説明

電極の製造方法とその製造方法により製造される電極

【課題】簡易な部品と簡易な方法とで塗工開始端部の塗工膜厚の突出を抑制しつつ間欠塗工を実現し得る製造方法を提供する。
【解決手段】塗工剤を収納するタンク(1)と、このタンク(1)内の塗工剤を圧送する供給ポンプ(4)と、この圧送される塗工剤を供給する塗工剤供給通路(3)を間欠的に遮断する塗工剤間欠供給手段(12、21)と、この塗工剤間欠供給手段より供給される塗工剤を集電体(5)上に塗布する塗布手段(2)とを備え、塗工剤間欠供給手段(21)は、塗工開始より塗工剤の吐出量が一定になるまでに塗工剤供給通路(3)の通路断面積を小さい側から大きい側へと変更する通路断面積変更手段(24)を有する。

【発明の詳細な説明】
【技術分野】
【0001】
この発明はリチウムイオン2次電池用電極などの電極の製造方法とその製造方法により製造される電極に関する。
【背景技術】
【0002】
塗工剤を間欠的に供給する塗工剤間欠供給手段によりダイヘッドに塗工剤を供給し、供給した塗工剤をダイヘッドにより連続走行する集電体上に塗布する間欠塗布方法がある。この間欠塗布方法では、塗工開始端部の塗工膜厚が突出し、後工程での乾燥時に乾燥不良を起こしたり、プレス工程で脱落が発生したりする。このため、ダイヘッドに塗工剤を間欠的に供給する三方弁と、塗布停止時にダイヘッド内部の塗工剤を吸引する吸引ポンプとを付与したものがある(特許文献1参照)。
【先行技術文献】
【特許文献】
【0003】
【特許文献1】特開2008−243658号公報
【発明の概要】
【発明が解決しようとする課題】
【0004】
しかしながら、上記特許文献1の技術では、吸引ポンプといった高価な部品が必要であるばかりか、塗工終端部を形成する際には、吸引ポンプの作動と同時に塗工剤がタンクに戻されるように三方弁を切換えるといった複雑な制御も必要である。
【0005】
そこで本発明は、簡易な部品と簡易な方法とで塗工開始端部の塗工膜厚の突出を抑制しつつ間欠塗工を実現し得る製造方法を提供することを目的とする。
【課題を解決するための手段】
【0006】
本発明の電極の製造方法では、塗工剤を収納するタンクと、このタンク内の塗工剤を圧送する供給ポンプと、この圧送される塗工剤を供給する塗工剤供給通路を間欠的に遮断する塗工剤間欠供給手段と、この塗工剤間欠供給手段より供給される塗工剤を集電体上に塗布する塗布手段とを備えている。そして、本発明の電極の製造方法では、前記塗工剤間欠供給手段が、塗工開始より塗工剤の吐出量が一定になるまでに前記塗工剤供給通路の通路断面積を小さい側から大きい側へと変更する通路断面積変更手段を有している。
【発明の効果】
【0007】
本発明によれば、通路断面積を当初小さくその後に大きくするので、塗工開始時の吐出量が少なくなり、塗工剤の突入圧や吐出量の変化を抑えることができる。これによって、塗工開始端部の塗工膜厚を均一化でき、乾燥工程での乾燥不良や、プレス工程での脱落を防止でき良好な電極を形成することができる。この場合、通路断面積変更手段といった簡易な部品と、通路断面積を変更するだけの簡易な方法とで塗工開始端部の塗工膜厚の突出を抑制しつつ間欠塗工を実現することができる。
【図面の簡単な説明】
【0008】
【図1】本発明の第1実施形態の電極製造装置の概略図である。
【図2】第1実施形態の塗工バルブの一部概略断面図である。
【図3】比較例の塗工バルブの一部概略断面図である。
【図4】実施例1〜3の塗工バルブの一部概略断面図である。
【図5】実施例4の塗工バルブの一部概略断面図である。
【図6】実施例5の塗工バルブの一部概略断面図である。
【図7】塗工バルブの段付き部とバルブロッドストローク量の違いによる塗工開始端部の突出膜厚割合をまとめた表図である。
【図8】実施例1と比較例の各塗工バルブを用いて間欠的に電極を形成したときの乾燥後の塗工膜厚の分布図である。
【発明を実施するための形態】
【0009】
図1は本発明の第1実施形態の電極製造装置の概略図である。電極を製造する工程には、塗工工程、乾燥工程、プレス工程などが含まれるが、ここでは主に塗工工程について説明する。なお、ここでの電極はリチウムイオン二次電池用の電極である。
【0010】
図1において、塗工剤タンク1にはスラリー状の塗工剤が満たされている。塗工剤はLi金属酸化物の正極活物質、導電材、バインダーを有機溶媒中で混練・希釈したものである。
【0011】
塗工剤タンク1とダイヘッド2とは塗工剤供給通路3で接続されている。塗工剤タンク1に満たされている塗工剤は、供給ポンプ4を用いて、ダイヘッド2に連続的に供給される。供給ポンプ4は、一定圧の塗工剤を吐出するものである。
【0012】
ダイヘッド2は、先細り状に形成されているリップ2aを有する。対をなすリップ2aは隙間を空けて対向し、スリット状の吐出口2bを形成している。ダイヘッド2は、帯状の金属集電体5の一面に対向し、バックアップロール6によって搬送される金属集電体5に対してダイヘッド2の吐出口2bから塗工剤を塗布する。
【0013】
供給ロール7から巻き取りロール8まで、バックアップロール6を間において金属集電体5が巻回されている。モータ(図示しない)により回転する巻き取りロール8が、金属集電体5を巻回している供給ロール7から金属集電体5を巻き取りつつ金属集電体5を移動させ、その間に金属集電体5への塗工剤の塗布及び塗布した塗工剤の乾燥が行われる。
【0014】
供給ポンプ4とダイヘッド2の間の塗工剤供給通路3から分岐してタンク1に戻るリターン通路11を備え、このリターン通路11に開閉バルブとしてのリータンバルブ12を設けている。リターンバルブ12は、リターン通路11を開閉するためのものである。リターンバルブ12を開状態にすると、塗工剤はダイヘッド2に供給されず塗工剤ポンプ1に戻される。リターンバルブ12を閉状態に切換えたときには、塗工剤は塗工剤ポンプ1に戻されずダイヘッド2へと供給される。
