説明

集光光学素子、集光装置及び光発電装置

【課題】光エネルギーを効率的に利用可能な新たな集光手段を提供する。
【解決手段】本発明を例示する態様の集光光学素子10は、光透過性を有するA部材11とA部材中に分散された光透過性を有する粒子状のB部材12とを有して構成される。B部材の粒子径は入射光の波長をλとしたときに0.1λ〜10λである。そして、A部材11における、電界振幅がx軸方向に沿った光の屈折率をnax、電界振幅がy軸方向に沿った光の屈折率をnayとし、B部材12における、電界振幅がx軸方向に沿った光の屈折率をnbx、電界振幅がy軸方向に沿った光の屈折率をnbyとしたときに、naxとnbxとが異なり、nayとnbyとが実質的に等しくなるように集光光学素子10が構成される。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、光を集光する装置に関し、なお詳細には、厚さ方向に入射する光を側面方向に集光する集光光学素子、及びこれを用いた集光装置並びに光発電装置に関する。
【背景技術】
【0002】
近年、CO2排出量の削減が全世界的に求められ、自然エネルギーの利用が進められている。太陽光のエネルギー利用では、旧来より太陽熱温水器等により太陽光の熱エネルギー利用が用いられてきたほか、太陽光の光エネルギーを電気エネルギーに変換して利用する太陽光発電システムが一般家庭に導入され、大規模な太陽光発電所も各国で実用化段階に入りつつある。
【0003】
光エネルギーを電気エネルギーに変換する太陽電池セルは、光電変換する材料分類上、シリコン系、化合物系、有機系、色素増感系などに分類される。このような材料により構成される一般的な太陽電池のセルは、電力への変換効率が概ね10〜20%程度である。そこで、太陽光の放射スペクトル範囲を複数の波長帯域に分割し、各波長帯域の光を光電変換するのに最適なバンドギャップの半導体層を複数積層して、電力への変換効率を40%程度まで高めた多接合型(タンデム型、積層型などとも称される)の太陽電池セルが開発されている。
【0004】
しかし、上記のような高効率の太陽電池セルは極めて高価であり、航空宇宙などの特殊な用途以外では使用することが困難である。そこで、小型のセルに太陽光を集光して入射させることでコストを低減し、高効率で太陽光発電を行う集光型の太陽電池モジュールが考案されている。集光形式として、太陽光をフレネルレンズや反射鏡等により集光して太陽電池セルに入射させるレンズ集光型(例えば、特許文献1、特許文献2を参照)、蛍光粒子が分散された蛍光プレートに太陽光を入射させ、プレート内で発生した蛍光をプレート側方に導出して集光する蛍光プレート集光型(例えば、特許文献3を参照)、ホログラムフィルム及び太陽電池セルが挟み込まれたプレートに太陽光を入射させ、ホログラムフィルムにより回折した光を太陽電池セルに導く分光集光型(例えば、特許文献4を参照)などが提案されている。
【先行技術文献】
【特許文献】
【0005】
【特許文献1】特表2005−142373号公報
【特許文献2】特開2005−217224号公報
【特許文献3】米国特許出願公開第2006/0107993号明細書
【特許文献4】米国特許第6274860号明細書
【発明の概要】
【発明が解決しようとする課題】
【0006】
しかしながら、上記各集光方式には一長一短がある。例えば、レンズ集光型では、光軸方向にレンズの焦点距離に応じた厚さが必要であることや、光軸を太陽の方位に一致させるための追尾装置が必要になる。一方、蛍光プレート集光型や分光集光型は、モジュールの光軸方向寸法を薄くでき、また必ずしも追尾装置を必要としないが、波長依存性や変換効率の面で改善すべき余地がある。
【0007】
本発明は、上記のような事情に鑑みてなされたものであり、太陽光等の光エネルギーを効率的に利用可能な、新たな集光手段を提供することを目的とする。
【課題を解決するための手段】
【0008】
上記目的を達成するため、本発明を例示する第1の態様は集光光学素子である。この集光光学素子は、光透過性を有するA部材と、このA部材中に厚さ方向(実施形態におけるy軸方向)及びこれと相互に直交する第1方向(同、x軸方向)、第2方向(同、z軸方向)に分散された光透過性を有する粒子状のB部材とを有して構成される。B部材の粒子径dは、厚さ方向に入射する光の波長をλとしたときに円相当径が0.1λ〜10λである。そして、A部材における、電界振幅が第1方向に沿った光の屈折率をnax、電界振幅が厚さ方向に沿った光の屈折率をnayとし、B部材における、電界振幅が第1方向に沿った光の屈折率をnbx、電界振幅が厚さ方向に沿った光の屈折率をnbyとしたときに、naxとnbxとが異なり、nayとnbyとが実質的に等しいことを特徴として構成される。なお、本明細書において「粒子径」は、日本工業規格JIS Z 8901「試験用粉体及び試験用粒子」における顕微鏡法による円相当径(直径)で規定し、頻度分布が最大の最頻粒子径(モード径)をもって粒子径dとしている。
【0009】
この場合において、前記屈折率の関係は、nax<nbxでありnbx>nbyであること、あるいは、nax<nbxでありnax<nayであること、あるいは、nax>nbxでありnbx<nbyであること、または、nax>nbxでありnax>nayであるように構成することができる。
【0010】
また、A部材における電界振幅が第2方向に沿った光の屈折率をnazとし、B部材における電界振幅が第2方向に沿った光の屈折率をnbzとしたときに、nazとnbzとが実質的に等しくなるように構成しても良い。
【0011】
前記A部材及び前記B部材は、(π×d×nax)/λで規定するサイズパラメータαが、1.5≦α≦40であることが好ましく、2≦α≦20であることがより好ましい。また、B部材の粒子径dは20μm以下であることが望ましい。
【0012】
A部材中に分散された前記B部材の密度は、前記集光光学素子の表面から前記厚さ方向に入射し、複数の前記B部材により多重散乱されて前記集光光学素子の裏面に向かう光が、裏面において全反射されるように設定することができる。
【0013】
本発明を例示する第2の態様は集光装置である。この態様に含まれる第1の構成形態の集光装置は、請求項1〜11のいずれかに記載の集光光学素子と、この集光光学素子の裏面側に裏面に沿って設けられた反射鏡と、集光光学素子と反射鏡との間に設けられ、二度透過した光の偏光面を90度回転させる偏光面回転素子とを備えて構成される。
【0014】
本態様に含まれる第2の構成形態の集光装置は、請求項1〜11のいずれかに記載の第1の集光光学素子と、請求項1〜11のいずれかに記載の第2の集光光学素子とを備え、第2の集光光学素子は、第1の集光光学素子の裏面側に当該第2の集光光学素子の第1方向(実施形態における第2の集光光学素子のx軸方向)が第1の集光光学素子の第2方向(同、第1の集光光学素子のz軸方向)と平行になるように配設される。
【0015】
本態様に含まれる第3の構成形態の集光装置は、請求項1〜11のいずれかに記載の第1の集光光学素子と、請求項1〜11のいずれかに記載の第2の集光光学素子とを備え、第2の集光光学素子は、第1の集光光学素子の裏面側に当該第2の集光光学素子の第1方向(実施形態における第2の集光光学素子のx軸方向)が第1の集光光学素子の第1方向(同、第1の集光光学素子のz軸方向)と平行になるように配設されるとともに、第1の集光光学素子と第2の集光光学素子との間に、透過する光の偏光面を90度回転させる偏光面回転素子が設けられることを特徴とする
【0016】
本発明を例示する第3の態様は光発電装置である。この態様に含まれる第1の構成形態の光発電装置は、請求項1〜11のいずれかに記載の集光光学素子と、集光光学素子により第1方向に導かれた光(例えば、実施形態におけるx軸方向の+x側及び−x側に導かれた光)を光電変換する光電変換素子(例えば、実施形態における太陽電池セル)とを備えて構成される。
【0017】
本態様に含まれる第2の構成形態の光発電装置は、請求項1〜11のいずれかに記載の集光光学素子と、集光光学素子により第1方向に導かれた光(例えば、実施形態におけるx軸方向の+x側及び−x側に導かれた光)を光電変換する光電変換素子(例えば、実施形態における太陽電池セル)と、集光光学素子により第2方向に導かれた光(例えば、実施形態におけるz軸方向の+z側及び−z側に導かれた光)を光電変換する光電変換素子とを備えて構成される。
【0018】
本態様に含まれる第3の構成形態の光発電装置は、請求項12に記載の集光装置と、
集光光学素子により第1方向に導かれた光(例えば、実施形態におけるx軸方向の+x側及び−x側に導かれた光)を光電変換する光電変換素子とを備えて構成される。
【0019】
本態様に含まれる第4、第5構成形態の光発電装置は、請求項13または14に記載の集光装置と、第1の集光光学素子における第1方向に導かれた光(例えば、実施形態におけるx軸方向の+x側及び−x側に導かれた光)を光電変換する光電変換素子と、第2の集光光学素子における第1方向に導かれた光(同上)を光電変換する第2の光電変換素子とを備えて構成される。
【発明の効果】
【0020】
本発明の第1の態様の集光光学素子は、透明なA部材中に粒子状のB部材が分散されており、このB部材の粒子径は、入射光の波長をλとしたときに円相当径dが0.1λ〜10λとされる。A部材及びB部材は、電界振幅が第1方向に沿った光の屈折率を各々nax及びnbxとし、厚さ方向に沿った光の屈折率を各々nay及びnbyとしたときに、電界振幅が第1方向に沿った光についてnbxとnaxとが異なり、電界振幅が厚さ方向に沿った光についてnayとnbyとが実質的に等しく構成される。ここで、A部材とB部材とは、電界振幅が第1方向に沿った光の屈折率nbxとnaxとが異なることから、波長変換光学素子に入射した電界振幅が第1方向に沿った光にとってB部材が粒子として見える。
