点火するのを補助する装置を含む。一実施形態では、電極がプラズマチャンバ内に配置され、自由電荷を発生して、プラズマチャンバ内のプラズマの点火を補助する。別の実施形態では、電極は、プラズマチャンバ内での点火を補助するために、誘電体プラズマチャンバの外部で容量結合されることができる。別の実施形態では、装置は、一次巻線と共振する二次巻線を含み、プラズマチャンバ内の電圧を高めて、プラズマチャンバ内でのプラズマの点火を補助する。別の実施形態では、紫外光源が、プラズマチャンバに光学的に結合される。紫外光源は、自由電荷を発生させ、プラズマチャンバ内でのプラズマの点火を補助する。
【0031】
また、本発明は、ガスを解離または活性化するための方法を特徴とする。方法は、圧力下でプラズマチャンバ内にガスを閉じ込めることを含む。第1および第2の電流が、第1および第2の固体ACスイッチング電源によって発生される。第1および第2の電流は、プラズマチャンバの第1の部分を取り囲む第1の磁心を有する第1の一次巻線を介して第1の電流を通すことによって、かつプラズマチャンバの第2の部分を取り囲む第2の磁心を有する第2の一次巻線を介して第2の電流を通すことによって、プラズマチャンバ内部で合成AC電位を誘導する。合成誘導AC電位は、トロイダルプラズマを直接生成し、トロイダルプラズマが、変圧器の二次回路を完成させ、ガスを解離する。方法は、プロセスチャンバを洗浄するために使用されることもできる。
【0032】
方法は、第1および第2の固体ACスイッチング電源によって発生される電流を調整するステップを含むことができる。また、方法は、プラズマチャンバ内で初期イオン化過程を提供するステップを含むことができる。さらに、方法は、一次側および二次側の電気パラメータを測定するステップと、測定された電気パラメータに応答して、第1および第2の固体ACスイッチング電源によって発生される電流の大きさを調節するステップとを含むことができる。
【0033】
本発明を、頭記の特許請求の範囲において特に述べる。本発明の上述およびさらなる利点は、添付図面に関連付けられる以下の説明を参照することによって、より良く理解することができる。
【図面の簡単な説明】
【0034】
【図1】本発明を具体化する活性化ガスを生成するためのトロイダル低電界プラズマ源の概略図である。
【図2】本発明を具体化するトロイダル低電界プラズマ源を使用した、NF3供給ガス流量の関数としての熱的な二酸化珪素のエッチングレートのプロットを示す図である。
【図3】図1に関連して述べたトロイダル低電界プラズマ源と共に使用されることができる金属プラズマチャンバの概略断面図である。
【図4】誘導電流の流れがプラズマチャンバ内に生じるのを防止する図3に示される誘電体領域に適した誘電体スペーサの概略図である。
【図5】本発明を具体化し、高強度イオンビーム処理のために構成されたトロイダル低電界イオンビーム源の概略図である。
【図6】図1の1つまたは複数のスイッチング半導体デバイスを含む固体スイッチング電源の概略ブロック図である。
【図7a】本発明の例示実施形態のトロイダルプラズマ源の安定な動作を容易にするブースト電圧調整器回路を例示する図である。
【図7b】本発明の例示実施形態のトロイダルプラズマ源の安定な動作を容易にするブースト電圧調整器回路を例示する図である。
【図8a】本発明の例示実施形態のトロイダルプラズマ源においてプラズマに点火するための装置を例示する図である。
【図8b】本発明の例示実施形態のトロイダルプラズマ源においてプラズマに点火するための装置を例示する図である。
【図8c】本発明の例示実施形態のトロイダルプラズマ源においてプラズマに点火するための装置を例示する図である。
【図9】本発明の例示実施形態による、活性化ガスを生成するための高出力トロイダル低電界プラズマ源の概略断面図である。
【図10】比較的低い表面侵食を有する区分されたプラズマチャンバを含む、本発明の例示実施形態による低電界トロイダルプラズマ源を例示する図である。
【図11a】石英プラズマチャンバと金属支持構造とを含む、本発明の例示実施形態による低電界トロイダルプラズマ源の一実施形態の側面図である。
【図11b】石英プラズマチャンバと金属支持構造とを含む、本発明の例示実施形態による低電界トロイダルプラズマ源の中心断面図である。
【図11c】石英プラズマチャンバと金属支持構造とを含む、本発明の例示実施形態による低電界トロイダルプラズマ源の中心ずれ断面図である。
【図12】本発明を具体化する金属含有ガスを処理するための装置の部分概略図である。
【実施例】
【0035】
図1は、本発明を具体化する活性化ガスを生成するためのトロイダル低電界プラズマ源10の概略図である。プラズマ源10は、電磁エネルギーをプラズマ14に結合する出力変圧器12を含む。出力変圧器12は、高透磁率磁心16と、一次コイル18と、プラズマ14を閉じ込めるプラズマチャンバ20とを含み、プラズマ14が変圧器12の二次回路を形成できるようにする。出力変圧器12は、追加の二次回路を形成する追加の磁心および一次コイル(図示せず)を含むこともできる。
【0036】
プラズマチャンバ20の1つまたは複数の側部がプロセスチャンバすなわち処理チャンバ22に露出され、プラズマ14によって発生される荷電粒子および活性化ガスが、処理すべき材料(図示せず)と直接接触できるようにする。処理すべき材料を支持するために、試料ホルダ23がプロセスチャンバ22内に配置されることができる。処理すべき材料は、プラズマの電位に対してバイアスされることができる。
【0037】
特に化学反応種を発生させるためにプラズマ源が使用される場合、プラズマチャンバ20の内面と、プラズマチャンバ20の出力をプロセスチャンバ22に接続する真空要素とに使用される材料は、注意深く選択されなければならない。材料は、いくつかの要件を満たすように選択される。材料の1つの要件は、材料とプロセスガスとの相互作用によって引き起こされる材料の腐食または劣化により生じる汚染の発生を最小限にすることである。材料の別の要件は、材料が、プロセスガスに露出されたときに最小限の侵食を伴うことである。材料の別の要件は、材料が、反応ガスの再結合および不活性化を最小限にし、それによりプロセスチャンバへの反応物送達を最大にすることである。
【0038】
陽極処理アルミニウムが、半導体処理用途に関していくつかの利点を有する。1つの利点は、陽極処理アルミニウムは、下層となるアルミニウムベースの上に電気めっきプロセスによって直接成長させることができることである。それにより得られる薄膜は、優れた接着性質を有する。別の利点は、陽極処理アルミニウムが、石英の熱伝導率よりも約15倍大きい熱伝導率を有することである。したがって、陽極処理アルミニウムを用いて形成されるプラズマチャンバの内面は、生じやすい大きな出力密度の場合でさえ、比較的低温のままである。
【0039】
別の利点は、イオン衝撃がない限り、または低エネルギーのイオン衝撃しかない限り、陽極処理アルミニウムが、多くの原子種(F、O、Clなど)に対して化学的に不活性であ
ることである。陽極処理アルミニウムは、原子フッ素に対する低い再結合係数を有するので、フッ素化学物質に関して特に有利である。また、陽極処理アルミニウムは、半導体材料処理用途に一般的に使用されて受け入れられている材料である。
【0040】
また、石英も、半導体処理用途に関していくつかの利点を有する。石英は、非常に高い純度で利用可能であり、半導体産業で一般的に使用されて受け入れられている。また、石英は、O、H、N、Cl、およびBrを含めた多くの反応種と安定である。特に、石英は、原子酸素および水素に対する低い表面再結合係数を有する。また、石英は、低い熱膨張係数を有し、熱衝撃に対して比較的高い耐性を有する。さらに、石英は、高い軟化点および融点を有し、したがって石英からプロセスチャンバを形成するのは比較的簡単である。
【0041】
また、フルオロポリマーも、半導体処理用途に関するいくつかの利点を有する。いくつかのフルオロポリマーの例は、PTFE、PFE、PFA,FEP、およびテフロン(商標)である。多くのフルオロポリマーに関する再結合率は、比較的低い。また、フルオロポリマーは、原子フッ素および原子酸素を含めたほとんどの原子種に対して比較的不活性である。さらに、フルオロポリマーの純度は比較的高く、フルオロポリマーは、ばら物の形態(管、シートなど)でも薄膜形態でも利用可能である。
【0042】
