説明

電気自動車

【課題】 可能な限り回生ブレーキを使用し、かつ回生ブレーキの掛け過ぎによるタイヤのスリップを防止できる電気自動車を提供する。
【解決手段】 回生ブレーキ34と、機械式ブレーキ9とを備えた電気自動車において、車輪用軸受4に、路面・タイヤ間に作用する車両進行方向の荷重を検出する荷重センサ41を設けると共に、荷重対応回生ブレーキ制限手段36を設ける。この荷重対応回生ブレーキ制限手段36は、荷重センサ41の出力が設定値に達したときに、回生ブレーキ34の制動トルクを減じる。また、車輪回転数とバッテリの充電状態から回生ブレーキ34の可能最大回生制動トルクを計算し、指令範囲内で回生ブレーキ34の制動トルクを最大に作動させる最大作動手段36を設ける。

【発明の詳細な説明】
【技術分野】
【0001】
この発明は、車輪を駆動するモータを備えたバッテリ駆動、燃料電池駆動等のインホイールモータ車両等となる電気自動車に関する。
【背景技術】
【0002】
電気自動車では、限られたバッテリ容量下で航続距離を向上させるため、IPM型のモータ(埋込磁石型同期モータ)が利用されることが多い。このモータの特徴は、容易に回生ブレーキを作用をさせられる点にあり、航続距離が重要な場合では、可能な限りこの回生ブレーキを利用したい。
【先行技術文献】
【特許文献】
【0003】
【特許文献1】特開2010−32038号公報
【発明の概要】
【発明が解決しようとする課題】
【0004】
回生ブレーキは、車輪を直接に制動するため、摩擦ブレーキに比べ、掛け過ぎるとタイヤがスリップすることがあり、適切な利かせ方が課題となっている。特に、インホイールモータ駆動装置では、その制動トルクが直に各車輪に伝達されるため、他の車輪間とのトルク配分ができず、そのためタイヤのスリップは極力避けることが必要である。
回生ブレーキを、スリップが生じないように適切に利かせるにつき、モータの駆動トルクや車輪回転速度の検出値から、機械式ブレーキと回生ブレーキとのうちの、回生ブレーキ配分を制御することは可能である。しかし、走行中に車輪が路面に対して瞬間的に浮いているような場合も多く、また路面状態によってタイヤと路面間の摩擦係数も変わる。そのため、モータの駆動トルクや車輪回転速度の検出値のみでは、回生ブレーキの適切な制御が難しい。
【0005】
この発明の目的は、可能な限り回生ブレーキを使用し、かつ回生ブレーキの掛け過ぎによるタイヤのスリップを防止できる電気自動車を提供することである。
【課題を解決するための手段】
【0006】
この発明の電気自動車は、車輪2を駆動するモータ6と、このモータ6を制御するモータコントロール部29と、このモータコントロール部29に設けられ前記モータ6の発電により前記車輪2に回生制動力を与える回生ブレーキ34と、前記車輪2に機械的に制動力を与える機械式ブレーキ9とを備えた電気自動車において、
前記車輪2を支持する車輪用軸受4に、路面・タイヤ間に作用する車両進行方向の荷重を検出する荷重センサ41を設け、この荷重センサ41の出力が設定値に達したときに、前記回生ブレーキ34の制動トルクを減じる荷重対応回生ブレーキ制限手段36を設けたことを特徴とする。
【0007】
この構成によると、荷重対応回生ブレーキ制限手段36は、路面・タイヤ間に作用する車両進行方向の荷重が設定値に達したときに、回生ブレーキ34の制動トルクを減じる。このように、路面・タイヤ間に作用する荷重に応じて回生ブレーキ34の制動トルクを減じるため、回生ブレーキ34の掛け過ぎによるタイヤのスリップを防止することができる。特に、実際に作用している路面・タイヤ間の荷重に応じて回生ブレーキ34の利きを制限するため、モータ6の駆動トルクや車輪回転速度の検出値から制限する場合と異なり、路面状態の違いやタイヤの路面からの浮き上がり等に対して、適切な制御を迅速に行える。したがって、可能な限り回生ブレーキ34を使用するようにしても、回生ブレーキ34の掛け過ぎによるタイヤのスリップを防止することができる。
【0008】
前記荷重対応回生ブレーキ制限手段36は、前記荷重センサ41の出力が設定値に達して回生ブレーキ34の制動トルクを減じた後、荷重センサ41の出力が前記設定値よりも低い復帰用の設定値以下になったときに、前記回生ブレーキ34の制動トルクを減じる制御を解除するのが良い。
路面・タイヤ間の進行方向荷重が低下したときは、回生ブレーキ34による制動トルクを減じる必要がなく、その減じる制御を解除することで、回生ブレーキ34をできるだけ多く使用してエネルギ回収が行える。
【0009】
この発明において、ブレーキ操作手段17から、車両全般を制御する電気制御ユニットであるECU21を介して前記モータコントロール部29に回生制動トルク指令が与えられたときに、定められた規則に従い、車輪2の回転数とバッテリ19の充電状態から前記回生ブレーキ34の可能最大回生制動トルクを計算し、その可能最大回生制動トルクが前記回生制動トルク指令未満であれば、前記回生制動トルク指令に対して前記回生ブレーキ34の制動トルクを最大に作動させる最大作動手段35を前記モータコントロール部29に設け、前記荷重対応回生ブレーキ制限手段36は、前記最大作動手段35の制御に優先して前記回生ブレーキ34の制動トルクを減じる機能を生じさせるようにしても良い。