【0021】
本発明の第1の態様の集光光学素子は、A部材中に分散されたB部材の粒子径が入射光の波長λと同程度のオーダであることから、ミー(Mie)の散乱理論によれば、集光光学素子に厚さ方向に入射した光は、B部材に遭遇するたびに第1方向に沿った偏光成分の光が所定角度範囲に散乱され、これを繰り返すことによって第1方向に沿って+側に進む光と−側に進む光の割合が多くなる。第1方向に沿って進む光(電界振幅が第2方向に沿った光)にとっては、A部材とB部材とで実質的な屈折率差がないことから、B部材が粒子として見えず、均質媒質中を伝播するようにA部材及びB部材を透過して、第1方向の+側または−側に集光される。従って、本発明によれば、太陽光等の光エネルギーを効率的に利用可能な、新たな集光手段を提供することができる。
【0022】
本発明の第2の態様の集光装置は、集光光学素子を透過した偏光成分の光を再度同一の/または第2の集光光学素子で集光するように構成される。このため、薄型かつ簡明な構成で太陽光等の光エネルギーを高効率で利用可能な集光装置を提供することができる。
【0023】
本発明の第3の態様の光発電装置は、上記のような集光光学素子または集光装置と、集光された光を光電変換する光電変換素子とを備えて構成される。このため、薄型かつ簡明な構成で太陽光等の光エネルギーを効率的に利用可能な光発電装置を提供することができる。
【図面の簡単な説明】
【0024】
【図1】本発明の態様を例示する光発電装置1の外観斜視図である。
【図2】図1中に付記するII−II矢視方向に見た模式的な断面図であり、散乱により光の進行方向が変化していく様子を示す説明図である。
【図3】第1構成形態の集光光学素子10における屈折率楕円の関係を示す説明図である。図において(a)はB部材12が複屈折性を有する場合、(b)はA部材11が複屈折性を有する場合である。
【図4】第2構成形態の集光光学素子20における屈折率楕円の関係を示す説明図である。図において(a)はB部材22が複屈折性を有する場合、(b)はA部材21が複屈折性を有する場合である。
【図5】第1構成形態の集光光学素子10における光の入射角と散乱との関係を模式的に示す説明図である。
【図6】第2構成形態の集光光学素子20における光の入射角と散乱との関係を模式的に示す説明図である。
【図7】粒子径が0.15μmの場合の光の散乱分布を例示するグラフである。
【図8】粒子径が0.3μmの場合の光の散乱分布を例示するグラフである。
【図9】図7及び図8の散乱分布を異なる表示形態で示すグラフである。
【図10】サイズパラメータを変化させたときの光の散乱分布の変化を示すグラフ群である。
【図11】サイズパラメータと前方散乱に対する後方散乱の割合との関係を示すグラフである。
【図12】サイズパラメータと散乱角との関係を示すグラフである。
【図13】体積を一定としたときのサイズパラメータと散乱係数との関係を示すグラフである。
【図14】第1実施例における、粒子の屈折率と散乱断面積との関係を示すグラフである。
【図15】第1実施例における、粒子への入射角と各指標との関係をまとめた表である。
【図16】第1実施例における、垂直入射した光が散乱段階でどの様な角度分布になるかを計算したシミュレーションデータである。
【図17】第2実施例における、粒子の屈折率と散乱断面積との関係を示すグラフである。
【図18】第2実施例における、粒子への入射角と各指標との関係をまとめた表である。
【図19】第2実施例における、垂直入射した光が散乱段階でどの様な角度分布になるかを計算したシミュレーションデータである。
【図20】比較例における、粒子への入射角と各指標との関係をまとめた表である。
【図21】比較例における、垂直入射した光が散乱段階でどの様な角度分布になるかを計算したシミュレーションデータである。
【図22】第1構成例の集光装置60の概要構成図である。
【図23】第3構成例の集光装置80の概要構成図である。
【図24】集光光学素子からの光エネルギーの取り出し手法を例示する概念図である。
【発明を実施するための形態】
【0025】
以下、本発明を実施するための形態について図面を参照しながら説明する。本発明の態様を例示する光発電装置1の外観斜視図を図1に、図1中に付記するII−II矢視方向に見た模式的な断面図を図2に示す。なお、説明を明瞭化するため、相互に直行するx軸、y軸、z軸から成る座標系を規定し、これを図1中に示す。y軸は集光光学素子10の厚さ方向、x軸及びz軸は集光光学素子の面内で直交する二軸であり、図2はx軸及びy軸を含みz軸に垂直な面(x−y平面)で切断した模式的な断面図に相当する。なお、説明の便宜上から、図2に示す姿勢をもって上下左右ということがあるが、配設姿勢は任意である。
【0026】
[光発電装置の概要]
装置全体の概要を把握するため、まず第1構成形態の集光光学素子10を利用した光発電装置1を主たる例として全体概要を説明する。光発電装置1は、厚さ方向に入射する光を集光する集光光学素子10(20)と、集光光学素子により集光されて端部に導かれた光を光電変換する光電変換素子50とを備えて構成される。図示する構成形態は、集光光学素子10(20)をプレート状に形成した構成例を示す。光電変換素子50は、公知の種々の素子を用いることができ、例えば、前述した種々の形態の太陽電池セルを用いて構成することができる。
【0027】
[集光光学素子の概要]
集光光学素子10(20)は、太陽光を透過するA部材11(21)と、このA部材中に分散された光透過性を有する粒子状のB部材12(22)とを主体として構成される。B部材の粒子径は、集光光学素子に入射する光の波長をλとしたときに円相当径dが0.1λ〜10λ程度に設定される。ここで、集光光学素子において集光しようとする光の波長λが幅を有する場合には、B部材の粒子径dは、その波長帯域における最短波長λminの1/10〜最長波長λmaxの10倍とすることができる。具体的に、太陽光を集光する場合には、太陽光の放射スペクトルは概ね400nm〜1800nm程度であり、B部材の粒子径dは、40nm〜1.8μmとすることができる。
【0028】
B部材は、x軸方向、y軸方向及びz軸方向に、全体として(マクロ的に見て)均一に分散されるが、図2ではB部材12による散乱の作用を説明するため、散乱された光の光路上にあるB部材12のみを示している。なお、B部材の分布密度は、A部材及びB部材の材質や形状寸法、使用条件等に応じて適宜設定される。これについては後に詳述する。
【0029】
集光光学素子10(20)は、A部材とB部材11,12(21,22)の屈折率特性が異なり、かつA部材及びB部材の少なくともいずれか一方が複屈折性を有している。本明細書においては、A部材における、偏光方向がx−y平面内で電界振幅がx軸方向の光の屈折率をnax、偏光方向がx−y平面内で電界振幅がy軸方向の光の屈折率をnay、偏光方向がy−z平面内で電界振幅がz軸方向の光の屈折率をnazとする。同様に、B部材における、偏光方向がx−y平面内で電界振幅がx軸方向の光の屈折率をnbx、偏光方向がx−y平面内で電界振幅がy軸方向の光の屈折率をnby、偏光方向がy−z平面内で電界振幅がz軸方向の光の屈折率をnbzとする。
【0030】
ここで、図2において電界振幅が紙面に平行な光の偏光状態をp偏光、電界振幅が紙面に垂直な光の偏光状態をs偏光とすると、偏光方向がx−y平面内で電界振幅がx軸方向の光はy軸方向に進むp偏光の光であり、偏光方向がx−y平面内で電界振幅がy軸方向の光はx軸方向に進むp偏光の光である。また、偏光方向がy−z平面内で電界振幅がz軸方向の光はy軸方向に進むs偏光の光である。
【0031】
このとき、naxとnbxとが異なり、nayとnbyとが実質的に等しくなるようにA部材及びB部材が設定される。なお、nayとnbyとが実質的に等しいとは、x軸方向に進むp偏光の光が、B部材により有意な散乱や屈折を受けない屈折率の関係をいい、具体的には、屈折率差が0.05以下のような場合をいう。
【0032】
このような集光光学素子10(20)では、上方から素子内に入射してy軸方向に進むp偏光の光には、naxとnbxとが異なることから、B部材12(22)が粒子として認識される。このとき、y軸方向に進むp偏光の光がB部材の存在によりどの様な影響を受けるか、その取扱いは、媒質(A部材)中をy軸方向に進むp偏光の光の波長(λ/nax)と媒質中に分散された粒子(B部材)の粒子径dとによって異なったものになる。
【0033】
具体的には、B部材の粒子径dが、A部材中を伝播する光の波長よりも充分小さい場合には、レーリー散乱の理論が適用できる。一方、B部材の粒子径dが、A部材中を伝播する光の波長と同程度のオーダーの場合には、ミー散乱の理論が適用できる。また、B部材の粒子径dが、A部材中を伝播する光の波長よりも充分に大きい場合には、幾何光学の理論が適用される。
【0034】
本実施形態において、B部材12(22)の粒子径dは、円相当径で0.1λ〜10λ程度に設定されており、媒質であるA部材中を伝播する光の波長と同程度のオーダーである。そのため、集光光学素子10(20)においてA部材中を伝播する光とB部材との関係は、基本的にミー散乱の理論が適用できる。
【0035】
