説明

電極構造体、電極構造体の製造方法、冷陰極放電ランプ、照明装置および画像表示装置

【課題】低圧放電ランプの封止に用いた場合に、低圧放電ランプの内部空間に空気が流入するのを防止することを目的とする。
【解決手段】電極101と、一端部が電極101に接続された封着線102と、封着線102の少なくとも一部を被覆するように形成されたガラス部材103とを有する電極構造体100であって、封着線102の表面のうち、ガラス部材103に被覆された部分の略中間部は、酸化膜105が形成されておらず、または最大厚みが0.1[μm]以下の酸化膜105が形成されており、ガラス部材103の封着線102側には封着線102の材料の拡散層106が形成されている。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、電極構造体、電極構造体の製造方法、冷陰極放電ランプ、照明装置および画像表示装置に関する。
【背景技術】
【0002】
従来の冷陰極放電ランプの管軸を含む断面図を図13に示す。従来の電極構造体(以下、「電極構造体1」という。)は、カップ状の電極2と、電極2の底端面に接合されるリード線3と、リード線3の外周に接合されるガラス部材4とを備え、リード線3は、ガラス部材4に接合される内部リード線(封着線)3aと、ガラス部材4の外部に露出して配される外部リード線3bとからなり、内部リード線3aは、その表面においてガラス部材4で覆われる箇所に酸化膜5を備える(例えば特許文献1参照)。
【先行技術文献】
【特許文献】
【0003】
【特許文献1】特開2008−130396号公報
【発明の概要】
【発明が解決しようとする課題】
【0004】
電極構造体1の場合、封着線3aの表面に酸化膜を形成したときの酸化膜の厚みは、2.8[μm]〜3.7[μm]であり、内部リード線3aをガラス部材で覆った後には、ガラス部材に覆われている部分の酸化膜5の厚みが1.4[μm]〜2.5[μm]と薄くなるが、依然として封着線3aのガラス部材4で覆われている部分全体に酸化膜5が確認できる程度に残存しているものである。
【0005】
しかしながら、発明者らの検討により、電極構造体1を用いて低圧放電ランプの封止を行った場合には、封着線3aとガラス部材4との間から低圧放電ランプの内部空間に、外部空間から空気が流入しやすいことがわかった。
【0006】
そこで、本発明に係る電極構造体、電極構造体の製造方法は、低圧放電ランプの封止に用いた場合に、低圧放電ランプの内部空間に空気が流入するのを防止することを目的とする。
【0007】
また、本発明に係る低圧放電ランプは、低圧放電ランプの内部空間に空気が流入するのを防止することを目的とする。
【0008】
さらに、本発明に係る照明装置および画像表示装置は、内部に備える低圧放電ランプの内部空間に空気が流入するのを防止することを目的とする。
【課題を解決するための手段】
【0009】
上記の課題を解決するために、本発明に係る電極構造体は、電極と、一端部が前記電極に接続された封着線と、前記封着線の少なくとも一部を被覆するように形成されたガラス部材とを有する電極構造体であって、前記封着線の表面のうち、前記ガラス部材に被覆された部分の略中間部には、酸化膜が形成されておらず、または最大厚みが0.1[μm]以下の酸化膜が形成されており、前記ガラス部材の前記封着線側には前記封着線の材料の拡散層が形成されていることを特徴とする。
【0010】
また、本発明に係る電極構造体は、電極と、一端部が前記電極に接続された封着線と、前記封着線の少なくとも一部を被覆するように形成されたガラス部材とを有する電極構造体であって、前記封着線の表面のうち、前記ガラス部材に被覆された部分には、酸化膜が形成されておらず、または最大厚みが0.1[μm]以下の酸化膜が形成されており、前記ガラス部材の前記封着線側には前記封着線の材料の拡散層が形成されていることを特徴とする。
【0011】
また、本発明に係る電極構造体は、電極と、一端部が前記電極に接続された封着線と、前記封着線の少なくとも一部を被覆するように形成されたガラス部材とを有する電極構造体であって、前記封着線の表面のうち、前記ガラス部材に被覆された部分の略中間部は、最大厚みが0.1[μm]以下の酸化膜が形成されており、前記酸化膜には、Fe34およびFeOのうちいずれか1種以上が含まれており、前記ガラス部材の前記封着線側には前記封着線の材料の拡散層が形成されていることを特徴とする。
【0012】
さらに、本発明に係る電極構造体は、電極と、一端部が前記電極に接続された封着線と、前記封着線の少なくとも一部を被覆するように形成されたガラス部材とを有する電極構造体であって、前記封着線の表面のうち、前記ガラス部材に被覆された部分には、最大厚みが0.1[μm]以下の酸化膜が形成されており、前記酸化膜には、Fe34およびFeOのうちいずれか1種以上が含まれており、前記ガラス部材の前記封着線側には前記封着線の材料の拡散層が形成されていることを特徴とする。
【0013】
また、本発明に係る電極構造体は、前記拡散層の最小厚みは8[μm]以上であり、前記拡散層の最大厚みは30[μm]以下であることが好ましい。
【0014】
また、本発明に係る電極構造体は、前記封着線48[wt%]以上54[wt%]以下の範囲内の鉄と46[wt%]以上52[wt%]以下の範囲内のニッケルとを含むことが好ましい。
【0015】
また、本発明に係る電極構造体は、前記ガラス部材は、酸化物換算で、SiO2が60[wt%]〜75[wt]%、Al23が1[wt%]〜5[wt%]、Li2Oが0[wt%]〜5[wt%]、K2Oが3[wt%]〜11[wt%]、Na2Oが3[wt%]〜12[wt%]、CaOが0[wt%]〜9[wt%]、MgOが0[wt%]〜9[wt%]、SrOが0[wt%]〜12[wt%]、BaOが0[wt%]〜12[wt%]の組成を有することが好ましい。
【0016】
本発明に係る電極構造体は、電極と、一端部が前記電極に接続された封着線と、前記封着線の少なくとも一部を被覆するように形成されたガラス部材とを有する電極構造体であって、前記封着線の表面のうち、前記ガラス部材に被覆された部分の略中間部に形成された酸化膜を、全て拡散させ、または最大厚みが0.1[μm]以下の酸化膜が残るように拡散させることで、前記ガラス部材の前記封着線側には前記封着線の材料の拡散層が形成されていることを特徴とする。
【0017】
本発明に係る電極構造体の製造方法は、電極と、一端部が前記電極に接続された封着線と、前記封着線の少なくとも一部を被覆するように形成されたガラス部材とを有する電極構造体の製造方法であって、前記電極と、前記封着線の一端部とを接続する工程と、前記封着線の表面に酸化膜を形成する工程と、前記封着線の少なくとも一部に前記ガラス部材を被覆させ、前記封着線の表面のうち、前記ガラス部材に被覆された部分の略中間部に形成された酸化膜を、全て拡散させ、または最大厚みが0.1[μm]以下の酸化膜が残るように拡散させる工程とを有することを特徴とする。
【0018】
本発明に係る低圧放電ランプは、ガラスバルブと、前記ガラスバルブの少なくとも一方の端部に設けられた電極構造体とを有することを特徴とする。
【0019】
本発明に係る照明装置は、前記低圧放電ランプを備えることを特徴とする。
【0020】
本発明に係る画像表示装置は、前記照明装置を備えることを特徴とする。
【発明の効果】
【0021】
本発明に係る電極構造体、電極構造体の製造方法は、低圧放電ランプの封止に用いた場合に、低圧放電ランプの内部空間に空気が流入するのを防止することができる。
【0022】
また、本発明に係る低圧放電ランプは、低圧放電ランプの内部空間に空気が流入するのを防止することができる。
【0023】
さらに、本発明に係る照明装置および画像表示装置は、内部に備える低圧放電ランプの内部空間に空気が流入するのを防止することができる。
【図面の簡単な説明】
【0024】
【図1】(a)本発明の第1の実施形態に係る電極構造体の長手方向の中心軸を含む断面図、(b)封着線の表面のうち、ガラス部材に被覆された部分の略中間部の酸化膜が全て拡散している場合の図1(a)のA部分の要部拡大断面図、(c)封着線の表面のうち、ガラス部材に被覆された部分の略中間部に最大厚みが0.1[μm]以下の酸化膜が形成されている場合の図1(a)のA部分の要部拡大断面図
【図2】(a)本発明の第1の実施形態に係る電極構造体の変形例の長手方向の中心軸を含む断面図、(b)封着線の表面のうち、ガラス部材に被覆された部分の略中間部の酸化膜が全て拡散している場合の図2(a)のB部分の要部拡大断面図、(c)封着線の表面のうち、ガラス部材に被覆された部分の略中間部に最大厚みが0.1[μm]以下の酸化膜が形成されている場合の図2(a)のB部分の要部拡大断面図
【図3】(a)本発明の第1の実施形態に係る電極構造体の製造工程における接続工程の概念図、(b)同じく酸化工程の概念図、(c)同じく挿入工程の概念図、(d)同じく封着工程の概念図、(e)同じく還元工程の概念図
