説明

電気泳動素子およびその製造方法並びに表示装置

【課題】コントラストを向上することが可能な電気泳動素子およびその製造方法並びに表示装置を提供する。
【解決手段】本開示の電気泳動素子は、絶縁性液体中に、複数の電気泳動粒子と、繊維状構造体により形成された多孔質層とを含み、電気泳動粒子と、多孔質層とは同じ帯電極性を有する。

【発明の詳細な説明】
【技術分野】
【0001】
本開示は、絶縁性液体中に複数の電気泳動粒子を含む電気泳動素子およびその製造方法並びにこれを用いた表示装置に関する。
【背景技術】
【0002】
近年、携帯電話機または携帯情報端末などに代表されるモバイル機器の普及に伴い、低消費電力で高品位画質の表示装置(ディスプレイ)に関する需要が高まっている。中でも、最近では、電子書籍の配信事業の誕生により、文字情報を長時間読むことを目的とした読書用途の携帯情報端末(電子書籍端末)が注目されているため、その用途に適した表示品位を有するディスプレイが望まれている。
【0003】
読書用途のディスプレイとしては、コレステリック液晶ディスプレイ、電子泳動型ディスプレイ、電気酸化還元型ディスプレイまたはツイストボール型ディスプレイなどが提案されているが、中でも、反射型ディスプレイが好ましい。紙と同様に外光の反射(散乱)を利用して明表示するため、紙に近い表示品位が得られるからである。また、バックライトが不要であるため、消費電力が低くなる。
【0004】
反射型ディスプレイの有力候補は、電気泳動現象を利用してコントラストを生じさせる電気泳動型ディスプレイである。低消費電力であると共に高速応答性に優れているからである。そこで、電気泳動型ディスプレイの表示方法について、さまざまな検討がなされている。
【0005】
具体的には、絶縁性液体中に光学的反射特性が異なる2種類の荷電粒子を分散して、電界に応じて荷電粒子を移動させる方法が提案されている(例えば、特許文献1,2参照。)。この方法では、2種類の荷電粒子が反対の極性を有しているため、電界に応じて荷電粒子の分布状態が変化する。
【0006】
また、絶縁性液体中に多孔質層を配置すると共に荷電粒子を分散させて、電界に応じて多孔質層の細孔を経由して荷電粒子を移動させる方法が提案されている(例えば、特許文献3〜6参照。)。この方法では、多孔質層として、レーザを用いた穴開け加工により細孔が形成された高分子フィルム、合成繊維などにより編まれた布、または連泡多孔性高分子などが用いられている。
【先行技術文献】
【特許文献】
【0007】
【特許文献1】特公昭50−015115号公報
【特許文献2】特許第4188091号明細書
【特許文献3】特開2005−107146号公報
【特許文献4】特公昭50−015120号公報
【特許文献5】特開2005−128143号公報
【特許文献6】特開2002−244163号公報
【発明の概要】
【発明が解決しようとする課題】
【0008】
電気泳動型ディスプレイについてさまざまな表示方法が提案されているにもかかわらず、その表示品位は未だ十分であるとは言えない。今後のカラー化および動画表示などへの展開を考えると更なる表示特性の向上、具体的にはコントラストの向上が必要である。
【0009】
本技術はかかる問題点に鑑みてなされたもので、その目的は、コントラストを向上させることが可能な電気泳動素子およびその製造方法並びに表示装置を提供することにある。
【課題を解決するための手段】
【0010】
本技術の電気泳動素子は、絶縁性液体中に、複数の電気泳動粒子と、繊維状構造体により形成された多孔質層とを含み、電気泳動粒子と多孔質層とは同じ帯電極性を有するものである。
【0011】
本技術の電気泳動素子の製造方法は、以下の工程(A)〜(C)を含むものである。
(A)電気泳動粒子を形成する工程
(B)繊維状構造体によって構成される多孔質層を形成する工程
(C)泳動粒子および多孔質層のどちらか一方に、他方と同じ帯電極性を付加する官能基を導入する工程
【0012】
本技術の表示装置は、少なくとも一方が光透過性であると共にそれぞれに電極が設けられた一対の基体の間に、上記電気泳動素子を備えたものである。
【0013】
本技術の電気泳動素子およびその製造方法では、電気泳動粒子および多孔質層が帯電する極性を互いに同じ電荷とすることにより、多孔質層への電気泳動粒子の吸着を抑制することが可能となる。
【発明の効果】
【0014】
本技術の電気泳動素子およびその製造方法によれば、電気泳動粒子および多孔質層の帯電極性を互いに同一とするようにしたので、泳動時における多孔質層への電気泳動粒子の吸着が抑制され、コントラストが向上する。よって表示特性が向上した高品位の表示装置を提供することが可能となる。
【図面の簡単な説明】
【0015】
【図1】本技術の一実施の形態の電気泳動素子の構成を表す平面図である。
【図2】電気泳動素子の構成を表す断面図である。
【図3】図2に示した電気泳動素子の製造工程を表す流れ図である。
【図4】本技術の一実施の形態の電気泳動素子を用いた表示装置の構成を表す断面図である。
【図5】表示装置の動作を説明するための断面図である。
【発明を実施するための形態】
【0016】
以下、本技術の実施の形態について、図面を参照して詳細に説明する。なお、説明する順序は、下記の通りである。
1.実施の形態
1−1.全体構成
1−2.電気泳動粒子の調製方法
2.適用例
3.実施例
【0017】
<1.電気泳動素子>
図1および図2は、それぞれ本技術の一実施の形態の電気泳動素子における平面構成および断面構成を表したものである。この電気泳動素子は、電気泳動現象を利用してコントラストを生じさせるものであり、例えば、表示装置などの多様な電子機器に適用される。この電気泳動素子は、絶縁性液体1中に極性を有する複数の電気泳動粒子10と、多孔質層20とを含んでいる。本実施の形態では、電気泳動粒子10と、多孔質層20とが互いに同一の帯電極性を有している。
【0018】
1−1.全体構成
[絶縁性液体]
絶縁性液体1は、例えば、有機溶媒のいずれか1種類または2種類以上であり、具体的にはパラフィンまたはイソパラフィンなどである。この絶縁性液体1の粘度および屈折率はできるだけ低いことが好ましい。これにより、電気泳動粒子10の移動性(応答速度)が向上すると共に、それに応じて電気泳動粒子10を移動させるために必要なエネルギー(消費電力)が低くなる。また、絶縁性液体1の屈折率と多孔質層20の屈折率との差が大きくなるため、その多孔質層20の反射率が高くなる。
【0019】
なお、絶縁性液体1は、必要に応じて、各種材料を含んでいてもよい。このような材料は、例えば、着色剤、電荷制御剤、分散安定剤、粘度調製剤、界面活性剤または樹脂などである。
【0020】
[電気泳動粒子]