但し、集光光学素子10(20)においては、A部材及びB部材11,12(21,22)の少なくとも一方が複屈折性を有しており、その複屈折の主軸の方位(光線が異常光となる進相軸または遅相軸の方位)と、A部材中を進む光の偏光方向との関係に応じて、散乱の有無及び光の散乱方向が偏向する。
【0036】
単純化のため、A部材及びB部材のいずれか一方が正の複屈折性(異常光の屈折率が常光の屈折率よりも高くなる複屈折性)を有し、複屈折の主軸が一軸の場合を考える。この場合、naxとnbxとが異なり(nax≠nbx)、nayとnbyとが実質的に等しくなる(nay≒nby)のは、複屈折の主軸がx軸方向に配向する場合と、y軸方向に配向する場合の2つがある。
【0037】
複屈折の主軸がx軸方向に配向する場合のA部材の屈折率楕円30とB部材の屈折率楕円35との関係を図3に示す。図3において、(a)はB部材が正の複屈折性を有する場合、(b)はA部材が正の複屈折性を有する場合である。図中にハッチングを付して示すものは、y−z平面内のA部材及びB部材の屈折率円である。両図から分かるように、複屈折の主軸がx軸方向に配向する場合には、nayとnbyのみならずnazとnbzも実質的に等しくなり、nay=naz≒nby=nbzとなる。このように、一軸異方性の複屈折の主軸がx軸方向に配向する場合の代表例として、図3(a)に示すようにB部材が複屈折性を有する場合を第1構成形態の集光光学素子10として説明する。
【0038】
一方、複屈折の主軸がy軸方向に配向する場合のA部材の屈折率楕円40とB部材の屈折率楕円45との関係を図4に示す。図4において、(a)はB部材が正の複屈折性を有する場合、(b)はA部材が正の複屈折性を有する場合である。図中にハッチングを付して示すものは、A部材またはB部材のx−z平面内の屈折率円である。両図から分かるように、複屈折の主軸がy軸方向に配向する場合には、屈折率が実質的に等しいのはnayとnbyのみであり、nax≠nbx,naz≠nbzとなる。このように、一軸異方性の複屈折の主軸がy軸方向に配向する場合の代表例として、図4(a)に示すようにB部材が複屈折性を有する場合を第2構成形態の集光光学素子20として説明する。
【0039】
[第1構成形態の集光光学素子]
第1構成形態の集光光学素子10においては、集光光学素子の上方から素子内に入射してA部材中を進む光のうち、y軸方向に進むp偏光の光(異常光)にはnax≠nbxであることからB部材12が媒質(A部材11)から識別されて粒子として存在する。一方、x軸方向に進むp偏光の光(常光)にはnay≒nbyであることからB部材12が粒子と識別されず、粒子が存在しない状態(均質媒質)と同じになる。
【0040】
そのため、集光光学素子10の上方から入射してy軸方向に進むp偏光の光(p偏光成分)は、屈折率差に基づいて媒質中に粒子として存在するB部材12によりミー散乱を生じるが、x軸方向に進むp偏光の光は、粒子と識別されないB部材によって散乱されることなくそのままx軸方向に進む。
【0041】
本発明は、上記のような複屈折性に基づく屈折率差を利用するため、B部材12に入射する光の入射角に応じて散乱断面積が変化し、散乱効率が変化する。図5(a)〜(d)は、B部材12に入射する光の入射角と散乱との関係を模式的に示す説明図である。図示のように、y軸を基準としたB部材12への入射角が0度のときに屈折率差が最大、散乱断面積が最大となって大きな散乱を受け(a)、入射角が90度のときに屈折率差が無く散乱断面積が無限小になって散乱を受けない(d)。
【0042】
B部材への入射角が0〜90度の間にあるときは、当該入射角におけるA部材11とB部材12との屈折率差に応じた散乱断面積となり散乱効率が変化する(b)(c)。図5(及び図2)では、散乱により拡散する光を、入射光軸に沿って直進する光と、入射光軸から離れて左右に広がる2本の光とに代表させた3本のベクトルで表しており、入射角が大きくなるほど散乱効率が低下して左右に広がる散乱光のレートが小さくなること、入射角が90度では散乱が生じないことを示している。
【0043】
このような構成の集光光学素子10では、図2に示すように、素子上方から入射してy軸方向に進むp偏光の光が、A部材(媒質)11中に粒子として存在するB部材12によりミー散乱を受け、例えば表面付近のB部材12で入射光の4割が散乱される。B部材12の側方を通過した光も厚さ方向に分布する次のB部材12で4割が散乱され、段階が進むといずれ散乱を受ける。またB部材12で散乱された光が厚さ方向に分布する次のB部材により散乱され、多重散乱される。
【0044】
その結果、集光光学素子10に垂直入射した光は、この素子中を進むにつれてy軸方向(垂直方向)に進む光の割合が減少し、x−y平面で斜め下方に傾斜した光の割合が増加する。x軸の+方向または−方向に傾斜した光は、B部材12への入射角が大きくなるほど散乱効率が低下して水平方向への変化は小さくなるが、x軸方向に大きく傾斜した(水平に近くなった)光の割合が大きくなる。x軸に沿って水平に進む光はB部材12によって散乱されず、x軸の+側または−側の側端に向かって進む。
【0045】
このとき、x軸方向に傾斜した状態で集光光学素子の下面に到達した光の傾斜角が、A部材11と空気との界面における全反射角を超えていれば、集光光学素子10に入射した光を素子内に閉じ込めることができる。例えば、A部材11の屈折率をnax=1.64とした場合に、A部材と空気層との界面に入射する入射角が37.6度以上の光は界面で全反射され、集光光学素子10内に閉じ込められる。集光光学素子10の下面で全反射された光は、下面側から上面側に進む過程で再びB部材12により散乱され進行方向がx軸方向に偏向される。
【0046】
このため、集光光学素子10に上方から入射したp偏光成分の光は、ほぼ全体がx軸方向の左右いずれかに向かうこととなり、このようにして集光された光がx軸方向の両端部に配設された光電変換素子50,50に集光入射される。
【0047】
このような構成よれば、集光光学素子10の上面から入射した光が、A部材11とB部材12の屈折率差によってx軸方向に散乱され、屈折率差のないz軸方向への散乱に伴う損失を抑止することができる。この場合、集光光学素子の上面から入射してy軸方向に進むs偏光成分の光(常光)は、集光光学素子10をそのまま透過することになるが、集光光学素子の下面側に同様の集光光学素子10をy軸まわりに90度回転して配置する等により、透過した光を効率的に集光することができる。このような集光光学素子の配置構成による集光装置については後に詳述する。
【0048】
[第2構成形態の集光光学素子]
第2構成形態の集光光学素子20は、複屈折性を有するB部材22を、複屈折の主軸がy軸方向に沿うように配向して分布させた構成である(図4(a)を参照)。このような集光光学素子20においては、集光光学素子20の上方から素子内に入射してA部材中を進む光は、y軸方向に進むp偏光の光(常光)についてnax≠nbxであるとともに、y軸方向に進むs偏光の光(常光)についてもnaz≠nbzである。このため、y軸方向に進む光はp偏光及びs偏向の何れについてもB部材22が媒質(A部材21)から識別されて粒子として存在する。一方、x軸方向に進むp偏光の光(異常光)にはnay≒nbyであることからB部材22が粒子と識別されず、粒子が存在しない状態(均質媒質)と同じになる。
【0049】
そのため、集光光学素子20の上方から入射してy軸方向に進む光は、屈折率差に基づいて媒質中に粒子として存在するB部材22によりミー散乱を生じるが、x軸方向に進むp偏光の光は、粒子と識別されないB部材によって散乱されることなくそのままx軸方向に進む。
【0050】
このような複屈折性に基づく屈折率差を利用するため、B部材22に入射する光の偏光方向と入射角に応じて散乱断面積が変化し、散乱効率が変化する。図6(a)〜(d)は、B部材22に入射する光の入射角と散乱との関係を模式的に示す説明図であり、図5と同様に、散乱により拡散する光を3本のベクトルで表している。また、図6では電界振幅が紙面に平行なp偏光の光を両端矢印の符号、電界振幅が紙面に垂直なs偏光の光を中心にドットを有する丸印の符号で示している。
【0051】
集光光学素子20に上方から入射してy軸方向に進む光のうち、p偏光の光(p偏光成分)は、y軸を基準としたB部材22への入射角が0度のときに屈折率差が最大、散乱断面積が最大となって大きな散乱を受け(a)、入射角が0〜90度の間では当該入射角におけるA部材とB部材との屈折率差に応じた散乱断面積となって散乱効率が変化し(b),(c)、入射角が90度のときに屈折率差が無く散乱断面積が無限小になって散乱を受けない(d)。一方、集光光学素子20に上方から入射してy軸方向に進む光のうち、s偏光の光(s偏光成分)は、y軸を基準としたB部材22への入射角によらず屈折率差が一定であり、散乱効率は変化しない(a)〜(d)。
【0052】
このような構成の集光光学素子20では、素子上方から入射してy軸方向に進むp偏光及びs偏光の両方の光が、媒質(A部材21)中に粒子として存在するB部材12によりミー散乱を受け多重散乱される。
【0053】
そのため、集光光学素子20に垂直入射した光は、この素子中を下方に進むにつれてy軸方向(垂直方向)に進む光の割合が減少し、x−y平面で斜め下方に傾斜した光の割合、及びy−z平面で斜め下方に傾斜した光の割合が増加する。傾斜した光の割合は下面に向かうほど大きく傾斜した(水平に近くなった)光の割合が大きくなる。特に、x軸に沿って進むp偏光の光(異常光)はB部材22によって散乱されず、x軸の+側または−側の側端に向かって進む。y−z平面で斜め下方に大きく傾斜した光は、B部材22による散乱を受けつつz軸の+側または−側の側端に向かって進む。