【図4】本発明の第3の実施形態に係る低圧放電ランプの管軸を含む断面図
【図5】本発明の第4の実施形態に係る低圧放電ランプの管軸を含む断面図
【図6】(a)本発明の第5の実施形態に係る電極構造体の長手方向の中心軸を含む断面図、(b)同じく電極構造体の変形例の長手方向の中心軸を含む断面図
【図7】(a)本発明の第6の実施形態に係る低圧放電ランプの管軸を含む断面図、(b)同じく低圧放電ランプの変形例の管軸を含む断面図
【図8】本発明の第7の実施形態に係る照明装置の分解斜視図
【図9】本発明の第8の実施形態に係る照明装置の一部切欠斜視図
【図10】(a)本発明の第9の実施形態に係る照明装置の正面図、(b)図10(a)のC−C´線で切った断面図
【図11】本発明の第10の実施形態に係る画像表示装置の斜視図
【図12】(a)本発明の第2の実施形態に係る低圧放電ランプの変形例の要部拡大正面図、(b)同じく管軸を含む要部拡大断面図
【図13】従来の電極構造体の長手方向の中心軸を含む断面図
【発明を実施するための形態】
【0025】
(第1の実施形態)
本発明の第1の実施形態に係る電極構造体の長手方向の中心軸X100を含む断面図を図1(a)に示す。本発明の第1の実施形態に係る電極構造体100(以下、「電極構造体100」という。)は、電極101と、一端部が電極101に接続された封着線102と、封着線102の少なくとも一部を被覆するように形成されたガラス部材103とを有する。
【0026】
電極101は、例えば有底筒状であって、内径が2.4[mm]、外径が2.7[mm]、底部の肉厚が0.2[mm]、全長が8.2[mm]であって、ニッケル(Ni)製である。なお、電極101の材料は、ニッケルに限らず、ニオビウム(Nb)、モリブデン(Mo)、タンタル(Ta)およびタングステン(W)のいずれか一種またはいずれか一種以上の合金を用いてもよい。電極101は、その外側底面の略中央部において封着線102の一端面と接続されている。なお、電極101と封着線102とは、直接接続されていてもよいし、例えばニッケル箔やコバール箔からなるろう材(図示せず)を介して接続されていてもよい。また、電極101と封着線102との接続方法としては、レーザー溶接や抵抗溶接等を用いることができる。
【0027】
封着線102は、線径が0.8[mm]であって、鉄とニッケルとの合金製である。封着線102は、ガラス部材103の材料として用いるガラスの熱膨張係数に併せた材料を用いることが好ましい。
【0028】
なお、封着線102は、48[wt%]以上54[wt%]以下の範囲内の鉄と46[wt%]以上52[wt%]以下の範囲内のニッケルとを含むことが好ましい。この場合、ガラス部材103が熱膨張係数90×10-7[K-1]以上100×10-7[K-1]以下範囲内の軟質ガラスである場合に、封着線102とガラス部材103との封着性を向上させることができる。
【0029】
封着線102の他端部には、外部リード線104が接続されていることが好ましい。この場合、電極構造体100を低圧放電ランプに用いた場合に、外部リード線104にかかる応力が封着線102と外部リードの接続部で吸収されるため、ガラス部材103へ伝わる応力を緩和することができる。外部リード線104は、例えば線径が0.6[mm]であって、ニッケル製である。なお、外部リード線104の材料は、ニッケルに限らず、例えばニッケルとマンガンとの合金やジュメット線等を用いてもよい。さらに、外部リード線104の表面は、外部リード線104の酸化防止のために、半田で覆われていてもよい。
【0030】
ガラス部材103は、略球形状であって、その略中心軸に沿って封着線102の少なくとも一部を被覆しており、鉛フリーガラスやソーダガラス等の軟質ガラス製である。なお、ガラス部材103は、封着性の観点から、封着させるガラスバルブと同一の材料、またはガラスバルブ101と熱膨張係数が同一または近似する材料からなることが好ましい。
【0031】
封着線102の表面のうち、ガラス部材103に被覆された部分の略中間部は、酸化膜105が形成されておらず、または最大厚みが0.1[μm]以下の酸化膜105が形成されており、ガラス部材103の封着線102側には封着線102の材料の拡散層106が形成されている。封着線102の表面のうち、ガラス部材103に被覆された部分の略中間部の酸化膜105が全て拡散している場合の図1(a)のA部分の要部拡大断面図を図1(b)に、封着線102の表面のうち、ガラス部材103に被覆された部分の略中間部に最大厚みが0.1[μm]以下の酸化膜105が形成されている場合の図1(a)のA部分の要部拡大断面図を図1(c)にそれぞれ示す。
【0032】
封着線102の表面のうち、ガラス部材103に被覆された部分の略中間部の構造が図1(b)および(c)に示すようになるのは、あらかじめ封着線102の表面に形成された酸化膜105の成分がガラス部材103の内部に拡散していくことにより、封着線102の表面のうち、ガラス部材103に被覆された部分の略中間部の酸化膜105がほとんど確認できない程度に薄くなるためである。言い換えれば、封着線102の表面には、あらかじめ封着線の材料の酸化膜が形成されており、酸化膜中の封着線102の材料(封着線が鉄とニッケルとの合金の場合には、鉄)がガラス部材103に拡散していくことにより、ガラス部材103の封着線102側に封着線の材料(封着線が鉄とニッケルとの合金の場合には、鉄)の拡散層が形成され、ガラス部材103に被覆された部分の略中間部の酸化膜105がほとんど確認できない程度に薄くなる。
【0033】
これにより、封着線102とガラス部材103とが密着することで、電極構造体100を用いて低圧放電ランプの封止を行った場合に、低圧放電ランプの内部空間に空気が流入しやすくなるのを防止することができる。
【0034】
一方、酸化膜が確認できる程度に残存している場合、酸化膜中に空隙ができやすく、ランプにした後に、その空隙を通じてランプの内部空間と外部空間とがつながりやすくなるため、ランプの内部空間に空気が流入しやすくなる。
【0035】
なお、封着線102の表面のうち、ガラス部材103に被覆された部分の略中間部は、最大厚みが0.1[μm]以下の酸化膜105が形成されている場合、酸化膜105には、Fe34およびFeOのうちいずれか1種以上が含まれていることが好ましい。この場合、封着線102とガラス部材103との間の引っ張り強度を向上させることができる。さらには、酸化膜105には、Fe34が含まれていることがより好ましい。この場合、封着線102とガラス部材103との間の引っ張り強度をさらに向上させることができる。
【0036】
なお、図1(a)に示すように、封着線102の表面のうち、ガラス部材に被覆された部分の端部には、確認できる程度の酸化膜(以下、「厚い酸化膜105a」という。)が形成されていてもよい。
【0037】
なお、厚い酸化膜105aの形成されている領域の面積は、封着線102の表面積のうち、ガラス部材103に被覆されている部分の表面積の5[%]以上40[%]以下の範囲内であることが好ましい。この場合、外部リード線104に負荷がかかった場合、その応力が端部の厚い酸化膜105aの剥離で吸収されるので外部リード線104への急な衝撃に伴うリークを防止できる。
【0038】
さらに、より好ましくは、厚い酸化膜105aは環状であって、厚い酸化膜105aの形成されている領域の長手方向の長さは、封着線102の表面のうち、ガラス部材103に被覆されている部分の長さの0[%]以上40[%]以下の範囲内であることが好ましい。この場合、厚い酸化膜105aの形成されている領域を減らすことで、低圧放電ランプの内部空間に空気が流入するのを防止しやすくすることができる。
【0039】
本発明の第1の実施形態に係る電極構造体の変形例の長手方向の中心軸X107を含む断面図を図2(a)に、封着線102の表面のうち、ガラス部材103に被覆された部分の略中間部の酸化膜が全て拡散している場合の図2(a)のB部分の要部拡大断面図を図2(b)に、封着線102の表面のうち、ガラス部材103に被覆された部分の略中間部に最大厚みが0.1[μm]以下の酸化膜105が形成されている場合の図2(a)のB部分の要部拡大断面図を図2(c)にそれぞれ示す。
【0040】
図2(a)〜(c)に示すように、本発明の第1の実施形態に係る電極構造体の変形例(以下、「電極構造体107」という。)は、電極101と、一端部が電極101に接続された封着線102と、封着線102の少なくとも一部を被覆するように形成されたガラス部材103とを有する電極構造体107であって、封着線102の表面のうち、ガラス部材103に被覆された部分には、酸化膜105が形成されておらず、または最大厚みが0.1[μm]以下の酸化膜105が形成されており、ガラス部材103の封着線102側には封着線102の材料の拡散層106が形成されている。この場合、酸化工程で形成された酸化膜がガラス内部へ十分に拡散できるために、封着線102とガラス部材103とが強固に密着できるので、低圧放電ランプの内部空間に空気が流入するのを十分に防止することができる。
