説明

電気活性材料を用いる組み込まれた制御バルブ

マイクロ流体制御バルブ(100)は少なくとも1つのキャビティ(260)を規定する誘電体構造(105)を有する。電気活性ポリマーのような電気活性材料(305)がキャビティの一部に備えられている。電気活性材料は、電気活性材料の寸法が第1値を有する第1状態と、その寸法が第2状態を有する第2状態との間で動作可能である。2つの導体(240、250)は、第1状態と第2状態との間で電気活性材料を変化させるように、電気活性材料に電位を印加するために備えられている。第1流体ポート(310)は、電気活性材料が第1状態にあるときに、流体が第1流体ポートを通って流れ、電気活性材料が第2状態にあるときに、電気活性材料は第1流体ポートを少なくとも一部で遮るように、電気活性材料に近接して位置している。


【発明の詳細な説明】
【技術分野】
【0001】
流体システムを組み込む種々の装置の小型化は、非常に小さい構成要素を有する流体システムについての要請を活性化している。それらのシステムは、マイクロ流体システムとして一般に知られている。マイクロ流体システムは、多くの発展している技術分野において益々重要な役割を果たす可能性を有している。例えば、エレクトロニクスシステムにおける流体誘電体の使用のために及びマイクロエンジンにおける液体燃料の使用において、近年、益々関心をもたれるようになっている。
【背景技術】
【0002】
マイクロ流体システムが益々、重要な役割を果たす可能性が高い他の技術分野は、燃料電池である。燃料電池は、イオン導電性電解質と燃料及び酸化剤を電気化学的に結合させることにより電気及び熱を発生する。幾つかの種類の燃料電池は、反応の副生成物として排水を生成する。この排水は、流体管理サブシステムによりシステムから排出されるように、反応から離れるように搬送される必要がある。
【0003】
最近、マイクロセルと呼ばれる非常に小さい燃料電池を製造する努力が払われてきている。そのようなマイクセルは、多くの可搬型エレクトロニクスのアプリケーションで実際に用いるために適合されることが可能であることが予想される。例えば、そのような装置は、ラップトップコンピュータ及び携帯電話に電力供給するために用いられることが可能である。更に、マイクロセルは、それらの装置が実際に実施される前に克服される必要がある多くのデザイン上の課題を与える。例えば、燃料電池反応を制御し、反応構成要素に燃料を分配し、反応で生成される水を処分するために、小型化電気機械的システムが開発されなければならない。これに関して、燃料電池のデザインにおける技術革新では、マイクロエレクトロニクス及びマイクロシステムエンジニアリングの分野からシリコン処理及び他の技術に関心を寄せ始めている。
【0004】
殆どの他の種類の流体システムと同様に、マイクロ流体システムは、通常、個別構成要素として実施される制御バルブ装置を組み込んでいる。個別構成要素は、体積が大きい傾向にあるが、そのことは、しばしば、小型化の努力を妨げている。更に、そのような制御バルブ装置は、典型的には、同時に使用しなければならない複数の可動部分を有する。しかしながら、そのような装置の信頼性は、可動部分は摩耗するために、可動部分の数に一般に反比例する。それ故、上記の欠点を克服することができる埋め込み型制御バルブを、マイクロ流体システムにおいて利用する必要がある。
【発明の開示】
【課題を解決するための手段】
【0005】
本発明は、少なくとも1つのキャビティを規定する誘電体構造を有するマイクロ流体制御バルブに関する。電気活性材料、例えば、電気活性ポリマーが、そのキャビティの一部に備えられることが可能である。電気活性材料は、電気活性材料の寸法が第1値を有する第1状態と、その寸法が第2値を有する第2状態との間で動作可能である。少なくとも2つの導体が、電気活性材料に電圧を印加するために含まれることが可能である。その電位の印加は、第1状態と第2状態との間で電気活性材料を変化させる。
【0006】
第1流体ポートは、電気活性材料が第1状態にあるときに、流体が第1流体ポートを通って流れ、そして電気活性材料が第2状態にあるときに、電気活性材料は第1流第部分を少なくとも一部で遮る、それにより、流体流を低減させる又は停止させるように、電気活性材料に近接して位置付けられることが可能である。第2流体ポートは、電気活性材料が第1状態にあるときに、第1流体ポートに流体的に結合されることが可能である。閉ループ制御回路は、電気活性材料に印加されるように適切な電圧値を決定することができる。閉ループ制御回路は、光センサ、流体流センサ又は電流センサを有することが可能である。