しかし、いくつかの実施形態では、フルオロポリマーは、プラズマ中のイオンによって侵食される可能性がある。また、フルオロポリマーが耐えることができる最大動作温度は、石英が耐えることができる最大温度よりもかなり低い。さらに、フルオロポリマーの熱伝導率は比較的低い。したがって、いくつかの実施形態では、フルオロポリマーは、プラズマチャンバの外部に輸送セクションを構成するのに最も有用である。
【0043】
ライン電圧供給源またはバス電圧供給源とすることができる電圧供給源24が、1つまたは複数のスイッチング半導体デバイスを含むスイッチング回路26に直接結合される。1つまたは複数のスイッチング半導体デバイスは、スイッチングトランジスタであってよい。回路は、固体スイッチング電源であってよい。スイッチング回路26の出力28は、変圧器12の一次巻線18に直接結合されてよい。
【0044】
トロイダル低電界プラズマ源10は、本明細書で述べるように、プラズマチャンバ20内のプラズマに点火する初期イオン化過程を提供する自由電荷を発生するための装置を含むことができる。プラズマに点火するのに必要な電圧を低減するために、アルゴンなどの希ガスがプラズマチャンバ20内に挿入されることもできる。自由電荷は、本明細書で述べる多くの方法で発生させることができる。例えば、自由電荷は、短い高電圧パルスをプラズマチャンバ20内部の電極に印加することによって発生させることができる。また、自由電荷は、短い高電圧パルスを一次コイル18に直接印加することによって発生させることもできる。別の実施形態では、誘電体プラズマチャンバ20の外部に位置され、しかしプラズマ体積に容量的に結合された電極に、高電圧信号が印加されて、自由電荷を発生して、プラズマチャンバ20内での点火を補助することができる。
【0045】
別の実施形態では、自由電荷を発生するために紫外光源34が使用され、自由電荷が初期イオン化過程を提供して、プラズマチャンバ20内のプラズマに点火する。紫外(UV)光源34は、プラズマチャンバ20に光学的に結合される。UV光源34は、透光窓を通してプラズマチャネルに光学的に結合されることができる。UV光源34は、プラズマ源のデューティサイクルに応じて、連続波(CW)光源であっても、パルス光源であってもよい。
【0046】
また、トロイダル低電界プラズマ源10は、一次巻線18の電気パラメータを測定するための測定回路36を含むこともできる。一次巻線18の電気パラメータは、一次巻線18
を駆動する電流と、一次巻線18の両端間の電圧と、電源24によって発生されるバスまたはライン電圧と、一次巻線18での平均出力と、一次巻線18でのピーク出力とを含む。一次巻線の電気パラメータは、連続的に監視されることができる。
【0047】
また、プラズマ源10は、プラズマ14自体の電気および光学パラメータを測定するための装置を含むこともできる。例えば、プラズマ源10は、変圧器12の二次側を流れるプラズマ電流を測定するために、プラズマチャンバ20の周りに配置された電流プローブ38を含むことができる。また、プラズマ二次側での電圧は、例えば、プラズマ14に平行に、磁心に二次巻線を配置することによって測定することができる。別法として、プラズマに印加される電力が、ACライン電圧および電流の測定値、ならびに電気回路での既知の損失から求められることができる。
【0048】
また、プラズマ源10は、プラズマ14からの発光を測定するための光検出器40を含むこともできる。プラズマ14の電気および光学パラメータは、連続的に監視することができる。さらに、プラズマ源10は、電力制御回路42を含むことができ、電力制御回路42は、電流プローブ38と、出力検出器40と、スイッチング回路26との少なくとも1つからデータを受け入れ、次いで一次巻線18での電流を調節することによって、プラズマでの電力を調節する。
【0049】
動作時、実質的に1ミリトル(mtorr)〜100トルの間の圧力に達するまで、プラズマチャンバ20内にガスが吹き込まれる。いくつかの実施形態では、約0.1ミリトル〜約1000トルの間の圧力に達するまで、チャンバ20内にガスが吹き込まれる。ガスは、希ガス、反応ガス、または少なくとも1種の希ガスと少なくとも1種の反応ガスとの混合物からなっていてよい。スイッチング半導体デバイスを含むスイッチング回路26が、一次巻線18に電流を供給し、この電流が、プラズマチャンバ20内部での電位を誘導する。
【0050】
誘導される電位の大きさは、ファラデーの誘導法則に従って、磁心16によって生成される磁界と、スイッチング半導体デバイスが動作する周波数とに依存する。プラズマを生成するイオン化過程を、チャンバ20内で開始することができる。イオン化過程は、本明細書で述べたように、一次巻線への、またはチャンバ20内に配置された電極30への電圧パルスの印加であってよい。別法として、イオン化過程は、プラズマチャンバ20の内部を紫外放射に露出させることであってもよい。
【0051】
ガスがイオン化されると、プラズマチャンバ20内でプラズマが生成され、プラズマが変圧器12の二次回路を完成させる。プラズマ14の形状は、円形から非円形(楕円形など)まで変えることができる。一実施形態では、円形プラズマ14の直径は、動作条件に応じて、約1.27〜5.08cm(約0.5〜2.0インチ)で変わることができる。プラズマ14の直径の変更は、ガス流の動力学およびプラズマインピーダンスを変え、様々な動作範囲(すなわち、様々な出力レベル、圧力範囲、ガス、およびガス流量)についてプラズマ源を最適化させることができるようにする。
【0052】
非円形プラズマ14の形状の変更は、中性種に関する流れの形態およびプラズマ自体の流れの形態を、様々な動作状況について個別に最適化させることができるようにする。一実施形態では、最大寸法と最小寸法との比は、特定の用途に応じて、約1(すなわち円形断面)〜10に変化させることができる。
【0053】
プラズマの電界は、実質的に約1〜200V/cmの間であってよい。プラズマチャンバ20内に希ガスのみが存在する場合、プラズマ14中の電界は低く、1V/cm程度となることがある。しかし、プラズマチャンバ20内に負性ガスが存在する場合、プラズマ1
4中の電界は、かなり高くなる。いくつかの実施形態では、プラズマ14中で低い電界を有するプラズマ源10の動作が望ましい。これは、プラズマ14とチャンバ20との間の低い電位差が、エネルギーイオンによって引き起こされるチャンバ20の侵食を実質的に低減するためである。これは、侵食の結果生じる、処理される材料に生じる汚染を実質的に低減する。チャンバ20の侵食の低減は、いくつかの実施形態では必要とされない。
【0054】
プラズマに送達される電力は、フィードバックループ44によって正確に制御することができ、フィードバックループ44は、電力制御回路42と、一次巻線18の電気パラメータを測定するための測定回路36と、1つまたは複数のスイッチング半導体デバイスを含むスイッチング回路26とを備える。さらに、フィードバックループ44は、電流プローブ38と、光検出器40とを含むこともできる。
【0055】
1つの好ましい実施形態では、電力制御回路42は、一次巻線18の電気パラメータを測定するための測定回路36を使用して、プラズマでの出力を測定する。電力制御回路42は、得られた測定値を、所望の動作条件を表す所定の値と比較し、次いで、スイッチング回路26の1つまたは複数のパラメータを調節して、プラズマに送達される電力を制御する。スイッチング回路26の1つまたは複数のパラメータは、例えば、電圧および電流振幅と、周波数と、パルス幅と、1つまたは複数のスイッチング半導体デバイスに対する駆動パルスの相対位相とを含む。
【0056】
別の好ましい実施形態では、電力制御回路42は、電流プローブ38または光検出器40を使用して、プラズマでの出力を測定する。次いで、電力制御回路42は、測定値を、所望の動作条件を表す所定の値と比較し、次いで、スイッチング回路26の1つまたは複数のパラメータを調節して、プラズマに送達される電力を制御する。
【0057】
一実施形態では、プラズマ源10は、異常な環境状態によって、または異常な使用によって損壊されないことを保証するために、保護回路を含むことができる。プラズマ源10の温度は、多くの位置で観察されることができ、適量の冷却流体が流れていること、および異常に高い量の電力がプラズマ源で損失されないことを保証する。例えば、スイッチングデバイス用の取付ブロックと、プラズマチャンバ20自体と、磁心との温度が監視されることができる。また、FETデバイスを通って流れる電流が監視されることもできる。電流が所定の値を超える場合、プラズマ源10は停止されることができ、それにより、起こり得る損壊からスイッチングデバイスを保護する。