【0041】
(実験)
発明者らは、封着線102の表面において、ガラス部材103に被覆された部分の略中間部には、酸化膜105が形成されておらず、または最大厚みが0.1[μm]以下の酸化膜105が形成されており、ガラス部材の封着線102側には封着線102の材料の拡散層106が形成されていることで、電極構造体100を用いて低圧放電ランプの封止を行った場合に、低圧放電ランプの内部空間に空気が流入するのを防止することができることを確認するために、リーク試験を行った。
【0042】
実験には、以下の4種類の試料を用いた。電極構造体100と実質的に同じ構成のものを用いて作製した低圧放電ランプを実施例1とした。また、電極構造体107と実質的に同じ構成のものを用いた点を除いては、実施例1と実質的に同じ構成のものを実施例2とした。さらに、封着線の表面において、ガラス部材に被覆された部分の略中間部に、確認できる程度の(最大厚みが0.1[μm]よりも厚い)酸化膜が形成されている電極構造体を用いた点を除いては、実施例100と実質的に同じ構成のものを比較例1とした。さらにまた、封着線の表面において、ガラス部材に被覆された部分に、酸化膜が形成されておらず、ガラス部材の封着線側には封着線の材料の拡散層が形成されていない電極構造体を用いた点を除いては、実施例1と実質的に同じ構成のものを比較例2とした。
【0043】
実験は、水平な台の上に試料であるランプを水平に保持して外部リード線を台の外に出し、外部リード線に1800[g]の分銅を10秒間吊るすことを5回繰り返した後に、ランプの始動試験でリーク確認を行った。リーク確認の判断基準は、試験前の始動電圧の100[V]以内で点灯した場合に、「○」とし、100[V]を越えて点灯した場合や点灯しなかった場合を「×」とした。空気が流入すると、窒素や酸素等の不純ガスがランプ内に流入して、ランプ内部の気圧上昇し、ランプの始動電圧が上昇するためである。また、さらに、実施例1および2については、2800[g]の分銅についても同じ方法にて、ランプの内部空間への空気の流入の有無を確認した。各実験試料において、10本中の「×」の判定となった本数(すなわち、ランプの内部空間に空気の流入があった本数)を求めた。
【0044】
実験結果を表1に示す。
【0045】
【表1】

【0046】
表1に示すように、実施例1および2は、1800[g]の分銅を吊るしたときに、ランプの内部空間に空気が流入していない。これに対して、比較例1および2は、数本のランプの内部空間に空気が流入している。
【0047】
比較例1の場合、封着線の表面のうち、ガラス部材に被覆された部分の略中間部に確認できる程度の酸化膜が形成されているため、その酸化膜の部分を通じて、ランプの内部空間に空気が流入しているものと考えられる。
【0048】
また、比較例2の場合、封着線の表面において、ガラス部材に被覆された部分に、酸化膜が形成されておらず、ガラス部材の封着線側には封着線の材料の拡散層が形成されていないため、封着線とガラス部材との密着度が弱く、ガラス部材が封着線から剥離している部分が存在しているためと思われる。
【0049】
一方、実施例1および2は、封着線の表面のうち、ガラス部材に被覆された部分の略中間部には、酸化膜が形成されておらず、または最大厚みが0.1[μm]以下の酸化膜が形成されており、ガラス部材の封着線側には封着線の材料の拡散層が形成されているため、封着線とガラス部材との間が比較例1および2と比べてより密着しており、ランプの内部空間に空気が流入していないものと考えられる。
【0050】
さらに、実施例2は、2800[g]の分銅を吊るしたときに、実施例1よりもランプの内部空間への空気の流入が発生し難い。封着線102とガラス部材103との密着距離が長く確保でき、封着線102とガラス部材103とをより強固に密着することができるためである。
【0051】
電極構造体100の製造方法について、図3を用いて以下に説明する。
【0052】
電極構造体100の製造方法は、電極と、一端部が前記電極に接続された封着線と、前記封着線の少なくとも一部を被覆するように形成されたガラス部材とを有する電極構造体の製造方法であって、電極と、前記封着線の一端部とを接続させる工程(接続工程)と、封着線の表面に酸化膜を形成させる工程(酸化膜形成工程)と、封着線の少なくとも一部にガラス部材を被覆させ、封着線の表面のうち、ガラス部材に被覆された部分の略中間部に形成された酸化膜をガラス部材に全て拡散させ、または最大厚みが0.1[μm]以下の酸化膜が残るように拡散させる工程(封着工程)とを有する。
1.接続工程
まず、図3(a)に示すように、電極101と、封着線102の一端部とを接続させる。具体的には、例えば、電極101の外側底面に封着線102の一端面を接触させて、抵抗溶接により接続させる。なお、電極101と封着線102との接続方法は、抵抗溶接に限らずレーザー溶接等を用いてもよい。
2.酸化膜形成工程
続いて、図3(b)に示すように、封着線102の表面に酸化膜105を形成させる。具体的には、例えば、封着線102の表面をガスバーナー108等により、加熱して封着線102の表面を酸化させる。なお、酸化方法は、ガスバーナー108に限らず、例えば加熱炉等を用いてもよい。
3.封着工程
次に、図3(c)に示すように、外部リード線104の封着線102が接続されている側と反対側の端部より円筒状のガラスチューブ109の空洞部に挿入する。そして、治具110の一端面に設けられた固定穴110aに外部リード線104を挿入して固定する。
【0053】
続いて、図3(d)に示すように、治具110の固定穴110aに封着線102を挿入して固定した状態で、電気炉111の中に入れ、例えば約750[℃]〜800[℃]で約20分間加熱する。これにより、ガラスチューブ109が溶融されることで、封着線102の少なくとも一部を覆うように形成されたガラス部材103が形成される。この際、封着線102の表面のうち、ガラス部材103に被覆された部分の略中間部に形成された酸化膜105がガラス部材103に全て拡散され、または最大厚みが0.1[μm]以下の酸化膜が残るように拡散され、ガラス部材103の封着線102側には封着線102の材料の拡散層106が形成される。
【0054】
以上の工程を経ることにより、電極構造体100が完成される。
【0055】
なお、電極構造体107を製造する場合には、800[℃]〜950[℃]で約30分加熱することにより製造することができる。これにより、封着線102の表面のうち、ガラス部材103に被覆された部分に形成された酸化膜105がガラス部材103に全て拡散され、または最大厚みが0.1[μm]以下の酸化膜105が残るように拡散され、ガラス部材103の封着線102側には封着線102の材料の拡散層106が形成される。
4.還元工程
なお、酸化膜形成工程や封着工程において、電極101や外部リード線の表面が酸化してしまう場合がある。特に電極101が酸化していると、電極101から電子が飛び出し難くなり、電極101がスパッタしやすくなるため、封着工程の後に還元工程を設けることが好ましい。
【0056】
図3(e)に示すように、電極構造体100を還元炉112の中に入れ、水素雰囲気中で650[℃]〜750[℃]で約15分間加熱することで、封着線102のガラス部材103に被覆されていない部分や電極101や外部リード線104の表面が還元される。
【0057】
上記のとおり、本発明の第1の実施形態に係る電極構造体100、107の構成によれば、低圧放電ランプの封止に用いた場合に、低圧放電ランプの内部空間に空気が流入するのを防止することができる。
【0058】
なお、拡散層106の最小厚みは8[μm]以上であり、拡散層106の最大厚みは30[μm]以下であることが好ましい。この場合、拡散層106でのクラックの発生を防止して低圧放電ランプの内部空間に空気が流入するのをさらに防止することができる。さらに、拡散層106の最小厚みは16[μm]以上であり、拡散層106の最大厚みは30[μm]以下であることがより好ましい。拡散層106の最小厚みおよび最大厚みは、例えばSEM−EDSによるライン元素分析による元素の拡散距離により求めることができる。
【0059】
(第2の実施形態)
本発明の第2の実施形態に係る低圧放電ランプの管軸X200を含む断面図を図4に示す。本発明の第2の実施形態に係る低圧放電ランプ(以下、「ランプ200」という。)は、冷陰極蛍光ランプであって、ガラスバルブ201と、ガラスバルブ201の少なくとも一方の端部に設けられた電極構造体100とを有する。
【0060】
ガラスバルブ201は、例えば鉛フリーガラスやソーダガラス等の軟質ガラス製で、直管状であって、その管軸に対して垂直に切った断面が略円環状である。具体的には、例えば外径が4[mm]、内径が3[mm]、全長が1000[mm]である。なお、軟質ガラスは、例えば熱膨張係数90×10-7[K-1]以上100×10-7[K-1]以下の範囲内のガラスである。