【0054】
このとき、x軸方向またはz軸方向に傾斜した光の傾斜角が、A部材11と空気との界面における全反射角を超えていれば、集光光学素子20に入射した光が下面で全反射され集光光学素子20内に閉じ込められる。集光光学素子20の下面で全反射された光は、下面側から上面側に進む過程で再びB部材22により散乱され進行方向がx軸方向またはz軸方向に偏向される。
【0055】
このため、集光光学素子20に上方から入射した光は、p偏光成分のほぼ全体がx軸方向の左右いずれかに向かい、s偏光成分の多くがz軸方向の前後いずれかに向かうこととなり、このようにして集光された光がx軸方向の両端部に配設された光電変換素子50,50、及びx軸方向の両端部に配設された光電変換素子50,50に集光入射される。
【0056】
このような構成よれば、集光光学素子20の上面から入射した光が、A部材21とB部材22の屈折率差によってx軸方向及びz軸方向に散乱され、各方向の側端部に設けられた光電変換素子50に集光される。この場合、集光光学素子20の内部を進むs偏光成分の光の一部は、集光光学素子20の上面または下面から出射し得るが、1枚の集光光学素子を用いた簡明な構成でx軸方向及びz軸方向の集光が可能な集光装置及び光発電装置を構成することができる。
【0057】
[サイズパラメータ]
次に、A部材11,21及びB部材12,22の好適な構成形態について、ミーの散乱理論に基づいてより詳細に説明する。なお、ミーの散乱理論そのものについては、本明細書において詳細説明を省略するが、例えば、1995年発売(McGRAW-HILL, INC)の アメリカの光学学会 OSA(OPTICAL SOCIE TY OF AMERICA)監修の「HANDBOOK OF OPTICS」VolumeI Chapter6 にミー理論の散乱理論について記載されている。集光光学素子10,20では、B部材の粒子径dを入射光の波長λとほぼ同じオーダの0.1λ〜10λとすることで散乱を生じさせ、前方散乱を多重的に行わせて光を側方に導いている。このとき、後方散乱(損失)を抑制して前方散乱を支配的とし、また一定の厚さ内で効率的に集光することが望まれる。ミーの散乱理論では、その指標としてサイズパラメータαを用いる。
【0058】
サイズパラメータαは、一般的に、下記(1)式で規定される。
α=(π×d)/(λ/n)=(π×d×n)/λ・・・・・・・(1)
ここで、dは粒子径(直径)であり、本明細書においては、B部材の粒子径を、日本工業規格JIS Z 8901「試験用粉体及び試験用粒子」における顕微鏡法による円相当径とし、頻度分布が最大の最頻粒子径(モード径)で規定している。また(λ/n)は媒質中を進む光の波長であり、nは媒質(A部材)の屈折率である。例示する集光光学素子10,20において、A部材11は複屈折性を有しておらず、媒質の屈折率はn=nax=nay=nazで一定である。
【0059】
図7及び図8は、ミー散乱の理論に基づいてシュミレーションしたデータであり、円の中心に配設された粒子により左方から入射した光が散乱される様子(散乱光の分布)を、前方0度方向の大きさで規格化して示している。円の中心から右側の半円が前方、左側が後方であり、点線は30度ごとの方位角を示す。両図における粒子、媒質(媒体)、入射光の共通条件は下記のとおりである。
・粒子の屈折率nbx:1.88
・媒質の屈折率nax:1.64
・入射光の波長 λ:633nm
【0060】
図7と図8で相違する条件は粒子径dであり、図7は粒子径d=0.15μm、図8は粒子径d=0.3μmである。これらの値を(1)式に代入してサイズパラメータαを求めると、
・図7の例のサイズパラメータα:1.22
・図8の例のサイズパラメータα:2.44
となる。図9は、図7の散乱分布と図8の散乱分布を、横軸が入射方向を0度とする左右180度の角度とし、縦軸が分布の割合として描きなおしたものである。
【0061】
図7〜図9から、サイズパラメータαが1.22の場合(図7)と2.44の場合(図8)とで散乱光の分布形態が大きく異なること、サイズパラメータα=1.22の場合には散乱角度が前方及び後方に広く分布し前方散乱も分散が大きいのに対し、サイズパラメータα=2.44の場合には殆ど後方散乱が見られず前方散乱の分散も小さいことなどが分かる。
【0062】
図10(a)〜(d)は、上記共通条件のもとでサイズパラメータαを変化させた場合(すなわち粒子径dを変化させた場合)の散乱光の分布を規格化せずに示したものであり、(a)α=1.0、(b)α=1.5、(c)α=2.0、(d)α=2.5である。図11は、上記共通条件のもとでサイズパラメータαを変化させたときの、前方0度方向への散乱割合に対する後方180度方向への散乱割合をプロットしたものである。
【0063】
図10及び図11から、サイズパラメータαが1.5以上のときに前方散乱が略9割以上となり、前方散乱が支配的になる。またサイズパラメータαが2以上になると、前方散乱に対する後方散乱の割合がほぼ0になる。
【0064】
但し、サイズパラメータαが大きくなると0度方向への前方散乱の割合が増加するが、散乱角度が小さく(狭く)なる。このことは、集光光学素子10,20を製作する際の複屈折体の配向精度や、集光光学素子の下面側に達した光が全反射条件を満たすようにするための厚さ方向寸法に影響を及ぼす。つまりサイズパラメータαは所定以上大きければ大きいほど良いわけではなく、実用上の見地から一定の範囲であることが必要となる。
【0065】
図12は、前記共通条件のもとで、サイズパラメータαと散乱角との関係を示したグラフである。複屈折体(A部材またはB部材)の製作角度精度は1〜2度程度が一般的であり、粒子による散乱角はこれを超える角度であることが必要となる。図12から、現状での一般的な製作角度精度に基づくサイズパラメータαの上限は50前後である。
【0066】
次に、前記共通条件のもとで、集光光学素子の体積、及び集光光学素子に占める粒子の充填率を一定(π/6)とした場合のサイズパラメータαと散乱係数との関係を図13に示す。図において、散乱係数が大きいほど集光光学素子の厚さを低減することができ、複屈折材料が少なくて済む。この点から粒子の充填率が一定の場合には、サイズパラメータα=10前後において散乱係数が最大になる。散乱係数は最大値の1/5(20%)以上であることが好ましく、この場合サイズパラメータαの上限はα=40程度となる。
【0067】
また、製造精度の観点から見ると、一般的な製作精度の2倍以上となる5度を確保可能なサイズパラメータはα=20以下であることが好ましい(図12)。また総体積を一定とした場合の散乱係数の面からも散乱効率がピーク値の1/4以上であるサイズパラメータα=20以下であることが好ましい(図13)。
【0068】
他方、粒子径についてみると、集光光学素子の厚さを考慮した場合、厚さは10mm程度以内にすることが望ましい。この場合において上面から入射した光が下面側に到達するまでに500回散乱されるためには粒子間隔が20μm以内である必要があり、このときの最大粒子径は20μmとなる。粒子の体積充填率を5%以内とする場合には、粒子径は10μm以内であることが好ましい。なお、前記共通条件において粒子径をd=10μmとしたときのサイズパラメータはα≒80であり、粒子径をd=10μmとし入射光の波長λを1.3μmとしたときのサイズパラメータはα≒40である。
【0069】
以上を総合すると、A部材及びB部材からなる集光光学素子において、サイズパラメータは1.5≦α≦40であることが好ましく、2≦α≦20であることがより好ましい。また、B部材の粒子径dは20μm以下であることが好ましく、d≦10μmであることがより好ましい。
【0070】
以下、前述した第1構成形態の集光光学素子10、第2構成形態の集光光学素子20について、具体的な実施例を説明する。なお、集光光学素子10の適用例を第1実施例、集光光学素子20の適用例を第2実施例とし、A部材及びB部材が何れも複屈折性を有しない構成を比較例として説明する。
【0071】
[第1実施例]
第1実施例は、既述した第1構成形態の集光光学素子10において、A部材11及びB部材12の条件として下記を適用した。
・A部材の屈折率 :nax=nay=naz=1.64
・B部材の屈折率 :nbx=1.88(異常光の屈折率)
by=nbz=1.64(常光の屈折率)
・B部材の粒子径 :d=1.0μm(延伸後の粒子径)
・B部材の分布密度:0.1個/μm3
入射光の波長λを633nmとしたときのサイズパラメータはα=8.14である。
【0072】
上記の条件は、A部材11としてナフタレート70/テレフタレート30のコポリエステル(coPEN)のモノマー、B部材12としてポリエチレンナフタレート(PEN)の粒を用いて、A部材11中にB部材12を均一分散させたシートを作成し、このシートをx軸方向に一軸延伸して集光光学素子10を作成した場合に相当する。このとき、A部材11(coPEN)は複屈折性を持たず、何れの方向に進む光についても屈折率が一定でnax=nay=naz=1.64程度となる。一方、B部材12は延伸方向(x軸方向)と他の方向とで屈折率が異なり、偏光面が延伸方向に沿った光に対して1.88程度、他の方向について1.64程度となる。なお、散乱理論からB部材は球形でなくても良く、本実施例では、延伸後のB部材(粒子)の円相当径を上記条件として適用した。
【0073】