【0058】
プラズマ源10は、従来技術のプラズマ源と比較して、ライン出力を、プラズマによって吸収される電力に変換する効率が非常に高いので、有利である。これは、一次巻線18に電流を供給する1つまたは複数のスイッチング半導体デバイスを含むスイッチング回路26が非常に効率的であるためである。変換効率は、実質的に90%よりも大きくなることができる。また、プラズマ源10は、従来のインピーダンス整合ネットワークまたは従来のRF電力発生装置の使用を必要としないので有利である。これは、コストを大幅に低減し、プラズマ源の信頼性を高める。
【0059】
さらに、プラズマ源10は、プラズマチャンバ20内で低い電界を有して動作するので有利である。プラズマとチャンバとの間の低い電位差が、プラズマチャンバ20内部でのエネルギーイオン衝撃を実質的に低減するので、低い電界が望ましい。プラズマチャンバ20内のエネルギーイオン衝撃の低減は、特に化学反応ガスが使用されるときに、プラズマチャンバ20内部での汚染物質の発生を最小限にするので望ましい。例えば、NF3やCF4/02などフッ素ベ系のガスが、耐フッ素材料から形成されたプラズマチャンバを有する本発明のプラズマ源10内で使用されるとき、低いイオン温度のフッ素プラズマへの長時間の露出後に、チャンバの侵食は全く、または最低限しか観察されなかった。
【0060】
プラズマ源10は、固体表面、粉末、およびガスなど多くの材料を処理するのに有用である。プラズマ源10は、薄膜堆積およびエッチングシステムなど半導体処理機器内のプロセスチャンバを洗浄するのに特に有用である。また、プラズマ源10は、イオン衝撃およびイオンミリングシステムのためのイオン源を提供するのにも特に有用である。
【0061】
さらに、プラズマ源10は、半導体処理のための活性化ガスを発生するのに特に有用である。プラズマ源は、珪素、二酸化珪素、窒化珪素、アルミニウム、モリブデン、タングステン、ならびにフォトレジスト、ポリイミド、および他のポリマー材料といった有機材料など、多くの材料をエッチングするために使用することができる。プラズマ源10は、ダイヤモンド薄膜、二酸化珪素、窒化珪素、および窒化アルミニウムなど、多くの薄膜材料のプラズマ堆積(plasmaenhanced deposition)に使用するこ
ともできる。
【0062】
さらに、プラズマ源10は、原子フッ素、原子塩素、原子水素、原子臭素、および原子酸素などの反応ガスを発生させるために使用することができる。そのような反応ガスは、二酸化珪素、酸化スズ、酸化亜鉛、および酸化インジウムスズなど様々な酸化物を減少、変換、安定化、または不動態化するのに有用である。具体的な用途は、フラックスレスはんだ付けと、珪素表面からの二酸化珪素の除去と、ウェハ処理前の珪素表面の不動態化と、銅、珪素、および酸化珪素など様々な金属および誘電体材料の表面洗浄とを含む。
【0063】
プラズマ源10の他の用途は、ポリマー、金属、セラミック、および紙の表面性質の修正を含む。また、プラズマ源10は、CF4、NF3、C2F6、CHF3、SF6などのフッ素含有化合物、ならびにダイオキシンやフランおよび他の揮発性有機化合物などの有機化合物を含めた、環境に有害なガスの減少に使用されることもできる。さらに、プラズマ源10は、滅菌のために、高フラックスの原子酸素、原子塩素、または原子フッ素を発生させるために使用されることができる。また、プラズマ源10は、大気圧トーチを作製するために使用されることもできる。
【0064】
プラズマ源10によって発生されるプラズマ14のプラズマ電流およびプラズマ電流密度は、特定の用途に関して、特にガスの解離を最適化するように選択されることができる。例えば、プラズマ電流およびプラズマ電流密度は、NF3解離を最適化するように選択することができる。NF3は、チャンバ洗浄および多くの他の用途のためのフッ素の発生源として使用される。NF3は、比較的高価である。高いNF3解離率のためにプラズマ源10を最適化することが、ガス利用率を向上させ、システムを動作させる総コストを低減する。さらに、NF3の解離率を高めることは、環境に有害なガスの大気中への解放を減少させるので望ましい。
【0065】
NF3の解離は、プラズマ中での、NF3分子と電子および高温ガスとの衝突によって引き起こされる。プラズマ源内の電子の密度は、プラズマ電流密度にほぼ比例する。NF3分子の解離を最大にするプラズマ電流密度の最適な範囲が存在する。一実施形態では、トロイダルプラズマ14が約40〜60cmの長さを有し、NF3ガスを効率的に解離するための最適なプラズマ電流密度は、5〜20A/cmの間である。一実施形態では、トロイダルプラズマ14が3〜10cmの断面積を有し、この電流密度範囲は、約20〜200Aの範囲内の全トロイダルプラズマ電流に対応する。
【0066】
図2は、本発明を具体化するトロイダル低電界プラズマ源10を使用した、NF3供給ガス流量の関数としての熱的な二酸化珪素のエッチングレートのプロットを示す。トロイダル低電界プラズマ源10は、下流の原子フッ素源として構成された。電力は約3.5kWであった。
【0067】
図3は、図1に関連して述べたトロイダル低電界プラズマ源と共に使用されることができる金属プラズマチャンバ100の概略断面図である。プラズマチャンバ100は、アルミニウム、銅、ニッケル、および鋼などの金属から形成される。また、プラズマチャンバ100は、陽極処理アルミニウムやニッケルめっきアルミニウムなどの被覆金属から形成されることもできる。プラズマチャンバ100は、プラズマチャンバ100の温度を制御する流体を通すための組込型の冷却チャネル102を含む。
【0068】
図示されるように、第1の高透磁率磁心104および第2の高透磁率磁心106が、プラズマチャンバ100を取り囲む。磁心104、106は、図1の変圧器12の一部である。図1に関連して述べたように、第1の磁心104および第2の磁心106はそれぞれ、チャンバ内部に電位を誘導し、その電位がプラズマを生成し、プラズマが変圧器12の二次回路を完成させる。トロイダル低電界プラズマ源を動作させるためには、ただ1つの磁心のみが必要とされる。
【0069】
本出願人は、誘導駆動トロイダル低電界プラズマ源を金属プラズマチャンバを用いて作製することができることを発見した。従来技術の誘導結合プラズマ源は、誘導電流の流れがプラズマチャンバ自体の中に生じるのを防止するように、誘電体材料から形成されるプラズマチャンバを使用する。本発明のプラズマチャンバ100は、プラズマチャンバ100を通る電気的な連続性が途切れるように、プラズマチャンバ100の一部を電気的に絶縁する少なくとも1つの誘電体領域を含む。電気的な絶縁は、誘導電流の流れがプラズマチャンバ自体の中に生じるのを防止する。
【0070】
プラズマチャンバ100は、誘導電流の流れがプラズマチャンバ100内に生じるのを防止する第1の誘電体領域108および第2の誘電体領域110を含む。誘電体領域108、110は、プラズマチャンバ100を電気的に絶縁して、第1の領域112と第2の領域114と分ける。第1の領域112および第2の領域114はそれぞれ、高真空シールで誘電体領域108、110に接合されて、プラズマチャンバ100を形成する。高真空シールは、エラストマーシールからなることができ、あるいはろう付け接合など永久シールによって形成されることができる。汚染を低減するために、誘電体領域108、110は、プラズマから保護されることができる。誘電体領域108、110は、プラズマチャンバ100の対合面116を分離する誘電体スペーサからなることができ、または対合面116上の誘電体コーティングであってもよい。
【0071】
動作時、供給ガスは、入口118内に流れる。図1に関連して述べたように、第1の磁心104および第2の磁心106はそれぞれ、プラズマチャンバ100内部に電位を誘導し、その電位がプラズマを生成し、プラズマが変圧器12の二次回路を完成させる。トロイダル低電界プラズマ源を動作させるためには、ただ1つの磁心のみが必要とされることに留意されたい。
【0072】
いくつかの金属は、フッ素系のガスなどプラズマ処理で一般的に使用される特定の化学物質に対してより大きな耐性を有するので、トロイダル低電界プラズマ源での金属または被覆金属チャンバの使用が有利である。さらに、金属または被覆金属チャンバは、誘電体チャンバよりもはるかに高い温度で、はるかに高い熱伝導率を有することができ、したがって、はるかに高い出力のプラズマを発生させることができる。例えば、陽極処理アルミニウムは、本明細書で述べたように、いくつかの半導体処理用途で特に有利である。