電気泳動粒子10は、絶縁性液体1中に分散され、正(+)または負(−)に帯電した荷電粒子であり、電界に応じて多孔質層20を経由して移動可能になっている。この電気泳動粒子10は、例えば、有機顔料、無機顔料、染料、炭素材料、金属材料、金属酸化物、ガラスまたは高分子材料(樹脂)などの粒子(粉末)のいずれか1種類または2種類以上である。また、電気泳動粒子10は、上記した粒子を含む樹脂固形分の粉砕粒子またはカプセル粒子などでもよい。なお、炭素材料、金属材料、金属酸化物、ガラスまたは高分子材料に該当する材料は、有機顔料、無機顔料または染料に該当する材料から除かれることとする。
【0021】
有機顔料は、例えば、アゾ系顔料、メタルコンプレックスアゾ系顔料、ポリ縮合アゾ系顔料、フラバンスロン系顔料、ベンズイミダゾロン系顔料、フタロシアニン系顔料、キナクリドン系顔料、アントラキノン系顔料、ペリレン系顔料、ペリノン系顔料、アントラピリジン系顔料、ピランスロン系顔料、ジオキサジン系顔料、チオインジゴ系顔料、イソインドリノン系顔料、キノフタロン系顔料またはインダンスレン系顔料などである。無機顔料は、例えば、亜鉛華、アンチモン白、カーボンブラック、鉄黒、硼化チタン、ベンガラ、マピコエロー、鉛丹、カドミウムエロー、硫化亜鉛、リトポン、硫化バリウム、セレン化カドミウム、炭酸カルシウム、硫酸バリウム、クロム酸鉛、硫酸鉛、炭酸バリウム、鉛白またはアルミナホワイトなどである。染料は、例えば、ニグロシン系染料、アゾ系染料、フタロシアニン系染料、キノフタロン系染料、アントラキノン系染料またはメチン系染料などである。炭素材料は、例えば、カーボンブラックなどである。金属材料は、例えば、金、銀または銅などである。金属酸化物は、例えば、酸化チタン、酸化亜鉛、酸化ジルコニウム、チタン酸バリウム、チタン酸カリウム、銅−クロム酸化物、銅−マンガン酸化物、銅−鉄−マンガン酸化物、銅−クロム−マンガン酸化物または銅−鉄−クロム酸化物などである。高分子材料は、例えば、可視光領域に光吸収域を有する官能基が導入された高分子化合物などである。このように可視光領域に光吸収域を有する高分子化合物であれば、その種類は特に限定されない。
【0022】
絶縁性液体1中における電気泳動粒子10の含有量(濃度)は、特に限定されないが、例えば、0.1重量%〜10重量%である。電気泳動粒子10の遮蔽性および移動性が確保されるからである。この場合には、0.1重量%よりも少ないと、電気泳動粒子10が多孔質層20を遮蔽(隠蔽)しにくくなる可能性がある。一方、10重量%よりも多いと、電気泳動粒子10の分散性が低下するため、その電気泳動粒子10が泳動しにくくなり、場合によっては凝集する可能性がある。
【0023】
この電気泳動粒子10は、任意の光学的反射特性(反射率)を有している。電気泳動粒子10の光学的反射特性は、特に限定されないが、少なくとも電気泳動粒子10は多孔質層20を遮蔽可能であることが好ましい。電気泳動粒子10の光学的反射特性と多孔質層20の光学的反射特性との違いにより、コントラストを生じさせるためである。
【0024】
ここで、電気泳動粒子10の具体的な形成材料は、コントラストを生じさせるために電気泳動粒子10が担う役割に応じて選択される。具体的には、電気泳動粒子10が明表示する場合の材料は、例えば、酸化チタン、酸化亜鉛、酸化ジルコニウム、チタン酸バリウムまたはチタン酸カリウムなどの金属酸化物である。一方、電気泳動粒子10が暗表示する場合の材料は、例えば、炭素材料または金属酸化物などである。炭素材料は、例えば、カーボンブラックなどであり、金属酸化物は、例えば、銅−クロム酸化物、銅−マンガン酸化物、銅−鉄−マンガン酸化物、銅−クロム−マンガン酸化物または銅−鉄−クロム酸化物などである。中でも、炭素材料が好ましい。優れた化学的安定性、移動性および光吸収性が得られるからである。
【0025】
電気泳動粒子10が明表示する場合には、外部から電気泳動素子を見たときに視認される電気泳動粒子10の色は、コントラストを生じさせることができれば特に限定されないが、中でも白色に近い色が好ましく、白色がより好ましい。一方、電気泳動粒子10が暗表示する場合には、外部から電気泳動素子を見たときに視認される電気泳動粒子10の色はコントラストを生じさせることができれば特に限定されないが、中でも黒色に近い色が好ましく、黒色がより好ましい。いずれの場合においても、コントラストが高くなるからである。
【0026】
電気泳動粒子10は、絶縁性液体1中において長期間にわたって分散および帯電しやすいと共に、多孔質層20に吸着しにくいことが好ましい。そこで、本実施の形態における電気泳動粒子10は、多孔質層20と同一の帯電極性を有する材料を選択するか、多孔質層20と同じ極性に帯電するように表面処理が施されている。具体的には、多孔質層20が負の帯電極性を有している場合には、電気泳動粒子10の表面に負の電荷、例えば電子吸引性を有する官能基による修飾を行う。反対に、多孔質層20が正の帯電極性を有している場合には、電気泳動粒子10の表面に正の電荷、例えば電子供与性を有する官能基による修飾を行う。これにより、電気泳動粒子10と多孔質層20との間で静電反発が起こり、電気泳動粒子10と多孔質層20との吸着および電気泳動粒子10同士の凝集が抑制される。なお、電気泳動粒子10の表面を修飾する官能基は、電気泳動粒子10と多孔質層20とが同じ方向(正または負)の電荷を示すものであれば互いに同じ官能基に限らず、異なる官能基を導入しても構わない。また、表面処理の代わりに電荷調整剤等の分散剤を用いたり、両者を併用してもよい。
【0027】
分散剤は、例えば、Lubrizol社製のSolsperse シリーズ、BYK-Chemie社製のBYK シリーズまたはAnti-Terra シリーズ、あるいはICI Americas 社製Spanシリーズなどである。
【0028】
表面処理は、例えば、ロジン処理、界面活性剤処理、顔料誘導体処理、カップリング剤処理、グラフト重合処理またはマイクロカプセル化処理などである。中でも、カップリング剤処理、グラフト重合処理またはマイクロカプセル化処理あるいはそれらの組み合わせが好ましい。長期間の分散安定性などが得られるからである。
【0029】
表面処理用の材料は、例えば、電気泳動粒子10の表面に吸着可能な官能基と重合性官能基とを有する材料(吸着性材料)などである。吸着可能な官能基の種類は、電気泳動粒子10の形成材料に応じて決定される。一例を挙げると、カーボンブラックなどの炭素材料に対しては4−ビニルアニリンなどのアニリン誘導体であり、金属酸化物に対してはメタクリル酸3−(トリメトキシシリル)プロピルなどのオルガノシラン誘導体である。重合性官能基は、例えば、ビニル基、アクリル基、メタクリル基などである。
【0030】