【0015】
さらに、リータン通路11の分岐部とダイヘッド2との間の塗工剤供給通路3に塗工バルブ21を備える。塗工バルブ21は、塗工剤供給通路3を開閉するためのものである。
【0016】
2つのバルブ12、21はいずれも電動であり制御回路15によってその開閉が制御される。
【0017】
制御回路15では、塗工を行わないときにはリターンバルブ12を全開状態に切換え、供給ポンプ4により圧送される塗工剤を塗工剤タンク1へと速やかに戻す。間欠塗工を開始するときには、リターンバルブ12を全閉状態に切換えると共に塗工バルブ21を開き、塗工剤をダイヘッド2へと圧送する。ダイヘッド2の吐出口2bから塗工剤が、回転するバックアップロール6上を流れる金属集電体5上へ吐出され、塗工される。間欠塗工を終了するときには、塗工バルブ14を全閉状態とするとともに、リターンバルブ12を全開状態に切換え、塗工剤を塗工剤タンク1へと戻す。
【0018】
本実施形態では、塗工バルブ21が開いている間だけ、ダイヘッド2の吐出口2bより塗工剤が金属集電体5上に吐出されるので、金属集電体5上には、図1上段に示したように、塗工剤が所定の間隔を置いて間欠的に(不連続に)塗布される。間欠的に塗布された塗工剤は、乾燥工程で乾燥され、プレス工程では金属集電体上の塗工剤に一定圧のローラーをかけることによって塗工膜厚が所定値に整えられる。このように乾燥され形を整えられた塗工剤は正極活物質層9として機能する。金属集電体5の一方の面に正極活物質層9を形成した後の工程では、上記と同様にして金属集電体の他方の面にも正極活物質層9が形成される。この場合、金属集電体の表裏同じ位置に正極活物質層9が形成され、正極(電極)が完成する。
【0019】
図2は第1実施形態の塗工バルブ21の一部概略断面図である。図2左側は第1実施形態の塗工バルブ21の全閉状態を、図2中央は第1実施形態の塗工バルブ21の半開状態を、図2右側は第1実施形態の塗工バルブ21の全開状態を示している。
【0020】
塗工バルブ21は、バルブフランジ22、バルブ本体23、段付き部24、バルブロッド27、バルブロッド駆動モータユニット28から主に構成されている。
【0021】
まず、円筒状のバルブフランジ22は、その内面22aに形成される内部通路22bを塗工剤供給通路3の一部としている。塗工剤は、例えばバルブフランジ22の内部通路22bの下方開口端22cより侵入し、上方開口端22dより外部へと吐出される。このバルブフランジ22に対して、上方よりバルブフランジ22の上方開口端22dを遮断・開放する円盤状のバルブ本体23が設けられている。
【0022】
バルブフランジ22の中心に位置してバルブロッド27が設けられ、このバルブロッドの上端は、バルブ本体の中心を貫通している。バルブロッド27の上端部はバルブ本体23に固定され、バルブロッド27が上下方向にストロークするとき、バルブ本体23がバルブフランジ22の上方開口端22dを遮断・開放する。ここで、バルブロッド27が「ストローク」するとは、バルブロッド27が上下方向に往復動することをいう。
【0023】
さらに、バルブ本体23には、バルブ本体23がバルブフランジ22の上方開口端22dと当接した状態で、バルブフランジ22内に突出する円柱状の段付き部24(通路断面積変更手段)を備える。段付き部24はバルブロッド27と空間的な位置が重なるので、段付き部24をバルブロッド27と一体に形成してもかまわない。
【0024】
バルブロッド27と一体動するバルブ本体23が上方開口端22dの開放を開始してから段付き部24が上方開口端22dを抜け出るまでの間、段付き部24の円筒状側面24aとバルブフランジ内面22aとの間の内部通路22bを塗工剤が通過する。一方、バルブロッド27が上方にさらにストロークし段付き部24が上方開口端22dを抜け出た後にはバルブフランジ内面22aとバルブロッド27の円筒状側面27aとの間の内部通路22bを塗工剤が通過し、塗工剤の吐出量が一定になる。
【0025】
ここで、段付き部24の円筒状側面24aとバルブフランジ内面22aとの間の内部通路22bの通路断面積は、バルブフランジ内面22aとバルブロッド27の円筒状側面27aとの間の内部通路22bの通路断面積より小さい。すなわち、段付き部24を備えることで、塗工開始より塗工剤の吐出量が一定になるまでに塗工剤供給通路の通路断面積を小さい側から大きい側へと2段階に変更することができる。
【0026】
なお、塗工剤の流れをスムーズにするため、バルブ本体23、段付き部24の各下面にはテーパー部25、26を設けている。以下では、テーパー部25、26はないものとして説明する。
【0027】
バルブロッド27の下端はバルブロッド駆動モータユニット28に連結されている。バルブロッド駆動モータユニット28の詳細は図示しないが、電源設備からの電気の供給を受けて回転するモータと、モータの回転方向を正転と逆転とに切換える電気回路と、モータの回転運動を直線運動に変換する機構とから構成されている。例えば、モータに電流を流してモータを正転するとき、バルブロッド27が上方に略一定の速度でストローク(移動)してバルブ本体23がバルブフランジ22の上方開口端22dを開放する。この逆に、モータに逆方向の電流を流してモータを逆転するとき、バルブロッド27が下方に略一定の速度でストローク(移動)してバルブ本体23がバルブフランジ22の上方開口端22dと当接して上方開口端22dを遮断するまでバルブロッド25が下方にストロークする。バルブロッド27を上方にストロークするときの速度と、バルブロッド27を下方にストロークするときの速度とは同じでも良いし、相違させてもかまわない。
【0028】