回生ブレーキ34は、バッテリ19の充電率が高い場合や、充電可能な残容量が少ない場合、効果的に制動が行えないが、前記最大作動手段35は、可能最大回生制動トルクを計算し、その範囲で回生ブレーキ34の制動トルクを最大に作動させる。このため、回生ブレーキ34による制動トルクの不足の問題を生じることなく、可能な限り回生ブレーキ34を使用することができる。このように、バッテリ19の充電状況を監視しながら、可能な限り回生ブレーキ34を使用し、その上で、前記荷重対応回生ブレーキ制限手段36による回生ブレーキ34の利き過ぎによるスリップ防止を行うため、スリップ防止を確実にしながら、より一層、回生ブレーキ34の使用を高めることができる。
【0010】
この発明において、前記モータコントロール部29に、前記回生ブレーキ34が機能する回生制動トルクの値を前記ECU21に報告する報告手段37を設け、前記ECU21に、前記報告手段37から報告された回生制動トルクの値と前記モータコントロール部29に与えた回生制動トルク指令との差分となる制動トルクを前記機械式ブレーキ9に加えさせる制動力配分手段38を設けるのが良い。
荷重対応回生ブレーキ制限手段36による回生トルクの低減を行った場合や、最大作動手段35の計算した可能最大回生制動トルクから、回生ブレーキ34が回生トルク指令の回生制動トルクを得ることができない場合等は、車両全般を制御する電気制御ユニットであるECU21に報告することで、ECU21による各種の制御を適切に行える。特に、制動力配分手段38により、低減後の回生制動トルクの値と回生制動トルク指令との差分となる制動トルクを機械式ブレーキ9に与えることで、回生制動トルクを低減させても、車両の総制動トルクを確保することができる。
【0011】
この発明において、前記荷重センサ41は、前記車両進行方向の荷重に加えて、路面・タイヤ間に作用する車幅方向の荷重を検出する機能を有するものとし、前記荷重対応回生ブレーキ制限手段36は、前記荷重センサ41の出力する前記車両進行方向の荷重と車幅方向の荷重とから、設定規則により演算された値が設定値に達した場合に、前記回生ブレーキ34の制動トルクを減じるものとしても良い。
車両が曲線路を走行するときは、左右の車輪2における車両進行方向の路面・タイヤ間の荷重が異なり、また路面・タイヤ間に車幅方向の荷重が作用する。このため、車幅方向の荷重と車両進行方向の荷重との両方を用いて荷重対応回生ブレーキ制限手段36による回生制動トルクの低減可否を判定させることで、より確実に、可能な限り回生ブレーキ34を使用し、かつ回生ブレーキ34の掛け過ぎによるタイヤのスリップを防止することができる。
【0012】
この発明において、前記モータ6は、一部または全体が車輪2内に配置されて前記モータ6と車輪用軸受4を含むインホイールモータ駆動装置8を構成するものであっても良い。このインホイールモータ駆動装置8は、前記モータ6の回転を減速して車輪に伝える減速機7を含むものであっても良い。
インホイールモータ駆動装置8では、回生ブレーキ34の制動トルクが直に車輪2に伝達されるために、他の車輪2,3間とのトルク配分ができず、そのためタイヤのスリップは極力避けることが必要である。そのため、この発明によるスリップ防止の効果がより一層効果的である。
【0013】
インホイールモータ駆動装置8を用いる場合に、インバータ装置22と前記インホイールモータ駆動装置8とでインホイールモータユニット30を構成し、前記インバータ装置22は、前記モータコントール部29、およびこのモータコントール部29により制御されて前記モータ6に駆動電流を流すパワー回路部28を含み、前記モータコントール部29に前記荷重対応回生ブレーキ制限手段36を設けても良い。
このように、インホイールモータユニット30に備えられたインバータ装置22のモータコントール部29に前記荷重対応回生ブレーキ制限手段36を設けることで、車両全体を制御するECU21の構成や制御の簡素が図れる。例えば、インホイールモータ駆動装置8の設計変更等を行った場合も、ECU21の設計変更を不要とするか、あるいは僅かで済むようにできる。
【発明の効果】
【0014】
この発明の電気自動車は、車輪を駆動するモータと、このモータを制御するモータコントロール部と、このモータコントロール部に設けられ前記モータの発電により前記車輪に回生制動力を与える回生ブレーキと、前記車輪に機械的に制動力を与える機械式ブレーキとを備えた電気自動車において、前記車輪を支持する車輪用軸受に、路面・タイヤ間に作用する車両進行方向の荷重を検出する荷重センサを設け、この荷重センサの出力が設定値に達したときに、前記回生ブレーキの制動トルクを減じる荷重対応回生ブレーキ制限手段を設けたため、可能な限り回生ブレーキを使用し、かつ回生ブレーキの掛け過ぎによるタイヤのスリップを防止することができる。
【図面の簡単な説明】
【0015】
【図1】この発明の一実施形態に係る電気自動車を平面図で示す概念構成のブロック図である。
【図2】同電気自動車のインホイールモータユニットの概念構成を示すブロック図である。
【図3】同電気自動車におけるECUの制動力配分とインホイールモータユニットによる回生ブレーキの制御の過程を示す流れ図である。
【図4】同電気自動車のバッテリ充電可能量と回生制動トルク、機械式制動トルクの関係を示すグラフである。
【図5】同電気自動車におけるインホイールモータ駆動装置の破断正面図である。