ここで、B部材12は、複屈折の主軸がx軸方向に配向した一軸異方性の複屈折体であることから、B部材に入射するp偏光の光はx−y平面内の入射角度によってB部材12の屈折率が変化し、A部材11との屈折率差が変化する。そのため、ミーの散乱理論における散乱断面積が変化し、散乱効率が変化する。具体的には、y軸を基準(0度)とした入射角が増加するにつれて散乱断面積が減少する。
【0074】
図14は、横軸にB部材(粒子)12の屈折率、縦軸に散乱断面積をとり、B部材への入射角変化に伴う屈折率変化により散乱断面積がどのように変化するかを示したものである。図において、左上端の黒塗り四角のプロットがB部材12への入射角が0度(垂直入射)、右下端の黒塗り四角のプロットがB部材12への入射角が90度(水平入射)であり、入射角10度ごとの計算値をプロットしている。この図14から、B部材12の屈折率が大きい(A部材との屈折率差が大きい)領域では、B部材の屈折率変化にほぼ比例して散乱断面積が変化すること、B部材12の屈折率が小さい(A部材との屈折率差が小さい)領域では、B部材の屈折率変化に対する散乱断面積の変化が小さいことが分かる。
【0075】
図15は、上記の散乱断面積やB部材の分布密度を考慮した散乱確率などの指標が、B部材への入射角度によってどのように変化するかをまとめた表である。表中の粒子への入射角度は、x−y平面においてy軸を基準(0度)としx軸方向を90度としたB部材への光の入射角度である。散乱効率は、ミーの散乱理論により求められる散乱断面積をB部材の幾何学的面積(πd2/4)で除した値である。また、散乱係数は、散乱断面積にB部材の密度(単位体積に含まれる粒子の数)を乗じた値、散乱確率は、散乱断面積にB部材の密度の三分の二乗を乗じた値である。
【0076】
このように構成された集光光学素子10では、素子上面から垂直入射してy軸方向に進むp偏光の光が、媒質(A部材11)中に粒子として存在するB部材12によりミー散乱を受ける。B部材12の粒子径が1μm、粒子密度が0.1個/μm3では、表面付近の最初の段階で入射光の約4割が散乱され、6割は散乱されずに直進する。直進した光も厚さ方向に分布する次の段階のB部材12で4割が散乱され、段階が進むといずれ散乱を受ける。散乱を受けた光はy軸に対して角度が付き、斜め下方に傾斜した光になる。
【0077】
斜め下方に傾斜した光は、次の段階では一部がより斜め(入射角が増加する方向)に曲げられ、他の一部は元に戻る方向(入射角が減少する方向)に曲げられ、残りは入射角が変化せずにそのまま進む光になる(図2を参照)。但し、斜めに傾斜した光は入射角が大きくなるほど(水平に近くなるほど)散乱確率が減少する。これは、媒質(A部材11)と粒子(B部材12)との屈折率差が小さくなり、散乱断面積が急激に減少するからである(図14及び図15を参照)。そのため、入射角度の大きい光については散乱を受ける割合が減少し、元の垂直方向に戻る割合も減少する。
【0078】
媒質中を進む光の傾斜角度(入射角度)が90度近くになると、粒子の屈折率nbxが媒質の屈折率naxとほぼ同じになり、散乱確率が無視できるほど小さくなる。そのため、数多くの段階が進むことにより、光は90度方向つまりx軸に沿った+側または−側に向かい、面方向に閉じ込められる。
【0079】
なお、90度方向まで傾斜せず、集光光学素子の下面に到達した光でも、傾斜角が媒質と空気との界面における全反射角を超えていれば、媒質中の光は面内に閉じ込められる。本実施例においては、A部材11と空気層との界面に入射する光の入射角が37.6度以上であれば光は界面で全反射される。全反射された光は上面側に向けて媒質中を進む過程で再びB部材12に多重散乱され、最終的に90度方向つまりx軸に沿った+側または−側に集光される(図22、図23を参照)。
【0080】
従って、最も下面側に分散されたB部材12の層を通って下面に向かう光が、下面において全反射されるようにA部材11及びB部材12を設定すれば、集光光学素子10に入射したp偏光成分の光全てを+x方向の端部に向けて集光することができる。このような構成によれば、集光光学素子10を薄く構成することができる。
【0081】
そこで、集光光学素子10に垂直入射した光が、散乱によりどの様な角度分布に変化してゆくのかを図15に示した指標を用いて計算したシミュレーションデータを図16に示す。図16において、横軸はx−y平面において集光光学素子10に垂直入射した光の角度を0度としx軸方向を±90度とした光の角度(粒子への入射角度)、縦軸は各角度方向に配向した光の割合(百分率、%)である。図中に四角、丸、三角等で示すパラメータは、粒子(B部材12)による散乱の段階数であり、2n回ごとにプロットしている。
【0082】
このシミュレーションデータから、粒子による散乱の段階が進むにつれ、垂直入射した光がx軸の+方向と−方向とに傾斜していく様子が明確に把握できる。このデータを詳細に見ると、粒子による散乱の段階が16段階程度までは、0度方向の光が減少し角度分布の幅が広がっていく様子がわかる。但し、この初期過程では、割合として0度方向の光が最も多く、1ピークの山形の分布である。ところが、32段階ではピークがほとんどない平坦な分布になり、64段階,128段階では中央がへこんだ緩い凹状の分布に変化する。256段階以降では左右対称な2ピークが明確になり、512段階では−20〜20度の光がほとんど見られなくなる。そして、1024段階以降ではピーク値をとる角度の変化が小さくなって概略±80度付近に強いピークを有するようになり、−40〜40度の角度範囲の光が略ゼロになっている。
【0083】
このデータから、粒子による散乱が1000段階程度まで進むと、素子内を伝播する光の角度は大半が40度以上または−40度以下になり、A部材11と空気層との界面の全反射角を超える。従って、A部材11に垂直入射した光がB部材12により1000段階以上多重散乱されるように集光光学素子10を構成することにより、入射光を集光光学素子10内に閉じ込め、x軸方向の両端に設けた光電変換素子50,50に集光入射させることができる。
【0084】
[第2実施例]
第2実施例は、既述した第2構成形態の集光光学素子20において、A部材21及びB部材22の条件として下記を適用した。
・A部材の屈折率 :nax=nay=naz=1.49
・B部材の屈折率 :nby=1.49(異常光の屈折率)
bx=nbz=1.66(常光の屈折率)
・B部材の粒子径 :d=1.0μm
・B部材の分布密度:0.1個/μm3
入射光の波長λを633nmとしたときのサイズパラメータはα=7.40である。なお本実施例においては、第2構成形態の集光光学素子20において、B部材が負の複屈折性(異常光の屈折率が常光の屈折率よりも低くなる複屈折性)を有する場合を例示する。
【0085】
上記の条件は、A部材21として硬化後の屈折率が1.49となるように調整した熱硬化性ポリマー、B部材22として円相当径1μmの方解石の粒子を用い、A部材21にB部材22を均一分散させた溶液を平板状の型に流し込み、型の上下に3kV/mmの電圧を印加しつつ加熱硬化させて集光光学素子20を作成した場合に相当する。このとき、A部材21(硬化後のポリマー)は複屈折性を持たず、何れの方向に進む光についても屈折率が一定でnax=nay=naz=1.49程度となる。一方、B部材22は電圧の印加方向(y軸方向)に誘電率の異常軸が揃って他の方向と屈折率が異なり、偏光面が電圧の印加方向に沿った光に対して1.49程度、他の方向について1.66程度となる。
【0086】
B部材22は、複屈折の主軸がy軸方向に配向した一軸異方性の複屈折体であることから、B部材に入射する光の入射角度によってB部材22の屈折率が変化し、A部材21との屈折率差が変化する。そのため、ミーの散乱理論における散乱断面積が変化し、散乱効率が変化する。x−y平面について考慮すると、y軸を基準(0度)とした入射角が増加するにつれて散乱断面積が減少する。
【0087】
図17は、横軸にB部材(粒子)22の屈折率、縦軸に散乱断面積をとり、x−y平面内におけるB部材への入射角変化に伴う屈折率変化により散乱断面積がどのように変化するかを示したものである。図において、左上端の黒塗り四角のプロットがB部材22への入射角が0度(垂直入射)、右下端の黒塗り四角のプロットがB部材22への入射角が90度(水平入射)であり、入射角10度ごとの計算値をプロットしている。この図17から、B部材22の屈折率が大きい(A部材との屈折率差が大きい)領域では、B部材の屈折率変化にほぼ比例して散乱断面積が変化すること、B部材22の屈折率が小さい(A部材との屈折率差が小さい)領域では、B部材の屈折率変化に対する散乱断面積の変化が小さいことが分かる。
【0088】
図18は、上記散乱断面積やB部材の分布密度を考慮した散乱確率などの指標が、B部材への入射角度によってどのように変化するかをまとめた表である。表中の粒子への入射角度は、x−y平面においてy軸を0度としx軸方向を90度としたB部材への光の入射角度である。散乱効率、散乱係数、散乱確率の各指標は、第1実施例(図15)と同様である。
【0089】
集光光学素子20では、素子上面から垂直入射してy軸方向に進むp偏光の光は、媒質中に粒子として存在するB部材22によりミー散乱を受ける。B部材22の粒子径が1μm、粒子密度が0.1個/μm3では、散乱過程の概要は第1実施例と同様であり、表面付近の最初の段階で入射光の約4割、次段で4割が散乱され、段階が進むにつれて散乱を受ける。散乱を受けた光はy軸に対して傾斜した光となり、徐々に傾斜角が増加してゆく。
【0090】