段付き部24を設けたことで、上方開口端22dを出る塗工剤の流れが段付き部24がない場合より悪くなることがないように、バルブロッド27の最大のストローク量を設定する。この最大のストローク量を、以下「全開スロトーク量」という(図2右側参照)。
【0029】
塗工を行わない間はバルブロッド駆動モータユニット28は非作動状態にある。このとき、塗工バルブ21は図2左側に示したようにバルブ本体23がバルブフランジ22の上方開口端22dを遮断しており(全閉状態にあり)、塗工剤は流れない。
【0030】
間欠塗工を開始するとき、バルブロッド駆動モータユニット28を作動させ、バルブロッド27を上方にストロークさせる(押し上げる)ことで、バルブ本体23がバルブフランジ22の上方開口端22dを開放する。すると、バルブ本体23とバルブフランジ22の上方開口端22dとの間に形成される内部通路22bを通って塗工剤が吐出しようとする。このとき、段付き部24が内部通路22bに存在することによって、塗工剤の吐出が邪魔されるため、塗工剤が通過する通路は、バルブフランジ22の内面22aと段付き部24の円筒状側面24aとの間に形成されるリング状の内部通路22bのみとなる。つまり、段付き部24を設けていない塗工バルブと比較したとき、段付き部24の断面積の分だけ内部通路22bの通路断面積が減少する。この通路断面積の減少は、図2中央に示した半開状態を含み、バルブロッド27が上方にストロークして、段付き部24がバルブフランジ22の上方開口端22dを抜け出るまで続く。
【0031】
内部通路22bの通路断面積がどのくらい減少するかを数値化するため、バルブフランジ22の内面22aの内径をΦDmm、段付き部24の円筒状側面24aの外径をΦdmmとしたとき、塗工バルブ21についての内部通路22bの通路断面積割合を次の式で定義する。
【0032】
通路断面積割合[%]=(D^2−d^2)/D^2)…(1)
(1)の通路断面積割合は、段付き部24を設けていない塗工バルブ21についての内部通路22bの通路断面積に対する第1実施形態の塗工バルブ21についての内部通路22bの通路断面積の割合をパーセントで表示するものである。(1)式より、塗工バルブ21についての内部通路22bの通路断面積割合は、段付き部24の円筒状側面24aの外径dを大きくするほど100[%]より小さくなる。内部通路22bの通路断面積が小さくなれば、これに比例して塗工バルブ21についての内部通路22bの通路断面を通過する塗工剤の吐出量が減少する。
【0033】
その後、バルブロッド25がさらに上方にストロークし、バルブロッド25のストローク量が段付き部24の軸方向(上下方向)の長さLに到達した後には、段付き部24がバルブフランジ22の上方開口端22dを抜け出る。この状態では、段付き部24が内部通路22bを通過する塗工剤の吐出を邪魔しなくなるので、バルブロッド25のストローク量が段付き部24の軸方向長さLに到達する前より内部通路22bを通過する塗工剤の吐出量が増加する。これを上記内部通路22bの通路断面積割合でいうと、第1実施形態では、内部通路22bの通路断面積割合は、100[%]より小さな割合から100[%]へと、つまり小さい側から大きい側へと2段階に変更されるのである。
【0034】
実際には段付き部24がバルブフランジ22の上方開口端22dを抜け出たばかりの状態では、段付き部24が内部通路22bから出る塗工剤の流れの邪魔をして抵抗となる。そこで、段付き部24が塗工剤の流れの邪魔をすることがほぼなくなる位置までバルブロッド25をさらに上方にストロークさせる。そして、段付き部24が塗工剤の流れの邪魔をすることがほぼなくなる位置までのストローク量を全開ストローク量Lsとして定める。言い換えると、図2右側に示したようにバルブロッド25のストローク量が全開ストローク量Lsに到達した後には、内部通路22bを出た塗工剤が段付き部24を回り込んで流れることとなる。この状態では段付き部24が内部通路22bを出た塗工剤の流れの邪魔をすることがほぼなくなり、最大の量(一定の量)が流れる。
【0035】
一方、間欠塗工を終了するときには、バルブロッド駆動モータユニット26を作動させ、バルブロッド25を下方にストロークさせる(引き込む)ことで、バルブ本体23がバルブフランジ22の上方開口端22dと当接し、上方開口端22dが遮断される。これによって、内部通路22b、つまり塗工剤供給通路3が閉じられる。
【0036】
図3は比較例の塗工バルブ21の一部概略断面図である。図3左側は比較例の塗工バルブ21の全閉状態を、図3右側は比較例の塗工バルブ21の全開状態を示している。比較例の塗工バルブ21は、第1実施形態の塗工バルブ21から段付き部24を除いたものである。
【0037】
比較例の塗工バルブ21でも、塗工を行わない間は塗工バルブ21は図3左側に示したように全閉状態にあり、塗工剤は流れない。
【0038】
間欠塗工を開始するとき、バルブロッド駆動モータユニット28を作動させ、バルブロッド27を上方にストロークさせることで、バルブ本体23がバルブフランジ22の上方開口端22を開放する。すると、バルブ本体23とバルブフランジ22の上方開口端22dとの間に形成される通路を通って、つまりバルブフランジ22の内面22aとバルブロッド27の円筒状側面27aとの間に形成される内部通路22bを通って塗工剤が吐出される。この状態はバルブロッド27のストローク量が全開ストローク量と一致するまで続く。
【0039】
比較例の塗工バルブ21についての内部通路22bの通路断面積割合は、上記(1)式においてd=0とすればよいので、比較例の塗工バルブ21についての内部通路22bの通路断面積割合は100[%]となる。バルブロッド27のストローク中、内部通路22bの通路断面積割合は100[%]のままであり変化することはない。
【0040】