また、表面処理用の材料は、例えば、重合性官能基が導入された電気泳動粒子10の表面にグラフト可能な材料(グラフト性材料)である。このグラフト性材料は重合性官能基と、絶縁性液体1中に分散可能であると共に立体障害により分散性を保持可能な分散用官能基とを有していることが好ましい。重合性官能基の種類は吸着性材料について説明した場合と同様である。分散用官能基は、例えば、絶縁性液体1がパラフィンである場合には分岐状のアルキル基などである。グラフト性材料を重合およびグラフトさせるためには、例えば、アゾビスイソブチロニトリル(AIBN)などの重合開始剤を用いればよい。
【0031】
参考までに、上記したように絶縁性液体1中に電気泳動粒子10を分散させる方法の詳細については、「超微粒子の分散技術とその評価〜表面処理・微粉砕と気中/液中/高分子中の分散安定化〜(サイエンス&テクノロジー社)」などの書籍に掲載されている。
【0032】
[多孔質層]
多孔質層20は、繊維状構造体21により形成された3次元立体構造物であり、この3次元理体構造により形成された複数の細孔23を有している。繊維状構造体21には、複数の非泳動粒子22が含まれており、繊維状構造体21により保持されている。多孔質層20は、この繊維状構造体21および非泳動粒子22のどちらか一方または両方によって正または負の極性を有している。本実施の形態における電気泳動素子では、電気泳動粒子10と、多孔質層20とが同じ電荷を有するように構成されているが、各電荷の調製は、上述したように電気泳動粒子10の帯電極性を多孔質層20の帯電極性に合わせることが好ましい。これは多孔質層20の修飾による細孔23の孔径および光反射特性の変化による特性の低下を防ぐためである。
【0033】
3次元立体構造物である多孔質層20では、1つの繊維状構造体21がランダムに絡み合っていてもよいし、複数の繊維状構造体21が集合してランダムに重なっていてもよいし、双方が混在していてもよい。繊維状構造体21が複数の場合、各繊維状構造体21は、1または2以上の非泳動粒子22を保持している。なお、図2では、複数の繊維状構造体21により多孔質層20が形成されている場合を示している。
【0034】
多孔質層20が繊維状構造体21により形成された3次元立体構造物であるのは、光(外光)が乱反射(多重散乱)するため、多孔質層20の反射率が高くなると共に、その高い反射率を得るための多孔質層20の厚さが薄くて済むからである。これにより、電気泳動素子のコントラストが高くなると共に、電気泳動粒子10を移動させるために必要なエネルギーが低くなる。また、細孔23の平均孔径が大きくなると共に数が多くなるため、電気泳動粒子10が細孔23を経由して移動しやすくなる。これにより、応答速度が速くなると共に、電気泳動粒子10を移動させるために必要なエネルギーがより低くなる。
【0035】
繊維状構造体21は、繊維径(直径)に対して長さが十分に大きい繊維状物質である。この繊維状構造体21は、例えば、高分子材料または無機材料などのいずれか1種類または2種類以上であり、他の材料でもよい。高分子材料は、例えば、ナイロン、ポリ乳酸、ポリアミド、ポリイミド、ポリエチレンテレフタレート、ポリアクリロニトリル(PAN)、ポリエチレンオキシド、ポリビニルカルバゾール、ポリビニルクロライド、ポリウレタン、ポリスチレン、ポリビニルアルコール、ポリサルフォン、ポリビニルピロリドン、ポリビニリデンフロリド、ポリヘキサフルオロプロピレン、セルロースアセテート、コラーゲン、ゼラチン、キトサンまたはそれらのコポリマーなどである。無機材料は、例えば、酸化チタンなどである。中でも、繊維状構造体21の形成材料としては、高分子材料が好ましい。反応性(光反応性など)が低い、即ち化学的に安定であるため、繊維状構造体21の意図しない分解反応が抑制されるからである。なお、繊維状構造体21が高反応性の材料により形成される場合には、その繊維状構造体21の表面は任意の保護層(図示せず)により被覆されることが好ましい。
【0036】
繊維状構造体21の形状(外観)は、上記したように繊維径に対して長さが十分に大きい繊維状であれば、特に限定されない。具体的には、直線状でもよいし、縮れていたり、途中で折れ曲がっていてもよい。また、一方向に延在しているだけに限らず、途中で1または2以上の方向に分岐していてもよい。この繊維状構造体21の形成方法は、特に限定されないが、例えば、相分離法、相反転法、静電(電界)紡糸法、溶融紡糸法、湿式紡糸法、乾式紡糸法、ゲル紡糸法、ゾルゲル法またはスプレー塗布法などであることが好ましい。繊維径に対して長さが十分に大きい繊維状物質を容易かつ安定に形成しやすいからである。
【0037】
繊維状構造体21の繊維径は特に限定されないが、できるだけ小さいことが好ましい。光が乱反射しやすくなると共に、細孔23の孔径が大きくなるからである。ただし、繊維状構造体21が後述する非泳動粒子22を保持できるように決定される必要がある。このため、繊維状構造体21の繊維径は、50nm以上2000nm以下であることが好ましい。また、その平均繊維径は、10μm以下であることが好ましい。なお、平均繊維径の下限は、特に限定されないが、例えば、0.1μmであり、それ以下でもよい。この繊維径および平均繊維径は、例えば、走査型電子顕微鏡などを用いた顕微鏡観察により測定される。なお、繊維状構造体21の平均長さは任意でよい。
【0038】
特に、繊維状構造体21はナノファイバーであることが好ましい。光が乱反射しやすくなるため多孔質層20の反射率がより高くなると共に、単位体積中に占める細孔23の割合が大きくなるため、電気泳動粒子10が細孔23を経由して移動しやすくなるからである。これにより、コントラストがより高くなると共に、電気泳動粒子10を移動させるために必要なエネルギーがより低くなる。ナノファイバーとは、繊維径が0.001μm〜0.1μmであると共に長さが繊維径の100倍以上である繊維状物質である。ナノファイバーである繊維状構造体21は、静電紡糸法により形成されていることが好ましい。これにより、繊維径が小さい繊維状構造体21を容易かつ安定に形成しやすくなる。
【0039】
この繊維状構造体21は、電気泳動粒子10とは異なる光学的反射特性を有していることが好ましい。具体的には、繊維状構造体21の光学的反射特性は、特に限定されないが、少なくとも多孔質層20全体は電気泳動粒子10を遮蔽可能であることが好ましい。上述したように、電気泳動粒子10の光学的反射特性と多孔質層20の光学的反射特性との違いにより、コントラストを生じさせるためである。このため、絶縁性液体1中において光透過性(無色透明)の繊維状構造体21は好ましくない。ただし、繊維状構造体21の光学的反射特性が多孔質層20の光学的反射特性にほとんど影響を及ぼさず、その多孔質層20の光学的反射特性が実質的に非泳動粒子22の光学的反射特性により決定される場合には、繊維状構造体21の光学的反射特性は任意でよい。
【0040】
