説明

集光型太陽光発電装置

【課題】高い変換効率と高い耐候性とを兼ね備えた集光型太陽光発電装置を提供すること。
【解決手段】太陽光を集光するための集光装置12と、太陽電池セル14と、下端面が太陽電池セル14に対向するように太陽電池セル14の真上位置に立設されたホモジナイザー16と、ホモジナイザー16の下側の側面及び太陽電池セル14を覆う封止材18と、封止材18とホモジナイザー16との間に設けられた透過防止層20とを備え、ホモジナイザー16は錐台形状を有し、ホモジナイザー16の屈折率nh、封止材18の屈折率nf及び透過防止層20の屈折率ntの間にnh>nf>ntの関係があり、透過防止層20の厚さHは0.1mm以上1.2mm以下であり、透過防止層20の高さbと、透過防止層20が形成されている位置の封止材18の高さaの間に0.5≦b/a<1.0の関係がある集光型太陽光発電装置。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、集光型太陽光発電装置に関し、さらに詳しくは、集光装置(一次光学系)により集光された高エネルギーの太陽光をホモジナイザー(二次光学系)で均一化し、均一化された太陽光を太陽電池セルに照射することによって発電を行う集光型太陽光発電装置に関する。
【背景技術】
【0002】
太陽光発電装置は、太陽光をそのまま太陽電池セルに照射する非集光型と、集光装置を用いて集光された太陽光を太陽電池セルに照射する集光型に大別される。これらの内、集光型太陽光発電装置は、太陽電池セルを小さくすることができるので、変換効率の良い高価なセルを使用しても電力製造コストに与える影響が小さい。そのため、集光型太陽光発電装置は、安価な電力を効率よく製造できるという利点がある。
【0003】
集光装置によって集光された光は、中心部の強度が強く、周辺部の強度は弱い。このような光を直接、太陽電池セルに照射すると、高い発電効率は得られない。そのため、集光型太陽光発電装置においては、通常、太陽電池セルの真上にホモジナイザーと呼ばれる柱状又は錐台状(テーパ状)の光学部材が設けられる。ホモジナイザーは、集光装置により集光された高エネルギーの太陽光を側面で繰り返し全反射させることにより、光のエネルギーを均一化させるためのものである。ホモジナイザーには、一般に光透過性の高いガラスが用いられている。特に、汎用かつ安価で加工が容易であるという理由から、ホモジナイザーには、ほう珪酸塩ガラス、珪酸塩ガラスのようなナトリウム含有ガラスが用いられている。
【0004】
また、太陽電池セルは、水分により劣化しやすい。例えば、InGaP/InGaAs/Geに代表されるIII-V族化合物半導体は、結晶シリコン系半導体に比べて活性であるため、III-V族化合物半導体を用いた太陽電池セルは、水分による劣化が顕著である。また、太陽電池セルの表面には、一般に反射防止膜が設けられるが、反射防止膜が水分と接すると、反射防止膜が変質することがある。さらに、ホモジナイザーに含まれるナトリウムが結露した水分中に溶出し、ナトリウムイオンが水分と共に太陽電池セルに到達する場合がある。太陽電池セルに到達したナトリウムイオンは、太陽電池セルの表層の負電位に蓄積され、発電効率を劣化させる原因となる。そのため、集光型太陽光発電装置の耐久性を向上させるためには、太陽電池セルを水分から保護する必要がある。
【0005】
このような太陽電池セルを水分から保護する方法に関し、従来から種々の提案がなされている。
例えば、特許文献1には、柱状光学部材(ホモジナイザー)及びその下端面に対向する太陽電池セルを覆う封止樹脂(封止材)として、10重量%以上のフッ素化シリコーン樹脂を含む材料を用いた集光型太陽光発電ユニットが開示されている。
同文献には、
(a)封止樹脂として10重量%以上のフッ素化シリコーン樹脂を含む材料を用いると、フッ素化シリコーン樹脂の水蒸気低透過性によって水蒸気の侵入が抑制される点、及び、
(b)ホモジナイザーの側面に、厚さが数十nm〜20nm程度のフッ素樹脂(屈折率1.34)からなり、保護部材又は撥水膜として機能する薄膜を形成しても良い点、