【0007】
流体流を制御するための方法は、断面領域を規定する流体ポートを通る流体を流す段階と、断面領域における変化をもたらすように、制御信号に応じて電気活性材料に印加される電解を選択的に変える段階とを有することが可能である。その方法はまた、測定された流体流、測定された電解強度又は電気活性材料の形状変化に応じて電解を選択的に変化させる段階を有することが可能である。
【0008】
マイクロ流体制御バルブを製造する方法は、誘電体構造において少なくとも1つのキャビティを形成する段階と、キャビティの一部に、電気活性材料、例えば、電気活性ポリマーを備える段階とを有することが可能である。電気活性材料は、電気活性材料の寸法が第1値を有する第1状態と、その寸法が第2値を有する第2状態との間で動作することが可能である。第1導体及び第2導体に印加される電圧が電気活性材料において印加され、それにより、第1状態と第2状態との間で電気活性材料を変化させるように、第1導体は電気活性材料の第1側に備えられ、そして第2導体は電気活性材料の第2側に備えられている。
【0009】
第1流体ポートは、電気活性材料が第1状態にあるときに、流体が第1流体ポートを通って流れ、電気活性材料が第2状態にあり、それにより、流体流を低減させる又は停止させるときに、電気活性材料が第1流体ポートの少なくとも一部を遮るように、電気活性材料に近接して備えられることが可能である。第2流体ポートは、電気活性材料が第1状態にあるときに、第1流体ポートに流体的に結合されることが可能である。閉ループ制御回路は、電気活性材料に印加するように適切な電圧値を決定することを含むことができる。制御回路は更に、光センサ、流体流センサ又は電流センサを有することが可能である。
【発明を実施するための最良の形態】
【0010】
本発明は、マイクロ流体制御バルブ(制御バルブ)に関する。その制御バルブを、流体流速度を制御するための及び流体流をオンに切り換える又はオフに切り換えるためのマイクロ流体システムで用いることができる。重要であることに、制御バルブを、流体が流れる流体流チャネルを有する基板に組み込むことが可能である。制御バルブは電界が電気活性材料に印加されるときに、流体ポートに対して拡大することにより、流体流を制限する電気活性材料を有することが可能である。代替として、印加される電界が存在しない又は殆ど存在しないとき、電気活性材料は流体ポートに対して拡大し、それにより、流体ポートを遮ることが可能であるが、流体ポートを遮らないように電界の存在下で収縮することが可能である。
【0011】
一構成においては、電気活性材料は、制御バルブにおいて唯一の可動構成要素であることが可能である。したがって、マイクロ流体システムのプロファイルは、個別構成要素を用いる流体システムに比べて小さい。したがって、この実施形態は、マイクロ流体システムにおける流体シールの数を最少化し、それにより、他の流体システムに比べてロバストなマイクロ流体システムを製造することができる。
【0012】
制御バルブは、スタンドアロン装置であることが可能であり、又は、基板においてより大きいシステムと有利に統合されることが可能である。そのような大きいシステムの実施例においては、燃料電池、マイクロモーター及び他のMEMS型装置を有することが可能である。他の実施例においては、例えば、アンテナ要素、適合部、遅延線、ビームステアリング要素、調節可能伝送線、スタブ及びフィルタ、可変減衰器及びキャビティ構造のようなRFフィールドにおける流体誘電体に基づく装置を有することが可能である。それにも拘らず、本発明は、何れの特定の種類の装置に限定されるものではない。
【0013】
本発明にしたがった制御バルブ100について、図1Aに示す。制御バルブ100は、種々の基板の何れに製造されることが可能である。例えば、制御バルブ100は、セラミック、液晶ポリマー(LCP)、シリコン、ガリウム砒素、ゲルマニウム又はインジウム燐から成る基板105に製造することができる。更に、本発明は、それに限定されず、マイクロ電気機械的製造過程のために適切な何れの基板材料を使用することができる。制御バルブは、流体チャネル110と、基板105において規定されるアクセスポート115とを有することが可能である。アクセスポート115は、電気活性材料が備えられている基板105において記載されるキャビティへのアクセスを与えることができる。図1Bに示すように、フタ120が、アクセスポート115を閉じるように備えられることが可能である。