細孔23の平均孔径は、特に限定されないが、中でも、できるだけ大きいことが好ましい。電気泳動粒子21が細孔23を経由して移動しやすくなるからである。このため、細孔23の平均孔径は、0.01μm〜10μmであることが好ましい。
【0041】
多孔質層20の厚さは、特に限定されないが、例えば、5μm〜100μmである。多孔質層20の遮蔽性が高くなると共に、電気泳動粒子10が細孔23を経由して移動しやすくなるからである。
【0042】
非泳動粒子22は、繊維状構造体21により保持(固定)されており、電気泳動しない粒子である。繊維状構造体21はこの非泳動粒子22を複数含むことにより、光がより乱反射しやすくなり、電気泳動素子のコントラストがより高くなる。なお、非泳動粒子22は、繊維状構造体21により保持されていれば繊維状構造体21から部分的に露出していてもよいし、繊維状構造体21の内部に埋設されていてもよい。
【0043】
この非泳動粒子22は、電気泳動粒子10とは異なる光学的反射特性を有している。非泳動粒子22の光学的反射特性は、特に限定されないが、少なくとも多孔質層20全体は電気泳動粒子10を遮蔽可能であることが好ましい。上記したように、電気泳動粒子10の光学的反射特性と多孔質層20の光学的反射特性との違いにより、コントラストを生じさせるためである。なお、本実施の形態では非泳動粒子22の光反射率は電気泳動粒子10の光反射率よりも高い。
【0044】
ここで、非泳動粒子22の形成材料は、コントラストを生じさせるために非泳動粒子22が担う役割に応じて選択される。具体的には、非泳動粒子22が明表示する場合の材料は、電気泳動粒子10が明表示する場合に選択される材料と同様である。一方、非泳動粒子22が暗表示する場合の材料は、電気泳動粒子10が暗表示する場合に選択される材料と同様である。中でも、非泳動粒子22が明表示する場合に選択される材料としては、金属酸化物が好ましい。優れた化学的安定性、定着性および光反射性が得られるからである。コントラストを生じさせることができれば、非泳動粒子22の形成材料は、電気泳動粒子10の形成材料と同じ種類でもよいし、違う種類でもよい。なお、非泳動粒子22が明表示または暗表示する場合に視認される色は、電気泳動粒子10が視認される色について説明した場合と同様である。
【0045】
1−2.電気泳動粒子の調製方法
電気泳動粒子10の調製方法の一例は以下の通りである。図3は、電気泳動粒子10の調製手順の流れを表したものである。まず、例えば、ステップS101として、水酸化ナトリウムとケイ酸ナトリウムとを水に溶解させて溶液Aを調製する。続いて、溶液Aに、例えば複合酸化物微粒子(大日精化工業株式会社製ダイピロキサイドカラーTM3550)を加え加熱したのち、例えば、1mol/cm3の硫酸と、ケイ酸ナトリウムおよび水酸化ナトリウムが溶解された水溶液とを滴下する。次に、例えば、ステップS102として、エタノールと水との混合液を加え、シラン被覆複合酸化物粒子の分散溶液を得る。続いて、例えば、水、エタノールおよびアリルトリエトキシシランを混合したのち上述した分散溶液を加え、混合溶液を調製する。次に、この混合溶液を後処理したのち固形物を得、この固形物に例えば、トルエンを加え、攪拌して溶液Bを調製する。続いて、ステップS103として、溶液Bに、例えば、アクリル酸と2,5-ジメチル-1,5-ヘキサジエンを加えたのち、窒素気流下で攪拌する。次に、この溶液Bに、例えば、2,2'-アゾビス(2-メチルプロピオニトリル(アゾビスイソブチロニトリル;AIBN)をトルエンに溶解した溶液Cを混合することで電気泳動粒子10の重合反応を行う。これにより、重合体被覆顔料からなる黒色の電気泳動粒子10が得られる。
【0046】
[電気泳動素子の好ましい表示方法]
電気泳動素子では、上記したように、電気泳動粒子10および多孔質層20(非泳動粒子22を含む繊維状構造体21)がそれぞれ明表示または暗表示するため、コントラストが生じる。この場合には、電気泳動粒子10が明表示すると共に多孔質層20が暗表示してもよいし、その逆でもよい。このような役割の違いは、電気泳動粒子10の光学的反射特性と多孔質層20の光学的反射特性との関係により決定される。すなわち、明表示する方の反射率は、暗表示する方の反射率よりも高くなる。
【0047】
中でも、電気泳動粒子10が暗表示すると共に、多孔質層20が明表示することが好ましい。これに伴い、多孔質層20の光学的特性が実質的に非泳動粒子22の光学的反射特性により決定される場合には、非泳動粒子22の反射率は電気泳動粒子10の反射率よりも高いことが好ましい。この場合における明表示の反射率は、多孔質層20(3次元立体構造物)による光の乱反射を利用して著しく高くなるため、それに応じてコントラストも著しく高くなるからである。
【0048】
[電気泳動素子の動作]
電気泳動素子では、電気泳動粒子10の光学的反射特性と多孔質層20(非泳動粒子22)の光学的反射特性とが異なっている。この場合において、電気泳動素子に電界が印加されると、その電界が印加された範囲内において電気泳動粒子10が多孔質層20(細孔23)を経由して移動する。これにより、電気泳動粒子10が移動した側から電気泳動素子を見ると、電気泳動粒子10が移動した範囲では、その電気泳動粒子10により暗表示(または明表示)されると共に、電気泳動粒子10が移動していない範囲では、多孔質層20により明表示(または暗表示)される。これにより、コントラストが生じる。
【0049】
従来の電気泳動素子では、電気泳動粒子は電気泳動粒子同士が凝集しないように表面処置によって電荷が付されており、繊維状構造体はこの電気泳動粒子と化学的な相互作用の少ないポリマーが主体となっていた。具体的には、電気泳動粒子にはアクセプタ性を付加する表面処理を行い、それぞれの表面のSP値(Solubility Parameter)をある一定の範囲内とし、繊維状構造体の材料としては弱いドナー性を有するポリマーが用いられる。このような構成とすることにより、電気泳動粒子は繊維状構造体に絡めとられることなく泳動するが、繊維状構造体はその弱いドナー性から電気泳動粒子および分散助剤を吸着し、表示特性が低下するという問題があった。
【0050】
[作用および効果]
これに対して本実施の形態によれば、電気泳動粒子10の電荷と、多孔質層20の電荷とを同一の帯電極性とした。具体的には、電気泳動粒子10の電荷を多孔質層20の電荷と同じ電荷を有するように、電気泳動粒子10に官能基を導入した。これにより、電気泳動粒子10が繊維状構造体21によって形成される細孔23内を移動するときに、電気泳動粒子10の細孔23の壁面への吸着が防止される。よって、電気泳動素子の明表示および暗表示における反射特性が向上し、コントラストが向上する。
【0051】
<2.電気泳動素子の適用例>
次に、上記した電気泳動素子の適用例について説明する。電気泳動素子は、さまざまな電子機器に適用可能であり、その電子機器の種類は特に限定されないが、例えば、表示装置に適用される。