一方、間欠塗工を終了するときには、バルブロッド駆動モータユニット28を作動させ、バルブロッド27を下方にストロークさせる(引き込む)ことで、バルブ本体23がバルブフランジ22の上方開口端22dと当接し、上方開口端22dが遮断される。これによって、内部通路22b、つまり塗工剤供給通路3が閉じられる。
【0041】
説明しなかったが、リータンバルブ12の構成は、図3に示した比較例の塗工バルブ21と同じ構成である。
【0042】
ここで、第1実施形態の作用効果を説明する。
【0043】
第1実施形態では、塗工剤を収納するタンク1と、このタンク内の塗工剤を圧送する供給ポンプ4と、この圧送される塗工剤を供給する塗工剤供給通路3を間欠的に遮断するリターンバルブ12及び塗工バルブ21(塗工剤間欠供給手段)と、これらバルブ12、21より供給される塗工剤を金属集電体5(集電体)上に塗布するダイヘッド2(塗布手段)とを備え、塗工バルブ21(塗工剤間欠供給手段)は、塗工開始より塗工剤の吐出量が一定になるまでに内部通路22b(塗工剤供給通路3)の通路断面積を小さい側から大きい側へと2段階に変更する段付き部24(通路断面積変更手段)を有している。第1実施形態によれば、内部通路22bの通路断面積を当初小さくその後に大きくするので、塗工開始時の吐出量が少なくなり、塗工剤の突入圧や吐出量の変化を抑えることができる。これによって、塗工開始端部の塗工膜厚を均一化でき、乾燥工程での乾燥不良や、プレス工程での脱落を防止でき良好な電極を形成することができる。この場合、段付き部24(通路断面積変更手段)といった簡易な部品と、内部通路22bの通路断面積を変更するだけの簡易な方法とで塗工開始端部の塗工膜厚の突出を抑制しつつ間欠塗工を実現することができる。従来装置のように吸引ポンプを用いるのでは、塗工設備のメンテナンス、耐久性を含む設備投資が増えるという問題も生じ得るが、簡易な部品と簡易な方法とを採用する第1実施形態によれば、設備投資を抑制することができる。
【0044】
第1実施形態によれば、内面22aに形成される内部通路22bを塗工剤供給通路3とするバルブフランジ22と、このバルブフランジ22の内部通路22bの上方の開口端22d(一方の開口端)を遮断・開放するバルブ本体23と、このバルブ本体23に固定されるバルブロッド27と、このバルブロッド27を遮断・開放方向に駆動するバルブロッド駆動モータユニット28(アクチュエータ)とを備え、通路断面積変更手段は、バルブ本体23と一体動すると共に、内面22aとの間に空間を残して内部通路22bに突出する段付き部24であるので、バルブ本体23やバルブロッド27に段付き部24を追加して設計・設定するだけでよく、これによって、安価で、流路断面積変更の繰り返し再現性が高い通路断面積変更手段を得ることができる。
【0045】
(実施例)
次に、実施例1〜5について説明する。
【0046】
図4は実施例1〜3の塗工バルブ21の一部概略断面図である。図4左側は実施例1の塗工バルブ21の全開状態を、図4中央は実施例2の塗工バルブ21の全開状態を、図4右側は実施例3の塗工バルブ21の全開状態を示している。図2と同一部分には同一番号を付している。
【0047】
(実施例1)
実施例1は、図4左側に示したように、段付き部24の円筒状側面24aの外径とバルブフランジ内面22aの内径との比Φd/ΦD=0.864とする。かつ、段付き部24の軸方向長さとバルブロッド27の全開ストローク量との比L/Ls=60[%]としたものである。
【0048】
(実施例2)
実施例2は、図4中央に示したように、段付き部24の円筒状側面24aの外径とバルブフランジ内面22aの内径との比Φd/ΦD=0.864とする点で実施例1と同じとし、かつ実施例1よりも段付き部24の軸方向長さLを長くしたものである。すなわち、段付き部24の軸方向長さとバルブロッド27の全開ストローク量との比L/Ls=80[%]と、実施例1より20[%]大きくしている。
【0049】
(実施例3)
実施例3は、図4右側に示したように、実施例2に対して、段付き部24の円筒状側面24aの外径dを大きくし、かつ段付き部24の軸方向長さLを短くしたものである。すなわち、段付き部24の円筒状側面24aの外径とバルブフランジ内面22aの内径との比Φd/ΦD=0.886と実施例2よりも0.022だけ大きくし、かつ段付き部24の軸方向長さとバルブロッド27の全開ストローク量との比L/Ls=40[%]と実施例2の半分まで短くしている。
【0050】
(実施例4)
図5は実施例4の塗工バルブ21の一部概略断面図である。図5左側は実施例4の塗工バルブ21の全閉状態を、図5中央は実施例4の塗工バルブ21の半開状態を、図5右側は実施例4の塗工バルブ21の全開状態を示している。図2と同一部分には同一番号を付している。
【0051】
実施例4は、実施例3に対して段付き部24の下面24bにさらに段付き部24の円筒状側面24aの外径よりも小径である円柱状の段付き部31を追加して設けたものである。ここで、2つの段付き部があるので、大径側の段付き部24を1段目の段付き部、小径側の段付き部31を2段目の段付き部として区別する。また、1段目の段付き部24の軸方向長さをL1、2段目の段付き部31の軸方向長さをL2とする。
【0052】
1段目の段付き部24については実施例3と同じであるので、1段目の段付き部24の円筒状側面24aの外径とバルブフランジ内面22aの内径との比Φd/ΦD=0.886、1段目の段付き部24の軸方向長さと全開ストローク量との比L1/Ls=40[%]である。2段目の段付き部31については、2段目の段付き部31の円筒状側面31aの外径とバルブフランジ内面22aの内径との比Φd/ΦD=0.818とし、かつ2段目の段付き部31の軸方向長さと全開ストローク量との比L2/Ls=20[%]としている。
【0053】
なお、2段目の段付き部31の下面31bにはテーパー部32を設けている。