【0014】
ある場合には、基板105の少なくとも一方側125において、導電性グラウンド面125を有することがまた、好ましい。例えば、グラウンド面125は、RF回路が基板105の表面に形成されているそれらの実施例において用いられることが可能である。導電性グラウンド面125はまた、構成要素がRFに曝されないようにするため及び広範な他の目的のために用いられることが可能である。導電性金属のグラウンド面は、基板105と相性がよい導電性金属から成ることが可能である。しかしながら、当業者は、グラウンド面は本発明の目的のためには必要ないことを理解することができるであろう。
【0015】
基板105の形成のために使用することができる一種類のLCP材料は、米国コネチカット州Rogers市のRogers社製のR/flex(登録商標)3000 Series LCP Circuit Materialである。そのR/flex(登録商標)3000 LCPは、低誘電損失、低湿気吸収性を有し、安定な電気的、機械的及び寸法特性を維持することができる。R/flex(登録商標)3000 LCPは、標準的には、厚さ50μmで利用可能であるが、他の厚さが与えられることが可能である。
【0016】
基板の形成のために用いられる一種類のセラミック材料は、Dupont(登録商標)社製の低温の951 co−fire Green TapeTMである。951 co−fire Green TapeTMはAu及びAgと相性がよく、熱膨張係数(TCE)及び相対的強度に関して貞節な機械的特性を有する。それは、114μm乃至254μmの範囲内の厚さで利用可能である。他の類似するタイプの系は、W.C.Heraeus社製のCT2000及び米国カリフォルニア州Vista市のFerro Electronic Materials社製のA6S型LTCCのような既知の材料を有する。それらの材料の何れ及び変化する電気的特性を有する種々の他のLTCC材料を使用することが可能である。
【0017】
断面線2−2に沿って取られる制御バルブの断面図を図2に示している。図示されているように、基板は、複数の基板層205により構成されている。例えば、基板層205−1、205−2、205−3、205−4、205−5、205−6が備えられている。特に、基板層205の各々は、各々の層を構成するように積層された複数の副層を更に有することが可能である。
【0018】
基板層の各々において用いられるようになっている基板材料は、製造処理で用いられる前に、前調整されることが可能である。例えば、基板がLTCCである場合、LTCC材料は、特定の時間の期間の間に適切な温度でベーキングされること、又は、特定の時間の期間の間、窒素雰囲気の乾燥ボックス中に置いたまま維持されることが可能である。通常の前調整サイクルは、160℃で20乃至30分間又は窒素雰囲気の乾燥ボックス中に24時間置かれることである。両方の前調整処理については、セラミック基板の技術分野において知られている。
【0019】
一旦、基板層205が前調整されると、流体チャネル110が、制御バルブを通って流体を搬送するために形成されることが可能である。図示されているこの構成において、流体チャネル110は、第1基板105の左側280から基板層105の右側285まで延びているが、本発明はそれに限定されるものではなく、流体チャネル110は何れの適切な方法で方向付けられることが可能である。例えば、一実施形態においては、チャネルは、1つ又はそれ以上のチャネルが単一の基板層に含まれるように、水平方向に方向付けられることが可能である。
【0020】
基板層205を積層する前に、流体チャネル部分210が基板層205−2において形成され、流体チャネル部分215が基板層205−3において形成され、流体チャネル部分/キャビティ220が基板層205−4において形成され、そして流体チャネル部分/キャビティ225が基板層205−5において形成される。流体チャネル部分210、215、220、225は、一旦、基板層205が積層されると、1つの連続流体チャネル110を形成するように配置されることが可能である。更に、アクセス部115は基板層205−6において形成されることが可能であり、その基板層205−6に、蓋120の下部230は適合する。一構成においては、下部230の厚さは基板層205−6の厚さに等しい。多くの技術が、基板層において流体チャネル及び他の開口を形成するために利用されることが可能である。例えば、基板層205がセラミックである場合、流体チャネル部分210、215、220、225及びアクセス部115を、チャネルを機械的に孔開けすることにより又は基板層205にチャネルをレーザカットすることにより形成することができる。