【0052】
[表示装置の全体構成]
図4は、表示装置の断面構成を表しており、図5は、図4に示した表示装置の動作を説明するためのものである。なお、以下で説明する表示装置の構成は、あくまで一例であるため、その構成は、適宜変更可能である。
【0053】
表示装置は、電気泳動現象を利用して画像(例えば文字情報など)を表示する電気泳動型ディスプレイ(いわゆる電子ペーパーディスプレイ)である。この表示装置は、例えば、図4に示したように、駆動基板30と対向基板40とが電気泳動素子50を介して対向配置されたものであり、例えば、対向基板40側において画像を表示するようになっている。なお、駆動基板30および対向基板40は、スペーサ60により所定の間隔となるように離間されている。
【0054】
[駆動基板]
駆動基板30は、例えば、支持基体31の一面に、複数の薄膜トランジスタ(TFT)32と、保護層33と、平坦化絶縁層34と、複数の画素電極35とがこの順に形成されたものである。TFT32および画素電極35は、画素配置に応じてマトリクス状またはセグメント状に配置されている。
【0055】
支持基体31は、例えば、無機材料、金属材料またはプラスチック材料などにより形成されている。無機材料は、例えば、ケイ素(Si)、酸化ケイ素(SiOx )、窒化ケイ素(SiNx )または酸化アルミニウム(AlOx )などである。この酸化ケイ素には、ガラスまたはスピンオングラス(SOG)などが含まれる。金属材料は、例えば、アルミニウム(Al)、ニッケル(Ni)またはステンレスなどである。プラスチック材料は、例えば、ポリカーボネート(PC)、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)またはポリエチルエーテルケトン(PEEK)などである。
【0056】
この支持基体31は、光透過性でもよいし、非光透過性でもよい。対向基板40側において画像が表示されるため、支持基体31は必ずしも光透過性である必要がないからである。また、支持基体31は、ウェハなどの剛性を有する基板でもよいし、可撓性を有する薄層ガラスまたはフィルムでもよいが、中でも、後者であることが好ましい。フレキシブル(折り曲げ可能)な表示装置を実現できるからである。
【0057】
TFT32は、画素を選択するためのスイッチング用素子である。なお、TFT32は、チャネル層として無機半導体層を用いた無機TFTでもよいし、有機半導体層を用いた有機TFTでもよい。保護層33および平坦化絶縁層34は、例えば、ポリイミドなどの絶縁性樹脂材料により形成されている。ただし、保護層33の表面が十分に平坦であれば、平坦化絶縁層34はなくてもよい。画素電極35は、例えば、金(Au)、銀(Ag)または銅(Cu)などの金属材料により形成されている。この画素電極35は、保護層33および平坦化絶縁層34に設けられたコンタクトホール(図示せず)を通じてTFT32に接続されている。
【0058】
[対向基板]
対向基板40は、例えば、支持基体41の一面に対向電極42が全面形成されたものである。ただし、対向電極42は、画素電極32と同様に、マトリクス状またはセグメント状に配置されていてもよい。
【0059】
支持基体41は、光透過性であることを除き、支持基体31と同様の材料により形成されている。対向基板40側において画像が表示されるため、支持基体41は光透過性である必要があるからである。対向電極42は、例えば、酸化インジウム−酸化スズ(ITO)、酸化アンチモン−酸化スズ(ATO)、フッ素ドープ酸化スズ(FTO)またはアルミニウムドープ酸化亜鉛(AZO)などの光透光性導電性材料(透明電極材料)により形成されている。
【0060】
対向基板40側において画像を表示する場合には、対向電極42を介して電気泳動素子50を見ることになるため、その対向電極42の光透過性(透過率)は、できるだけ高いことが好ましく、例えば、80%以上である。また、対向電極42の電気抵抗は、できるだけ低いことが好ましく、例えば、100Ω/□以下である。
【0061】
[電気泳動素子]
電気泳動素子50は、上記した電気泳動素子と同様の構成を有している。具体的には、電気泳動素子50は、絶縁性液体51中に、複数の電気泳動粒子52と、複数の細孔54を有する多孔質層53とを含んでいる。絶縁性液体51は、駆動基板30と対向基板40との間の空間に充填されており、多孔質層53は、例えば、スペーサ60により支持されている。絶縁性液体51が充填されている空間は、多孔質層53を境界として、画素電極35に近い側の待避領域R1と、対向電極42に近い側の移動領域R2とに区分けされている。絶縁性液体51、電気泳動粒子52および多孔質層53の構成は、それぞれ絶縁性液体1、電気泳動粒子10および多孔質層20の構成と同様である。なお、図4および図5では、図示内容を簡略化するために、細孔54の一部だけを示している。
【0062】
[スペーサ]
スペーサ60は、例えば、高分子材料などの絶縁性材料により形成されている。
【0063】
スペーサ60の形状は、特に限定されないが、中でも、電気泳動粒子52の移動を妨げず、その電気泳動粒子52を均一分布させるような形状であることが好ましく、例えば、格子状である。また、スペーサ60の厚さは、特に限定されないが、中でも、消費電力を低くするためにできるだけ薄いことが好ましく、例えば、10μm〜100μmである。
【0064】
[表示装置の動作]
この表示装置では、図3に示したように、初期状態において、複数の電気泳動粒子52が待避領域R1に位置している。この場合には、全ての画素において電気泳動粒子52が多孔質層53により遮蔽されているため、対向基板40側から電気泳動素子50を見ると、コントラストが生じていない(画像が表示されていない)状態にある。
【0065】
TFT32により画素が選択され、画素電極35と対向電極42との間に電界が印加されると、図4に示したように、電気泳動素子52が待避領域R1から多孔質層53(細孔54)を経由して移動領域R2に移動する。この場合には、電気泳動粒子52が多孔質層53により遮蔽されている画素と、電気泳動粒子52が多孔質層53により遮蔽されていない画素とが併存するため、対向基板40側から電気泳動素子50を見ると、コントラストが生じている状態になる。これにより、画像が表示される。
【0066】
[表示装置の作用および効果]
この表示装置によれば、電気泳動素子50が上記した電気泳動素子と同様の構成を有しているため、電気泳動素子の明表示および暗表示における反射特性が向上し、コントラストが向上する。よって、表示特性が向上した高品位の表示装置を提供することが可能となる。
<3.実施例>
【0067】
次に、本技術の実施例について詳細に説明する。
【0068】
(実験例1)