【図6】図5のVI-VI 線断面図である。
【図7】図6の部分拡大断面図である。
【図8】同電気自動車における車輪用軸受の外方部材の側面図と荷重検出用の信号処理ユニットとを組み合わせた図である。
【図9】同電気自動車におけるセンサユニットの拡大平面図である。
【図10】同センサユニットの断面図である。
【図11】同電気自動車における回転検出器の一例の断面図である。
【発明を実施するための形態】
【0016】
この発明の一実施形態を図1ないし図11と共に説明する。この電気自動車は、車体1の左右の後輪となる車輪2が駆動輪とされ、左右の前輪となる車輪3が従動輪の操舵輪とされた4輪の自動車である。駆動輪および従動輪となる車輪2,3は、いずれもタイヤを有し、それぞれ車輪用軸受4,5を介して車体1に支持されている。車輪用軸受4,5は、図1ではハブベアリングの略称「H/B」を付してある。駆動輪となる左右の車輪2,2は、それぞれ独立の走行用のモータ6,6により駆動される。モータ6の回転は、減速機7および車輪用軸受4を介して車輪2に伝達される。これらモータ6、減速機7、および車輪用軸受4は、互いに一つの組立部品であるインホイールモータ駆動装置8を構成しており、インホイールモータ駆動装置8は、一部または全体が車輪2内に配置される。モータ6は、減速機7を介さずに直接に車輪2を回転駆動するものであっても良い。各インホイールモータ駆動装置8は、後述のインバータ装置22と共に、インホイールモータユニット30を構成する。各車輪2,3には、電動式等の摩擦ブレーキである機械式のブレーキ9,10が設けられている。
【0017】
左右の前輪となる操舵輪である車輪3,3は、転舵機構11を介して転舵可能であり、操舵機構12により操舵される。転舵機構11は、タイロッド11aを左右移動させることで、車輪用軸受5を保持した左右のナックルアーム11bの角度を変える機構であり、EPS(電動パワーステアリング)モータ13により、回転・直線運動変換機構(図示せず)を介して左右移動させられる。操舵機構12は、タイロッド11aと機械的に連結されていないステアリングホイール14の操舵角を操舵角センサ15で検出し、その検出した操舵角である旋回指令によりEPSモータ13に駆動指令を与えられるステアバイワイヤ式とされている。
【0018】
制御系を説明する。自動車全般の制御を行う電気制御ユニットであるメインのECU21と、このECU21の指令に従って走行用のモータ6の制御を行うインバータ装置22と、ブレーキコントローラ23とが、車体1に搭載されている。ECU21は、コンピュータとこれに実行されるプログラム、並びに各種の電子回路等で構成される。
【0019】
ECU21は、機能別に大別すると駆動制御部21aと一般制御部21bとに分けられる。駆動制御部21aは、アクセル操作部16の出力する加速指令と、ブレーキ操作部17の出力する減速指令と、操舵角センサ15の出力する旋回指令とから、左右輪の走行用モータ6,6に与える加速・減速指令を生成し、インバータ装置22へ出力する。駆動制御部21aは、上記の他に、出力する加速・減速指令を、各車輪2,3の車輪用軸受4,5に設けられた回転センサ24から得られるタイヤ回転数の情報や、車載の各センサの情報を用いて補正する機能を有していても良い。アクセル操作部16は、アクセルペダルとその踏み込み量を検出して前記加速指令を出力するセンサ16aとでなる。ブレーキ操作部17は、ブレーキペダルとその踏み込み量を検出して前記減速指令を出力するセンサ17aとでなる。
【0020】
ECU21の一般制御部21bは、各種の補機システム25を制御する機能、コンソールの操作パネル26からの入力指令を処理する機能、表示手段27に表示を行う機能などを有する。前記補機システム25は、例えば、エアコン、ライト、ワイパー、GPS、エアバッグ等であり、ここでは代表して一つのブロックとして示す。
【0021】
ブレーキコントローラ23は、ECU21から出力される制動指令に従って、各車輪2,3の機械式のブレーキ9,10に制動指令を与える手段であり、制動専用のECUとなる電子回路やマイコン等により構成される。メインのECU21から出力される制動指令には、ブレーキ操作部17の出力する減速指令によって生成される指令の他に、ECU21の持つ安全性向上のための手段によって生成される指令がある。ブレーキコントローラ23は、この他にアンチロックブレーキシステムを備える。
【0022】
インバータ装置22は、各モータ6に対して設けられたパワー回路部28と、このパワー回路部28を制御するモータコントール部29とで構成される。モータコントール部29は、各パワー回路部28に対して共通して設けられていても、別々に設けられていても良いが、共通して設けられた場合であっても、各パワー回路部28を、例えば互いにモータトルクが異なるように独立して制御可能なものとされる。モータコントール部29は、このモータコントール部29が持つインホイールモータ8に関する各検出値や制御値等の各情報(「IWMシステム情報」と称す)をECU21に出力する機能を有する。
この実施形態では、モータコントール部29は、各パワー回路部28に対して別々に設けられ、これらパワー回路部28とモータコントール部29とでなるインバータ装置22と、その制御対象のモータ6を含むインホイールモータ駆動装置8とで、前述のようにインホイールモータユニット30が構成される。