【0054】
ここで、実施例4の塗工バル21がどのように働くかを説明する。
【0055】
実施例4の塗工バルブ21の作動は、バルブロッド27が上方にストロークして1段目の段付き部24がバルブフランジ22の上方開口端22dを抜け出るまでは実施例3と同様である。すなわち、間欠塗工を開始するとき、バルブロッド駆動モータユニット28を作動させ、バルブロッド27を上方にストロークさせる(押し上げる)ことで、バルブ本体23がバルブフランジ22の上方開口端22dを開放する。すると、バルブ本体23とバルブフランジ22の上方開口端22dとの間に形成される内部通路22bを通って塗工剤が吐出しようとする。このとき、段付き部24が内部通路22bに存在することによって、塗工剤の吐出が邪魔されるため、塗工剤が通過する通路は、バルブフランジ22の内面22aと段付き部24の円筒状側面24aとの間に形成されるリング状の内部通路22bのみとなる。つまり、段付き部24を設けていない塗工バルブと比較したとき、段付き部24の断面積の分だけ内部通路22bの通路断面積が減少する。この通路断面積の減少は、図5中央に示したように、バルブロッド27が1段目の段付き部24の軸方向長さL1(=0.4Ls)の分だけ上方にストロークして、1段目の段付き部24がバルブフランジ22の上方開口端22dを抜け出るまで続く。
【0056】
実施例4の塗工バルブ21では、2段目の段付き部31を有するため、バルブロッド27が上方にストロークして、1段目の段付き部24がバルブフランジ22の上方開口端22dを抜け出た後の作動が実施例3と相違する。すなわち、1段目の段付き部24がバルブフランジ22の上方開口端22dを抜け出た後にも、2段目の段付き部31が内部通路22bに存在する。このため、塗工剤が通過する通路は、バルブフランジ22の内面22aと2段目の段付き部31の円筒状側面31aとの間に形成されるリング状の内部通路22bとなる。このときの内部通路22bの通路断面積は、1段目の段付き部24が内部通路22bに存在するときの内部通路22bの通路断面積よりは少し大きい。そして、この通路断面積の漸増は、バルブロッド27が2段目の段付き部31の軸方向長さL2(=0.2Ls)の分だけ上方にストロークして、2段目の段付き部31がバルブフランジ22の上方開口端22dを抜け出るまで続く。
【0057】
バルブロッド25がさらに上方にストロークし、2段目の段付き部31がバルブフランジ22の上方開口端22dを抜け出た後には内部通路22bの通路断面積割合が100[%]となり、この状態が全開ストローク量Lsとなるまで続く。
【0058】
1段目の段付き部24の軸方向長さL1と2段目の段付き部31の軸方向長さL2との合計(=0.6Ls)に到達する分だけストロークした状態から、さらにバルブロッド25が0.4Lsだけストロークすると、全開ストローク量Lsに到達する。
【0059】
(実施例5)
図6は実施例5の塗工バルブ21の一部概略断面図である。図6左側は実施例5の塗工バルブ21の全閉状態を、図6中央は実施例5の塗工バルブ21の半開状態を、図6右側は実施例5の塗工バルブ21の全開状態を示している。図2と同一部分には同一番号を付している。
【0060】
実施例5は、実施例3を前提として、段付き部34をバルブ本体23から離れる向き(下方)に設けたものである。ここでは、実施例3の段付き部24と区別するため、バルブ本体23の下面より所定の空間をおいて設けた段付き部34を「中間段付き部」という。
【0061】
中間段付き部34の形状は、実施例3の段付き部24の形状と同一であるので、中間段付き部34の円筒状側面34aの外径とバルブフランジ内面22aの内径との比Φd/ΦD=0.886である。また、中間段付き部34の軸方向長さをL3とすると、中間段付き部34の軸方向長さとバルブロッド27の全開ストローク量との比L3/Ls=40[%]である(図6右側参照)。
【0062】
さらに、中間段付き部34の上面34bがバルブフランジ22の上方開口端22dに到達するときのバルブロッド27のストローク量は、図6中央に示したように全開ストローク量Lsの50[%]のときとしている。
【0063】
なお、中間段付き部34の上面34b、下面34cにはそれぞれテーパー部35、36を設けている(図6左側参照)。
【0064】
ここで、実施例5の塗工バル21がどのように働くかを説明する。
【0065】
間欠塗工を開始するとき、バルブロッド駆動モータユニット28を作動させ、バルブロッド27を上方にストロークさせる(押し上げる)ことで、バルブ本体23がバルブフランジ22の上方開口端22dを開放する。すると、バルブ本体23とバルブフランジ22の上方開口端22dとの間に形成される内部通路22bを通って塗工剤が吐出しようとする。このとき、実施例3の塗工バルブ21と相違して段付き部24が存在しないため、内部通路22bを通過する塗工剤の吐出が邪魔されることがなく、塗工剤が通過する通路は、バルブフランジ22の内面22aとバルブロッド27の円筒状側面27aとの間に形成される内部通路22bとなる。つまり、段付き部24を設けていない塗工バルブ21と同じに内部通路22bの通路断面積割合が100[%]となる。
【0066】
その後、バルブロッド25がさらに上方にストロークし、中間段付き部34がバルブフランジ22の上方開口端22dに近づいてくると、中間段付き部34によって内部通路22bを通過する塗工剤の吐出が邪魔される。バルブロッド25がさらに上方にストロークし、バルブロッド25のストローク量が全開スロトーク量Lsの半分となったとき、図6中央に示した状態となる。この状態で塗工剤が通過する通路は、バルブフランジ22の内面22aと中間段付き部34の円筒状側面34aとの間に形成されるリング状の内部通路22bのみとなる。そして、塗工剤が通過する通路が、バルブフランジ22の内面22aと中間段付き部34の円筒状側面34aとの間に形成されるリング状の内部通路22bのみとなる状態は、中間段付き部34がバルブフランジ22の上方開口端22dを抜け出るまで続く。