が記載されている。
【0006】
また、特許文献2には、柱状光学部材の下端面と太陽電池セルとの間に透明樹脂を介在させ、透明樹脂を太陽光から遮るための遮光部材を備えた集光型太陽光発電装置が開示されている。
同文献には、
(a)遮光部材によって透明樹脂の光劣化が抑制されるので、侵入する水分に起因する太陽電池の劣化が抑制される点、及び、
(b)ホモジナイザーの側面に、厚さが数十nm〜20nm程度のフッ素樹脂(屈折率1.34)からなり、保護部材又は撥水膜として機能する薄膜を形成しても良い点、
が記載されている。
【0007】
太陽電池セルを保護するための封止樹脂や透明樹脂は、集光型太陽光発電装置の厳しい環境に曝されるため、耐熱性や耐候性が要求される。これらの材料には、現在、シリコン樹脂をベースとした材料が用いられている。シリコン樹脂は、一般的に耐候性は良いが、外界と接する部分での使用は過酷であるため、シリコン樹脂のみでは十分な耐候性が得られない。そのため、封止樹脂には、一般に、シリコン樹脂に耐候性を高めるためのフィラー(例えば、微粉ガラス)を添加した材料が用いられている。
【0008】
この微粉ガラス入りシリコン樹脂の屈折率は約1.5であり、ホモジナイザーの屈折率(約1.6)に近い。ホモジナイザーの周囲をこのような相対的に屈折率の高い材料からなる封止材で覆うと、その部分の光の全反射の臨界角は、封止材で覆われていない部分の臨界角より大きくなる。
一方、ホモジナイザーの形状が、太陽電池セル側の断面積が小さい錐台状である場合、反射を繰り返す毎に光の入射角(反射面の法線方向と光の入射方向とのなす角)が小さくなる。そのため、ホモジナイザーの下側の側面を高屈折率材料で封止すると、ホモジナイザーの下側の側面近傍では、入射角が臨界角以下になる確率(すなわち、光が漏れる確率)が高くなる。
この問題を解決するために、封止材として、屈折率が相対的に小さな材料を用いることも考えられる。しかしながら、低屈折率で、かつ耐熱性及び耐候性に優れた材料は、知られていない。
【先行技術文献】
【特許文献】
【0009】
【特許文献1】特開2007−201109号公報
【特許文献2】特開2006−313809号公報
【発明の概要】
【発明が解決しようとする課題】
【0010】
本発明が解決しようとする課題は、高い変換効率と高い耐候性とを兼ね備えた集光型太陽光発電装置を提供することにある。
【課題を解決するための手段】
【0011】
上記課題を解決するために本発明に係る集光型太陽光発電装置は、以下の構成を備えていることを要旨とする。
(1)前記集光型太陽光発電装置は、
太陽光を集光するための集光装置と、
太陽電池セルと、
下端面が前記太陽電池セルに対向するように前記太陽電池セルの真上位置に立設され、前記集光装置により集光された太陽光を前記太陽電池セルへ導くためのホモジナイザーと、
前記ホモジナイザーの下側の側面及び前記太陽電池セルを覆う封止材と、
前記封止材と前記ホモジナイザーとの間に設けられた透過防止層と
を備えている。
(2)前記ホモジナイザーは、前記集光装置側の断面積が前記太陽電池セル側の断面積より大きい錐台形状を有する。
(3)前記ホモジナイザーの屈折率nh、前記封止材の屈折率nf、及び、前記透過防止層の屈折率ntの間には、nh>nf>ntの関係がある。
(4)前記透過防止層の厚さHは、0.1mm以上1.2mm以下である。
(5)前記透過防止層の高さbと、前記透過防止層が形成されている位置の前記封止材の高さaとの間に、0.5≦b/a<1.0の関係がある。
【発明の効果】
【0012】
錐台形状のホモジナイザーの下側の側面及び太陽電池セルを覆う封止材として、高屈折率材料を用いると、高い耐候性が得られる。また、封止材とホモジナイザーの間に所定の屈折率nt、厚さH及び高さbを有する透過防止層を設けるとホモジナイザーの下側の側面からの光の漏れを抑制することができる。その結果、耐候性を低下させることなく、変換効率を向上させることができる。
【図面の簡単な説明】
【0013】
【図1】本発明の一実施の形態に係る集光型太陽光発電装置の概略断面図である。