【0023】
図2は、インホイールモータユニット30の概念構成を示すブロック図である。インバータ装置22のパワー回路部28は、バッテリ19の直流電力をモータ6の駆動に用いる3相の交流電力に変換するインバータ31と、このインバータ31を制御するPWMドライバ32とで構成される。モータ6は3相の同期モータ、例えばIPM型(埋込磁石型)同期モータ等からなる。インバータ31は、複数の半導体スイッチング素子(図示せず)で構成され、PWMドライバ32は、入力された電流指令をパルス幅変調し、前記各半導体スイッチング素子にオンオフ指令を与える。
【0024】
モータコントール部29は、コンピュータとこれに実行されるプログラム、および電子回路により構成され、その基本となる制御部として基本駆動制御部33を有している。基本駆動制御部33は、上位制御手段であるECU21から与えられるトルク指令等による加速・減速指令に従い、電流指令に変換して、パワー回路部28のPWMドライバ32に電流指令を与える手段である。基本駆動制御部33は、インバータ31からモータ6に流すモータ電流値を電流検出手段39から得て、電流フィードバック制御を行う。また、モータ駆動制御部33は、モータ6のロータの回転角を角度センサ42から得て、ベクトル制御等の回転角に応じた制御を行う。
【0025】
この実施形態では、モータコントール部29に、次の回生ブレーキ34、最大作動手段35、荷重対応回生ブレーキ制限手段36、および報告手段37を設け、かつECU21に制動力配分手段38を設けている。
【0026】
回生ブレーキ34は、モータ6の発電により車輪2に回生制動力を与える手段であり、ECU21の制動力配分手段38から与えられた回生制動トルク指令により、基本駆動制御部33で出力する駆動トルクを減じさせる制御を行う。また、回生ブレーキ34は、モータ6の発電した電力を、インバータ31を介してバッテリ19に充電させる機能を有する。
【0027】
最大作動手段35は、ブレーキ操作手段17から、ECU21の制動力配分手段38を介してモータコントロール部29に回生制動トルク指令が与えられたときに、数式等で定められた規則に従い、車輪2の回転数とバッテリ19の充電状態から、回生ブレーキ34の可能最大回生制動トルクを計算し、その可能最大回生制動トルクが前記回生制動トルク指令未満であれば、前記回生制動トルク指令に対して回生ブレーキ34の制動トルクを最大に作動させる手段である。最大作動手段35において、車輪2の回転数は、例えば、車輪用軸受4に設けられた回転センサ24の出力を用いて認識し、またバッテリ19の充電状態は、バッテリ19に設けられた充電状態検出手段(図示せず)の出力によって認識する。ここで言うバッテリ19の充電状態は、充電率であっても、残りの充電可能容量であっても良い。
【0028】
荷重対応回生ブレーキ制限手段36は、荷重センサ41で検出される、路面・タイヤ間に作用する車両進行方向の荷重Fx の値が制限用の設定値に達したときに、回生ブレーキ34の制動トルクを減じる手段である。荷重対応回生ブレーキ制限手段36は、前記最大作動手段35の制御に優先して回生ブレーキ34の制動トルクを減じる機能を生じさせる。また、荷重対応回生ブレーキ制限手段36は、荷重センサ41の出力が前記制限用の設定値に達して回生ブレーキ34の制動トルクを減じた後、前記設定値よりも低い復帰用の設定値に達したときに、回生ブレーキ34の制動トルクを減じる制御を解除する。
前記設定値、および回生ブレーキ34の制動トルクをどの程度に減じるかについては、シミュレーション等により適宜考察して設定される。荷重センサ41は、後に具体例を示すように、車輪用軸受4に設けられる。
【0029】
荷重対応回生ブレーキ制限手段36は、荷重センサ41の出力する前記車両進行方向の荷重Fx に対応する制御に加え、荷重センサ41の出力する車両進行方向の荷重Fx と車幅方向の荷重Fy とから、設定規則により演算された値が設定値に達した場合に、前記回生ブレーキの制動トルクを減じるものとしても良い。この場合、荷重センサ41は、車両進行方向の荷重Fx に加えて、路面・タイヤ間に作用する車幅方向の荷重Fy を検出する機能を有するものとするか、または車幅方向の荷重Fy を検出する別の荷重センサ(図示せず)を設ける。
【0030】
報告手段37は、回生ブレーキ34が機能する回生制動トルクの値をECUに報告する手段である。
【0031】
ECU21の制動力配分手段38は、ブレーキ操作手段17から減速指令として与えられる全制動トルクの指令を、回生ブレーキ34による回生制動トルク指令と、機械式ブレーキ9,10に対する制動トルク指令とに分配する手段である。
この制動力配分手段38は、報告手段37から報告された回生制動トルクの値と前記モータコントロール部29に与えた回生制動トルク指令との差分となる制動トルクを、機械式ブレーキ9,10に与える制動トルクに加える制御を行う。制動力配分手段38により機械式ブレーキ9,10に与える制動トルクの指令は、ブレーキコントーラ23を介して機械式ブレーキ9,10に与えられる。
【0032】
次に、上記構成による制動動作と上記各手段35〜38の機能の詳細とを説明する。