【0021】
第1電極240は、基板105において規定されるキャビティ260の下の基板層205−3の上表面245において形成されている。第2電極250は、キャビティ260の上の基板層205−6の下表面255において形成されている。したがって、キャビティ260は電極240、250間に規定されることができる。電極240、250は、当業者に知られている処理を用いて形成されることが可能である。例えば、電極240、250は、従来の厚膜のスクリーンプリンティング処理を用いて堆積される導電性フィルムを用いて形成されることが可能である。導電性材料は、次いで、適切な温度で、適切な時間の間、ボックスオーブン内で乾燥される。例えば、一般的な乾燥処理においては、160℃で5分間、導電性材料を有する基板をベーキングする。
【0022】
流体チャネル部分210、215、220、225、アクセス部115及び電極240、250が形成された後、基板層205は、適切な積層方法を用いて共に積層される。基板層がLTCC材料である場合、基板層205は積層され、高温のプラテンを用いて水圧加圧される。例えば、一軸積層方法においては、70℃に加熱されたプレートを用いて10分間、3000psiで共に基板層が加圧される。基板層は、最初の5分間に続いて、165°回転される。アイソタクティック積層処理においては、基板層はプラスチックバッグ内に真空シールされ、次いで、高温の水を用いて加圧される。時間、温度及び圧力は、一軸積層処理において用いられるそれらと同じであることが可能であるが、5分後の回転は必要ない。一旦、積層されると、その構造105は、平らなタイル上の炉内で焼成される。例えば、基板層は、200℃乃至500℃の範囲内で1時間ベーキングされ、850℃乃至875℃の範囲内のピーク温度が15分間以上、適用される。焼成処理後、焼成後操作は基板層において実行されることが可能である。
【0023】
一旦、基板処理が終了すると、図3Aに示すように、電気活性材料305がキャビティ260に加えられる。電気活性材料は、形又は大きさの変位が現れることにより、外部の電気的刺激に対して応答する材料である。本発明で用いるための幾つかの種類の電気活性材料、例えば、電気活性ポリマー(EAP)、電気活性セラミック(EAC)及び形状記憶合金(SMA)を使用することが可能である。一般に、EAPは、EACにより可能な変形より2桁大きい大きさのような大きい変形を導入する能力を有する。SMAに比べて、EAP材料は速い応答速度、低い密度及び改善された弾性を有する。圧電セラミックに比べて、EAPは、同じエネルギー入力に対して2倍大きく変形することが可能である。
【0024】
EAPには、それらの活性モードが異なる2つの主なカテゴリがある。それらのカテゴリのメンバーには、電気EAP及びイオンEAPを有する。電気EAPのカテゴリには、強誘電性ポリマー、誘電性EAP、電気歪みグラフトエラストマー、電気歪みペーパー、電気粘弾性エラストマー及び液晶エラストマー(LCE)材料がある。イオンEAPのカテゴリのメンバーには、イオンポリマーゲル(IPG)、イオンポリマー−金属混合物(IPMC)、導電性ポリマー及びカーボンナノチューブがある。一般に、イオンEAPは、電気EAPより小さい電圧を用いて機能するが、遅い変位応答を有する。それ故、ここで述べる制御値で用いる電気活性材料を選択するとき、意図される適用の必要条件は、利用可能である種々の電気活性材料の特性に対して評価されなければならない。
【0025】
適切なEAP材料が複数のメーカーにより製造されている。例えば、電気活性材料305として使用することができる誘電性EAPは、米国ミネソタ州St.Paul市の3M(商標登録)社製のVHB(商標登録)アクリルフォームテープである。VHB(商標登録)アクリルフォームテープは、15乃至120ミルの範囲内の種々の厚さで利用可能である。電気活性材料305として用いられる他のEAP材料は、米国カリフォルニア州Carpinteria市のNuSil Technology社製のモデル番号CF19−2186シリコーンエラストマーである。
【0026】
今日、その材料に電圧が印加されるときに膨張する、複数の種類の電気活性材料が存在するが、電界の存在下で収縮する電気活性材料がまた、存在する。例えば、電気活性材料は、電圧がその材料に印加されるときに、減少する結合の角度又は結合の長さを有する炭素鎖を有していることが可能である。そのような材料は、例えば、ポリアセチレンを有する。