【図2】太陽電池セルの測定数と相対短絡電流との関係を示す図である。
【図3】透過防止層の厚さHと短絡電流相対増加率との関係を示す図である。
【図4】封止材の高さaに対する透過防止層の高さbの比(b/a)と短絡電流相対増加率との関係を示す図である。
【発明を実施するための形態】
【0014】
以下に、本発明の一実施の形態について詳細に説明する。
[1. 集光型太陽光発電装置]
図1に、本発明の一実施の形態に係る集光型太陽光発電装置の概略断面図を示す。図1において、集光型太陽光発電装置10は、集光装置12と、太陽電池セル14と、ホモジナイザー16と、封止材18と、透過防止層20とを備えている。
【0015】
[1.1. 集光装置]
集光装置12は、太陽光を集光し、集光された太陽光を太陽電池セル14に照射するためのもの(一次光学系)である。集光には、フレネルレンズのような集光レンズを使う方式と、凹面鏡のような集光反射鏡を使う方式が知られている。本発明においては、いずれの方式を用いても良い。
図1に示す例において、集光装置12は、集光レンズからなる。集光レンズは、塵埃や汚れに強い、耐久性に優れる、放熱が容易である、等の利点がある。集光装置12は、図示しない支持手段を用いて、太陽電池セル14の上方に固定されている。
【0016】
[1.2. 太陽電池セル]
太陽電池セル14は、照射された光を電力に変換するためのセルである。本発明において、太陽電池セル14の構造や、これを構成する材料は、特に限定されるものではなく、種々の構造及び材料からなるセルを用いることができる。
太陽電池セルは、一般に、裏面電極、光起電力効果を奏する半導体層、及び上部電極がこの順で積層された構造を備えている。半導体層の表面には、反射防止膜が形成される場合もある。半導体層としては、例えば、結晶シリコン、InGaP/InGaAs/Geに代表されるIII-V族化合物半導体などが知られている。
【0017】
太陽電池セルは、一般に、基板上に固定されるが、基板には、太陽電池セルによる発電に必要な各種の構成要素が設けられる。図1に示す例において、基板22の上に、絶縁層24及びプレート26がこの順で形成され、プレート26の上には、太陽電池セル14がリード電極28を介して固定されている。
【0018】
基板22は、太陽電池セル14などの構成要素を支持するためのものである。基板22の材料は、特に限定されるものではなく、種々の材料を用いることができる。基板22の材料としては、例えば、アルミニウム、銅などがある。集光装置12は、基板22に固定され、あるいは、基板22が固定された枠(図示せず)に固定される。
【0019】
絶縁層24は、太陽電池セル14の裏面電極(図示せず)に接続された一方のリード電極28と、太陽電池セル14の上部電極(図示せず)に接続された他方のリード電極(図示せず)を絶縁するためのものである。絶縁層24には、各種の絶縁材料を用いることができる。絶縁層24の材料としては、例えば、
(a)ガラス繊維、アルミナ粉などが分散した樹脂材料、
(b)アルミナなどの高熱伝導率のセラミックス、
などがある。
【0020】
プレート26は、太陽電池セル14の熱を放散させるため、及び、太陽電池セル14を補強するためのものである。プレート26は、絶縁層24とリード電極28の間に設けられている。プレート26には、各種の高熱伝導材料を用いることができる。プレート26の材料としては、例えば、アルミニウム、銅などがある。
【0021】
[1.3. ホモジナイザー]
ホモジナイザー(二次光学系)16は、集光装置12により集光された太陽光を太陽電池セル14に導くためのものである。また、ホモジナイザー16は、導かれた光を側面で繰り返し全反射させることにより、光のエネルギーを均一化させるためのものでもある。ホモジナイザー16は、その下端面が太陽電池セル14に対向するように、太陽電池セル14の真上位置に立設される。
【0022】