【0061】
ガラスバルブ201の内部には、例えば3[mg]の水銀が封入され、またアルゴンやネオン等の希ガスが所定の封入圧、例えば40[Torr]で封入されている。なお、上記希ガスとしては、例えばネオンとアルゴンとの混合ガスがAr=10[mol%]、Ne=90[mol%]の比率で用いられる。
【0062】
また、ガラスバルブ201の内面には蛍光体層202が形成されている。蛍光体層202は、例えば赤色蛍光体(Y23:Eu2+)、緑色蛍光体(LaPO4:Ce3+,Tb3+)および青色蛍光体(BaMg2Al1627:Eu2+)からなる希土類蛍光体で形成されている。
【0063】
また、ガラスバルブ201の内面と蛍光体層202との間には例えば酸化イットリウム(Y23)、酸化ケイ素(SiO2)、酸化アルミニウム(Al23)、酸化亜鉛(ZnO)、酸化チタン(TiO2)等の金属酸化物の保護膜(図示せず)を設けてもよい。
【0064】
上記のとおり、本発明の第2の実施形態に係る低圧放電ランプ200の構造によれば、低圧放電ランプ200の内部空間に空気が流入するのを防止することができる。
【0065】
なお、電極構造体100に限らず、電極構造体107を用いてもよい。この場合、封着線102とガラス部材103とを強固に密着することができるので、低圧放電ランプの内部空間に空気が流入するのを十分に防止することができる。
【0066】
さらに、電極101の内面には、セシウム化合物が付着していてもよい。この場合、ランプ200のランプ電圧を低下させることができるとともに、暗黒始動特性を向上させることができる。
【0067】
(第3の実施形態)
本発明の第3の実施形態に係る冷陰極放電ランプの管軸X300を含む断面図を図5に示す。本発明の第3の実施形態に係る冷陰極放電ランプ(以下、「ランプ300」という。)は、内外部電極型冷陰極蛍光ランプである。
【0068】
ランプ300は、その一端部の外表面に外部電極301を有し、それに伴う構成を除いてはランプ200と実質的に同じ構成を有している。よって、外部電極301とそれに伴う構成について詳細に説明し、その他の点については説明を省略する。
【0069】
外部電極301は、例えば、半田からなり、ガラスバルブ201の一端部の外表面を覆うように形成されている。
【0070】
また、外部電極301は、銀ペーストをガラスバルブ201の電極形成部分の全周に塗布することによって形成してもよいし、金属製のキャップをガラスバルブ201の一端部に被せて形成してもよい。さらに、アルミニウムの金属箔を、シリコーン樹脂に金属粉体を混合した導電性粘着剤(図示せず)によってガラスバルブ201の一端部の外周面を覆うように貼着したものであってもよい。なお、導電性粘着剤において、シリコーン樹脂の代わりにフッ素樹脂、ポリイミド樹脂又はエポキシ樹脂等を用いてもよい。
【0071】
また、ガラスバルブ201の内面であって、外部電極301が形成された領域に例えば酸化イットリウム(Y23)の保護膜(図示せず)を設けてもよい。保護膜を設けることにより、ガラスバルブ201のその部分に水銀イオンが衝撃することによって起こるガラス削れやピンホールを防止することができる。
【0072】
なお、保護膜は、酸化イットリウムに代えて、例えばシリカ(SiO2)、アルミナ(Al23)、酸化亜鉛(ZnO)、チタニア(TiO2)等の金属酸化物を用いてもよい。特に、保護膜が酸化イットリウムやシリカで形成されている場合には、保護膜に水銀が付着し難く、水銀消費が少ない。
【0073】
もっとも、保護膜は、本発明において必須の構成要素ではなく、全く形成されていなくてもよいし、その一方で、ガラスバルブ201の内面の全体に亘って形成されていてもよい。
【0074】
なお、ガラスバルブ201の一端部は、ガラス部材を用いずに、ガラスバルブ201の一端部を加熱して溶融させることにより封着されていてもよい。
【0075】
上記のとおり、本発明の第3の実施形態に係る低圧放電ランプ300に係る構成によれば、低圧放電ランプ300の内部空間に空気が流入するのを防止することができる。
【0076】
なお、電極構造体100に限らず、電極構造体107を用いてもよい。この場合、封着線102とガラス部材103とを強固に密着することができるので、低圧放電ランプの内部空間に空気が流入するのを十分に防止することができる。
【0077】
(第4の実施形態)
本発明の第4の実施形態に係る電極構造体の長手方向の中心軸X400を含む断面図を図6(a)に示す。本発明の第6の実施形態に係る電極構造体(以下、「電極構造体400」という。)は、電極401と、一端部が電極401に接続された封着線402と、封着線402の少なくとも一部を覆うように形成されたガラス部材403とを有する。
【0078】
電極401は、例えばタングステン製のフィラメントコイルである。電極401には、その巻線部にエミッタ(図示せず)が付着している。エミッタには、例えば(Ba,Sr,Ca)O等を用いることができる。なお、電極401は、タングステン製のフィラメントコイルに限らず、レニウムタングステン製のフィラメントコイルであってもよい。この場合、電極401がランプの点灯等により加熱されたときの強度を向上させることができる。
【0079】
電極401は、その両端部を一対の封着線402に担持されている。
【0080】
封着線402は、一対であって、電極401の両端部を担持している点を除いては、封着線102と実質的に同じ構成のものである。
【0081】
一対の封着線402は、少なくとも一部がガラス部材403により覆われている。ガラス部材403は、封着線402を覆っている点を除いては、ガラス部材103と実質的に同じ構成のものである。
【0082】
上記のとおり、本発明の第4の実施形態に係る電極構造体400の構成によれば、低圧放電ランプの封止に用いた場合に、低圧放電ランプの内部空間に空気が流入するのを防止することができる。
【0083】
なお、図6(b)に示す電極構造体(以下、「電極構造体404」という。)であってもよい。電極構造体404は、電極405が電極構造体の長手方向の中心軸X404を旋回軸とした二重螺旋構造をしている。この場合、電極構造体400に比べてランプを細径化しやすくすることができる。封着線406は、直線形状であって、形状を除いてはリード線402と実質的に同じ構成を有する。
【0084】
また、図6(b)に示すように、電極405と封着線406とは、接続部材407を介して接続されていることが好ましい。この場合、電極405と封着線406との接続をより確実に行うことができる。接続部材407は、例えばニッケル製である。
【0085】
さらに、電極405の周囲をスリーブ408で覆うことが好ましい。この場合、電極405からエミッタが飛散するのを抑制することができる。スリーブ408は、例えばニッケル製であって、一方の接続部材に溶接により接続されている。なお、スリーブ408の材料は、ニッケルに限らず、例えばモリブデン、タンタル、ニオブ、タングステン等を用いることができる。
【0086】
なお、図6(a)および(b)に示す電極構造体400、404は、封着線402、406の表面のうち、ガラス部材に被覆された部分の端部に、厚い酸化膜105aが形成されてるが、電極構造体107のように厚い酸化膜105aが形成されていないものであってもよい。この場合、電極構造体107と同様に、封着線402、406とガラス部材403とを強固に密着することができるので、低圧放電ランプの封止に用いた場合に、低圧放電ランプの内部空間に空気が流入するのを十分に防止することができる。
【0087】
(第5の実施形態)
本発明の第5の実施形態に係る低圧放電ランプの管軸X500を含む断面図を図7(a)に示す。本発明の第5の実施形態に係る低圧放電ランプ(以下、「ランプ500」という。)は、熱陰極蛍光ランプであって、本発明の第4の実施形態に係る電極構造体400を備えている点を除いては、ランプ300と実質的に同じ構成を有する。
【0088】
上記のとおり、本発明の第5の実施形態に係る低圧放電ランプ500の構成によれば、低圧放電ランプ500の内部空間に空気が流入するのを防止することができる。
【0089】
なお、図7(b)に示すように、電極構造体404を備えた低圧放電ランプ501(以下、「ランプ501」という。)であってもよい。この場合、ガラスバルブ201を細径化することができる。
【0090】
(第6の実施形態)
本発明の第6の実施形態に係る照明装置の分解斜視図を図8に示す。本発明の第6の実施形態に係る照明装置(以下、「照明装置600」という。)は直下方式のバックライトユニットであって、一つの面が開口した直方体状の筐体601と、この筐体601の内部に収納された複数のランプ200と、ランプ200を点灯回路(図示せず)に電気的に接続するための一対のソケット602と、筐体601の開口部を覆う光学シート類603とを備える。ランプ200は、本発明の第2の実施形態に係る低圧放電ランプ200である。なお、ランプ200に限らず、ランプ300、ランプ500またはランプ501も用いることができる。