【0027】
電気活性材料305としてシリコーンエラストマーが用いられる場合、それは、キャビティ260への液体として分与され、適切に硬化されることが可能である。例えば、CF19−2186シリコーンエラストマーがキャビティ260に注入され、24時間、室温で硬化されるように保たれることが可能である。離型剤、例えば、米国コネチカット州Rocky Hill市のLoctile社製のFrekote(商標登録)1711が、基板層へのシリコーンエラストマーの付着を最少化するように備えられることが可能である。Frekote(商標登録)1711は、エアゾール噴霧として適用されることが可能であり、室温で硬化する。
【0028】
電気活性材料305として、アクリルフォームテープが用いられる構成においては、アクセスポート115及び蓋120は、キャビティ260へのアクリルフォームテープの挿入を容易にするように、キャビティ260の上に広がる。この場合、少なくとも第2電極250の一部は蓋120の内側に備えられることが可能である。電気的コンタクト(図示せず)が、第2電極250と対応する回路トレースとの間の導通を与えるように備えられている。
【0029】
図3Aにおいては、電気活性材料305はキャビティ260から延びていない、それ故、流体ポート310、315が遮られないまま保たれる第1運転状態にある制御バルブ100を示している。したがって、流体320は、流体チャネル110を通って流れることができる。図3Bを参照するに、電圧が電極240、250に印加されるとき、電気活性材料305により電界325が発生する。電界325は、電気活性材料305が、流体ポート310の上の少なくとも一部で形が変わり且つ拡大するようにし、それにより、流体チャネル110を通る流体320の流れを制限することが可能である。代替の構成においては、電気活性材料305は、通常、流体320の流れを制限するように流体ポート310の上で拡大することが可能であるが、電界325の存在下では、流体ポート310の覆いを外し、流体32の流れを可能にするように収縮する。
【0030】
一実施形態においては、流体チャネル部分215は、基板層205−3を通って延びる複数の流体チャネル部分(図示せず)を有することが可能である。複数の流体チャネルの各々は、流体チャネル部分210の断面積より小さい断面積を有することが可能である一方、集合としては、流体チャネル部分210に略等しい全断面積を与える。そのような構成は、電気活性ポリマー305が流体ポート310において拡大するとき、電気活性ポリマー305が流体ポート310において結合しないように実施されることが可能である。他の構成においては、複数の穿孔を有する挿入部分(図示せず)が流体チャネル部分215に備えられている。ここで、流体部310は、キャビティ260の下に位置しているように示しているが、本発明はそれに限定されるものではないことに留意する必要がある。例えば、流体部310は、キャビティ260の側部又はキャビティ260の上部に位置付けられることが可能である。
【0031】
電気活性材料305は、流体ポート315の方に拡大し、そこで流体流制限をまた、与える。それ故、流体シールが、流体チャネル310、315の両方において与えられる。この構成は、例えば、流体チャネル110を通る流体流が完全に塞がれることが求められるとき、制御バルブ100において冗長性を与える。有利であることに、この冗長性は、単一の可動構成要素を、即ち、電気活性材料305を使用している間に与えられる。
【0032】
センサ330は、流体チャネル110を通る流体流を制御するように、制御バルブ100において備えられることが可能である。例えば、センサ330は、流体流の速度を制御する閉ループ制御システム内に含まれることが可能である。そのような制御システムについては、当業者に知られている。一構成においては、センサ330は、チャネル110において流体320の流れを測定するように、流体チャネル110に近接して位置している流体流センサであることが可能である。他の構成においては、センサは、電極240、250に印加する電圧を測定するように備えられ、電気活性材料305の形状における変化量が決定されることが可能である。他の構成においては、センサは、電気活性材料305の形状における変化を直接測定するように、備えられることが可能である。また、制御バルブの動作を制御するように用いられることが可能である、当業者に知られている膨大な数の他のセンサが存在し、それ故、本発明は、上記の実施例に限定されるものではない。