本発明において、ホモジナイザー16は、集光装置12側の断面積が太陽電池セル14側の断面積より大きい錐台形状を有する。ホモジナイザー16の断面の形状は、特に限定されるものではなく、円形、楕円形、多角形のいずれであっても良い。ホモジナイザー16の側面の角度(又は、ホモジナイザー16が錐であると仮定したときの頂角)は、特に限定されるものではなく、目的に応じて種々の角度を選択することができる。
集光型太陽光発電装置10は、太陽光を集光装置12で曲げるため、太陽電池セル14を常に太陽の方向に正確に向けておく必要がある。そのため、集光型太陽光発電装置10は、一般に、太陽電池セル14を太陽の方向に向けるための追尾装置を備えている。しかしながら、ホモジナイザー16の形状が柱状である場合、追尾ズレが生じたときに変換効率が著しく低下する。これに対し、ホモジナイザー16の形状を錐台状とすると、僅かな追尾ズレが生じても変換効率が大きく低下しないという利点がある。
【0023】
ホモジナイザー16には、光透過性の高い材料が用いられる。ホモジナイザー16の材料としては、例えば、
(a)ほう珪酸塩ガラス、ケイ酸塩ガラスなどのナトリウム含有ガラス、
(b)アルミノケイ酸ガラス、ソーダカリバリウムガラス、
などがある。特に、ナトリウム含有ガラスは、安価で加工が容易であるため、ホモジナイザー16の材料として好適である。
ホモジナイザー16は、その屈折率nhが所定の条件を満たしている必要がある。この点については、後述する。
【0024】
ホモジナイザー16の周囲には、必要に応じて各種の膜が形成されていても良い。
例えば、ホモジナイザー16の上端面(光の入射面)には、反射防止膜が形成されていても良い。反射防止膜としては、例えば、
(a)アルミナとチタニアの多層構造からなるTiO2/Al23反射防止膜、
(b)フッ化マグネシウム層やフッ化カルシウム層からなる反射防止膜、
などがある。
【0025】
また、ホモジナイザー16と太陽電池セル14の界面に、水分の侵入を防止するための保護膜を介在させても良い。この場合、保護膜は、後述する透過防止層20と異なる材料であっても良く、あるいは、図1に示すように、透過防止層20と同一の材料を用い、ホモジナイザー16の下側の側面及び底面にかけて一体的に形成されていても良い。ホモジナイザー16の下側の側面にのみ透過防止層20を形成する場合、ホモジナイザー16の底面に保護膜を設けるのが好ましい。
保護膜には、透光性が高く、かつ、耐熱性の高い材料を用いるのが好ましい。透過防止層20とは別に保護膜を形成する場合、保護膜の材料としては、例えば、ゲル状のシリコーン樹脂、アクリル樹脂フィルム、などがある。
【0026】
[1.4. 封止材]
封止材18は、ホモジナイザー16の下側の側面及び太陽電池セル14の露出部分を覆うためのものである。封止材18は、太陽電池セル14への水の侵入を長期間に渡って防止する必要があるため、耐熱性及び耐候性の高い材料を用いる必要がある。封止材18の材料としては、例えば、
(a)微粉ガラス入りシリコン樹脂、
(b)高い熱伝導性及び光反射性を有する白色かつ不透明の無機材料粉末(例えば、炭酸カルシウム、酸化チタン、高純度アルミナ、高純度酸化マグネシウム、酸化ベリリウム、窒化アルミニウムなど)を充填した自己接着性RTVゴム、
(c)(b)の材料に、さらに10重量%以上のフッ素化シリコン樹脂を添加した材料、
(d)エポキシ樹脂、
などがある。
封止材18は、その屈折率nf及び高さaが所定の条件を満たしている必要がある。この点については、後述する。
【0027】
[1.5. 透過防止層]
透過防止層20は、ホモジナイザー16の下側の側面からの光の透過を防止するためのものであり、封止材18とホモジナイザー16との間に設けられている。透過防止層20は、ホモジナイザー16の下側の側面にのみ形成されていても良い。あるいは、図1に示すように、透過防止層20は、ホモジナイザー16の下側の側面及び底面にかけて一体的に形成されていても良い。すなわち、透過防止層20は、上述した保護膜を兼ねていても良い。