図3(A)は、ECU21の制動力配分手段38の制御を示し、同図(B)は、最大作動手段35および荷重対応回生ブレーキ制限手段36の制御を示す。
図3(A)において、ブレーキ操作手段17の減速指令が制動トルク指令としてECU21に入力されると(ステップS1)、制動力配分手段38は前記制動トルク指令を、各車輪2のモータ6のモータコントール部9に分配して出力する(S2)。このとき、制動力配分手段38は、急ブレーキ等を除く定められた通常範囲の制動トルクの場合は、ブレーキ操作手段17の制動トルク指令を、全て回生制動トルク指令として出力し、機械式ブレーキ9,10には制動トルク指令を与えない。
この後、制動力配分手段38は、各回生ブレーキ34の報告手段37からの報告を待つ(S3)。
【0033】
モータコントール部9の最大作動手段35は、制動力配分手段38からの回生制動トルク指令が入力されると(図3(B)ステップR1)、車輪2の回転数とバッテリ19の充電状態から、回生ブレーキ34の可能最大回生制動トルクを計算する(R2)。この計算は、数式等で定められた規則に従って行われる。
【0034】
図4に示すように、可能最大回生制動トルクτBRM は、ある程度の以上のバッテリ充電可能量の場合は、バッテリ充電可能量に比例して大きくなる。
この計算の後、最大作動手段35は、可能最大回生制動トルクτBRM と回生制動トルク指令τBRO とを比較し(R3)、可能最大回生制動トルクτBRM が回生制動トルク指令τBRO 未満であれば、回生制動トルク指令τBRO に対して回生ブレーキ34の制動トルクを最大に作動させる(R4)。不足分は機械式ブレーキ2,3を動作させることになる。すなわち、必要な制動トルクτBRを、回生制動トルクτBRと機械式ブレーキ2,3の制動トルクτBRS とで分担する。
可能最大回生制動トルクτBRM が回生制動トルク指令τBRO 以上であれば、回生制動トルク指令τBRO 分の回生制動トルクを回生ブレーキ34により発生させる(R5)。
【0035】
また、荷重対応回生ブレーキ制限手段36は、モータコントール部9に回生制動トルク指令が入力されると、荷重センサ41で検出される、路面・タイヤ間に作用する車両進行方向の荷重Fx の値と制限用の設定値とを比較し、車両進行方向の荷重Fx が設定値に達したときは、回生ブレーキ34の制動トルクを減じる(R6)。この制動トルクを減じる制御は、最大作動手段35の制御に優先して行う。
この後、報告手段37は、回生ブレーキ34が機能する回生制動トルクの値をECU21に報告する(R7)。
【0036】
ECU21の制動力配分手段38は、報告手段37から報告された回生制動トルクの値とモータコントロール部29に与えた回生制動トルク指令との差分となる制動トルクを、ブレーキコントーラ23を介して機械式ブレーキ9,10に与える(S4)。ブレーキコントーラ23は、原則的には、回生制動トルクを減じた車輪2の機械式ブレーキ9に、その減じた分の制動トルクを加えるように制御するが、他の機械式ブレーキ9,10にも、前記の回生制動トルクを減じた分の制動トルクを分配しても良い。
【0037】
なお、図3の流れ図では図示を省略したが、荷重対応回生ブレーキ制限手段36は、荷重センサ41の出力が前記制限用の設定値に達して回生ブレーキ34の制動トルクを減じた後、荷重センサ41の出力が前記設定値よりも低い復帰用の設定値以下になったときは、回生ブレーキ34の制動トルクを減じる制御を解除する。
【0038】
この構成の電気自動車によると、上記のように、路面・タイヤ間に作用する荷重に応じて回生ブレーキ34の制動トルクを減じるため、回生ブレーキ34の掛け過ぎによるタイヤのスリップを防止することができる。特に、実際に作用している路面・タイヤ間の荷重に応じて回生ブレーキ34の利きを制限するため、モータ6の駆動トルクや車輪回転速度の検出値から制限する場合と異なり、路面状態の違いやタイヤの路面からの浮き上がり等に対して、適切な制御を迅速に行える。したがって、可能な限り回生ブレーキ34を使用するようにしても、回生ブレーキ34の掛け過ぎによるタイヤのスリップを防止することができる。
この実施形態では、インホイールモータ駆動装置8に適用しており、インホイールモータ駆動装置8では、その制動トルクが直に各車輪2に伝達されるため、他の車輪2,3間とのトルク配分ができず、そのためタイヤのスリップは極力避けることが必要である。このため、上記の荷重対応回生ブレーキ制限手段36を設けたことによるスリップ防止作用が、より効果的である。
【0039】
また、荷重対応回生ブレーキ制限手段36は、荷重センサ41の出力が設定値に達して回生ブレーキ34の制動トルクを減じた後、荷重センサ41の出力が前記設定値よりも低い復帰用の設定値以下になったときは、前記回生ブレーキの制動トルクを減じる制御を解除する。路面・タイヤ間の進行方向荷重が低下したときは、回生ブレーキ34による制動トルクを減じる必要がなく、その減じる制御を解除することで、回生ブレーキをできるだけ多く使用してエネルギ回収が行える。
【0040】