【0067】
図6中央の状態から、中間段付き部34の軸方向長さL3(=0.4Ls)の分だけバルブロッド25が上方にストロークした後には、中間段付き部34がバルブフランジ22の上方開口端22dを抜け出ることとなり、内部通路22b通路断面積割合が100[%]となる。
【0068】
中間段付き部34の軸方向長さL3(=0.4Ls)の分だけストロークした状態からさらにバルブロッド25が0.1Lsだけ上方にストロークすると、バルブロッド27のストローク量が全開ストローク量Lsに到達する。
【0069】
上記比較例、実施例1〜5の各塗工バルブ21を用いて間欠的に形成される電極は、リチウムイオン二次電池用の電極である。このため、正極活物質としてLi金属酸化物、導電材としてカーボンブラック、バインダーとしてPVDFを用い、これらを有機溶媒NMP中で混練・希釈し、60wt%固形分の塗工剤を得た。また、金属集電体5としてアルミニウム製の集電体を用いた。上記比較例、実施例1〜5の各塗工バルブ21を用いて、アルミニウム製の集電体の上に塗工剤(正極)を間欠塗工し、連続乾燥炉を通過させ、比較例、実施例1〜5の各正極を形成した。
【0070】
なお、ここで形成される正極は、正確には集電体の片面に正極活物質層を間欠的に形成したに過ぎず、実際には、集電体のもう一つの面にも間欠的に正極活物質層を形成する。このようにして集電体の両面に正極活物質層を形成した正極が完成する。この後の電池製造の工程は次の通りである。図示しないが、正極と同様にして集電体の両面に負極活物質層を形成した負極を完成する。正極、セパレータ、負極をこの順に積層して発電要素を構成し、この発電要素をアルミラミネートフィルムで被覆すると共に、内部に電解液を充填することによって、扁平状のラミネート型電池を製造する。
【0071】
(まとめ)
図7は、以上の比較例、実施例1〜5の各塗工バルブ21を用いて間欠塗工した際の塗工開始端部の突出膜厚割合をまとめたものである。ここで、図7最右欄に示す「塗工開始端部の突出膜厚割合」とは、塗工開始端部の最大厚みとなったところから塗工方向に塗工終端部に向かって3mm経過したところまでの範囲の塗工膜厚を一般塗工部の膜厚で除算した値(パーセント表示)である。「一般塗工部の膜厚」とは、塗工開始端部と塗工終端部とを除いた残りの塗工部の膜厚のことである。
【0072】
比較例の塗工バルブ21を用いた場合に塗工開始端部の突出膜厚割合が+6.3[%]とプラスで大きいことは、塗工開始端部が大きく突出していることを表す(図8の破線参照)。一方、実施例1の塗工バルブ21を用いた場合に「塗工開始端部の突出膜厚割合」が+1.3[%]と、比較例の塗工バルブ21を用いた場合よりプラスで小さいことは、塗工開始端部が小さくしか突出していないことを表す(図8の実線参照)。なお、図8は、実施例1と比較例の各塗工バルブを用いて間欠的に電極を形成したときの乾燥後の塗工膜厚の分布を重ねて示したものである。
【0073】
比較例の塗工バルブ21では、内部通路22bの通路断面積割合を全閉状態のゼロ[%]から全開状態の100[%]へと切換えることにより塗工が開始される。このような単純な内部通路22bの通路断面積割合の2値的な切換操作では、塗工剤の突入圧が高くなり、結果として塗工開始端部の吐出量が多くなり、塗工開始端部の膜厚が、図8に破線に示したように大きくなってしまう。金属集電体5上に塗工された塗工剤は正極活物質層9となる。塗工完了後にはこの正極活物質層9と金属集電体5の接着強度を上げたり、正極活物質層9の密度を向上させるために、乾燥工程での処理後にプレス工程では正極活物質層9に対してローラーがけすることで一定圧を作用させる処理を行う。そのプレス工程での処理の際に突出した塗工開始端部は局部的に剥れが発生しやい。
【0074】
これに対し、実施例1〜3の塗工ブルブ21では内部通路22bの通路断面積割合が小さい側から大きい側へと2段階に変更される。
【0075】
例えば、実施例1の塗工ブルブ21では、バルブロッド27のストローク量がLsの60[%]に到達するまでは内部通路22bの通路断面積割合が25.4[%]である。バルブロッド27のストローク量がLsの60[%]から100[%]までの範囲では内部通路22bの通路断面積割合が100[%]へと変化する。
【0076】
実施例2の塗工ブルブ21では、バルブロッド27のストローク量がLsの80[%]に到達するまでは内部通路22bの通路断面積割合が25.4[%]である。バルブロッド27のストローク量がLsの80[%]から100[%]までの範囲では内部は通路22bの通路断面積割合が100[%]へと変化する。
【0077】
実施例3の塗工ブルブ21では、バルブロッド27のストローク量がLsの40[%]に到達するまでは内部通路22bの通路断面積割合が21.4[%]である。バルブロッド27のストローク量がLsの40[%]から100[%]までの範囲では内部通路22bの通路断面積割合が100[%]へと変化する。
【0078】
このように、実施例1〜3の塗工バルブ21によれば、内部通路22bの通路断面積割合が、小さい側から大きい側へと2段階に変更されるのである。
【0079】
次に、実施例4の塗工ブルブ21では内部通路22bの通路断面積割合が小、中、大の3段階に変更される。すなわち、実施例4の塗工ブルブ21では、バルブロッド27のストローク量がLsの40[%]に到達するまでは内部通路22bの通路断面積割合が21.4[%]である。バルブロッド27のストローク量がLsの40[%]から60[%]までの範囲では内部通路22bの通路断面積割合が33[%]へと変化する。そして、バルブロッド27のストローク量がLsの60[%]から100[%]までの範囲で内部通路22bの通路断面積割合が100[%]となる。実施例4の塗工バルブ21によれば、内部通路22bの通路断面積割合が、小、中、大へと3段階に変更されるのである。