【0033】
図4は、図1の制御バルブ100の断面線3−3に沿って取られた断面図である。その断面図は、第1動作状態における制御バルブ100について示している。図示しているように、キャビティ260は流体チャネル110より広いが、本発明はそれに限定されるものではない。例えば、キャビティ260は、流体チャネル110と同じ幅を又は流体チャネル110より小さい幅を有することが可能である。そのような全ては、少なくとも一の動作状態において、電気活性材料305が流体ポート310、315の少なくとも一を通る流体流を制限することを必要とする。
【0034】
本発明を理解するために有用である流体システム500について、図5に示している。そのようなシステムの実施例は、燃料電池、マイクロモーター及び他のMEMS型装置を有することが可能である。他の実施例は、アンテナ要素、適合部、遅延線、ビームステアリング要素、調節可能伝送線、スタブ及びフィルタ、可変減衰器及びキャビティ構造のようなRFフィールドにおける流体誘電体に基づく装置を有することが可能である。更に、本発明は、何れの特定な種類のシステムに限定されるものではない。
【0035】
流体システム500は、基板540、流体ポンプ520及びマイクロ流体装置530内に組み込まれた制御バルブ510を有することが可能である。更に、流体リザーバ550を備えることが可能である。流体リザーバ550は、図示しているように、基板に組み込まれることが可能であり、又は、別個のユニットとして備えられることが可能である。制御バルブ510、流体ポンプ520、マイクロ流体装置530及び流体リザーバ550は、流体チャネル555、例えば、基板540における流体チャネルを介して流体的に結合されることが可能である。
【0036】
流体システム500はまた、例えば、制御バルブ510の動作を制御する閉ループ制御回路を備えるように、制御回路560を有することが可能である。制御回路560は、制御バルブ510を通る流体流を測定するセンサからの流体データ580を受け取ることができる。上記のように、センサ570は、制御バルブ510内に含まれることが可能であるが、本発明はそれに限定されるものではない。例えば、そのセンサは制御バルブ510の外側にあることが可能である。制御回路560は流体流データ580を処理し、制御バルブ510に対してプログラムされた1つ又はそれ以上の制御信号590を生成することが可能である。例えば、制御信号590は、制御バルブの電極に印加される電位であることが可能であり、それにより、上記のように、制御バルブ510において電気活性材料の形状を変化させることが可能である。
【0037】
本発明の方法を理解するために有用であるフローチャート600を図6に示している。段階605から開始して、流体チャネルを基板に形成することが可能である。キャビティはまた、段階610に示すように、基板において形成されることが可能である。そのキャビティは、流体ポートを介して流体チャネルに流体的に接続されることが可能である。段階615に継続するに、少なくとも第1及び第2電極を、キャビティの対向する部分にそれぞれ近接して、基板において形成することが可能である。段階620に進むと、電気活性材料が、一動作状態において、電気活性材料が流体ポートを通る流体流を制限し、それにより、流体チャネルを通る流体流を制限することができるように、キャビティ内に備えられることが可能である。
【図面の簡単な説明】
【0038】
【図1A】本発明を理解するために有用であるマイクロ流体制御バルブの斜視図である。
【図1B】本発明を理解するために有用であるマイクロ流体制御バルブの斜視図である。
【図2】マイクロ流体制御バルブへの電気活性材料の適用に先立って、図1のマイクロ流体制御バルブの断面線2−2に沿って取られた断面図である。
【図3A】第1動作状態における図1のマイクロ流体制御バルブの断面線2−2に沿って取られた断面図である。
【図3B】第2動作状態における図1のマイクロ流体制御バルブの断面線2−2に沿って取られた断面図である。
【図4】第1動作状態における図1のマイクロ流体制御バルブの断面線3−3に沿って取られた断面図である。
【図5】本発明を理解するために有用である流体システムの模式図である。
【図6】本発明を理解するために有用であるフローチャートである。

【特許請求の範囲】
【請求項1】
マイクロ流体制御バルブであって:
少なくとも1つのキャビティを規定する誘電体構造;