さらに、最大作動手段35により、次の効果が得られる。回生ブレーキ34は、バッテリ19の充電率が高い場合や、充電可能な残容量が少ない場合、効果的に制動が行えないが、最大作動手段35は可能最大回生制動トルクτBRM を計算し、その範囲で回生ブレーキ34の制動トルクを最大に作動させる。このため、回生ブレーキ34による制動トルクの不足の問題を生じることなく、可能な限り回生ブレーキ34を使用することができる。このように、バッテリの充電状況を監視しながら、可能な限り回生ブレーキ34を使用し、その上で、荷重対応回生ブレーキ制限手段36による回生ブレーキ36の利き過ぎによるスリップ防止を行うため、スリップ防止を確実にしながら、より一層、回生ブレーキの使用を高めることができる。
【0041】
次に、図5〜図7と共に、前記インホイールモータ駆動装置8の具体例を示す。このインホイールモータ駆動装置8は、車輪用軸受4とモータ6との間に減速機7を介在させ、車輪用軸受4で支持される駆動輪である車輪2のハブとモータ6の回転出力軸74とを同軸心上で連結してある。減速機7は、サイクロイド減速機であって、モータ6の回転出力軸74に同軸に連結される回転入力軸82に偏心部82a,82bを形成し、偏心部82a,82bにそれぞれ軸受85を介して曲線板84a,84bを装着し、曲線板84a,84bの偏心運動を車輪用軸受4へ回転運動として伝達する構成である。なお、この明細書において、車両に取り付けた状態で車両の車幅方向の外側寄りとなる側をアウトボード側と呼び、車両の中央寄りとなる側をインボード側と呼ぶ。
【0042】
車輪用軸受4は、内周に複列の転走面53を形成した外方部材51と、これら各転走面53に対向する転走面54を外周に形成した内方部材52と、これら外方部材51および内方部材52の転走面53,54間に介在した複列の転動体55とで構成される。内方部材52は、駆動輪を取り付けるハブを兼用する。この車輪用軸受4は、複列のアンギュラ玉軸受とされていて、転動体55はボールからなり、各列毎に保持器56で保持されている。上記転走面53,54は断面円弧状であり、各転走面53,54は接触角が背面合わせとなるように形成されている。外方部材51と内方部材52との間の軸受空間のアウトボード側端は、シール部材57でシールされている。
【0043】
外方部材51は静止側軌道輪となるものであって、減速機7のアウトボード側のハウジング83bに取り付けるフランジ51aを有し、全体が一体の部品とされている。フランジ51aには、周方向の複数箇所にボルト挿通孔64が設けられている。また、ハウジング83bには,ボルト挿通孔64に対応する位置に、内周にねじが切られたボルト螺着孔94が設けられている。ボルト挿通孔94に挿通した取付ボルト65をボルト螺着孔94に螺着させることにより、外方部材51がハウジング83bに取り付けられる。
【0044】
内方部材52は回転側軌道輪となるものであって、車輪取付用のハブフランジ59aを有するアウトボード側材59と、このアウトボード側材59の内周にアウトボード側が嵌合して加締めによってアウトボード側材59に一体化されたインボード側材60とでなる。これらアウトボード側材59およびインボード側材60に、前記各列の転走面54が形成されている。インボード側材60の中心には貫通孔61が設けられている。ハブフランジ59aには、周方向複数箇所にハブボルト66の圧入孔67が設けられている。アウトボード側材59のハブフランジ59aの根元部付近には、駆動輪および制動部品(図示せず)を案内する円筒状のパイロット部63がアウトボード側に突出している。このパイロット部63の内周には、前記貫通孔61のアウトボード側端を塞ぐキャップ68が取り付けられている。
【0045】
減速機7は、上記したようにサイクロイド減速機であり、図6のように外形がなだらかな波状のトロコイド曲線で形成された2枚の曲線板84a,84bが、それぞれ軸受85を介して回転入力軸82の各偏心部82a,82bに装着してある。これら各曲線板84a,84bの偏心運動を外周側で案内する複数の外ピン86を、それぞれハウジング83bに差し渡して設け、内方部材2のインボード側材60に取り付けた複数の内ピン88を、各曲線板84a,84bの内部に設けられた複数の円形の貫通孔89に挿入状態に係合させてある。回転入力軸82は、モータ6の回転出力軸74とスプライン結合されて一体に回転する。なお、回転入力軸82はインボード側のハウジング83aと内方部材52のインボード側材60の内径面とに2つの軸受90で両持ち支持されている。
【0046】
モータ6の回転出力軸74が回転すると、これと一体回転する回転入力軸82に取り付けられた各曲線板84a,84bが偏心運動を行う。この各曲線板84a,84bの偏心運動が、内ピン88と貫通孔89との係合によって、内方部材52に回転運動として伝達される。回転出力軸74の回転に対して内方部材52の回転は減速されたものとなる。例えば、1段のサイクロイド減速機で1/10以上の減速比を得ることができる。
【0047】
前記2枚の曲線板84a,84bは、互いに偏心運動が打ち消されるように180°位相をずらして回転入力軸82の各偏心部82a,82bに装着され、各偏心部82a,82bの両側には、各曲線板84a,84bの偏心運動による振動を打ち消すように、各偏心部82a,82bの偏心方向と逆方向へ偏心させたカウンターウエイト91が装着されている。
【0048】
図7に拡大して示すように、前記各外ピン86と内ピン88には軸受92,93が装着され、これらの軸受92,93の外輪92a,93aが、それぞれ各曲線板84a,84bの外周と各貫通孔89の内周とに転接するようになっている。したがって、外ピン86と各曲線板84a,84bの外周との接触抵抗、および内ピン88と各貫通孔89の内周との接触抵抗を低減し、各曲線板84a,84bの偏心運動をスムーズに内方部材52に回転運動として伝達することができる。