【0080】
一方、実施例5の塗工バルブ21では、バルブロッド27のストローク量がLsの50[%]に到達するまでは内部通路22bの通路断面積割合が100[%]である。バルブロッド27のストローク量Lsが50[%]から90[%]までの範囲では内部通路22bの通路断面積割合が21.4[%]へと変化する。そして、バルブロッド27のストローク量がLsの90[%]から100[%]までの範囲で内部通路22bの通路断面積割合が100[%]となる。実施例5の塗工バルブ21によれば、内部通路22bの通路断面積割合が、大、小、大へと3段階に変更される
実施例5の塗工バルブ21は、内部通路22bの通路断面積割合を小さい側から大きい側へと2段階に変更する前に内部通路22bの通路断面積割合を大きい側とするものである。このような場合でも、結果として、塗工開始端部の突出膜厚割合は、他の実施例1〜4と同様のレベルとなっている。
【0081】
このように、実施例1〜4の塗工バルブ21を用いて間欠的塗工を行い電極を製造するのであれば、塗工開始時の吐出量が少なくなるように通路断面積割合が塗工開始当初小さく、その後に大きくなる。すなわち、塗工開始当初の通路断面積割合を小さくすることによって、塗工剤の突入圧や吐出量の変化を抑えることができるため、図7最右欄に示したように塗工開始端部の突出膜厚割合を−0.2[%]〜+1.5[%]の範囲に均一化できている。100[%]を基準にすれば、塗工開始端部の突出膜厚割合は99.8[%]〜101.5[%]の範囲に収まっている。これによって、その後の乾燥工程での乾燥不良や、プレス工程での脱落を防止でき、良好な電極を形成することができる。
【0082】
実施例1〜3の塗工バルブ21は内部通路22bの通路断面積割合を小さい側から大きい側へと2段階に、実施例4の塗工バルブ21は内部通路22bの通路断面積割合を小、中、大と3段階に変更するものであったが、変更の段数はこれに限られるものでない。内部通路22bの通路断面積割合を小さい側から大きい側へと段階的に(不連続に)変更するだけでなく、内部通路22bの通路断面積割合を小さい側から大きい側へと連続的に変更するものであってもかまわない。
【0083】
実施例1〜3の塗工バルブ21では、バルブ本体23が上方開口端22dを開放し始めるときから段付き部24が上方開口端22dを抜け出る直前までの内部通路22bの通路断面積割合を25.4[%]、21.4[%]とした。また、実施例4では21.4[%]、33[%]としたが、これに限られるものでない。例えば、バルブ本体23が上方開口端22dを開放し始めるときから段付き部24が上方開口端22dを抜け出る直前までの内部通路22bの通路断面積割合は40[%]以下であればかまわない。実施例1〜4によれば、バルブ本体23が上方開口端22d(開口端)を遮断しているときの内部通路22bの通路断面積割合を0[%]、段付き部24(実施例4では2段目の段付き部31)が上方開口端22dを抜け出た後の内部通路22bの通路断面積割合を100[%]として、バルブ本体23が上方開口端22dを開放し始めるときから、段付き部24が上方開口端22dを抜け出る直前までの内部通路22bの通路断面積割合を40[%]%以下にするので、塗工開始端部の突出膜厚割合の変化を抑えることができ、有効な電極面積を増大させることができる。ここで「電極面積」とは、平面状の金属集電体5上に形成される正極活物質層9を平面状の金属集電体5に直交する方向からみたときの正極活物質層の面積のことである。塗工開始端部の塗工膜厚が一般塗工部の膜厚より突出している場合に、後のプレス工程でこの突出部が剥がれ落ちるとすれば、この剥がれ部位は、一般塗工部の膜厚より薄くなり、電池反応が一般塗工部より低下する。このように電池反応が一般塗工部より低下する部位を有することを有効な電極面積が減るという。従って、塗工開始端部の塗工膜厚割合の変化を抑制し得る実施例によれば、有効な電極面積を増大させることができるのである。
【0084】
実施例1〜4の塗工バルブ21では、バルブロッド27が略一定速度で全開ストローク量Lsまでストロークするとき、段付き部24の軸方向長さを全開ストローク量Lsの40[%]〜80[%]の範囲としたが、これに限られない。例えば、段付き部24の軸方向長さは全開ストローク量Lsの30[%]から95[%]までの範囲にあればかまわない。実施例1〜4によれば、バルブロッド27が全開ストローク量Lsまでストロークするとき、段付き部24の軸方向長さは、全開ストローク量Lsの30[%]から95[%]までの範囲にあるので、塗工開始端部の塗工膜厚割合の変化を比較例よりも抑えることができる。これによって、塗工開始端部の塗工膜厚変化のスロープ部の長さが比較例よりも短くなることから、有効な電極面積を増大させることができる。ここで、「スロープ部」とは、図8に示したように、塗工開始端部から塗工膜厚が一定とならず変化している部位のことである。
【0085】
上記のように段付き部24の軸方向長さを全開ストローク量Lsの30[%]から95[%]までの範囲としたのは、内部通路22bの通路断面積割合を小さい側に変更する時間を段付き部24の軸方向長さで規定したものであるが、これに限られない。例えば、バルブロッド27が略一定速度でLsまでストロークするとき、内部通路22bの通路断面積割合を小さい側に変更する時間を、バルブロッド27のストローク量がLsに到達するまでの時間の30[%]から95[%]までの範囲としてもかまわない。これによっても同じ作用効果を得ることができる。すなわち、実施例1〜4によれば、バルブロッド27が略一定速度で全開ストローク量Lsまでストロークするとき、通路断面積割合を小さい側に変更する時間は、バルブロッド27のストローク量が全開ストローク量Lsに到達するまでの時間の30[%]から95[%]までの範囲にあるので、塗工開始端部の塗工膜厚割合の変化を比較例よりも抑えることができる。これによって、塗工開始端部の塗工膜厚変化のスロープ部の長さが比較例よりも短くなることから、有効な電極面積を増大させることができる。