透過防止層20が保護膜を兼ねている場合、透過防止層20には、耐熱性が高く、かつ、透光性に優れた材料を用いる必要がある。一方、透過防止層20がホモジナイザー16の下側の側面にのみ形成される場合には、透過防止層20は、必ずしも光透過性を有する材料である必要はない。透過防止層20の材料としては、例えば、シリコン樹脂、フッ素樹脂などがある。
透過防止層20は、その屈折率nt、高さb、及び、厚さHが所定の条件を満たしている必要がある。この点については、後述する。
【0028】
[1.6. 屈折率]
太陽電池セル14への水の侵入を防止することができ、かつ、耐熱性及び/又は耐候性を有する材料として、上述した種々の材料が知られている。上述した材料の耐候性と屈折率との間には相関があり、一般に、耐候性の高い材料ほど、屈折率が高くなる傾向がある。すなわち、低屈折率と高耐候性とを同時に満たし、かつ、太陽電池セル14の封止材として使用可能な材料は、知られていない。
そのため、本発明においては、太陽電池セル14への水の侵入を防止するために、封止材18には、耐候性の高い高屈折材料を用いる。一方、ホモジナイザー16の下側の側面からの光の漏れを防止するために、ホモジナイザー16と封止材18の間に透過防止層20を介在させ、透過防止層20には、耐候性は劣るが、屈折率の低い低屈折率材料を用いる。
すなわち、本発明において、ホモジナイザー16の屈折率nh、封止材18の屈折率nf、及び、透過防止層20の屈折率ntの間には、nh>nf>ntの関係がある。この点が、従来の集光型太陽光発電装置とは異なる。
【0029】
ホモジナイザー16、封止材18、及び、透過防止層20の組み合わせとしては、具体的には、以下のようなものがある。
例えば、ホモジナイザー16がナトリウム含有ガラス(屈折率:1.6)である場合、
(a)封止材18として、微粉ガラス入りシリコン樹脂(屈折率:1.5)、アクリル樹脂(屈折率:1.5)、ポリエステル樹脂(屈折率:1.5)などを用い、
(b)透過防止層20として、シリコン樹脂(屈折率:1.3〜1.39)、フッ素樹脂(屈折率:1.3〜1.4)などを用いるのが好ましい。
【0030】
[1.7. 厚さH]
透過防止層20の厚さHは、発電効率及び耐候性に影響を与える。透過防止層20の厚さHが薄すぎると、ホモジナイザー16の下側の側面から光が漏れやすくなる。光の漏れを抑制するためには、透過防止層20の厚さHは、0.1mm以上である必要がある。透過防止層20の厚さHは、さらに好ましくは、0.2mm以上、さらに好ましくは、0.3mm以上、さらに好ましくは、0.4mm以上である。
透過防止層20の厚さHが厚くなると、やがて発電効率に及ぼす効果が飽和する。また、透過防止層20の厚さHが厚くなりすぎると、耐候性が低下し、太陽電池セル14に水分が到達しやすくなる。従って、透過防止層20の厚さHは、1.2mm以下である必要がある。透過防止層20の厚さHは、さらに好ましくは、1.0mm以下、さらに好ましくは、0.8mm以下である。
【0031】
[1.8. 高さの比b/a]
透過防止層20の高さbと、透過防止層20が形成されている位置の封止材18の高さaの比(=b/a)は、発電効率及び耐候性に影響を与える。b/a比が小さくなりすぎると、ホモジナイザー16の下側の側面から光が漏れやすくなる。従って、b/a比は、0.5以上である必要がある。b/a比は、さらに好ましくは、0.6以上、さらに好ましくは、0.7以上、さらに好ましくは、0.8以上である。
一方、b/a比が大きくなり過ぎると、耐候性が低下する。また、透過防止層20の屈折率は空気より大きいので、透過防止層20の高さbが封止材18の高さaを超えると、透過防止層20のみで覆われた部分からの光の漏れが増大する。また、透過防止層20が大気に露出するので、耐候性が低下する。従って、b/a比は、1.0未満である必要がある。b/a比は、さらに好ましくは、0.98以下、さらに好ましくは、0.96以下である。
ここで、「透過防止層20の高さb」とは、ホモジナイザー16の下端面から透過防止層20の上端までの距離をいう。
また、「封止材18の高さa」とは、ホモジナイザー16の下端面から封止材18の上端までの距離をいう。封止材18の高さaが一定でないときは、少なくとも透過防止層20が形成されている位置において、上述したb/a比の条件を満たしていればよい。