図16と同様に、集光光学素子20に垂直入射した光が、散乱によりどの様な角度分布に変化してゆくのか計算したシミュレーションデータを図19に示す。図19において、横軸はx−y平面において集光光学素子20に垂直入射した光の角度を0度としx軸方向を±90度とした光の角度(粒子への入射角度)、縦軸は各角度方向に配向した光の割合(百分率、%)である。図中に四角、丸、三角等で示すパラメータは、粒子(B部材22)による散乱の段階数であり、2n回ごとにプロットしている。
【0091】
シミュレーションデータから、粒子による散乱の段階が進むにつれて、垂直入射した光がx軸の+方向と−方向とに傾斜していく様子が把握でき、この基本的な傾向は第1実施例と同様である。データを詳細に見ると、粒子による散乱の段階が32段階程度まで、0度方向の光が減少し角度分布の幅が広がっていく。この初期過程では、割合として0度方向の光が最も多い1ピークの山形の分布である。ピークがほとんどない平坦な分布になるのは64段階で、128,256段階で中央がへこんだ緩い凹状の分布に変化する。512段階以降で左右対称な2ピークが明確になり、1024段階程度で−20〜20度の光がほとんど見られなくなる。そして、2048段階以降でピーク値をとる角度の変化が小さくなって概略±80度付近に強いピークを有するようになり、−40〜40度の角度範囲の光が略ゼロになっている。
【0092】
このデータから、粒子による散乱が2000段階程度まで進むと、素子内を伝播する光の角度は大半が40度以上または−40度以下になり、A部材21と空気層との界面の全反射角を超える。従って、A部材21に垂直入射した光がB部材22により2000段階以上多重散乱されるように集光光学素子20を構成することにより、入射光を集光光学素子20内に閉じ込め、x軸方向の両端に設けた光電変換素子50,50に集光入射させることができる。垂直ではなく斜め入射の光は本例の垂直入射に比べて少ない段数で閉じ込められるようになる。
【0093】
[比較例]
比較例として、何れも複屈折性を有しないA部材及びB部材で構成した場合について、同様のシミュレーションを行った。A部材及びB部材の条件として下記を適用した。
・A部材の屈折率 :nax=nay=naz=1.49
・B部材の屈折率 :nbx=nby=nbz=1.66
・B部材の粒子径 :d=1.0μm
・B部材の分布密度:0.1個/μm3
入射光の波長λを633nmとしたときのサイズパラメータはα=7.40である。
【0094】
図20は、図15及び図18と同様に、散乱断面積や散乱確率などの指標がB部材への入射角度によってどのように変化するかをまとめた表である。また図21が、図16及び図19と同様に、集光光学素子に垂直入射した光が、散乱によりどの様な角度分布に変化してゆくのか計算したシミュレーションデータである。
【0095】
図21のシミュレーションデータから、粒子による散乱の段階が進むにつれて、垂直入射した光が散乱されていく様子が把握できる。また図16及び図19と対比することにより、実施例1及び2と散乱過程が明らかに異なっていることが把握される。
【0096】
すなわち、実施例1及び実施例2においては、垂直入射した光が散乱によってx軸の+方向と−方向に傾斜して行き、所定段階を経ることによって明確な2つのピークとなって表れていたが、この比較例においてそのような傾向は全く見られない。
【0097】
データを詳細に見ると、粒子の散乱により0度方向の光が減少して角度分布の幅が広がっていく初期段階の傾向は実施例1及び実施例2と近似する。しかし、比較例においては散乱段階が増えてもこの傾向が変化せずブロードに拡がってゆくことに加え、90度を超えて90〜180度方向に進む光、すなわち入射方向に戻る光の割合が散乱段階の増加とともに増大している。これは素子に入射した光が媒質中の粒子により散乱され単純に拡散していく状況に他ならない。入射と反対側の表面に光が達したときには全反射角より小さな光線は全て外部に抜け出てしまう。これが繰り返し行われると、内部に閉じ込められる光はなくなってくる。
【0098】
従って、仮にA部材及びB部材の屈折率やB部材の粒子径、B部材の分布密度等を実施例と同一とし、ミー散乱のサイズパラメータを同一にしたとしても、比較例では入射光を素子内に閉じ込めることができず、素子の端部に設けた光電変換素子に効率的に集光入射させることが困難であることが容易に理解される。
【0099】
以上の説明では、A部材が複屈折性を持たず、B部材が正または負の複屈折性を有する場合について説明したが、逆であっても良く(図3(b)及び図4(b)を参照)、A部材及びB部材の両方が複屈折性を有していても良い。また、説明簡明化のため、波長λが一定の場合を例示したが、波長λが幅を有する場合には、B部材の粒子径dを集光する光の波長帯域に応じて適宜設定することができる。具体的には、太陽光の放射スペクトルに合わせて400〜1800nmの範囲とし、あるいは放射スペクトルの強度が高い400〜800nmの範囲とし、または次述する光発電装置における光電変換素子50の変換効率が高い範囲などとすることができる。この場合において、B部材の粒子径dを波長帯域の中心や重心等に合わせて設定することができる他、波長帯域を複数に分割して各分割帯域に合わせた粒子径d1,d2,d3として(すなわち粒子径が異なる複数のB部材の混合体として)設定することも可能である。
【0100】
[集光装置及び光発電装置の構成例1]
次に、以上説明したような集光光学素子を用いた集光装置について、集光光学素子10を用いた場合を代表例として説明する。既述したように、集光光学素子10は、y軸方向に進む光についてA部材11及びB部材12の屈折率がp偏光の光に対して異なり、x軸方向に進む光について実質的に等しくなるように設定することで、厚さ方向に入射するp偏光成分の光をx軸方向に導いて集光する。
【0101】
集光光学素子10では、素子の上方から入射する光のうち、s偏光成分の光はx軸方向に集光されず、集光光学素子10の下面側から出射する。そこで、本発明の態様の集光装置60,70,80は、このs偏光成分の光を含めて、集光光学素子の上方から入射する光全てを集光し得るように構成される。以下、集光装置の代表的な構成例について、図面を参照して説明する。なお、各図では、電界振幅が紙面に平行なp偏光の光を両端矢印の符号、電界振幅が紙面に垂直なs偏光の光を中心にドットを有する丸印の符号で示している。
【0102】
第1構成例の集光装置60の概要構成を図22に示す。図示する集光装置60は、集光光学素子10と、この集光光学素子10の下面側に下面に沿って設けられた反射鏡62と、集光光学素子10と反射鏡62との間に設けられた偏光面回転素子65とを備えて構成される。なお、集光光学素子は、第2構成例の集光光学素子20を用いても良い。
【0103】
偏光面回転素子65は、二回度透過した光の偏光面を90度回転させる光学素子である。このような機能を有する偏光面回転素子として、例えば、太陽光の波長帯域の光について、一回目の透過でs偏光を円偏光に変換し、二回目の透過で円偏光をp偏光に変換する、広帯域の1/4波長板が好適に用いられる。
【0104】
このような構成の集光装置60では、集光光学素子10の上面側から厚さ方向に入射した光のうち、p偏光成分の光は、A部材11中に均一分散された多数のB部材12により散乱されて進行方向(光ベクトル)がx軸方向の+x側または−x側に配向し、両端部に集光される。一方、集光光学素子10の上面側から厚さ方向に入射した光のうち、s偏光成分の光は、B部材12によって散乱されることなく集光光学素子10の下面側から出射する。
【0105】
集光光学素子10の下面側から出射したs偏光成分の光は、偏光面回転素子65を透過して反射鏡62により反射され、再び偏光面回転素子65を透過して、集光光学素子10の下面側から再び集光光学素子10に入射する。
【0106】
このとき、集光光学素子10に再入射する光は、偏光面回転素子65を二度透過していることから、偏光面が90度回転されてp偏光成分の光になっている。そのため、集光光学素子10の下面側から再入射して厚さ方向に進むp偏光成分の光は、集光光学素子10の下面(A部材11と空気層との界面)で全反射されたp偏光成分の光と同様に、下面側から上面側に向けて進む過程でB部材12により散乱され、x軸方向の+x側または−x側の側端部に集光される。
【0107】
従って、このような構成の集光装置60によれば、1枚の集光光学素子10で、上方から入射する光全てをx軸方向の両端部に集光することができる。また、集光光学素子10の端部に集光された光を光電変換する光電変換素子50を設けることにより、集光光学素子10及び光電変換素子50がわずか1組の簡明かつローコストな構成で、集光光学素子10に入射する光全てを光電変換する光発電装置2を構成することができる。
【0108】
[集光装置及び光発電装置の構成例2]
次に、第2構成例の集光装置について簡潔に説明する。この構成例の集光装置(図示を省略するが、説明の便宜上、集光装置70とする)は、既述した集光光学素子を二つ用いて構成される。ここでは、集光光学素子10を二つ(101,102とする)用いる場合を例として説明する。
【0109】
集光装置70は、第1の集光光学素子101と、その下面側に設けられた第2の集光光学素子102とからなり、第2の集光光学素子102のx軸方向が、第1の集光光学素子101のz軸方向と平行になるように配設されて構成される。端的にいえば、第1の集光光学素子101の下側に位置する第2の集光光学素子102を、y軸まわりに90度回転して配置することにより集光装置70が構成される。