【0091】
筐体601は、例えばポリエチレンテレフタレート(PET)樹脂製であって、その内面に銀などの金属が蒸着されて反射面604が形成されている。なお、筐体601の材料としては、樹脂以外の材料、例えば、アルミニウムや冷間圧延材(例えばSPCC)等の金属材料により構成してもよい。また、内面の反射面604として金属蒸着膜以外、例えば、ポリエチレンテレフタレート(PET)樹脂に炭酸カルシウム、二酸化チタン等を添加することにより反射率を高めた反射シートを筐体601に貼付したものを用いてもよい。
【0092】
筐体601の内部には、ソケット602、絶縁体605およびカバー606が配置されている。具体的に、ソケット602は、ランプ200の配置に対応して筐体601の短手方向(縦方向)に各々所定間隔を空けて設けられている。ソケット602は、例えばステンレスやりん青銅からなる板材を加工したものであって、外部リード線104aが嵌め込まれる嵌込部602aを有している。そして、外部リード線104aを嵌込部602aを押し拡げるように弾性変形させて嵌め込む。その結果、嵌込部602aに嵌め込まれた外部リード線104aは、嵌込部602aの復元力によって押圧され、外れにくくなる。これにより、外部リード線104aを嵌込部602aへ容易に嵌め込むことができつつ、外れにくくすることができる。
【0093】
ソケット602は、互いに隣り合うソケット602同士で短絡しないように絶縁体605で覆われている。絶縁体605は、例えば、ポリエチレンテレフタレート(PET)樹脂で構成されている。なお、絶縁体605は、上記の構成に限定されない。ソケット602はランプ200の動作中に比較的高温となる電極の近傍にあることから絶縁体605は耐熱性のある材料で構成することが好ましい。耐熱性のある絶縁体605の材料としては、例えば、ポリカーボネート(PC)樹脂やシリコンゴム等を適用することができる。
【0094】
筐体601の内部には、必要に応じた場所にランプホルダ607を設けてもよい。筐体601内側でのランプ200の位置を固定するランプホルダ607は、例えば、ポリカーボネート(PC)樹脂であり、ランプ200の外面形状に沿うような形状を有している。「必要に応じた場所」とは、ランプ200の長手方向の中央部付近のように、ランプ200が例えば全長600[mm]を越えるような長尺のものである場合に、ランプ200のたわみを解消するために必要な場所である。
【0095】
カバー606は、ソケット602と筐体601の内側の空間とを仕切るものであり、例えばポリカーボネート(PC)樹脂で構成し、ソケット602の周辺を保温するとともに、少なくとも筐体601側の表面を高反射性とすることにより、ランプ200の端部の輝度低下を軽減することができる。
【0096】
筐体601の開口部は、透光性の光学シート類603で覆われており、内部にちりや埃などの異物が入り込まないように密閉されている。光学シート類603は、拡散板608、拡散シート609およびレンズシート610を積層してなる。
【0097】
拡散板608は、例えばポリメタクリル酸メチル(PMMA)樹脂製の板状体であって、筐体601の開口部を塞ぐように配置されている。拡散シート609は、例えばポリエステル樹脂製である。レンズシート610は、例えばアクリル系樹脂とポリエステル樹脂の貼り合せである。これらの光学シート類603は、それぞれ拡散板608に順次重ね合わせるようにして配置されている。
【0098】
上記のとおり、本発明の第6の実施形態に係る照明装置600の構成によれば、内部に備える低圧放電ランプ200、300、500、501の内部空間に空気が流入するのを防止することができる。
【0099】
(第7の実施形態)
本発明の第7の実施形態に係る照明装置の一部切欠斜視図を図9に示す。本発明の第7の実施形態に係る照明装置(以下、「照明装置700」という。)は、エッジライト方式のバックライトユニットであって、反射板701、ランプ200、ソケット(図示せず)、導光板702、拡散シート703およびプリズムシート704を備える。
【0100】
反射板701は、液晶パネル側(矢印Q)を除く導光板702の周囲を囲むように配置されており、底面を覆う底面部701aと、ランプ200の配置されている側を除く側面を覆う側面部701bと、ランプ200の周囲を覆う曲面状のランプ側面部701cとで構成されており、ランプ200から照射される光を導光板702から液晶パネル(図示せず)側(矢印Q)に反射させる。また、反射板701は、例えばフィルム状のPETに銀を蒸着したものやアルミ等の金属箔を積層したもの等からなる。
【0101】
ランプ200は、本発明の第2の実施形態に係る低圧放電ランプ200である。なお、ランプ200に限らず、ランプ300、ランプ500またはランプ501も用いることができる。
【0102】
ソケットは、本発明の第6の実施形態に係る照明装置600に用いられるソケット602と実質的に同じ構成を有している。なお、図9において、図示の便宜上により、ランプ200の端部については省略している。
【0103】
導光板702は、反射板701により反射された光を液晶パネル側に導くためのものであって、例えば透光性プラスチックからなり、照明装置700の底面に設けられた反射板701の上に積重されている。なお、導光板702の材料としては、ポリカーボネート(PC)樹脂やシクロオレフィン系樹脂(COP)を適用することができる。
【0104】
拡散シート703は、視野拡大のためのものであって、例えばポリエチレンテレフタレート樹脂やポリエステル樹脂製の拡散透過機能を有するフィルムからなり、導光板702の上に積重されている。
【0105】
プリズムシート704は、輝度を向上させるためのものであって、例えばアクリル系樹脂とポリエステル樹脂とを貼り合せたシートからなり、拡散シート703の上に積層されている。なお、プリズムシート704の上にさらに拡散板(図示せず)が積層されていてもよい。
【0106】
なお、本実施形態の場合には、ランプ200の周方向における一部分(照明装置700に挿入した場合における導光板702側)を除き、ガラスバルブの外面に反射シート(図示せず)を設けたアパーチャ型のランプであってもよい。
【0107】
上記のとおり、本発明の第7の実施形態に係る照明装置700の構成によれば、内部に備える低圧放電ランプ200、300、500、501の内部空間に空気が流入するのを防止することができる。
【0108】
(第8の実施形態)
本発明の第8の実施形態に係る照明装置の正面図を図10(a)に、図10(a)のC−C´線で切った断面図を図10(b)にそれぞれ示す。本発明の第8の実施形態に係る照明装置800(以下、「照明装置800」という。)は、一般照明用の環状蛍光ランプを使用した照明器具である。
【0109】
照明装置800は、本体部801、盤状部802、ランプホルダ803、ソケット804およびランプ805を備える。
【0110】
本体部801は、その内部に点灯回路(図示せず)等を収納し、例えばその上部から電気接続部(図示せず)が導出しており、例えばその側面部からランプ805の口金806と電気的に接続するためのソケット804が導出している。
【0111】
盤状部802は、本体部801、ランプホルダ803を支持する部材であり、例えば円盤状の形状を有している。
【0112】
ランプホルダ803は、盤状部802の下面に取付けられており、その下端に設けられた例えばC字状の挟持片によりランプ805を保持し、ランプ805の落下を防止することができる。
【0113】
ランプ805は、環状の熱陰極蛍光ランプであり、形状が環状であることと口金806がランプ805の中間部に位置していることを除いては第5の実施形態に係る低圧放電ランプ500と実質的に同じ構成を有している。なお、ランプ805は、形状が環状であることと口金806がランプ805の中間部に位置していることを除いてはランプ501と実質的に同じ構成のものを用いてもよい。
【0114】
上記のとおり、本発明の第8の実施形態に係る照明装置800の構成によれば、内部に備える低圧放電ランプ805の内部空間に空気が流入するのを防止することができる。
【0115】
(第9の実施形態)
本発明の第9の実施形態に係る画像表示装置の概要を図11に示す。図11に示すように画像表示装置900は、例えば32[inch]液晶テレビ(液晶表示装置)であり、液晶パネル等を含む液晶画面ユニット901と本発明の第6の実施形態に係る照明装置600と点灯回路902とを備える。
【0116】
液晶画面ユニット901は、公知のものであって、液晶パネル(カラーフィルター基板、液晶、TFT基板等)(図示せず)、駆動モジュール等(図示せず)を備え、外部からの画像信号に基づいてカラー画像を形成する。
【0117】