以下の手順により、黒色(暗表示用)の電気泳動粒子10および白色(明表示用)の多孔質層20(粒子含有繊維状構造体)を用いて、表示装置を作製した。なお、実験例1における電気泳動粒子10および多孔質層20は共に負に帯電するように調製した。
【0069】
[電気泳動粒子の調製]
まず、水酸化ナトリウム43gとケイ酸ナトリウム0.37gとを水43gに溶解させて溶液Aを得た。続いて、溶液Aを攪拌しながら複合酸化物微粒子(大日精化工業株式会社製ダイピロキサイドカラーTM3550)5gを加えて攪拌(15分間)したのち、超音波攪拌(30℃〜35℃,15分間)した。次に、溶液Aを加熱(90℃)したのち、0.22mol/cm3の硫酸15cm3(=ml)と、ケイ酸ナトリウム6.5mgおよび水酸化ナトリウム1.3mgが溶解された水溶液7.5cm3とを2時間かけて滴下した。続いて、溶液Aを冷却(室温)したのち、1mol/cm3の硫酸1.8cm3を加えたのち、遠心分離(3700rpm,30分間)およびデカンテーションを行った。次に、エタノールに再分散してから共に遠心分離(3500rpm,30分間)すると共にデカンテーションを行う作業を2回繰り返したのち、各ボトルにエタノール5cm3と水0.5cm3との混合液を加えて超音波攪拌(1時間)して、シラン被覆複合酸化物粒子の分散溶液を得た。
【0070】
次いで、水3cm3と、エタノール30cm3と、アリルトリエトキシシラン2gとを混合して攪拌(7分間)したのち、分散溶液を全量投入した。続いて、混合溶液を攪拌(10分間)したのち、遠心分離(3500rpm,30分間)した。次いで、デカンテーションを行ったのち、エタノールに再分散してから遠心分離(3500rpmで30分間)する洗浄作業を2回繰り返した。デカンテーションを行ったのち、減圧環境(室温)中で乾燥(6時間)し、減圧環境(70℃)中で乾燥(2時間)して固形物を得た。続いて、固形物にトルエン50m3を加えて溶液Bとしたのち、ロールミルで攪拌(12時間)した。次いで、溶液Bを3つ口フラスコに移し、アクリル酸0.5gと2,5-ジメチル-1,5-ヘキサジエン2.0gを投入したのち、窒素気流下で攪拌(20分間)した。次に、溶液Bをさらに攪拌(50℃で20分間)したのちAIBN0.01gがトルエン3cm3に溶解された溶液Cを加え加熱(65℃)した。続いて、混合溶液を攪拌(1時間)後、冷却(室温)してから酢酸エチルと一緒にボトルに流し込み、遠心分離(3500rpmで30分間)した。次いで、デカンテーションを行ったのち、酢酸エチルに再分散させてから遠心分離(3500rpmで30分間)する洗浄作業を3回繰り返し減圧環境(室温)中で乾燥(12時間)したのち、さらに減圧環境(70℃)中で乾燥(2時間)した。これにより、重合体被覆顔料からなる黒色の泳動粒子が得られた。
【0071】
[絶縁性液体の調製]
次に、絶縁性液体として、OLOA1200(シェブロン社製)を5.0%、2,5−ヘキサンジオンを1.0%、イソパラフィン(エクソンモービル社製IsoparG)を94%含む有機溶媒を準備した。この場合には、必要に応じて、絶縁性液体9.7gに泳動粒子0.2gを加えて、ガラスビーズ(0.8mmφ)を加えたビーズミルで攪拌(1時間)した。続いて、混合液をガラスファイバーフィルターにかけビーズを取り除いて、泳動粒子が分散された絶縁性液体を得た。
【0072】
[多孔質層の調製]
次に、繊維状構造体の形成材料としてポリアクリロニトリル(Aldrich 社製:分子量=150000)12gをDMF88gに溶解させて溶液Dを準備した。続いて、非泳動粒子である、例えば酸化チタン(堺化学工業株式会社製TITONE R-42)40gを溶液D60gに加えたのち、ビーズミルで混合して紡糸溶液を準備した。続いて、紡糸溶液をシリンジに入れ、所定のパターン形状の画素電極(ITO)が形成されたガラス基板の上で、電界紡糸装置(株式会社メック製NANON)を用いて8往復分の紡糸を行った。紡糸条件は、電界強度=28kV、吐出速度=0.5cm3/分、紡糸距離=15cm、スキャンレート=20mm/秒とした。続いて、真空オーブン(75℃)中でガラス基板を12時間乾燥して、非泳動粒子を含む繊維状構造体を形成した。
【0073】
[表示装置の組み立て]
画素電極が形成されたガラス基板から、その画素電極が形成されていない領域に付着した不要な繊維状構造体を除去したのち、対向電極(ITO)が全面形成されたガラス基板の上にスペーサとしてPETフィルム(30μm厚)を置いた。その上に、画素電極および繊維状構造体が形成されたガラス基板を重ねた。なお、多孔質層と重ならない位置にはビーズ(外径=30μm)を含む光硬化性樹脂(積水化学工業株式会社製感光性樹脂フォトレックA-400)を描画した。最後に、2枚のガラス基板の間の隙間に、電気泳動粒子が分散された絶縁性液体を注入したのち、ローラで全体を押圧して多孔質層を画素電極および対向電極に隣接させた後、再度全体を押圧して多孔質層を圧縮した。
【0074】
(実験例2)
実験例2は電気泳動粒子10を正に帯電させ、多孔質層20を負に帯電させたものである。実験例2は電気泳動粒子の調製および絶縁性液体の調製以外は、上記実験例1と同様の手順にて、表示装置を作製した。
【0075】
[電気泳動粒子の準備]
まず、水酸化ナトリウム43gとケイ酸ナトリウム0.37gとを水43gに溶解させて溶液Aを得た。続いて、溶液Aを攪拌しながら複合酸化物微粒子(大日精化工業株式会社製ダイピロキサイドカラーTM3550)5gを加えて攪拌(15分間)したのち、超音波攪拌(30℃〜35℃,15分間)した。次に、溶液Aを加熱(90℃)したのち、0.22mol/cm3の硫酸15cm3(=ml)と、ケイ酸ナトリウム6.5mgおよび水酸化ナトリウム1.3mgが溶解された水溶液7.5cm3とを2時間かけて滴下した。続いて、溶液Aを冷却(室温)したのち、1mol/cm3の硫酸1.8cm3を加えたのち、遠心分離(3700rpm,30分間)およびデカンテーションを行った。次に、エタノールに再分散してから共に遠心分離(3500rpm,30分間)すると共にデカンテーションを行う作業を2回繰り返したのち、各ボトルにエタノール5cm3と水0.5cm3との混合液を加えて超音波攪拌(1時間)して、シラン被覆複合酸化物粒子の分散溶液を得た。
【0076】