【0073】
図4は、誘導電流の流れがプラズマチャンバ内に生じるのを防止する図3に示される誘電体領域に適した誘電体スペーサ150の概略図である。この実施形態では、高真空シール152が、誘電体スペーサ150の外側に形成される。誘電体領域は、突出させたチャン
バ壁100によってプラズマから保護される。
【0074】
図5は、本発明を具体化するトロイダル低電界プラズマ発生装置を含むイオンビーム源200の概略図である。イオンビーム源200は、イオンミリングおよびイオン注入を含めた多くのイオンビーム処理用途に使用されることができる。イオンビーム源200は、図3に関連して述べた金属プラズマチャンバ100を備えるトロイダル低電界プラズマ源202を含む。プラズマチャンバ100は、プラズマによって発生されたイオンをチャンバ100の外に引き出すためのスリット204を含む。加速電極206が、所定の電界によって、チャンバ100から外に出るイオンを加速し、それによりイオンビームを生成し、このイオンは所定のエネルギーを有する。
【0075】
所望のイオン種を選択するために、加速されたイオンの経路内に質量分離磁石208が配置されることもできる。所望のイオン種を所定の高いエネルギーに加速するために、加速電極の第2のセットが使用されることができる。高エネルギーイオンビームを合焦させるために、イオンレンズが使用されてもよい。試料216にわたってイオンビームを走査するために、垂直軸スキャナ212および水平軸スキャナ214が使用されることができる。任意の中性粒子からイオンビームを分離するために、偏向器218が使用されることができ、イオンビームは試料216を衝撃し、中性粒子は中性トラップ220を衝撃する。
【0076】
図6は、図1の1つまたは複数のスイッチング半導体デバイスを含む固体スイッチング電源250の概略ブロック図である。本出願人は、スイッチング半導体デバイスを使用して出力変圧器の一次巻線を駆動させ、電磁エネルギーをプラズマに結合して、変圧器の二次回路を形成することができることを発見した。
【0077】
トロイダル低電界プラズマ源でのスイッチング電源の使用が有利である。これは、スイッチング電源が、プラズマ源に電力供給するために使用される従来技術のRFおよびマイクロ波電源よりもはるかに安価であり、物理的にはるかに体積が小さく軽量であるためである。これは、スイッチング電源が、ライン絶縁回路またはインピーダンス整合ネットワークを必要としないためである。また、スイッチング電源は非常に効率的である。
【0078】
本発明は、一次巻線18(図1)内で電流を動作させるために、任意のタイプのスイッチング電源構成を使用することができる。例えば、スイッチング電源250は、ライン電圧供給源256に結合されたフィルタ252および整流器回路254を含むことが出来る。フィルタ252および整流器回路254の出力258は、典型的には数百ボルトのDC電圧を生成する。出力258は、電流モード制御回路260に結合される。
【0079】
電流モード制御回路260は、第1の絶縁ドライバ262、262aと、第2の絶縁ドライバ264、264aとに結合される。第1の絶縁ドライバ262、262aと、第2の絶縁ドライバ264、264aとが、スイッチングトランジスタの第1の対266と第2の対268とを駆動する。スイッチングトランジスタは、IGBTまたはFETデバイスであってよい。スイッチングトランジスタの第1の対266および第2の対268の出力は、正弦波形を含めた多くの波形を有することができる。波形の周波数は、変圧器の性質に依存する。スイッチングトランジスタの出力は、一次巻線および磁心269によってトロイダルプラズマ270に結合され、トロイダルプラズマ270が変圧器二次側を形成する。
【0080】
電流モード制御回路260は、一次巻線18の電気パラメータまたはプラズマ14の光学的性質によって特徴付けられる電力制御回路42(図1)からの信号を受信する制御回路を含むことができる。制御回路は、出力波形のデューティサイクルすなわち負荷サイクルを制御する。一実施形態では、制御回路は、複数のスイッチングサイクルにわたって出力
波形を平均化して、雑音および他の変動をなくす。
【0081】
プラズマ点火中、出力波形の急激な変化が生じることがある。通常、1つまたは複数の共振構成要素が、本明細書に述べた出力回路に追加され、または出力回路から除去され、それにより回路特性が瞬時に変化するときに、急激な変化が生じる。また、急激な変化は、プラズマ点火時、または点火モードから通常動作モードへの回路移行中に生じることもある。
【0082】
通常動作に最適化された制御回路は、そのような急激な変化中に誤動作することがある。一実施形態では、制御回路は、電力制御回路42(図1)を使用不能にして、電流モード制御回路260に命令して信号を生成させ、その信号により、スイッチングトランジスタ266、268が、1つまたは複数の点火段階中に所定のデューティサイクルを有する出力波形を発生する。所定のデューティサイクルは、スイッチングトランジスタ266、268を通る電流が十分であり、しかしその特定の点火段階に関する電流制限を超えないように選択される。
【0083】
一実施形態では、固体スイッチング電源250によって発生され、一次巻線に印加される電力が非常に良く調整される。堆積、エッチング、およびフォトレジスト除去など多くの材料処理用途が、精密なプロセス制御を必要とする。精密なプロセス制御は、プラズマの密度、したがってプロセスガス中の化学反応物の量を精密に制御することによって実現することができる。プラズマの密度は、プラズマ中を流れるトロイダル電流に比例する。通常、変圧器の磁気インピーダンスがプラズマインピーダンスよりもはるかに高いので、プラズマ中を流れるトロイダル電流は、一次巻線での駆動電流とほぼ同一である。いくつかの実施形態では、プロセスガスの流量および組成も非常に良く調整される。
【0084】
図7aおよび図7bは、本発明のトロイダルプラズマ源の安定な動作を容易にするブースト電圧調整器回路300、300’を例示する。ACライン電圧および周波数の変動が、プラズマ源10の動作特性を変えることがある。電圧調整器回路300は、ACライン電圧および周波数に依存しない安定なDCバス電圧を発生する。2つの回路の全般的な動作は同様である。
【0085】
ブースト電圧調整器回路300、300’は、入力302、302’で、未調整のDC電圧を受信する。未調整のDC電圧は、ACライン電圧を整流することによって発生させることができる。インダクタ306、306’を通る電流を駆動するために、スイッチングトランジスタ304、304’が使用される。高周波数ドライバ回路308、308’が、スイッチングトランジスタ304、304’のゲート310、310’に結合される。ドライバ回路308、308’は、スイッチングトランジスタ304、304’の動作を制御する制御信号を発生する。ドライバ回路308、308’がスイッチングトランジスタ304、304’を導電状態にするとき、電流が、スイッチングトランジスタ304、304’およびインダクタ306、306’を通過する。ドライバ回路308、308’がトランジスタ304、304’を非導電状態にするとき、インダクタ306、306’内を流れる電流は、同じ方向に流れ続ける。電流は、ダイオード312、312’を通って流れ、コンデンサ314、314’を充電する。
【0086】
コンデンサ314、314’の両端間の電圧が、安定なDCバス電圧を提供し、このDCバス電圧は、ACライン電圧の振幅よりも大きい、またはそれに等しい振幅を有する。ドライバ回路308、308’によって発生される制御信号は、安定なDCバス電圧を提供するために、スイッチングトランジスタ304、304’のデューティサイクルを調節する。ドライバ回路308、308’は、約20kHz〜2MHzの周波数でスイッチングトランジスタ304、304’を駆動する。高周波数スイッチングトランジスタ304、
304’は、各スイッチングサイクル中に蓄積される必要があるエネルギーの量を低減する。これは、調整器のサイズおよびコストを低減する。
【0087】