点灯回路902は、照明装置600内部のランプ200を点灯させる。そして、ランプ200は、点灯周波数40[kHz]〜100[kHz]、ランプ電流3.0[mA]〜25[mA]で動作される。
【0118】
なお、図11では、画像表示装置900の光源装置として本発明の第6の実施形態に係る照明装置600に第2の実施形態に係る低圧放電ランプ200を挿入した場合について説明したが、これに限らず、ランプ300、ランプ500またはランプ501も用いることができる。また、照明装置についても、照明装置700も用いることができる。
【0119】
上記のとおり、本発明の第9の実施形態に係る画像表示装置900の構成によれば、内部に備える低圧放電ランプ200、300、500、501の内部空間に空気が流入するのを防止することができる。
【0120】
(変形例)
以上、本発明を上記した各実施形態に示した具体例に基づいて説明したが、本発明の内容が各実施形態に示した具体例に限定されないことは勿論であり、例えば、以下のような変形例を用いることができる。
1.電子放射性物質について
電極101の表面には、電子放射性物質層(図示せず)が形成されていてもよい。この場合、電子放射性物質層が設けられていないランプに比べてランプ電圧を下げることができる。具体的には、電子放射性物質層は、例えば電極101の内面に形成されている。電子放射性物質層は、例えば希土類元素を含む。冷陰極蛍光ランプにおいて、ランプ電圧を下げるのに効果的なためである。さらに、希土類元素は、ランタン(La)およびイットリウム(Y)のうちいずれか1種以上であることがより好ましい。
【0121】
電子放射性物質層は、さらに珪素(Si)、アルミニウム(Al)、ジルコニウム(Zr)、硼素(B)、亜鉛(Zn)、ビスマス(Bi)、リン(P)および錫(Sn)のうちいずれか1種以上を含むことが好ましい。この場合、ランプ電圧の低減効果をより持続させることができる。
【0122】
さらに、電子放射性物質層に、セシウム(Cs)化合物が含まれていてもよい。この場合、ランプの暗黒始動特性をさらに向上させることができる。また、電子放射性物質層とは別に、電極101の内面や外面にセシウム化合物を付着させてもよい。なお、セシウム化合物は、例えば、硫酸セシウム、アルミン酸セシウム、ニオブ酸セシウム、タングステン酸セシウム、モリブデン酸セシウムおよび塩化セシウムのうちいずれか1種以上を用いることが好ましい。また、セシウム化合物は、電極101の外側側面に付着されていることがより好ましい。この場合、冷陰極蛍光ランプの製造工程において、セシウム化合物を適度に活性化させやすくすることができる。さらには、電極101の外側側面におけるランプ中央部側の先端部に付着されていることがさらにより好ましい。この場合、冷陰極蛍光ランプの製造工程において、セシウム化合物をさらに活性化させやすくすることができる。
2.口金について
本発明の第2の実施形態に係る低圧放電ランプの変形例の要部拡大正面図を図12(a)に、その管軸を含む要部拡大断面図を図12(b)にそれぞれ示す。本発明の第2の実施形態に係る低圧放電ランプの変形例(以下、「ランプ203」という。)は、口金204を備える点を除いては、ランプ200と実質的に同じ構成を有する。よって、以下、口金204について詳細に説明し、その他の点については説明を省略する。
【0123】
口金204は、外部リード線104と電気的かつ機械的に接続されている。具体的には、口金204は、ガラスバルブ201の端部を覆う胴体部204aと、胴体部204aの一端より延出し、外部リード線104と電気的かつ機械的に接続される延出部204bとで構成されている。このようなランプ203は、照明装置に組み込む際、口金204をヒューズソケット(図示せず)等に挿入するだけで電気的かつ機械的に接続できる。
【0124】
胴体部204aの側面には、ガラスバルブ201を保持するための保持部204cが設けられている。保持部204cは、例えば、胴体部204aの側面の一部を切り抜き、ガラスバルブ201側に折り曲げて形成されている。また、保持部204cの先端部204dは、ガラスバルブ201を傷付けないようにガラスバルブ201とは反対側に折り曲げられている。なお、保持部204cは、胴体部204aの周方向に略等間隔に3[箇所]以上設けられていることが好ましい。この場合、ガラスバルブ201をより安定して保持できるためである。さらに、保持部204cとガラスバルブ201との接触部は、電極101の対向部にあることが好ましい。この場合、電極101付近で発生する熱の放熱を、保持部204cを介して促進させることができる。
【0125】
なお、口金204を通じて電極101で発生する熱を放熱させやすくすることができるため、電極の表面に電子放射性物質層が設けられている場合においては、電極101周辺の温度の過度の上昇を抑制し、電極101周辺において水銀が少なくなることを抑制することで、電子放射性物質層のスパッタリングを抑制し、口金204が設けられていないランプに比べてランプ電圧の低減効果を持続させることができる。
3.ガラス部材103、403およびガラスバルブ201について
(1)紫外線吸収について
ガラス部材103、403およびガラスバルブ201の材料であるガラスに遷移金属の酸化物をその種類によって所定量をドープすることにより254[nm]や313[nm]の紫外線を吸収することができる。具体的には、例えば酸化チタン(TiO2)の場合は、組成比率0.05[mol%]以上ドープすることにより254[nm]の紫外線を吸収し、組成比率2[mol%]以上ドープすることにより313[nm]の紫外線を吸収することができる。ただし、酸化チタンを組成比率5.0[mol%]より多くドープした場合には、ガラスが失透してしまうため、組成比率0.05[mol%]以上5.0[mol%]以下の範囲でドープすることが好ましい。
【0126】
また、酸化セリウム(CeO2)の場合は、組成比率0.05[mol%]以上ドープすることにより254[nm]の紫外線を吸収することができる。ただし、酸化セリウムを組成比率0.5[mol%]より多くドープした場合には、ガラスが着色してしまうため、酸化セリウムを組成比率0.05[mol%]以上0.5[mol%]以下の範囲でドープすることが好ましい。なお、酸化セリウムに加えて酸化スズ(SnO)をドープすることにより、酸化セリウムによるガラスの着色を抑えることができるため、酸化セリウムを組成比率5.0[mol%]以下までドープすることができる。この場合、酸化セリウムを組成比率0.5[mol%]以上ドープすれば313[nm]の紫外線を吸収することができる。ただし、この場合においても酸化セリウムを組成比率が5.0[mol%]より多くドープした場合には、ガラスが失透してしまう。
【0127】
また、酸化亜鉛(ZnO)の場合は、組成比率2.0[mol%]以上ドープすることにより254[nm]の紫外線を吸収することができる。ただし、酸化亜鉛を組成比率20[mol%]より多くドープした場合、ガラスが失透してしまうおそれがあるため、酸化亜鉛を2.0[mol%]以上20[mol%]以下の範囲でドープすることが好ましい。
【0128】
また、酸化鉄(Fe23)の場合は、組成比率0.01[mol%]以上ドープすることにより254[nm]の紫外線を吸収することができる。ただし、酸化鉄を組成比率2.0[mol%]より多くドープした場合には、ガラスが着色してしまうため、酸化鉄を組成比率0.01[mol%]以上2.0[mol%]以下の範囲でドープすることが好ましい。
(2)赤外線透過係数について
ガラス部材103、403およびガラスバルブ201の材料であるガラス中の水分含有量を示す赤外線透過率係数は、0.3以上1.2以下の範囲、特に0.4以上0.8以下の範囲となるように調整することが好ましい。赤外線透過率係数が1.2以下であれば、長尺の冷陰極放電ランプ等の高電圧印加ランプに適用可能な低い誘電正接を得やすくなり、0.8以下であれば誘電正接が十分に小さくなって、さらに高電圧印加ランプに適用可能となる。
【0129】
なお、赤外線透過率係数(X)は下式で表すことができる。
【0130】
[数1]
X=(log(a/b))/t
a:3840[cm-1]付近の極小点の透過率[%]
b:3560[cm-1]付近の極小点の透過率[%]
t:ガラスの厚み
(3)鉛フリーガラスについて
ガラス部材103、403およびガラスバルブ201に用いるガラスは、酸化物換算で、SiO2が60[wt%]〜75[wt]%、Al23が1[wt%]〜5[wt%]、Li2Oが0[wt%]〜5[wt%]、K2Oが3[wt%]〜11[wt%]、Na2Oが3[wt%]〜12[wt%]、CaOが0[wt%]〜9[wt%]、MgOが0[wt%]〜9[wt%]、SrOが0[wt%]〜12[wt%]、BaOが0[wt%]〜12[wt%]の組成を有していてもよい。この場合、鉛成分を含有せず、環境に優しい冷陰極放電ランプを提供することができる。さらには、ガラス部材103、403およびガラスバルブ201に用いるガラスは、酸化物換算で、SiO2が60[wt%]〜75[wt]%、Al23が1[wt%]〜5[wt%]、B23が0[wt%]〜3[wt%]、Li2Oが0[wt%]〜5[wt%]、K2Oが3[wt%]〜11[wt%]、Na2Oが3[wt%]〜12[wt%]、CaOが0[wt%]〜9[wt%]、MgOが0[wt%]〜9[wt%]、SrOが0[wt%]〜12[wt%]、BaOが0[wt%]〜12[wt%]の組成を有していることがより好ましい。