次いで、水3cm3と、エタノール30cm3と、N−[3−(トリメトキシシリル)プロピル]−N’−(4−ビニルベンジル)エチレンジアミン塩酸塩(40%メタノール溶液)4gとを混合して攪拌(7分間)したのち、分散溶液を全量投入した。続いて、混合溶液を攪拌(10分間)したのち、遠心分離(3500rpm,30分間)した。次いで、デカンテーションを行ったのち、エタノールに再分散してから遠心分離(3500rpmで30分間)する洗浄作業を2回繰り返した。デカンテーションを行ったのち、減圧環境(室温)中で乾燥(6時間)し、減圧環境(70℃)中で乾燥(2時間)して固形物を得た。続いて、固形物にトルエン50m3を加えて溶液Bとしたのち、ロールミルで攪拌(12時間)した。次いで、溶液Bを3つ口フラスコに移し、アクリル酸0.5gと2,5-ジメチル-1,5-ヘキサジエン2.0gを投入したのち、窒素気流下で攪拌(20分間)した。次に、溶液Bをさらに攪拌(50℃で20分間)したのちAIBN0.01gがトルエン3cm3に溶解された溶液Cを加え加熱(65℃)した。続いて、混合溶液を攪拌(1時間)後、冷却(室温)してから酢酸エチルと一緒にボトルに流し込み、遠心分離(3500rpmで30分間)した。次いで、デカンテーションを行ったのち、酢酸エチルに再分散させてから遠心分離(3500rpmで30分間)する洗浄作業を3回繰り返し減圧環境(室温)中で乾燥(12時間)したのち、さらに減圧環境(70℃)中で乾燥(2時間)した。これにより、重合体被覆顔料からなる黒色の泳動粒子が得られた。
【0077】
[絶縁性液体の調製]
次に、絶縁性液体として、N,N−ジメチルプロパン−1,3−ジアミン、12−ヒドロキシオクタデカン酸およびメトキシスルホニルオキシメタン(Lubrizol社製Solsperse17000)を0.75%、ソルビタントリオレート(Span85)を5.0%、イソパラフィン(エクソンモービル社製IsoparG)を94%含む有機溶媒を準備した。この場合には、必要に応じて、絶縁性液体9.7gに泳動粒子0.2gを加えて、ガラスビーズ(0.8mmφ)を加えたビーズミルで攪拌(1時間)した。続いて、混合液をガラスファイバーフィルターにかけビーズを取り除いて、泳動粒子が分散された絶縁性液体を得た。
【0078】
(実験例3)
実験例3は電気泳動粒子10の材料として負に帯電した材料(複合酸化物微粒子(大日精化工業株式会社製ダイピロキサイドカラーTM3550))を用い、表面処理を行わずに、電気泳動粒子10および多孔質層20が負に帯電したものである。実験例3は電気泳動粒子の調製において表面処理を行わない以外は、上記実験例1と同様の手順にて表示装置を作製した。
【0079】
(実験例4,5)
実験例4,5は電気泳動粒子10および多孔質層20を負に帯電させたものである。この実験例4,5は電気泳動粒子の調製、具体的には表面処理の方法が異なる以外は、上記実験例1と同様の手順にて、表示装置を作製した。
【0080】
[電気泳動粒子の準備]
まず、水酸化ナトリウム43gとケイ酸ナトリウム0.37gとを水43gに溶解させて溶液Aを得た。続いて、溶液Aを攪拌しながら複合酸化物微粒子(大日精化工業株式会社製ダイピロキサイドカラーTM3550)5gを加えて攪拌(15分間)したのち、超音波攪拌(30℃〜35℃,15分間)した。次に、溶液Aを加熱(90℃)したのち、0.22mol/cm3の硫酸15cm3(=ml)と、ケイ酸ナトリウム6.5mgおよび水酸化ナトリウム1.3mgが溶解された水溶液7.5cm3とを2時間かけて滴下した。続いて、溶液Aを冷却(室温)したのち、1mol/cm3の硫酸1.8cm3を加えたのち、遠心分離(3700rpm,30分間)およびデカンテーションを行った。次に、エタノールに再分散してから共に遠心分離(3500rpm,30分間)すると共にデカンテーションを行う作業を2回繰り返したのち、各ボトルにエタノール5cm3と水0.5cm3との混合液を加えて超音波攪拌(1時間)して、シラン被覆複合酸化物粒子の分散溶液を得た。
【0081】
次いで、水3cm3と、エタノール30cm3と、2−シアノエチルトリエトキシシラン2g(実験例4),グリシドキシプロピルトリメトキシシラン2g(実験例5)とを混合して攪拌(7分間)したのち、分散溶液を全量投入した。続いて、混合溶液を攪拌(10分間)したのち、遠心分離(3500rpm,30分間)した。次いで、デカンテーションを行ったのち、エタノールに再分散してから遠心分離(3500rpmで30分間)する洗浄作業を2回繰り返した。デカンテーションを行ったのち、減圧環境(室温)中で乾燥(6時間)し、減圧環境(70℃)中で乾燥(2時間)して固形物を得た。続いて、固形物にトルエン50m3を加えて溶液Bとしたのち、ロールミルで攪拌(12時間)した。次いで、溶液Bを3つ口フラスコに移し、アクリル酸0.5gと2,5-ジメチル-1,5-ヘキサジエン2.0gを投入したのち、窒素気流下で攪拌(20分間)した。次に、溶液Bをさらに攪拌(50℃で20分間)したのちAIBN0.01gがトルエン3cm3に溶解された溶液Cを加え加熱(65℃)した。続いて、混合溶液を攪拌(1時間)後、冷却(室温)してから酢酸エチルと一緒にボトルに流し込み、遠心分離(3500rpmで30分間)した。次いで、デカンテーションを行ったのち、酢酸エチルに再分散させてから遠心分離(3500rpmで30分間)する洗浄作業を3回繰り返し減圧環境(室温)中で乾燥(12時間)したのち、さらに減圧環境(70℃)中で乾燥(2時間)した。これにより、重合体被覆顔料からなる黒色の泳動粒子が得られた。
【0082】
(実験例6)
実験例6は電気泳動粒子10および多孔質層20を共に正に帯電させたものである。この実験例6は多孔質層20の調製以外は、上記実験例2と同様の手順にて表示装置を作製した。
【0083】
[多孔質層の調製]
次に、繊維状構造体の形成材料としてポリメントNK−380(日本触媒社製:分子量=100000)15gをDMF75gに溶解させて溶液Dを準備した。続いて、非泳動粒子である、例えば酸化チタン(堺化学工業株式会社製TITONE R-42)40gを溶液D60gに加えたのち、ビーズミルで混合して紡糸溶液を準備した。続いて、紡糸溶液をシリンジに入れ、所定のパターン形状の画素電極(ITO)が形成されたガラス基板の上で、電界紡糸装置(株式会社メック製NANON)を用いて8往復分の紡糸を行った。紡糸条件は、電界強度=28kV、吐出速度=0.5cm3/分、紡糸距離=15cm、スキャンレート=20mm/秒とした。続いて、真空オーブン(75℃)中でガラス基板を12時間乾燥して、非泳動粒子を含む繊維状構造体を形成した。
【0084】
(実験例7)
実験例7は電気泳動粒子10および多孔質層20が正に帯電したものである。この実験例6は、電気泳動粒子10を実験例1の手順で、多孔質層20を実験例6の手順を用いて表示装置を作製した。
【0085】
これらの実験例1〜7の表示装置の性能として、黒反射率(%)、白反射率(%)、コントラストを調べたところ、表1に示した結果が得られた。
【0086】
黒反射率および白反射率を測定する場合には、分光光度計(大塚電子社製MCPD-7000 )により、45°リング照明において標準拡散板に対する基板法線方向の反射率を測定した。この場合には、黒表示および白表示の双方において反射率が安定する電圧を駆動電圧(個尾では15V)とし、それぞれの表示状態における反射率を黒反射率および白反射率とした。なお、コントラストは、白反射率を黒反射率で割った値である。