【0032】
[2. 集光型太陽光発電装置の製造方法]
ホモジナイザー16の下側の側面に透過防止層20を形成する場合、まず、透過防止層20を構成する材料を適当な溶媒に溶かして溶液とする。次いで、浸漬、刷毛塗り等の方法により、ホモジナイザー16の下側(太陽電池セル14側)の側面に溶液を塗布する。この時、ホモジナイザー16の下側の端面に溶液を塗布しても良い。塗布後、溶媒を除去すると、少なくともホモジナイザー16の下側の側面に透過防止層20を形成することができる。さらに、ホモジナイザー16の下側の端面を基板22上に固定された太陽電池セル14の表面に密着させ、ホモジナイザー16の下側の側面及び太陽電池セル14を封止材18で封止する。
例えば、透過防止層20がシリコン樹脂である場合、ホモジナイザー16の下側をシリコン樹脂の溶液に、室温で1〜5秒浸漬する。ホモジナイザー16を溶液から引き上げ、太陽電池セル14に取り付け、120〜180℃で硬化(乾燥)させる。このような方法により、ホモジナイザー16の下側の側面及び底面に、保護膜を兼ねた透過防止層20を形成することができる。
さらに、集光装置12を基板22又は基板22が固定された枠に固定すると、本発明に係る集光型太陽光発電装置10が得られる。
【0033】
[3. 集光型太陽光発電装置の作用]
錐台状のホモジナイザー16と封止材18が直接、接する状態の場合、ホモジナイザー16に入ってきた光の一部がホモジナイザー16と封止材18の界面から外部に漏れだし、太陽電池セル14の発電効率が低下していた。
これは、ホモジナイザー16の屈折率nhと封止材18の屈折率nfとの関係から説明できる。すなわち、スネルの法則により、光が全反射する条件は、
sinθ=nf/nh
と表せる。ここで、θは、光の入射角(反射面の法線方向と光の入射方向とのなす角)である。
例えば、nhが1.6である場合において、nfが1.5であるときには、θ=69.6°となる。また、nhが1.6である場合において、nfが1.3であるときには、θ=54.3°となる。すなわち、ホモジナイザー16の屈折率nhと、ホモジナイザー16と接する物質(空気や封止材18)の屈折率の差が大きいほど、スネルの法則によりホモジナイザー16内で光が全反射する確率が高くなり、発電効率が向上する。
【0034】
一方、追尾型の集光型太陽光発電装置において追尾ズレによる発電効率の低下を抑制するためには、ホモジナイザー16の形状を、光の入射面の面積が太陽電池セル14側の面積より大きい錐台状とする必要がある。ホモジナイザー16の形状が錐台状である場合、光がホモジナイザー16内で全反射を繰り返すにつれて、光の入射角θが小さくなる。
ホモジナイザー16を錐と仮定したときの錐の頂角をαとし、光がk回目及び(k+1)回目の反射をするときの入射角を、それぞれ、θk及びθk+1とすると、これらの間には、θk+1=θk−αの関係がある。
そのため、ホモジナイザー16の下側の側面を高屈折材料からなる封止材18で封止すると、封止材18近傍での光の入射角θが光の全反射の臨界角より小さくなり、光が封止材18側へ漏れる場合がある。また、これによって、太陽電池セル14に到達する光が減少し、発電効率が低下する。一方、これを避けるために封止材18として低屈折率材料を用いると、封止材18の耐候性が低下し、太陽電池セル14が劣化しやすくなる。
【0035】
これに対し、錐台形状のホモジナイザー16の下側の側面及び太陽電池セル14を覆う封止材18として、高屈折率材料を用いると、耐候性が向上する。また、封止材18とホモジナイザー16との間に所定の屈折率nt、厚さH及び高さbを有する透過防止層20を設けると、封止材18近傍での光の全反射の臨界角が大きくなり、ホモジナイザー16の下側の側面から光が漏れる確率が小さくなる。その結果、耐候性を低下させることなく、変換効率を向上させることができる。
【実施例】
【0036】
(実施例1、比較例1)
[1. 試料の作製]