【0049】
図5において、モータ6は、円筒状のモータハウジング72に固定したモータステータ73と、回転出力軸74に取り付けたモータロータ75との間にラジアルギャップを設けたラジアルギャップ型のIPMモータである。回転出力軸74は、減速機7のインボード側のハウジング83aの筒部に2つの軸受76で片持ち支持されている。
【0050】
モータステータ73は、軟質磁性体からなるステータコア部77とコイル78とでなる。ステータコア部77は、その外周面がモータハウジング72の内周面に嵌合して、モータハウジング72に保持されている。モータロータ75は、モータステータ73と同心に回転出力軸74に外嵌するロータコア部79と、このロータコア部79に内蔵される複数の永久磁石80とでなる。
【0051】
モータ6には、モータステータ73とモータロータ75の間の相対回転角度を検出する角度センサ42が設けられる。角度センサ42は、モータステータ73とモータロータ75の間の相対回転角度を表す信号を検出して出力する角度センサ本体70と、この角度センサ本体70の出力する信号から角度を演算する角度演算回路71とを有する。角度センサ本体70は、回転出力軸74の外周面に設けられる被検出部70aと、モータハウジング72に設けられ前記被検出部70aに例えば径方向に対向して近接配置される検出部70bとでなる。被検出部70aと検出部70bは軸方向に対向して近接配置されるものであっても良い。ここでは、各角度センサ42として、磁気エンコーダまたはレゾルバが用いられる。モータ6の回転制御は上記モータコントール部29(図1,2)により行われる。このモータ6では、その効率を最大にするため、角度センサ42の検出するモータステータ73とモータロータ75の間の相対回転角度に基づき、モータステータ73のコイル78へ流す交流電流の各波の各相の印加タイミングを、モータコントール部29のモータ駆動制御部33によってコントロールするようにされている。
なお、インホイールモータ駆動装置8のモータ電流の配線や各種センサ系,指令系の配線は、モータハウジング72等に設けられたコネクタ99により纏めて行われる。
【0052】
図2に示す前記荷重センサ24は、例えば図8に示す複数のセンサユニット120と、これらセンサユニット120の出力信号を処理する信号処理ユニット130とで構成される。センサユニット120は、車輪用軸受4における静止側軌道輪である外方部材51の外径面の4か所に設けられる。図8は、外方部材1をアウトボード側から見た正面図を示す。ここでは、これらのセンサユニット120が、タイヤ接地面に対して上下位置および左右位置となる外方部材51における外径面の上面部、下面部、右面部、および左面部に設けられている。信号処理ユニット130は、外方部材51に設けられていても良く、まインバータ装置22のモータコントロール部29に設けられていても良い。
【0053】
信号処理ユニット130は、上記4箇所のセンサユニット120の出力を比較し、定められた演算式に従って、車輪用軸受4に作用する各荷重、具体的には、車輪2の路面・タイヤ間で作用荷重となる直方向荷重Fz 、駆動力や制動力となる車両進行方向荷重Fx 、および軸方向荷重Fy を演算し、出力する。前記センサユニット120を4つ設け、各センサユニット120を、タイヤ接地面に対して上下位置および左右位置となる外方部材51の外径面の上面部、下面部、右面部、および左面部に円周方向90度の位相差で等配しているので、車輪用軸受4に作用する垂直方向荷重Fz 、車両進行方向荷重Fx 、軸方向荷重Fy を精度良く推定することができる。垂直方向荷重Fz は、上下2つのセンサユニット120の出力を比較することで得られ、車両進行方向荷重Fx は、前後2つのセンサユニット120の出力を比較することで得られる。軸方向荷重Fy は、4つのセンサユニット120の出力を比較することで得られる。信号処理ユニット130による上記各荷重Fx ,Fy ,Fz の演算は、試験やシミュレーションで求められた値を基に、演算式やパラメータを設定しておくことで、精度良く行うことができる。なお、より具体的には、上記の演算には各種の補正を行うが、補正については説明を省略する。
【0054】
上記各センサユニット120は、例えば、図9および図10に拡大平面図および拡大断面図で示すように、歪み発生部材121と、この歪み発生部材121に取り付けられて歪み発生部材121の歪みを検出する歪みセンサ122とでなる。歪み発生部材121は、鋼材等の弾性変形可能な金属製の厚さ3mm以下の薄板材からなり、平面概形が全長にわたり均一幅の帯状で中央の両側辺部に切欠き部121bを有する。また、歪み発生部材121は、外輪1の外径面にスペーサ123を介して接触固定される2つの接触固定部121aを両端部に有する。歪みセンサ122は、歪み発生部材121における各方向の荷重に対して歪みが大きくなる箇所に貼り付けられる。ここでは、その箇所として、歪み発生部材121の外面側で両側辺部の切欠き部121bで挟まれる中央部位が選ばれており、歪みセンサ122は切欠き部121bの周辺の周方向の歪みを検出する。