【0110】
そのため、第1の集光光学素子101の座標系におけるs偏光の光は、第2の集光光学素子102の座標系ではp偏光になる。これにより、集光装置70の上方から第1の集光光学素子101に入射した光は、第1の集光光学素子101におけるp偏光成分の光が散乱されて第1の集光光学素子101のx軸方向の両端部に集光され、この集光光学素子101を透過した光が第2の集光光学素子102においてp偏光成分の光になって、第2の集光光学素子102のx軸方向の両端部に集光される。
【0111】
従って、このような構成の集光装置70によれば、2枚の集光光学素子をy軸まわりに相対角度90度回転して重ねて配設する簡明な構成で、上方から入射する光全てを集光することができる。また、各々の端部に集光された光を光電変換する光電変換素子50を設けることにより、簡明な構成で上方から入射する光全てを光電変換する光発電装置3(不図示)を構成することができる。さらに、第1の集光光学素子101に設けられる光電変換素子と、第2の集光光学素子102に設けられる光電変換素子とが上下に重複しないため、光電変換素子の構成及び配置の自由度を確保することができる。
【0112】
なお、第1の集光光学素子及び第2の集光光学素子は、同種の集光光学素子を二つ(例えば集光光学素子10を二つ、あるいは集光光学素子20を二つ)用いてもよく、また異なる種類の集光光学素子を組み合わせて用いても良い。異なる種類の集光光学素子を組み合わせる場合には、何れを上方に配置しても良い。
【0113】
[集光装置及び光発電装置の構成例3]
次に、第3構成例の集光装置80について、図23を参照して説明する。本構成例の集光装置80は、既述した集光光学素子二つと偏光面回転素子85により構成される。図23では集光光学素子10を二つ(101,102)用いた場合を例示する。
【0114】
集光装置80は、第1の集光光学素子101と、その下面側に設けられた第2の集光光学素子102と、これらの集光光学素子101,102の間に設けられた偏光面回転素子85とからなり、第1の集光光学素子101のx軸方向と第2の集光光学素子102のx軸方向とが平行になるように配設される。
【0115】
偏光面回転素子85は、透過した光の偏光面を90度回転させる光学素子である。このような機能を有する偏光面回転素子として、例えば、太陽光の波長帯域の光について、一回の透過でs偏光をp偏光に変換する、広帯域の1/2波長板が好適に用いられる。
【0116】
このような構成の集光装置80では、第1の集光光学素子101の上面側から厚さ方向に入射した光のうち、p偏光成分の光は、第1の集光光学素子101のA部材11中に均一分散された多数のB部材12により散乱されて進行方向(光ベクトル)がx軸方向の+x側または−x側に配向し、両端部に集光される。一方、第1の集光光学素子101を透過したs偏光成分の光は第1の集光光学素子10の下面側から出射され偏光面回転素子85に入射する。
【0117】
偏光面回転素子85に入射したs偏光成分の光は、この偏光面回転素子85を透過する過程で偏光面が90度回転され、p偏光成分の光となって偏光面回転素子85から出射する。そのため、第2の集光光学素子102には、偏光面が回転されてp偏光成分になった光が入射し、この第2の集光光学素子102のA部材11中に均一分散された多数のB部材12により散乱されてx軸方向の両端部に集光される。
【0118】
従って、このような構成の集光装置80によれば、2枚の集光光学素子を重ねて配設する簡明な構成で、上方から入射する光全てを集光することができる。また、集光光学素子101,102の各々の端部に集光された光を光電変換する光電変換素子50を設けることにより、簡明な構成で上方から入射する光全てを光電変換する光発電装置4を構成することができる。
【0119】
この場合、第1の集光光学素子101及び第2の集光光学素子102の各+x側の端部と各−x側の端部とが上下に位置して配設される。そこで、各+x側の端部同士をつないでひとつの光電変換素子50に導くライトガイド、及び各−x側の端部同士をつないでひとつの光電変換素子50に導くライトガイドを設けて構成することもできる。このような構成によれば、比較的高額な光電変換素子の素子数を低減できる。なお、第1の集光光学素子及び第2の集光光学素子は、集光光学素子20を二つ用いても良く、集光光学素子10と集光光学素子20とを組み合わせて用いても良い。
【0120】
[集光光学素子の端部における光エネルギーの取り出し手法]
次に、以上説明した集光光学素子10,20において、x軸方向の+x側及び−x側の端部に集光された光の、エネルギー取り出し手法について、幾つかの代表的な概念を例示する図24(a)〜(e)を参照しながら簡明に説明する。
【0121】
(a)は、端部に集光された光を、そのまま取り出し、光として利用する構成例の概念図である。この場合において、集光光学素子の端部から出射する光をシリンドリカルレンズ91や集光ロッド92等を介してz軸方向に集光し、集光された光を光ファイバー93により所望位置に導光するような構成が例示される。
【0122】
(b)は、端部に集光された光を、電気エネルギーまたは熱エネルギーに変換して利用する場合の第1構成例の概念図である。この図は、光電変換素子50を集光光学素子10,20の集光側の端部に結合し、電気エネルギーとして取り出す構成例を示す。なお、集光された光を熱エネルギーとして取り出す場合には、光熱変換する光吸収体付きのヒートパイプ等が好適に用いられる。
【0123】
(c)は、端部に集光された光を、電気エネルギーまたは熱エネルギーに変換して利用する場合の第2構成例の概念図である。本構成例は、集光光学素子10,20の端部を斜めにカットしてミラー94を配設し(あるいは傾斜面に反射膜を形成し)、集光光学素子10,20の上面側(または下面側)に設けた光電変換素子50に集光させる構成例である。これにより、集光光学素子10,20が薄いシート状の場合であっても、所定面積の光電変換素子50を安定的に取り付けることができる。なお、集光された光を熱エネルギーとして取り出す場合には、上記同様に光吸収体付きのヒートパイプ等が好適に用いられる。
【0124】
(d)は、端部に集光された光を、電気エネルギーまたは熱エネルギーに変換して利用する場合の第3構成例の概念図である。本構成例は、集光光学素子10,20の端部を斜めにカットしてダイクロイックミラー95を配設し(あるいは傾斜面に波長選択性のある反射膜を形成し)、集光光学素子10,20の上面側(または下面側)と、集光光学素子10,20の側方とに設けた光電変換素子50,50′に分割して集光させる構成例である。このような構成によれば、分割された各波長帯域について高効率な光電変換素子を用いるこができるため、比較的低コストで変換効率の高い光発電装置を構成することが可能となる。
【0125】
なお、分割した光のうち一方(例えば赤外領域の光)を光吸収体付きのヒートパイプ等に入射して熱エネルギーとして利用し、他方(例えば可視領域及び紫外領域の光)を光電変換素子50に入射して電気エネルギーとして利用するような構成も好適な適用例である。
【0126】
(e)は、端部に集光された光を、さらに厚さ方向に集光して取り出す構成例の概念図である。本構成の集光光学素子10,20は、集光側の端部近傍領域で厚さが徐々に薄くなるように構成されており、素子内部をx軸方向に進む光が、上面あるいは下面で全反射されて厚さ方向に集光されるようになっている。これにより、例えば光をそのまま利用する場合にシリンドリカルレンズ等を用いずに構成することができ、また光電変換素子50やヒートパイプに入射させる場合に、簡明な構成で入射光のパワー密度を高めることができる。
【0127】
なお、実施形態では、説明簡明化のため、集光光学素子を板状に構成した形態の例示し、また集光光学素子の作用を説明するため、A部材及びB部材に具体的な物質の屈折率を適用した構成例を説明したが、本発明はこれらの構成形態や構成例に限定されるものではない。例えば、集光光学素子の形状は、薄いシート状や角柱・円柱等のロッド状であっても良く、A部材及びB部材の材質は、種々の樹脂材料や無機材料等を適宜選択して構成することができる。また、本発明の要旨を逸脱しない範囲で、A部材及びB部材以外の他の部材を含むものであっても良い。
【0128】
以上説明したように、集光光学素子10,20は、母材ないし基材となるA部材中に粒子径が集光対象の光の波長とほぼ同じオーダの粒子状のB部材が分散されており、両者の屈折率の関係が厚さ方向であるy軸方向に進むp偏光の光について異なり、x軸方向について実質的に等しくなるように構成される。集光装置60,70,80及び光発電装置1〜4は、このような集光光学素子を用いて構成される。
【0129】
従って、以上説明した集光光学素子10,20、集光装置60,70,80によれば、薄型かつ簡明な構成で、太陽光等の光エネルギーを効率的に利用可能な、新たな集光手段を提供することができる。また、これらの集光光学素子10,20、集光装置60,70,80を適用した光発電装置1〜4は、集光部の光軸方向の厚さが薄く小型軽量であり、太陽の追従装置を必ずしも必要としない、新たな太陽光発電手段として好適に適用することができる。
【符号の説明】
【0130】
1〜4 光発電装置
10(101,102) 第1構成形態の集光光学素子
11 A部材
12 B部材
20 第2構成形態の集光光学素子
21 A部材
22 B部材
50,50′ 光電変換素子
60 第1構成例の集光装置
62 反射鏡
65 偏光面回転素子
80 第3構成例の集光装置
85 偏光面回転素子