図1に示す構造を備えた集光型太陽光発電装置10を作製した。ホモジナイザー16には、屈折率nhが1.6であるナトリウム含有ガラスを用い、ホモジナイザー16の寸法(mm)は、□11×□7×L22とした。封止材18には、屈折率nfが1.5である微粉ガラス入りシリコン樹脂を用いた。透過防止層20には、屈折率ntが1.3〜1.39であるシリコン樹脂を用いた。透過防止層20の厚さHは、0mm(比較例1)又は1.0mm(実施例1)とし、透過防止層20の高さbと封止材18の高さbの比(b/a)は、0(比較例1)又は0.9(実施例1)とした。太陽電池セル14の個数は、合計250個とした。
【0037】
[2. 試験方法]
[2.1. 発電効率]
ホモジナイザー16に約60SUNの光を当て、各太陽電池セル14毎に、その時の短絡電流を測定した。得られた短絡電流から、相対短絡電流を算出した。
「相対短絡電流」とは、比較例1の短絡電流の平均値(im0)に対する、個々の太陽電池セルの短絡電流(i)の比(=i/imo)をいう。
[2.2. 耐候性試験]
UV照射装置を用いて、作製した太陽電池セル14にUVを照射した。UV照射のエネルギーは400mW/cm2とし、照射時間は20分とした。所定時間経過後、UV照射を止め、太陽電池セル14に3分間の水散布を行った。以下、このような操作を、10時間繰り返した。試験終了後、ホモジナイザー周辺の封止材に亀裂やべたつきがあるか否かを目視で判定した。
【0038】
[3. 結果]
[3.1. 発電効率]
図2に、太陽電池セル14の測定数と相対短絡電流との関係を示す。「太陽電池セル14の測定数」とは、合計250個の太陽電池セルを相対短絡電流値が高い順に並べたときの順位を表す。
図2より、
(1)太陽電池セル14毎に相対短絡電流が異なる、
(2)測定数(順位)が0〜約200の範囲においては、実施例1の相対短絡電流は比較例1より約2.5%高い、
ことがわかる。
相対短絡電流は発電効率と相関があることから、ホモジナイザー16と封止材18の界面に透過防止層20を設けると、発電効率が向上することがわかった。
[3.2. 耐候性]
実施例1及び比較例1のいずれも、封止材に亀裂やべたつきはなく、良好な耐候性を示した。
【0039】
(実施例2)
[1. 試料の作製]
b/a=0.9とし、透過防止層20の厚さHを0〜1.2mmの範囲で変化させた以外は、実施例1と同様にして集光型太陽光発電装置10を作製した。太陽電池セル14の個数は、7水準×10個=合計70個とした。
[2. 試験方法]
[2.1. 発電効率]
実施例1と同一条件下で、各太陽電池セル14毎に、その時の短絡電流を測定した。得られた短絡電流から短絡電流相対増加量を算出した。
「短絡電流相対増加量(%)」とは、b/a=0.9、H=0.0mmの太陽電池セル14の短絡電流の平均値(im1)に対する、各水準の太陽電池セル14の短絡電流の平均値(im2)の増分(=(im2−im1)×100/im1)をいう。
[2.2. 耐候性]
実施例1と同一条件下で、耐候性を評価した。
【0040】
[3. 結果]
[3.1. 発電効率]
図3に、b/a=0.9である透過防止層20の厚さHと短絡電流相対増加量との関係を示す。
図3より、
(1)Hが0.1mm以上になると、短絡電流相対増加量は0.5%以上になる、
(2)Hが1.0mm以上になると、短絡電流相対増加量はほぼ飽和する、
(3)短絡電流相対増加量を1.0%以上にするためには、Hを0.25mm以上にする必要がある、
(4)短絡電流相対増加量を1.5%以上にするためには、Hを0.42mm以上にする必要がある、
(5)短絡電流相対増加量を2.0%以上にするためには、Hを0.73mm以上にする必要がある、
ことがわかる。
[3.2. 耐候性]
いずれの太陽電池セルも、封止材に亀裂やべたつきがなく、良好な耐候性を示した。
【0041】
(実施例3)
[1. 試料の作製]
H=1.0mmとし、透過防止層20のb/a比を0.1〜1.2の範囲で変化させた以外は、実施例1と同様にして集光型太陽光発電装置10を作製した。太陽電池セル14の個数は、12水準×10個=合計120個とした。