【0131】
また、ガラス部材103、403およびガラスバルブ201に用いるガラスは、酸化物換算で、SiO2が60[wt%]〜75[wt]%、Al23が1[wt%]〜5[wt%]、Li2Oが0.5[wt%]〜5[wt%]、K2Oが3[wt%]〜7[wt%]、Na2Oが5[wt%]〜12[wt%]、CaOが1[wt%]〜7[wt%]、MgOが1[wt%]〜7[wt%]、SrOが0[wt%]〜5[wt%]、BaOが7[wt%]〜12[wt%]の組成を有していてもよい。この場合、ランプへの加工を行いやすく、かつ鉛成分を含有せず、環境に優しい冷陰極蛍光ランプを提供することができる。
【0132】
さらに、ガラス部材103、403およびガラスバルブ201に用いるガラスは、酸化物換算で、SiO2が65[wt%]〜75[wt]%、Al23が1[wt%]〜5[wt%]、B23が0[wt%]〜3[wt%]、Li2Oが0.5[wt%]〜5[wt%]、 K2Oが3[wt%]〜7[wt%]、Na2Oが5[wt%]〜12[wt%]、 CaOが2[wt%]〜7[wt%]、MgOが2.1[wt%]〜7[wt%]、SrOが0[wt%]〜0.9[wt%]、BaOが7.1[wt%]〜12[wt%]の組成を有していてもよい。この場合、鉛成分を含有せず、照明用途に適した電気絶縁性を有し、かつ、失透を起こりにくくすることができる。さらには、ガラス部材103、403およびガラスバルブ201に用いるガラスは、酸化物換算で、SiO2が65[wt%]〜75[wt]%、Al23が1[wt%]〜3[wt%]、B23が0[wt%]〜3[wt%]、Li2Oが1[wt%]〜3[wt%]、 K2Oが3[wt%]〜6[wt%]、Na2Oが7[wt%]〜10[wt%]、 CaOが3[wt%]〜6[wt%]、MgOが3[wt%]〜6[wt%]、SrOが0[wt%]〜0.9[wt%]、BaOが7.1〜10[wt%]の組成を有していることがより好ましい。
(4)ガラスバルブ201の形状について
ガラスバルブ201の形状は、直管形状のものに限られず、例えばL字形状、U字形状、コの字形状、渦巻き形状等であってもよい。また、その管軸に対して略垂直に切った断面は、略円形状のものに限られず、例えばトラック形状や角丸形状のような扁平形状や楕円形状等であってもよい。
4.蛍光体層の蛍光体について
(1)紫外線吸収について
例えば、近年、液晶カラーテレビの大型化に伴って、バックライトユニットの開口を塞ぐ拡散板に寸法安定性の良いポリカーボネートが使用されるようになっている。このポリカーボネートは、水銀が発する313[nm]の波長の紫外線により劣化しやすい。このような場合には、波長313[nm]の紫外線を吸収する蛍光体を利用すると良い。なお、313[nm]の紫外線を吸収する蛍光体としては、以下のものがある。
(a)青色
ユーロピウム・マンガン共付活アルミン酸バリウム・ストロンチウム・マグネシウム[Ba1-x-ySrxEuyMg1-zMnzAl1017]又は[Ba1-x-ySrxEuyMg2-zMnzAl1627
ここで、x,y,zはそれぞれ0≦x≦0.4、 0.07≦y≦0.25、 0≦z<0.1なる条件を満たす数であることが好ましい。
【0133】
このような蛍光体としては、例えば、ユーロピウム付活アルミン酸バリウム・マグネシウム[BaMg2Al1627:Eu2+]、[BaMgAl1017:Eu2+] (略号:BAM−B)や、ユーロピウム付活アルミン酸バリウム・ストロンチウム・マグネシウム[(Ba,Sr)Mg2Al1627:Eu2+]、[(Ba,Sr)MgAl1017:Eu2+](略号:SBAM−B)等がある。
(b)緑色
・マンガン不活マグネシウムガレート[MgGa24:Mn2+](略号:MGM)
・マンガン付活アルミン酸セリウム・マグネシウム・亜鉛[Ce(Mg,Zn)Al1119:Mn2+](略号:CMZ)
・テルビウム付活アルミン酸セリウム・マグネシウム[CeMgAl1119:Tb3+](略号:CAT)
・ユーロピウム・マンガン共付活アルミン酸バリウム・ストロンチウム・マグネシウム[Ba1-x-ySrxEuyMg1-zMnzAl1017]又は[Ba1-x-ySrxEuyMg2-zMnzAl1627
ここで、x,y,zはそれぞれ0≦x≦0.4、 0.07≦y≦0.25、 0.1≦z≦0.6なる条件を満たす数であり、zは0.4≦x≦0.5であることが好ましい。
【0134】
このような蛍光体としては、例えば、ユーロピウム・マンガン共付活アルミン酸バリウム・マグネシウム[BaMg2Al1627:Eu2+,Mn2+]、[BaMgAl1017:Eu2+,Mn2+](略号:BAM−G)や、ユーロピウム・マンガン共付活アルミン酸バリウム・ストロンチウム・マグネシウム[(Ba,Sr)Mg2Al1627:Eu2+,Mn2+]、[(Ba,Sr)MgAl1017:Eu2+,Mn2+](略号:SBAM−G)等がある。
(c)赤色
・ユーロピウム付活リン・バナジン酸イットリウム[Y(P,V)O4:Eu3+](略号:YPV)
・ユーロピウム付活バナジン酸イットリウム[YVO4:Eu3+](略号:YVO)
・ユーロピウム付活イットリウムオキシサルファイド[Y22S:Eu3+](略号:YOS)
・マンガン付活フッ化ゲルマン酸マグネシウム[3.5MgO・0.5M gF2・GeO2:Mn4+](略号:MFG)
・ジスプロシウム付活バナジン酸イットリウム[YVO4:Dy3+](赤と緑の2成分発光蛍光体であり、略号:YDS)
なお、一種類の発光色に対して、異なる化合物の蛍光体を混合して用いても良い。例えば、青色にBAM−B(313[nm]を吸収する。)のみ、緑色にLAP(313[nm]を吸収しない。)とBAM−G(313[nm]を吸収する。)、赤色にYOX(313nmを吸収しない。)とYVO(313[nm]を吸収する。)の蛍光体を用いても良い。このような場合は、前述のように波長313[nm]を吸収する蛍光体が、総重量組成比率で50%より大きくなるように調整することで、紫外線がガラスバルブ外に漏れ出ることをほとんど防止できる。したがって、313[nm]の紫外線を吸収する蛍光体を蛍光体層202に含む場合には、上記のバックライトユニットの開口を塞ぐポリカーボネート(PC)からなる拡散板等の紫外線による劣化が抑制され、バックライトユニットとしての特性を長時間維持することができる。
【0135】
ここで、「313[nm]の紫外線を吸収する」とは、254[nm]付近の励起波長スペクトル(励起波長スペクトルとは、蛍光体を波長変化させながら励起発光させ、励起波長と発光強度をプロットしたものである。)の強度を100[%]としたときに、313[nm]の励起波長スペクトルの強度が80[%]以上のものと定義する。すなわち、313[nm]の紫外線を吸収する蛍光体とは、313[nm]の紫外線を吸収して可視光に変換できる蛍光体である。
(2)高色再現について
液晶カラーテレビで代表される液晶表示装置では、近年における高画質化の一環としてなされる高色再現化に伴い、当該液晶表示装置のバックライトユニットの光源として用いられる冷陰極放電ランプや外部電極放電ランプにおいて、再現可能な色度範囲の拡大化の要請がある。
【0136】
このような要請に対して、例えば、以下の蛍光体を用いることで、実施の形態での蛍光体を用いる場合よりも、色度範囲の拡大を図ることができる。具体的には、CIE1931色度図において、高色再現用の当該蛍光体の色度座標値が、実施の形態で使用した3つの蛍光体の色度座標値を結んでできる三角形を含んで色再現範囲を広げる座標に位置する。
【0137】
(a)青色
・ユーロピウム付活ストロンチウム・クロロアパタイト[Sr10(PO46Cl2:Eu2+](略号:SCA)、色度座標:x=0.151、y=0.065
上記以外に、ユーロピウム付活ストロンチウム・カルシウム・バリウム・クロロアパタイト[(Sr,Ca,Ba)10(PO46Cl2:Eu2+](略号:SBCA)も使用でき、上記波長313(nm)の紫外線も吸収できるSBAM−Bも高色再現用に使用できる。
【0138】
(b)緑色
・BAM−G、色度座標:x=0.139、y=0.574
・CMZ、色度座標:x=0.164、y=0.722
・CAT、色度座標:x=0.267、y=0.663
なお、これらは上述したように、波長313[nm]の紫外線も吸収でき、また、ここで説明した3つの蛍光体粒子以外にも、MGMも高色再現用に使用することもできる。