【特許請求の範囲】
【請求項1】
光透過性を有するA部材と、前記A部材中に厚さ方向及びこれと相互に直交する第1方向、第2方向に分散された光透過性を有する粒子状のB部材とを有して構成され、
前記B部材の粒子径dは、前記厚さ方向に入射する光の波長をλとしたときに円相当径が0.1λ〜10λであり、
前記A部材における、電界振幅が前記第1方向に沿った光の屈折率をnax、電界振幅が前記厚さ方向に沿った光の屈折率をnayとし、
前記B部材における、電界振幅が前記第1方向に沿った光の屈折率をnbx、電界振幅が前記厚さ方向に沿った光の屈折率をnbyとしたときに、
axとnbxとが異なり、nayとnbyとが実質的に等しいことを特徴とする集光光学素子。
【請求項2】
前記屈折率の関係が、nax<nbxであり、nbx>nbyであることを特徴とする請求項1に記載の集光光学素子。
【請求項3】
前記屈折率の関係が、nax<nbxであり、nax<nayであることを特徴とする請求項1に記載の集光光学素子。
【請求項4】
前記屈折率の関係が、nax>nbxであり、nbx<nbyであることを特徴とする請求項1に記載の集光光学素子。
【請求項5】
前記屈折率の関係が、nax>nbxであり、nax>nayであることを特徴とする請求項1に記載の集光光学素子。
【請求項6】
前記A部材における、電界振幅が前記第2方向に沿った光の屈折率をnazとし、
前記B部材における、電界振幅が前記第2方向に沿った光の屈折率をnbzとしたときに、
azとnbzとが実質的に等しいことを特徴とする請求項1〜5のいずれか一項に記載の集光光学素子。
【請求項7】
前記A部材及び前記B部材は、(π×d×nax)/λで規定するサイズパラメータαが、1.5≦α≦40であることを特徴とする請求項1〜6のいずれか一項に記載の集光光学素子。
【請求項8】
前記A部材及び前記B部材は、(π×d×nax)/λで規定するサイズパラメータαが、2≦α≦20であることを特徴とする請求項1〜7のいずれか一項に記載の集光光学素子。
【請求項9】
前記B部材の粒子径dが、20μm以下であることを特徴とする請求項1〜8のいずれか一項に記載の集光光学素子。
【請求項10】
前記A部材中に分散された前記B部材の密度は、前記集光光学素子の表面から前記厚さ方向に入射し、複数の前記B部材により多重散乱されて前記集光光学素子の裏面に向かう光が、前記裏面において全反射されるように設定されることを特徴とする請求項1〜9のいずれか一項に記載の集光光学素子。
【請求項11】
前記第1方向及び前記第2方向の大きさが前記厚さ方向の大きさに対して充分に大きく、プレート状またはシート状に形成されることを特徴とする請求項1〜10のいずれか一項に記載の集光光学素子。
【請求項12】
請求項1〜11のいずれかに記載の集光光学素子と、
前記集光光学素子の裏面側に裏面に沿って設けられた反射鏡と、
前記集光光学素子と前記反射鏡との間に設けられ、二度透過した光の偏光面を90度回転させる偏光面回転素子とを備えた集光装置。
【請求項13】
請求項1〜11のいずれかに記載の第1の集光光学素子と、
請求項1〜11のいずれかに記載の第2の集光光学素子とを備え、
前記第2の集光光学素子は、前記第1の集光光学素子の裏面側に、当該第2の集光光学素子の前記第1方向が前記第1の集光光学素子の前記第2方向と平行になるように配設されることを特徴とする集光装置。
【請求項14】
請求項1〜11のいずれかに記載の第1の集光光学素子と、
請求項1〜11のいずれかに記載の第2の集光光学素子とを備え、
前記第2の集光光学素子は、前記第1の集光光学素子の裏面側に、当該第2の集光光学素子の前記第1方向が前記第1の集光光学素子の前記第1方向と平行になるように配設されるとともに、前記第1の集光光学素子と前記第2の集光光学素子との間に、透過する光の偏光面を90度回転させる偏光面回転素子が設けられることを特徴とする集光装置。
【請求項15】
請求項1〜11のいずれかに記載の集光光学素子と、
前記集光光学素子により前記第1方向に導かれた光を光電変換する光電変換素子とを備えた光発電装置。
【請求項16】
請求項1〜11のいずれかに記載の集光光学素子と、
前記集光光学素子により前記第1方向に導かれた光を光電変換する光電変換素子と、
前記集光光学素子により前記第2方向に導かれた光を光電変換する光電変換素子とを備えた光発電装置。
【請求項17】
請求項12に記載の集光装置と、
前記集光光学素子により前記第1方向に導かれた光を光電変換する光電変換素子とを備えた光発電装置。
【請求項18】
請求項13または14に記載の集光装置と、
前記第1の集光光学素子における前記第1方向に導かれた光を光電変換する光電変換素子と、
前記第2の集光光学素子における前記第1方向に導かれた光を光電変換する光電変換素子とを備えた光発電装置。


【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate

【図11】
image rotate

【図12】
image rotate

【図13】
image rotate

【図14】
image rotate

【図15】
image rotate

【図16】
image rotate

【図17】
image rotate

【図18】
image rotate

【図19】
image rotate

【図20】
image rotate

【図21】
image rotate

【図22】
image rotate

【図23】
image rotate

【図24】
image rotate


【公開番号】特開2012−37680(P2012−37680A)
【公開日】平成24年2月23日(2012.2.23)
【国際特許分類】
【出願番号】特願2010−176830(P2010−176830)
【出願日】平成22年8月5日(2010.8.5)
【出願人】(000004112)株式会社ニコン (12,601)
【Fターム(参考)】