他の多くの電圧調整回路が使用されることもできる。例えば、バックレギュレータを使用して、通常のAC電圧値で、またはそれよりも低い値で、調整された電圧を提供することができる。バス電圧の調整は、いくつかの利点を有する。1つの利点は、バス電圧の調整が、ACライン電圧および周波数変動に依存しない安定な動作を提供することである。世界のいくつかの地域での電力は信頼できないものであるので、これは重要である。また、電圧調整回路は、スイッチング電源へのDCバス電圧を制御および調節するために使用されることもできる。これは、使用者が、プラズマに供給される電圧および電力を制御できるようにする。また、これは、使用者が、スイッチング電源へのDC電圧を変えることによって、変化するプラズマインピーダンス条件に適合できるようにする。したがって、バス電圧の調整は、プラズマ源の動作範囲を広げ、プロセスに対するより良い制御を可能にする。
【0088】
図8a〜図8cは、本発明のトロイダルプラズマ源においてプラズマに点火するための装置を例示する。図8aは、プラズマ源350を示し、プラズマ源350は、プラズマチャンバ20内に配置されたプラズマに点火するための電極352を含む。電極352は、自由電荷を発生し、自由電荷が初期イオン化過程を提供して、プラズマチャンバ20内のプラズマに点火する。
【0089】
電極材料の選択は、特定の用途に応じる。電極352は、金属、被覆金属、または誘電体で覆われた金属から形成されることができる。金属電極の1つの利点は、それらが、誘電体で覆われた電極に比べて低い破壊電圧を有することである。したがって、裸の金属電極を用いれば、所与の印加電圧に関して、一般にはより簡単に、より高い信頼性で点火を実現することができる。しかし、誘電体で覆われた電極は、多くの誘電体が比較的化学的に不活性であるので、有利である。これは、腐食性ガスを伴う用途に関して、誘電体で覆われた電極をより適したものとする。
【0090】
高電圧源354が、電極352に電気的に結合される。一実施形態では、高電圧源354は、電極352に印加される短い高電圧電気パルスを発生する。高電圧電気パルスは、実質的に1〜10kVの電圧を有することができる。また、実質的に100〜1000Vの間である、より低いDC電圧が、高抵抗抵抗器の両端にわたって電極352に印加されることもできる。
【0091】
電極352に印加されるDCバイアス電圧は、休止時間中に背景放射によって発生される電荷を収集する。電圧の大きさは、電圧がガス分解を直接引き起こさないように選択される。正確に言えば、その大きさは、電極352が電荷を収集し、高電圧電気パルスが到達したときにガス分解を容易にするように選択される。
【0092】
別の実施形態では、1つまたは複数の整流ダイオードが、高電圧源354の出力356に接続されることができる。整流ダイオードにより、電極352が、電気パルス自体の期間よりも長い期間にわたって通電される。これは、高電圧パルスが終了された後に電極352が放電されるのをダイオードが防止するためである。
【0093】
さらなる実施形態では、高電圧源354は、電極352に印加されるCWRF電圧を発生する。CW RF電圧は、自由電荷を発生し、自由電荷が初期イオン化過程を提供して、
プラズマチャンバ20内のプラズマに点火する。CWRF電圧の振幅は、1〜10kVの間であってよい。電極352へのCW RF電圧の印加が有利である。これは、CW RF電圧が、離散的な電気パルスに比べて高いデューティサイクルを有し、したがってプラズ
マに点火するのが困難な動作条件におけるガス分解の可能性を高めるためである。
【0094】
さらに別の実施形態では、短い高電圧電気パルスが、一次コイル358に直接印加され、自由電荷を発生し、自由電荷が初期イオン化過程を提供して、プラズマチャンバ20内のプラズマに点火する。通常の動作電圧の約1〜10倍までプラズマでの誘導電圧を高めるために、共振回路が使用される。共振回路は、1つまたは複数のコンデンサ360を含むことができ、スイッチング回路26のスイッチング周波数で変圧器と共にLC回路を形成する。
【0095】
共振回路は、プラズマ源の一次巻線358で高い共振電圧を出力する。プラズマが点火された後、共振コンデンサ360は、電気スイッチ362を用いて迂回することによって一次回路から除去され、一次巻線358での電圧を、スイッチング回路26によって発生される電源電圧に戻す。
【0096】
図8bは、プラズマ源370を例示し、プラズマ源370は、プラズマチャンバ20内のプラズマに点火するために共振回路を形成する一次巻線358、インダクタ374、およびコンデンサ372を含む。共振コンデンサ372は、変圧器磁心でのプラズマ二次側に並列に、二次回路内に接続される。キャパシタンスは、スイッチング回路26の周波数で、共振インダクタ374、および変圧器の磁化インダクタンスMと共振するように選択される。
【0097】
動作時、プラズマが点火される前、プラズマのインピーダンスは高く、変圧器の一次巻線358での電圧を上昇させる高Q回路をもたらす。プラズマ点火後、プラズマインピーダンスは降下し、LC共振回路を減衰させ、それにより共振電圧を低下させる。有限プラズマ抵抗Rに関して、この回路内のプラズマを通って流れる電流は、V/ZLによって、すなわち、スイッチング回路26のスイッチング周波数での、スイッチング回路電圧と共振インダクタンス374のインピーダンスとの比によって求められる。この電流は、プラズマインピーダンスRに依存せず、プラズマデバイスを定電流プラズマ源にする。
【0098】
図8cは、プラズマチャンバ20に電気的に結合された電極382を含むプラズマ源380を例示する。電極382を使用して自由電荷を発生し、自由電荷が初期イオン化過程を提供して、プラズマチャンバ20内のプラズマに点火する。スイッチング回路26は、電極382に印加されるCWRF電圧を発生する。
【0099】
共振コンデンサ364およびRFステップアップ変圧器386は、変圧器の一次巻線358と直列に接続される。点火中、バイパススイッチ388が、共振コンデンサ364をまたいで接続され、開いた位置にあり、それにより、共振コンデンサ364および一次巻線358がスイッチング回路26の周波数で共振できるようにする。ステップアップRF変圧器386は、共振コンデンサ364から共振電圧を取り、高いRF電圧を電極386に印加する。
【0100】
電流制限コンデンサが、電極382とステップアップ変圧器386との間に接続されることができ、電極382に送達される電力の量を制限する。DCバイアス電圧が、抵抗器を介して電極382に印加されることができる。DCバイアス電圧は、電極382でいくらかの電荷を収集し、それにより、RF高電圧が到達するときにガス分解を補助する。プラズマが点火された後、バイパススイッチ388が閉じられて、共振コンデンサ384およびステップアップRF変圧器386を回路から除去する。
【0101】
また、プラズマ源は、点火プロセスを監視および制御するためのモニタおよび制御回路390を含むことができる。一実施形態では、まず、モニタおよび制御回路390は、プラ
ズマの点火を検出し、次いで、点火シーケンスを終了して、スイッチング回路26を通常動作モードに切り換える。
【0102】
別の実施形態では、モニタおよび制御回路390は、固定された事前設定された時間間隔で、点火プロセスを監視する。時間間隔は、典型的な点火時間の分数であってよい。各時間間隔の最後に、モニタおよび制御回路390は、プラズマが点火されているかどうか判定するために、プラズマ光、または一次巻線の電気的特性を測定する。プラズマ点火が検出される場合、モニタおよび制御回路390は、点火プロセスを終了し、スイッチング回路26を通常動作モードに戻す。プラズマが検出されない場合、モニタおよび制御回路390は、次の時間間隔にも点火プロセスを継続する。点火プロセスに割り当てられた全時間間隔においてプラズマが発生されない場合、障害が発生している。
【0103】
図9は、活性化ガスを生成するための高出力トロイダル低電界プラズマ源400の概略断面図を示す。プラズマチャンバ402は、図3に関連して述べたように、金属から形成される。他の実施形態では、プラズマチャンバ402は、石英など多くの誘電体材料から形成することができる。プラズマチャンバ402は、図3に関連して述べたように、誘導電流の流れがプラズマチャンバ402内に生じるのを防止する誘電体領域404を含む。一実施形態では、プラズマチャンバ402はまた、プラズマチャンバ402から熱を除去するために冷却構造も含む。冷却構造は、プラズマチャンバ402に熱的に結合された流体冷却金属ヒートシンクであってよい。また、冷却構造は、プラズマチャンバ402の温度を制御する流体を通すための組込型の冷却チャネルであってもよい。
【0104】