【0139】
(c)赤色
・YOS、色度座標:x=0.651、y=0.344
・YPV、色度座標:x=0.658、y=0.333
・MFG、色度座標:x=0.711、y=0.287
なお、これらは上述したように、波長313[nm]の紫外線も吸収でき、また、ここで説明した3つの蛍光体粒子以外にも、YVO、YDSも高色再現用に使用することもできる。
【0140】
また、上記で示した色度座標値は各々の蛍光体の粉体のみで測定した代表値であり、測定方法(測定原理)等に起因して、各蛍光体の粉体が示す色度座標値は、上掲した値と若干異なる場合があり得る。参考として上記実施の形態1の各蛍光体の粉体の色度座標値は、YOX(x=0.644、y=0.353)、LAP(x=0.351、y=0.585)、BAM−B(x=0.148、y=0,056)で構成されている。
【0141】
さらに、赤、緑、青の各色を発光させるために用いる蛍光体は各波長につき1種類に限らず、複数種類を組み合わせて用いることとしても良い。
【0142】
ここで、上記の高色再現用の蛍光体粒子を用いて蛍光体層を形成した場合について説明する。ここでの評価は、CIE1931色度図内においてNTSC規格の3原色の色度座標値を結ぶNTSC三角形(NTSCtriangle)の面積を基準とした、高色再現用の蛍光体を用いた場合の3つの色度座標値を結んでできる三角形の面積の比(以下、NTSC比という。)で行なう。
【0143】
例えば、青色としてBAM−B、緑色としてBAM−G、赤色としてYVOを用いると(例1)NTSC比が92[%]となり、また、青色としてSCA、緑色としてBAM−G、赤色としてYVOを用いると(例2)NTSC比が100[%]となり、また、青色としてSCA、緑色としてBAM−G、赤色としてYOXを用いると(例3)、NTSC比が95[%]となり、例1及び2に比べて輝度を10[%]向上させることができる。
【0144】
なお、ここでの評価に用いた色度座標値は、ランプ等が組み込まれた液晶表示装置とした状態で測定したものである為、カラーフィルターとの組み合わせにより色再現範囲が上記値より前後する可能性がある。
5.封入ガスについて
希ガスにクリプトンが含まれていてもよい。この場合、冷陰極蛍光ランプの赤外線放射を抑制することができる。さらには、希ガスにクリプトンが0.5[mol%]以上5[mol%]以下の範囲内で含まれていることが好ましい。この場合、ランプ電圧を大きく変化させることなく、冷陰極蛍光ランプの赤外線放射を抑制することができる。例えば、アルゴンが0[mol%]以上9.5[mol%]以下の範囲内、ネオンが90[mol%]以上95.5[mol%]以下の範囲内、クリプトンが0.5[mol%]以上5[mol%]以下の範囲内である。さらには、希ガスにクリプトンが0.5[mol%]以上3[mol%]以下の範囲内で含まれていることがより好ましい。さらには、希ガスにクリプトンが1[mol%]以上3[mol%]以下の範囲内で含まれていることがさらにより好ましい。
6.ランプの種類について
上記の各実施形態においては、低圧放電ランプとして、冷陰極蛍光ランプ、内部外部電極蛍光ランプおよび熱陰極蛍光ランプを中心に説明したが、これに限られず、ガラスバルブの内面に蛍光体層の形成されていない紫外線ランプであってもよい。
【産業上の利用可能性】
【0145】
本発明は、電極構造体、電極構造体の製造方法、低圧放電ランプ、照明装置および画像表示装置に広く適用することができる。
【符号の説明】
【0146】
100、107、400、404 電極構造体
101、401、405 電極
102、402、406 封着線
103、403 ガラス部材
105 酸化膜
106 拡散層
200、300、500、501 低圧放電ランプ
201 ガラスバルブ
600、700、800 照明装置
900 画像表示装置

【特許請求の範囲】
【請求項1】
電極と、一端部が前記電極に接続された封着線と、前記封着線の少なくとも一部を被覆するように形成されたガラス部材とを有する電極構造体であって、
前記封着線の表面のうち、前記ガラス部材に被覆された部分の略中間部には、酸化膜が形成されておらず、または最大厚みが0.1[μm]以下の酸化膜が形成されており、
前記ガラス部材の前記封着線側には前記封着線の材料の拡散層が形成されていることを特徴とする電極構造体。
【請求項2】
電極と、一端部が前記電極に接続された封着線と、前記封着線の少なくとも一部を被覆するように形成されたガラス部材とを有する電極構造体であって、
前記封着線の表面のうち、前記ガラス部材に被覆された部分には、酸化膜が形成されておらず、または最大厚みが0.1[μm]以下の酸化膜が形成されており、
前記ガラス部材の前記封着線側には前記封着線の材料の拡散層が形成されていることを特徴とする電極構造体。
【請求項3】
電極と、一端部が前記電極に接続された封着線と、前記封着線の少なくとも一部を被覆するように形成されたガラス部材とを有する電極構造体であって、
前記封着線の表面のうち、前記ガラス部材に被覆された部分の略中間部は、最大厚みが0.1[μm]以下の酸化膜が形成されており、
前記酸化膜には、FeおよびFeOのうちいずれか1種以上が含まれており、
前記ガラス部材の前記封着線側には前記封着線の材料の拡散層が形成されていることを特徴とする電極構造体。
【請求項4】
電極と、一端部が前記電極に接続された封着線と、前記封着線の少なくとも一部を被覆するように形成されたガラス部材とを有する電極構造体であって、
前記封着線の表面のうち、前記ガラス部材に被覆された部分には、最大厚みが0.1[μm]以下の酸化膜が形成されており、
前記酸化膜には、FeおよびFeOのうちいずれか1種以上が含まれており、
前記ガラス部材の前記封着線側には前記封着線の材料の拡散層が形成されていることを特徴とする電極構造体。
【請求項5】
前記拡散層の最小厚みは8[μm]以上であり、前記拡散層の最大厚みは30[μm]以下であることを特徴とする請求項1〜4のいずれか1項に記載の電極構造体。
【請求項6】
前記封着線は、48[wt%]以上54[wt%]以下の範囲内の鉄と46[wt%]以上52[wt%]以下の範囲内のニッケルとを含むことを特徴とする請求項1〜5のいずれか1項に記載の電極構造体。
【請求項7】
前記ガラス部材は、酸化物換算で、SiOが60[wt%]〜75[wt]%、Alが1[wt%]〜5[wt%]、LiOが0[wt%]〜5[wt%]、KOが3[wt%]〜11[wt%]、NaOが3[wt%]〜12[wt%]、CaOが0[wt%]〜9[wt%]、MgOが0[wt%]〜9[wt%]、SrOが0[wt%]〜12[wt%]、BaOが0[wt%]〜12[wt%]の組成を有することを特徴とする請求項1〜6のいずれか1項に記載の電極構造体。
【請求項8】
電極と、一端部が前記電極に接続された封着線と、前記封着線の少なくとも一部を被覆するように形成されたガラス部材とを有する電極構造体であって、
前記封着線の表面のうち、前記ガラス部材に被覆された部分の略中間部に形成された酸化膜を、全て拡散させ、または最大厚みが0.1[μm]以下の酸化膜が残るように拡散させることで、前記ガラス部材の前記封着線側には前記封着線の材料の拡散層が形成されていることを特徴とする電極構造体。
【請求項9】
電極と、一端部が前記電極に接続された封着線と、前記封着線の少なくとも一部を被覆するように形成されたガラス部材とを有する電極構造体の製造方法であって、
前記電極と、前記封着線の一端部とを接続させる工程と、
前記封着線の表面に酸化膜を形成させる工程と、
前記封着線の少なくとも一部に前記ガラス部材を被覆させ、前記封着線の表面のうち、前記ガラス部材に被覆された部分の略中間部に形成された酸化膜を、全て拡散させ、または最大厚みが0.1[μm]以下の酸化膜が残るように拡散させる工程とを有することを特徴とする電極構造体の製造方法。
【請求項10】
ガラスバルブと、前記ガラスバルブの少なくとも一方の端部に設けられた請求項1〜8のいずれか1項に記載の電極構造体とを有することを特徴とする低圧放電ランプ。
【請求項11】
請求項10に記載の低圧放電ランプを備えることを特徴とする照明装置。
【請求項12】
請求項11に記載の照明装置を備えることを特徴とする画像表示装置。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate

【図11】
image rotate

【図12】
image rotate

【図13】
image rotate


【公開番号】特開2010−282770(P2010−282770A)
【公開日】平成22年12月16日(2010.12.16)
【国際特許分類】
【出願番号】特願2009−133665(P2009−133665)
【出願日】平成21年6月3日(2009.6.3)
【出願人】(000005821)パナソニック株式会社 (73,050)
【Fターム(参考)】