【0086】
実施例1〜4の塗工バルブ21では、バルブロッド27を略一定の速度で上方(開き側)にストロークさせる場合で説明したが、これに限られない。例えば、バルブロッド27が全開ストローク量Lsまでストロークするときのストローク速度を2段階以上にあるいは無段階に(連続的に)変化させることが考えられる。具体的には、製造条件に合わせてバルブロッド27の上方へのストローク速度を、開弁当初は大きくその後に小さくしたり、この逆に開弁当初は小さくその後に大きくしたりするのである。このものによれば、バルブロッドのストローク速度を可変にするだけで、塗工バルブのバルブ構造等を変更せずに同一設備で複数の製造条件に対応できるようになることから、製造設備の汎用性が向上する。
【0087】
実施例1〜4の塗工バルブ21では、塗工開始端部の突出膜厚割合は100[%]を基準にすれば99.8[%]〜101.5[%]の範囲に収まっているが、実際には98[%]〜102[%]の範囲に収まっていればかまわない。実施例1〜4によれば、リチウムイオン電池用の電極であって、塗工開始端部の最大厚みとなったところから塗工方向に塗工終端部に向かって3mmの範囲の塗工膜厚が、一般塗工部の98%から102%までの範囲にあるので、塗工開始部から有効な電極を製造できるため、安価で高性能な電池を提供できる。
【0088】
実施形態の塗工バルブ21、実施例の塗工バルブ21を用いて形成する電極はリチウムイオン二次電池用の電極である場合で説明したが、リチウムイオン二次電池用の電極に限定されるものでない。
【符号の説明】
【0089】
1 塗工剤タンク
2 ダイヘッド(塗布手段)
3 塗工剤供給通路
4 供給ポンプ
5 金属集電体
6 バックアップロール
12 リターンバルブ(塗工剤間欠供給手段)
21 塗工バルブ(塗工剤間欠供給手段)
22 バルブフランジ
22b 内部通路
22d 上方開口端(開口端)
23 バルブ本体
24 段付き部(1段目の段付き部、通路断面積変更手段)
24a 円筒状側面
27 バルブロッド
28 バルブロッド駆動モータユニット(アクチュエータ)
31 2段目の段付き部
31a 円筒状側面

【特許請求の範囲】
【請求項1】
塗工剤を収納するタンクと、
このタンク内の塗工剤を圧送する供給ポンプと、
この圧送される塗工剤を供給する塗工剤供給通路を間欠的に遮断する塗工剤間欠供給手段と、
この塗工剤間欠供給手段より供給される塗工剤を集電体上に塗布する塗布手段と
を備え、
前記塗工剤間欠供給手段は、塗工開始より塗工剤の吐出量が一定になるまでに前記塗工剤供給通路の通路断面積を小さい側から大きい側へと変更する通路断面積変更手段を有することを特徴とする電極の製造方法。
【請求項2】
内面に形成される内部通路を前記塗工剤供給通路とするバルブフランジと、
このバルブフランジの内部通路の一方の開口端を遮断・開放するバルブ本体と、
このバルブ本体に固定されるバルブロッドと、
このバルブロッドを遮断・開放方向に駆動するアクチュエータと
を備え
前記通路断面積変更手段は、前記バルブ本体と一体動すると共に、前記内面との間に空間を残して前記内部通路に突出する段付き部であることを特徴とする請求項1に記載の電極の製造方法。
【請求項3】
前記バルブ本体が前記開口端を遮断しているときの前記内部通路の通路断面積割合を0%、前記段付き部が前記開口端を抜け出た後の前記内部通路の通路断面積割合を100%として、前記バルブ本体が前記開口端を開放し始めるときから、前記段付き部が前記開口端を抜け出る直前までの前記内部通路の通路断面積割合は40%以下であることを特徴とする請求項2に記載の電極の製造方法。
【請求項4】
前記バルブロッドが略一定速度で全開ストローク量までストロークするとき、前記内部通路の通路断面積割合を小さい側に変更する時間は、前記バルブロッドのストローク量が前記全開ストローク量に到達するまでの時間の30%から〜95%までの範囲にあることを特徴とする請求項3に記載の電極の製造方法。
【請求項5】
前記バルブロッドが略一定速度で全開ストローク量までストロークするとき、前記段付き部の軸方向長さは、前記全開ストローク量の30%から95%までの範囲にあることを特徴とする請求項3に記載の電極の製造方法。
【請求項6】
前記バルブロッドが全開ストローク量までストロークするときのストローク速度を変化させることを特徴とする請求項3に記載の電極の製造方法。
【請求項7】
請求項1から6までのいずれか一つの電極の製造方法により製造されるリチウムイオン電池用の電極であって、
塗工開始端部の最大厚みとなったところから塗工方向に塗工終端部に向かって3mmの範囲の塗工膜厚は、一般塗工部の98%から102%までの範囲にあることを特徴とするリチウムイオン電池用の電極。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate


【公開番号】特開2013−114969(P2013−114969A)
【公開日】平成25年6月10日(2013.6.10)
【国際特許分類】
【出願番号】特願2011−261658(P2011−261658)
【出願日】平成23年11月30日(2011.11.30)
【出願人】(000003997)日産自動車株式会社 (16,386)
【Fターム(参考)】