高出力プラズマ源400は、プラズマチャンバ402を取り囲む第1の高透磁率磁心406および第2の高透磁率磁心408を含む。他の実施形態では、本発明に従って、任意の数の磁心が使用されることができる。一実施形態では、第1のスイッチング電源410および第2のスイッチング電源412が、それぞれ第1および第2の一次巻線に結合される。第1の電源410と第2の電源412とが同期されることもできる。第1の電源410と第2の電源412との動作を同期させるために、共通のクロックを使用することができる。別の実施形態では、単一の電源が、2つの高透磁率磁心それぞれの一次巻線に結合される。
【0105】
動作時、第1の電源410が、第1の一次巻線での第1のAC電流を駆動し、第2の電源412が、第2の一次巻線での第2のAC電流を駆動する。第1および第2のAC電流が、プラズマチャンバ402内部に合成AC電位を誘導し、これがプラズマを生成し、プラズマが変圧器の第2の回路を完成させる。プラズマに印加される電圧は、第1の電源410と第2の電源412とによって印加される電圧の合成である。プラズマ自体が、2つのRF電源のための合成機能をもつ。
【0106】
高出力プラズマ源400は、多くの利点を有する。1つの利点は、プラズマ源400が、単一電源プラズマ源に比べて高い出力を発生することができることである。より高い出力を使用することには多くの利点がある。1つの利点は、より高い出力が、解離率を高め、より広い動作圧力範囲を可能にすることである。例えば、単一電源を含む本発明によるトロイダルプラズマ源は、動作圧力の有用な範囲にわたって、流量が約2slm(標準リットル毎分)のNF3を解離することができる。しかし、いくつかの用途では、より高い流量のNF3またはより高い動作圧力を使用することが望まれる。これらの用途では、より高いRF電力およびRF電圧が必要とされる。
【0107】
単一スイッチング電源によって発生されるRF電力およびRF電圧を高めるいくつかの方法が存在する。RF電力およびRF電圧を高める1つの方法は、より高いDCバス電圧を使用することである。別の方法は、RF共振回路を使用することである。これらの方法は
どちらも、より高い出力電圧または定格出力電流を有するスイッチング電源の使用を必要とする。しかし、現在利用可能なスイッチングトランジスタに対する電流および電圧制限が、スイッチング電源の実現可能な出力電圧および出力電流を制限する。したがって、本発明のプラズマ源のプラズマに提供されるRF電力およびRF電圧を高めるためには、複数の変圧器および複数のスイッチング電源を使用することが望ましい。
【0108】
高出力プラズマ源400の別の利点は、複数電源設計が、プラズマ源によって発生される出力を高めるのに比較的費用対効果の高い方法であることである。製造業者は、1つの電源モジュールを設計して製造し、そのモジュールを、プラズマ源の多くのモデルで使用することができる。例えば、製造業者は、基本的なプラズマ発生装置ユニットを構成することができる。より高出力のプラズマ発生装置ユニットは、複数の電源モジュールを用いてプラズマ源を構成することによって製造することができる。プラズマの出力は、ほぼ電源モジュールの数に等しい倍数だけ増加する。
【0109】
高出力プラズマ源400の別の利点は、複数の電源モジュールによって発生される出力を合成するのに最少の追加回路が必要とされることである。この特徴は、信頼性を向上させ、ユニットを製造するためのコストを低減する。
【0110】
また、プラズマ源400は、プラズマチャンバ402内のプラズマに対してより高い電圧を発生するために、単一の電源を用いて電力供給されることもできる。第1の高透磁率磁心406および第2の高透磁率磁心408での一次巻線が、スイッチング電源に並列に接続される。これら2つの磁心による誘導電界は、プラズマチャネル内で合成されて、スイッチング電源の電圧の2倍であるプラズマでの電圧をもたらす。他の実施形態では、本発明に従ってプラズマでの電圧を上昇させるために、任意の数の磁心および電源が使用されることができる。
【0111】
プラズマで電圧を合成する利点は、プラズマが変圧器での単巻の二次側であるときにさえ、電源電圧よりも高いプラズマでの電圧を印加できるようになることである。
図10は、比較的低い表面侵食を伴う区分されたプラズマチャンバを含む本発明による低電界トロイダルプラズマ源450を例示する。プラズマチャンバ内のエネルギーイオンの存在が、プラズマチャンバの内面の侵食を引き起こす。活性化およびイオン化ガスの反応性は、それらのエネルギーと共に急速に高まる。この侵食は、プロセスを汚染する可能性がある。したがって、エネルギーイオンおよび原子の生成を低減することが望ましい。
【0112】
本発明の一実施形態のトロイダルプラズマ源の1つの利点は、比較的低い電界がプラズマを駆動させることができることである。典型的な電界強度は10V/cm未満である。したがって、本発明の一実施形態のトロイダルプラズマ源は、低いイオンエネルギーでプラズマを発生させる。したがって、高腐食性のガスの場合でさえ、イオン衝撃による表面侵食は比較的低い。
【0113】
しかし、本発明のプラズマ源が、金属または被覆金属から形成されたプラズマチャンバを含むとき、プラズマチャンバ自体で電界が誘導される。金属プラズマチャンバ本体で誘導される電圧は、誘電体領域110(図3)にわたって金属チャンバ本体の端部に現れる。したがって、誘電体領域にわたる電界の集中が存在する。
【0114】
他方で、プラズマ二次側は連続的な媒体である。対応する急激な電位変化はトロイダルプラズマに沿って存在しない。金属プラズマチャンバとプラズマ二次側との電位のこの不一致が、プラズマと金属チャンバとの間で高い表面電界を生成する。高い表面電界は、表面侵食を引き起こすことがあるエネルギーイオンを生成する。最も一般的に使用される材料のためのイオンスパッタリングに関するしきい値エネルギーは、約20〜60eVの間で
ある。プラズマチャネル表面に対するスパッタリング損傷は、1つの誘電体ギャップにわたる電位差が50〜100Vを超えるときに重大なものになる。
【0115】
図10のプラズマ源450は、プラズマチャンバ452を含み、プラズマチャンバ452は、プラズマと金属プラズマチャンバとの電位不一致を低減するために、複数の誘電体ギャップを用いて区分される。図10に示される実施形態では、プラズマチャンバ452は、2つの誘電体ギャップ454a、454b、454c、および454dによって4つの部分に区分される。プラズマチャンバ452は、第1の誘電体ギャップ454a、第2の誘電体ギャップ454b、第3の誘電体ギャップ454c、および第4の誘電体ギャップ454dによって区分された第1のチャンバ452a、第2のチャンバ452b、第3のチャンバ452c、および第4のチャンバ452dを含む。他の実施形態では、プラズマチャンバ452が、任意の数のチャンバに区分される。
【0116】
プラズマ源450は、プラズマチャンバセグメントの少なくとも1つのための変圧器磁心を含む。一実施形態では、プラズマ源450は、各プラズマチャンバセグメントごとに変圧器磁心を含む。したがって、図10に示される実施形態では、プラズマ源450は、第1の変圧器磁心456a、第2の変圧器磁心456b、第3の変圧器磁心456c、および第4の変圧器磁心456dを含む。チャンバ452は、変圧器磁心456a、456b、456c、または456d内に含まれる戻り磁束の四分円を囲む接地経路内に誘電体ギャップ454a、454b、454c、454dの1つが存在するように、エンクロージャ458に接地される。このとき、各誘電体ギャップ454a、454b、454c、454dでの電圧は、トロイダルプラズマでの電圧の4分の1である。他の実施形態では、プラズマループ電圧は、任意の数の誘電体ギャップにわたって分布される。
【0117】
したがって、区分されたプラズマチャンバ452は、プラズマチャンバ452での誘導電界を分布させる。複数の誘電体ギャップの使用は、かなり高いループ電圧でのプラズマ源の動作を可能にし、その一方で、プラズマチャネル表面侵食を低減する、またはなくす。一実施形態では、各誘電体領域454a、454b、454c、454dにわたる電圧は、約100V以下に低減される。複数の誘電体領域454a、454b、454c、454dにわたるループ電圧の分布は、表面侵食を大幅に低減するように示されている。
【0118】