前記キャビティの一部に備えられた電気活性材料であって、前記電気活性材料は、前記電気活性材料の寸法が第1値を有する第1状態と、前記前記電気活性材料の寸法が第2値を有する第2状態との間で動作可能である、電気活性材料;
前記電気活性材料に電位を印加するための少なくとも2つの導体であって、前記電位の前記印加は、前記第1状態と前記第2状態との間で前記電気活性材料を変化させる、少なくとも2つの導体;及び
第1流体ポートであって、前記電気活性材料が前記第1状態にあるときに流体が前記第1流体ポートを流れ、前記電気活性材料が前記第2状態にあるときに前記電気活性材料が前記第1流体ポートを少なくとも一部で遮り、それにより、前記流体流を低減させる又は停止させるように、前記電気活性材料に近接して位置している、第1流体ポート;
を有するマイクロ流体制御バルブ。
【請求項2】
請求項1に記載のマイクロ流体制御バルブであって、前記電気活性材料が前記第1状態にあるとき、前記第1流体ポートに流体的に結合している第2流体ポートを更に有する、マイクロ流体制御バルブ。
【請求項3】
請求項1に記載のマイクロ流体制御バルブであって、前記電気活性材料に印加される適切な電圧値を決定するように閉ループ制御回路を更に有する、マイクロ流体制御バルブ。
【請求項4】
請求項3に記載のマイクロ流体制御バルブであって、前記閉ループ制御回路は、光センサ、流体流センサ及び電流センサを有する群から選択された少なくとも一のセンサを更に有する、マイクロ流体制御バルブ。
【請求項5】
請求項1に記載のマイクロ流体制御バルブであって、前記電気活性材料は電気活性ポリマーである、マイクロ流体制御バルブ。
【請求項6】
流体流を制御する方法であって:
断面領域を規定する流体ポートを通る流体を流す段階;及び
前記断面領域における変化を生成するように、制御信号に応じて電気活性材料に印加される電界を選択的に変化させる段階;
を有する方法。
【請求項7】
請求項6に記載の方法であって、前記流体流を測定し、前記測定された流体流に応じて電界を選択的に変化させる段階を更に有する、方法。
【請求項8】
請求項6に記載の方法であって、前記電界の強度を測定し、前記測定された電界の強度に応じて電界を選択的に変化させる段階を更に有する、方法。
【請求項9】
請求項6に記載の方法であって、前記電気活性材料の形状の変化を測定し、前記測定された形状の変化に応じて電界を選択的に変化させる段階を更に有する、方法。
【請求項10】
マイクロ制御バルブを製造する方法であって:
誘電体構造において少なくとも1つのキャビティを形成する段階;
前記キャビティの一部に電気活性材料を備える段階であって、前記電気活性材料は、前記電気活性材料の寸法が第1値を有する第1状態と、前記前記電気活性材料の寸法が第2値を有する第2状態との間で動作可能である、段階;
前記電気活性材料の第1側に第1導体を備え、前記電気活性材料の第2側に第2導体を備える段階であって、前記第1導体及び前記第2導体に印加される電圧は前記電気活性材料に印加され、それにより、前記第1状態と前記第2状態との間で前記電気活性材料を変化させるようになっている、段階;並びに
第1流体ポートを備える段階であって、前記電気活性材料が前記第1状態にあるときに流体が前記第1流体ポートを流れ、前記電気活性材料が前記第2状態にあるときに前記電気活性材料が前記第1流体ポートを少なくとも一部で遮り、それにより、前記流体流を低減させる又は停止させるように、前記電気活性材料に近接して位置している、第1流体ポートを備える段階;
を有する方法。

【図1A】
image rotate

【図1B】
image rotate

【図2】
image rotate

【図3A】
image rotate

【図3B】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate


【公表番号】特表2008−506913(P2008−506913A)
【公表日】平成20年3月6日(2008.3.6)
【国際特許分類】
【出願番号】特願2007−522597(P2007−522597)
【出願日】平成17年7月18日(2005.7.18)
【国際出願番号】PCT/US2005/025248
【国際公開番号】WO2006/020093
【国際公開日】平成18年2月23日(2006.2.23)
【出願人】(594071675)ハリス コーポレイション (287)
【氏名又は名称原語表記】Harris Corporation
【Fターム(参考)】