【0087】
【表1】

【0088】
電気泳動粒子10および多孔質層20が共に負に帯電している実験例1,3,4(,5)では、従来の反射型表示装置に用いられている構成を有する実験例2(電気泳動粒子10が正、多孔質層20が負に帯電)のコントラスト比よりも2倍以上(但し、実験例5に関しては1.3倍程度)向上している。また、実験例2とは反対の構成(電気泳動粒子10が負、多孔質層20が正)を有する実験例7は、実験例2よりも大きくコントラスト比が低下しているが、実験例6のように電気泳動粒子10の電荷を多孔質層20と同じ正に帯電させることにより実験例1,3,4と同様に、コントラスト比が高くなり、4倍向上している。なお、実験例1,3,4と実験例5とにおけるコントラスト比の向上率の差は、多孔質層20を構成する繊維状構造体21の材料の違いによるものである。また、実験例7のコントラスト比の低さは以下の理由によるものである。一般的に、正に帯電した多孔質層20を形成する場合には、実験例7のように、その官能基はアミノ基である場合が多い。このアミノ基は、例えばシアノ基等と比較して分子が大きく、嵩高い。よって、電気泳動を繰り返すうちに多孔質層の細孔における電気泳動粒子の移動度が低下し、コントラスト比が低下する。
【0089】
以上のことから、表示装置のコントラスト比は電気泳動粒子10と多孔質層20との帯電極性を同一とすることにより、コントラスト比が向上するといえる。特に、多孔質層20の電荷(負)に合わせて電気泳動粒子10の電荷を調製することでより高いコントラスト比が得られることがわかる。また、電気泳動粒子付加する官能基の種類の寄らないことがわかる。
【0090】
以上、実施の形態を挙げて本技術を説明したが、本技術は実施の形態で説明した態様に限定されず、種々の変形が可能である。例えば、本技術の電気泳動素子は、表示装置に限らず、他の電子機器に適用されてもよい。
【0091】
なお、本技術は以下のような構成もとることができる。
(1)絶縁性液体中に、複数の電気泳動粒子と、繊維状構造体により形成された多孔質層とを含み、前記電気泳動粒子と、前記多孔質層とは同じ帯電極性を有する電気泳動素子。
(2)前記電気泳動粒子は、前記多孔質層と同じ帯電極性を有する、前記(1)に記載の電気泳動素子。
(3)前記繊維状構造体は、前記電気泳動粒子とは異なる光学的反射特性を有する複数の非泳動粒子を含む、前記(1)または(2)のいずれか1つに記載の電気泳動素子。
(4)前記繊維状構造体は高分子材料または無機材料により形成されている、前記(1)乃至(3)のいずれか1つに記載の電気泳動素子。
(5)前記繊維状構造体の平均繊維径は0.1μm以上10μm以下である、前記(1)乃至(4)のいずれか1つに記載の電気泳動素子。
(6)前記繊維状構造体は静電紡糸法により形成されている、前記(1)乃至(5)のいずれか1つに記載の電気泳動素子。
(7)前記繊維状構造体はナノファイバーである、前記(1)乃至(6)のいずれか1つに記載の電気泳動素子。
(8)前記電気泳動粒子および前記非泳動粒子は、有機顔料、無機顔料、染料、炭素材料、金属材料、金属酸化物、ガラスまたは高分子材料により形成されている、前記(3)乃至(7)のいずれか1つに記載の電気泳動素子。
(9)前記非泳動粒子の反射率は前記電気泳動素子の反射率よりも高い、前記(3)乃至(8)のいずれか1つに記載の電気泳動素子。
(10)電気泳動粒子を形成する工程と、繊維状構造体によって構成される多孔質層を形成する工程と、前記泳動粒子および前記多孔質層のどちらか一方に、他方と同じ帯電極性を付加する官能基を導入する工程と、を含む電気泳動素子の製造方法。
(11)少なくとも一方が光透過性であると共にそれぞれに電極が設けられた一対の基体の間に電気泳動素子を備え、前記反射型素子は、絶縁性液体中に、複数の電気泳動粒子と、繊維状構造体により形成された多孔質層とを含み、前記電気泳動粒子と、前記繊維状構造体とは同じ帯電極性を有する表示装置。
【符号の説明】
【0092】
1,51…絶縁性液体、10,52…電気泳動粒子、20,53…多孔質層、21…繊維状構造体、22…非泳動粒子、23,54…細孔、30…駆動基板、31,41…支持基体、32…TFT、33…保護層、34…平坦化絶縁層、35…画素電極、40…対向基板、42…対向電極、50…電気泳動素子、60…スペーサ。

【特許請求の範囲】
【請求項1】
絶縁性液体中に、複数の電気泳動粒子と、繊維状構造体により形成された多孔質層とを含み、
前記電気泳動粒子と、前記多孔質層とは同じ帯電極性を有する
電気泳動素子。
【請求項2】
前記電気泳動粒子は、前記多孔質層と同じ帯電極性を有する、請求項1に記載の電気泳動素子。
【請求項3】
前記繊維状構造体は、前記電気泳動粒子とは異なる光学的反射特性を有する複数の非泳動粒子を含む、請求項1に記載の電気泳動素子。
【請求項4】
前記繊維状構造体は高分子材料または無機材料により形成されている、請求項1に記載の電気泳動素子。
【請求項5】
前記繊維状構造体の平均繊維径は0.1μm以上10μm以下である、請求項1記載の電気泳動素子。
【請求項6】
前記繊維状構造体は静電紡糸法により形成されている、請求項1記載の電気泳動素子。
【請求項7】
前記繊維状構造体はナノファイバーである、請求項1記載の電気泳動素子。
【請求項8】
前記電気泳動粒子および前記非泳動粒子は、有機顔料、無機顔料、染料、炭素材料、金属材料、金属酸化物、ガラスまたは高分子材料により形成されている、請求項3記載の電気泳動素子。
【請求項9】
前記非泳動粒子の反射率は前記電気泳動素子の反射率よりも高い、請求項3記載の電気泳動素子。
【請求項10】
電気泳動粒子を形成する工程と、
繊維状構造体によって構成される多孔質層を形成する工程と、
前記泳動粒子および前記多孔質層のどちらか一方に、他方と同じ帯電極性を付加する官能基を導入する工程と、
を含む電気泳動素子の製造方法。
【請求項11】
少なくとも一方が光透過性であると共にそれぞれに電極が設けられた一対の基体の間に電気泳動素子を備え、
前記反射型素子は、
絶縁性液体中に、複数の電気泳動粒子と、繊維状構造体により形成された多孔質層とを含み、
前記電気泳動粒子と、前記繊維状構造体とは同じ帯電極性を有する
表示装置。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate


【公開番号】特開2013−109221(P2013−109221A)
【公開日】平成25年6月6日(2013.6.6)
【国際特許分類】
【出願番号】特願2011−255211(P2011−255211)
【出願日】平成23年11月22日(2011.11.22)
【出願人】(000002185)ソニー株式会社 (34,172)
【Fターム(参考)】