代替実施形態では、抵抗器およびコンデンサなどの回路素子を、区分されたプラズマチャンバ452内で電圧ドライバとして使用することができる。電圧分布を制御するために回路素子を使用することは、いくつかの利点を有する。電圧分布を制御するために回路素子を使用する1つの利点は、誘電体ギャップ454a、454b、454c、454dにわたる電圧分割を制御することができることである。電圧分布を制御するために回路素子を使用する利点は、誘電体ギャップ454a、454b、454c、454dが均等な間隔で配置されていない場合でさえ、プラズマとプラズマチャンバ452との間の電位を最小限にすることができることである。
【0119】
図11は、石英プラズマチャンバ502および金属支持構造504を含む本発明による低電界トロイダルプラズマ源500の一実施形態の側面図を示す。図11bは、石英プラズマチャンバ502および金属支持構造504を含む本発明による低電界トロイダルプラズマ源500の中心断面図を示す。石英プラズマチャンバ502は、トロイダル幾何形状に形成される。
【0120】
石英プロセスチャンバ502は、冷却および機械的支持を提供する金属構造504に熱的に結合される。金属支持504は、少なくとも1つの電気ギャップ506を含み、電気ギャップ506は、誘導電流の流れがプラズマチャンバ内に生じるのを防止する。石英プラズマチャンバ502を金属構造504に結合させるために、高い熱伝導率の結合材料50
8が使用されることができる。結合材料は、石英プラズマチャンバ502と支持構造504との熱的な不一致に対処するために低い機械的硬度を有することができる。
【0121】
プラズマチャンバ502は、ガス入口510およびガス出口512を含む。一実施形態では、石英フランジ514が、ガス入口510およびガス出口512付近で石英プラズマチャンバ502に結合される。いくつかの用途では、入口および出口管を直接封止するためにOリングシールを使用することができないので、石英フランジ514が有利である。これは、石英が、良い熱伝導体でないためである。
【0122】
いくつかの用途では、プロセスガスが出口512でプラズマチャンバ502から出るときに、プロセスガスによって大量の熱が運ばれる。これらの用途では、プラズマチャンバ502の出口512での石英管は、出口512での封止のためにOリングを使用するには高すぎる温度を受けることがある。結合された石英フランジ514は、プラズマチャンバ502から離れるように真空シール表面を移動させる。石英フランジ514の片側が、熱結合材料508および金属構造504によって冷却される。これは、真空Oリングシールのための冷却表面を提供する。
【0123】
プラズマ源500は、プラズマチャンバ502の一部分を取り囲む高透磁率磁心516を含む。他の実施形態では、少なくとも2つの磁心が、プラズマチャンバ502の少なくとも2つの部分を取り囲む。一次コイルが磁心516を取り囲む。スイッチング半導体デバイスを含む回路が、本明細書で述べたように、電流を一次巻線に供給する。回路は、本明細書で述べたように、プラズマチャンバ502内部で電位を誘導し、これが電磁エネルギーをプラズマに結合して、変圧器の二次回路を形成する。
【0124】
図11cは、石英プラズマチャンバ502および金属支持構造504を含む本発明による低電界トロイダルプラズマ源500の中心ずれ断面図を示す。中心ずれ断面図は、石英プラズマチャンバ502を冷却する金属構造504内の冷却チャネル518を示す。
【0125】
図12は、本発明を具体化する金属含有ガスまたは珪素含有ガスを処理するための装置1200の概略図である。装置は、ガスライン1208を介してプラズマチャンバ1212に接続されたガス源1204(例えば、金属含有ガス源)を含む。弁1216が、金属含有ガス源1204から、ガスライン1208を通り、ガス入口1220を通ってプラズマチャンバ1212内に流れる金属含有ガス(例えばWFおよびUF)の流れを制御する。一実施形態では、プラズマチャンバは、例えば、図3のトロイダルプラズマチャンバ100である。
【0126】
また、装置は、ガスライン1228を介してプラズマチャンバ1212に接続されるプラズマガス源1224を含む。弁1232は、プラズマガス源1224から、ガスライン1228を通り、ガス入口1236を通ってプラズマチャンバ1212内に流れるプラズマガス(例えば、O、H、HO、N、Ar、NF、およびHe)の流れを制御する。
【0127】
ガス源、ガスライン、およびガス入口の様々な数および構成が、本発明の代替実施形態で企図される。例として、複数のガス源がガスラインに動作可能に接続される一実施形態で、プラズマチャンバ1212にガスを送達するために単一のガスラインを使用することができる。この実施形態では、操作者は、弁を制御していずれかのガス源を選択して、プロセスにおける適切な点で、プラズマチャンバに対する特定のガスの適切な流れを提供することができる。いくつかの実施形態では、弁が存在せず、例えばガス源が、プラズマチャンバへのガスの流れを制御する。様々なタイプのガスが、本発明の代替実施形態で企図される。例として、ガス源1204は、例えば、金属含有ガスまたは珪素含有ガスを提供す
ることができる。
【0128】
また、装置は、プラズマチャンバ1212内部でプラズマを発生するプラズマ発生装置1240を含む。この実施形態では、プラズマ発生装置1240は、トロイダル低電界ガス源、例えば、図1のトロイダル低電界ガス源である。制御装置1244は、プラズマ発生装置1240の動作を制御し、プラズマ発生装置1240は、本明細書で前述したのと同様に、プラズマチャンバ1212内に形成されたトロイダルプラズマに点火して、プラズマに電力を提供する。プラズマ発生装置1240は、トロイダルプラズマを形成するようにプラズマガス源1224によって提供されたプラズマガスに点火する。
【0129】
プラズマチャンバ1212は、例えば、金属材料から形成することができ、または誘電体材料から形成することができる。いくつかの実施形態では、プラズマチャンバ1212は、金属材料、被覆金属材料、または誘電体材料の少なくとも1つを含む。いくつかの実施形態では、プラズマチャンバ1212は、セラミック材料または石英材料を含む。
【0130】
トロイダルプラズマと、ガス源1204によってプラズマチャンバ1212に提供される金属含有ガスとの相互作用が、別の材料を生成する。生成される材料は、いくつかの因子(例えば、トロイダルプラズマ内の電力、金属含有ガスのタイプ、およびプラズマガスのタイプ)に依存する。いくつかの実施形態では、トロイダルプラズマは、Hから形成され、金属含有ガスと反応して、金属含有ガス中に含まれる金属原子の分子を含む金属材料を生成する。いくつかの実施形態では、金属含有ガスと反応して金属酸化物を生成するトロイダルプラズマを形成するために、HOおよびOが使用される。いくつかの実施形態では、金属含有ガスと反応して金属窒化物を生成するトロイダルプラズマを形成するために、Nが使用される。
【0131】
また、装置1200は、トロイダルプラズマと金属含有ガスとの相互作用によって生成される材料を収集する収集デバイス1248も含む。デバイス1248は、通路1256を介してプラズマチャンバ1212の出口1252に接続される。デバイス1248は、チャンバ1212から出力される、トロイダルプラズマと金属含有ガスとの相互作用によって生成される材料の少なくともいくらかを収集する。デバイス1248によって収集されない材料(例えば、ガス、流体、粒子)は、通路1256を通って容器1262内に進む。一実施形態では、金属含有ガスは、フッ素を含み、容器1262は、トロイダルプラズマと金属含有ガスとの相互作用の副生成物としてのフッ素を含むガスを収集する。この実施形態では、装置1200の容器1262はまた、出口1266も有する。例えば、出口は、大気への排気を行うことができ、またはポンプ(図示せず)に結合させることもできる。
【0132】
デバイス1248は、例えば、フィルタ、粒子トラップ、サイクロントラップ、静電トラップ、あるいはトロイダルプラズマと金属含有ガスとの相互作用によって生成される金属材料、金属酸化物、または金属窒化物を収集するのに適した他のデバイスであってよい。
【0133】
この実施形態では、収集デバイス1248は、プラズマチャンバ1212の外部に位置される。収集デバイス1248は、別法として、プラズマチャンバ1212の内部に、またはその一部をプラズマチャンバ1212の内部に位置させることができる。いくつかの実施形態では、収集デバイス1248は、装置1200の交換可能な構成要素である。
【0134】
例として、WFを処理するために実験が行われた。この実験で使用されたプラズマ源1240およびプラズマチャンバ1212は、MKSInstruments, Inc.