[2. 試験方法]
[2.1. 発電効率]
実施例1と同一条件下で、各太陽電池セル14毎に、その時の短絡電流を測定した。得られた短絡電流から短絡電流相対増加量を算出した。
「短絡電流相対増加量(%)」とは、b/a=0、H=1.0mmの太陽電池セル14の短絡電流の平均値(im3)に対する、各水準の太陽電池セル14の短絡電流の平均値(im4)の増分(=(im4−im3)×100/im3)をいう。
[2.2. 耐候性]
実施例1と同一条件下で、耐候性を評価した。
【0042】
[3. 結果]
[3.1. 発電効率]
図4に、H=1.0mmである透過防止層20のb/a比と短絡電流相対増加量との関係を示す。
図4より、
(1)b/a比が0.5以上になると、短絡電流相対増加量は0.45%以上になる、
(2)短絡電流相対増加量は、b/a比が1のときに最大となる、
(3)b/a比が1を超えると、ホモジナイザー16と空気との接触部分が減るために、短絡電流相対増加量が減少する、
(4)短絡電流相対増加量を1.0%以上にするためには、b/a比を0.75以上にする必要がある、
(5)短絡電流相対増加量を1.5%以上にするためには、b/a比を0.85以上1.16以下にする必要がある、
(6)短絡電流相対増加量を2.0%以上にするためには、b/a比を0.95以上1.05以下にする必要がある、
ことがわかる。
[3.2. 耐候性]
b/a比が1以上である場合、封止材に亀裂やべたつきが認められた。これに対し、b/a比が1未満である場合、いずれも封止材に亀裂やべたつきは認められなかった。
【0043】
以上、本発明の実施の形態について詳細に説明したが、本発明は、上記実施の形態に何ら限定されるものではなく、本発明の要旨を逸脱しない範囲内で種々の改変が可能である。
【産業上の利用可能性】
【0044】
本発明に係る集光型太陽光発電装置は、工場や住宅に電力を供給するための発電装置として使用することができる。
【符号の説明】
【0045】
10 集光型太陽光発電装置
12 集光装置(一次光学系)
14 太陽電池セル
16 ホモジナイザー(二次光学系)
18 封止材
20 透過防止層

【特許請求の範囲】
【請求項1】
以下の構成を備えた集光型太陽光発電装置。
(1)前記集光型太陽光発電装置は、
太陽光を集光するための集光装置と、
太陽電池セルと、
下端面が前記太陽電池セルに対向するように前記太陽電池セルの真上位置に立設され、前記集光装置により集光された太陽光を前記太陽電池セルへ導くためのホモジナイザーと、
前記ホモジナイザーの下側の側面及び前記太陽電池セルを覆う封止材と、
前記封止材と前記ホモジナイザーとの間に設けられた透過防止層と
を備えている。
(2)前記ホモジナイザーは、前記集光装置側の断面積が前記太陽電池セル側の断面積より大きい錐台形状を有する。
(3)前記ホモジナイザーの屈折率nh、前記封止材の屈折率nf、及び、前記透過防止層の屈折率ntの間には、nh>nf>ntの関係がある。
(4)前記透過防止層の厚さHは、0.1mm以上1.2mm以下である。
(5)前記透過防止層の高さbと、前記透過防止層が形成されている位置の前記封止材の高さaとの間に、0.5≦b/a<1.0の関係がある。
【請求項2】
前記透過防止層の厚さHは、0.2mm以上1.0mm以下である請求項1に記載の集光型太陽光発電装置。
【請求項3】
前記透過防止層の高さbと、前記透過防止層が形成されている位置の前記封止材の高さaの間に、0.6≦b/a≦0.98の関係がある請求項1又は2に記載の集光型太陽光発電装置。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate


【公開番号】特開2011−243927(P2011−243927A)
【公開日】平成23年12月1日(2011.12.1)
【国際特許分類】
【出願番号】特願2010−117417(P2010−117417)
【出願日】平成22年5月21日(2010.5.21)
【出願人】(000003713)大同特殊鋼株式会社 (916)
【Fターム(参考)】