(Wilmington,MA)によって製造されているASTRONi(登録商標)リモートプラズマ源であった。金属含有ガス源1204が、WFをプラズマチャンバ12
12に提供した。プラズマガス源1224が、HとNの合成物をプラズマチャンバ1212に提供した。プラズマ発生装置1244が、プラズマチャンバ1212内にあるガスの合成物からトロイダルプラズマを発生した。トロイダルプラズマは、WFガスと反応して、W粒子を生成した。いくらかのW金属粒子が、プラズマチャンバ1212の出口で、通路1256の内面を被覆した。タングステン(W)の存在を検証するために、プラズマチャンバ1212から出力された材料に関してエネルギー分散型X線分光(EDS)分析が行われた。例示的なEDS分析システムは、ThermoElectron Co
rporation(Madison,Wisconsin)によって販売されているNoranQuest EDSシステムである。
【0135】
例として、WFを処理するために別の実験が行われた。この実験で使用されたプラズマ源1240およびプラズマチャンバ1212は、MKSInstruments, In
c.(Wilmington,MA)によって製造されているASTRONi(登録商標)リモートプラズマ源であった。金属含有ガス源1204が、WFをプラズマチャンバ1212に提供した。プラズマガス源1224が、OとNの合成物をプラズマチャンバ1212に提供した。プラズマ発生装置1244が、プラズマチャンバ1212内にあるガスの合成物からトロイダルプラズマを発生した。トロイダルプラズマは、WFガスと反応して、金属酸化物材料WO3を生成した。タングステン(WO)の存在を検証するために、プラズマチャンバ1212から出力された酸化物材料に関してエネルギー分散型X線分光(EDS)分析が行われた。例示的なEDS分析システムは、ThermoElectron Corporation(Madison,Wisconsin)によ
って販売されているNoranQuest EDSシステムである。
【0136】
本発明を特定の実施形態を参照しながら特に図示して説明してきたが、頭記の特許請求の範囲によって定義される本発明の精神および範囲から逸脱することなく、形態および詳細の様々な変更を行うことができることを当業者には理解されたい。

【特許請求の範囲】
【請求項1】
金属含有フッ素ガスを減少させるための装置において、
入口と、
金属含有フッ素ガスを処理するために金属含有フッ素ガスを閉じ込めるプラズマチャンバと、
前記プラズマチャンバの一部分を取り囲む一次巻線および磁心を有する変圧器と、
電圧供給源に結合された1つまたは複数のスイッチング半導体デバイスを備えていて前記一次巻線に結合された出力を有する固体スイッチング電源とを備え、
前記スイッチング電源が、前記一次巻線で電流を駆動し、前記電流が前記チャンバ内部で電位を誘導し、前記電位がトロイダルプラズマを直接生成し、前記トロイダルプラズマが、前記変圧器の二次回路を完成させ、前記金属含有フッ素ガスと反応し、固体金属材料、固体金属酸化物材料又は固体金属窒化物材料の少なくとも1つを生成し、
前記金属材料、金属酸化物材料又は金属窒化物材料の少なくとも1つを前記プラズマチャンバから出力する出口と、
前記固体金属材料、固体金属酸化物材料又は固体金属窒化物材料の少なくとも1つを収集するための交換可能な構成要素であって、前記出口と流体連通するとともに前記プラズマチャンバの外にある交換可能な構成要素とを備えた、装置。
【請求項2】
少なくとも第2のガスが、前記入口を通して前記プラズマチャンバに提供される請求項1に記載の装置。
【請求項3】
前記第2のガスが、H、HO、O、およびNからなる群から選択される請求項2に記載の装置。
【請求項4】
前記デバイスが、フィルタ、粒子トラップ、サイクロントラップ、および静電トラップからなる群から選択される請求項1に記載の装置。
【請求項5】
前記金属含有フッ素ガスが、WFおよびUFからなる群から選択される請求項1に記載の装置。
【請求項6】
前記プラズマチャンバが、金属材料、被覆金属材料、または誘電体材料の少なくとも1つを備える請求項1に記載の装置。
【請求項7】
金属含有フッ素ガスを減少させるための装置において、
入口と、
金属含有フッ素ガスを閉じ込めるためのプラズマチャンバであって、導電材料と、プラズマチャンバ内に電気的な不連続を形成する少なくとも1つの誘電体領域とを備えるプラズマチャンバと、
前記プラズマチャンバの一部分を取り囲む一次巻線および磁心を有する変圧器と、
前記一次巻線に電気的に接続された出力を有する電源と、を備え、
前記電源が、前記一次巻線で電流を駆動し、前記電流が前記チャンバ内部で電位を誘導し、前記電位がトロイダルプラズマを生成し、前記トロイダルプラズマが、前記変圧器の二次回路を完成させ、前記金属含有フッ素ガスと反応し、固体金属材料、固体金属酸化物材料又は固体金属窒化物材料の少なくとも1つを生成し、
前記固体金属材料、固体金属酸化物材料又は固体金属窒化物材料の少なくとも1つを前記プラズマチャンバから出力する出口と、
前記固体金属材料、固体金属酸化物材料又は固体金属窒化物材料の少なくとも1つを収集するための交換可能な構成要素であって、前記出口と流体連通するとともに前記プラズマチャンバの外にある交換可能な構成要素とを備えた、装置。
【請求項8】
金属含有フッ素ガスを減少させるための方法において、
金属含有フッ素ガスを処理するために入口を通して圧力下でプラズマチャンバ内に金属含有フッ素ガスを受け取るステップと、
前記プラズマチャンバの一部分を取り囲む磁心を有する変圧器の一次巻線を介して、1つまたは複数のスイッチング半導体デバイスを備える固体スイッチング電源によって発生される電流を通すことによって、プラズマチャンバ内部にトロイダルプラズマを生成し、前記トロイダルプラズマが、前記金属含有フッ素ガスと反応して、固体金属材料、固体金属酸化物材料、または固体金属窒化物材料の少なくとも1つを生成するステップと、
前記固体金属材料、固体金属酸化物材料又は固体金属窒化物材料の少なくとも1つを前記プラズマチャンバから出口を経由して出力するステップと、
前記出口と流体連通するとともに前記プラズマチャンバの外にある交換可能な収集デバイスで前記固体金属材料、固体金属酸化物材料又は固体金属窒化物材料の少なくとも1つを収集するステップと、有する、方法。
【請求項9】
少なくとも第2のガスを前記プラズマチャンバに提供するステップを含む請求項8に記載の方法。
【請求項10】
前記プラズマと、前記金属含有フッ素ガスと、前記第2のガスとの相互作用によって、固体金属酸化物材料または固体金属窒化物材料を生成するステップを含む請求項9に記載の方法。
【請求項11】
金属含有フッ素ガスを減少させるための装置において、
入口を介して圧力下でプラズマチャンバ内に金属含有フッ素ガスを受け取るための手段と、
前記プラズマチャンバの一部分を取り囲む磁心を有する変圧器の一次巻線を介して、1つまたは複数のスイッチング半導体デバイスを備える固体スイッチング電源によって発生される電流を通すことによって、前記プラズマチャンバ内部にトロイダルプラズマを生成するための手段と、を備え、
前記トロイダルプラズマが、前記金属含有フッ素ガスと反応して、固体金属材料、固体金属酸化物材料、または固体金属窒化物材料の少なくとも1つを生成し、
前記固体金属材料、固体金属酸化物材料又は固体金属窒化物材料の少なくとも1つを前記プラズマチャンバから出力する手段と、
前記固体金属材料、固体金属酸化物材料又は固体金属窒化物材料の少なくとも1つを収集する手段であって、前記出力する手段と流体連通するとともに前記プラズマチャンバの外にある収集する手段と、を備える、装置。
【請求項12】
前記交換可能な収集デバイスがフィルタを備える、請求項8の方法。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7a】
image rotate

【図7b】
image rotate

【図8a】
image rotate

【図8b】
image rotate

【図8c】
image rotate

【図9】
image rotate

【図10】
image rotate

【図11a】
image rotate

【図11b】
image rotate

【図11c】
image rotate

【図12】
image rotate


【公開番号】特開2013−41831(P2013−41831A)
【公開日】平成25年2月28日(2013.2.28)
【国際特許分類】
【出願番号】特願2012−185456(P2012−185456)
【出願日】平成24年8月24日(2012.8.24)
【分割の表示】特願2007−540199(P2007−540199)の分割
【原出願日】平成17年11月8日(2005.11.8)
【出願人】(592053963)エム ケー エス インストルメンツ インコーポレーテッド (114)
【氏名又は名称原語表記】MKS INSTRUMENTS,INCORPORATED
【Fターム(参考)】