【0055】
前記センサユニット120は、その歪み発生部材121の2つの接触固定部121aが、外輪1の軸方向に同寸法の位置で、かつ両接触固定部121aが互いに円周方向に離れた位置に来るように配置され、これら接触固定部121aがそれぞれスペーサ123を介してボルト124により外輪1の外径面に固定される。前記各ボルト124は、それぞれ接触固定部121aに設けられた径方向に貫通するボルト挿通孔125からスペーサ123のボルト挿通孔126に挿通し、外方部材51の外周部に設けられたねじ孔127に螺合させる。このように、スペーサ123を介して外方部材51の外径面に接触固定部121aを固定することにより、薄板状である歪み発生部材121における切欠き部121bを有する中央部位が外輪1の外径面から離れた状態となり、切欠き部121bの周辺の歪み変形が容易となる。接触固定部121aが配置される軸方向位置として、ここでは外方部材51のアウトボード側列の転走面53の周辺となる軸方向位置が選ばれる。ここでいうアウトボード側列の転走面53の周辺とは、インボード側列およびアウトボード側列の転走面53の中間位置からアウトボード側列の転走面53の形成部までの範囲である。外方部材51の外径面における前記スペーサ123が接触固定される箇所には平坦部1bが形成される。
【0056】
歪みセンサ122としては、種々のものを使用することができる。例えば、歪みセンサ122を金属箔ストレインゲージで構成することができる。その場合、通常、歪み発生部材121に対しては接着による固定が行われる。また、歪みセンサ122を歪み発生部材121上に厚膜抵抗体にて形成することができる。
【0057】
図11は、図1,図2の回転センサ24の一例を示す。この回転センサ24は、車輪用軸受4における内方部材52の外周に設けられた磁気エンコーダ24aと、この磁気エンコーダ24aに対向して外方部材51に設けられた磁気センサ24bとでなる。磁気エンーダ24aは、円周方向に磁極N,Sを交互に着磁したリング状の部材である。この例では、回転センサ24は両列の転動体55,55間に配置しているが、車輪用軸受4の端部に設置しても良い。
【符号の説明】
【0058】
1…車体
2,3…車輪
4,5…車輪用軸受
6…モータ
7…減速機
8…インホイールモータ駆動装置
9,10…電動式のブレーキ
11…転舵機構
12…操舵機構
19…バッテリ
21…ECU
22…インバータ装置
24…回転センサ
28…パワー回路部
29…モータコントール部
30…インホイールモータユニット
31…インバータ
32…PWMドライバ
33…モータ駆動制御部
34…回生ブレーキ
35…最大作動手段
36…荷重対応回生ブレーキ制限手段
37…報告手段
38…制動力配分手段
39…電流検出手段
41…荷重センサ
42…角度センサ


【特許請求の範囲】
【請求項1】
車輪を駆動するモータと、このモータを制御するモータコントロール部と、このモータコントロール部に設けられ前記モータの発電により前記車輪に回生制動力を与える回生ブレーキと、前記車輪に機械的に制動力を与える機械式ブレーキとを備えた電気自動車において、
前記車輪を支持する車輪用軸受に、路面・タイヤ間に作用する車両進行方向の荷重を検出する荷重センサを設け、この荷重センサの出力が設定値に達したときに、前記回生ブレーキの制動トルクを減じる荷重対応回生ブレーキ制限手段を設けたことを特徴とする電気自動車。
【請求項2】
請求項1において、前記荷重対応回生ブレーキ制限手段は、前記荷重センサの出力が設定値に達して回生ブレーキの制動トルクを減じた後、荷重センサの出力が前記設定値よりも低い復帰用の設定値以下になったときに、前記回生ブレーキの制動トルクを減じる制御を解除する電気自動車。
【請求項3】
請求項1または請求項2において、ブレーキ操作手段から、車両全般を制御する電気制御ユニットであるECUを介して前記モータコントロール部に回生制動トルク指令が与えられたときに、定められた規則に従い、車輪の回転数とバッテリの充電状態から前記回生ブレーキの可能最大回生制動トルクを計算し、その可能最大回生制動トルクが前記回生制動トルク指令未満であれば、前記回生制動トルク指令に対して前記回生ブレーキの制動トルクを最大に作動させる最大作動手段を前記モータコントロール部に設け、前記荷重対応回生ブレーキ制限手段は、前記最大作動手段の制御に優先して前記回生ブレーキの制動トルクを減じる機能を生じさせる電気自動車。
【請求項4】
請求項3において、前記モータコントロール部に、前記回生ブレーキが機能する回生制動トルクの値を前記ECUに報告する報告手段を設け、前記ECUに、前記報告手段から報告された回生制動トルクの値と前記モータコントロール部に与えた回生制動トルク指令との差分となる制動トルクを前記機械式ブレーキに加えさせる制動力配分手段を設けた電気自動車。
【請求項5】
請求項1ないし請求項4のいずれか1項において、前記荷重センサは、前記車両進行方向の荷重に加えて、路面・タイヤ間に作用する車幅方向の荷重を検出する機能を有するものとし、前記荷重対応回生ブレーキ制限手段は、前記荷重センサの出力する前記車両進行方向の荷重と車幅方向の荷重とから演算された値が設定値に達した場合に、前記回生ブレーキの制動トルクを減じるものとした電気自動車。
【請求項6】
請求項1ないし請求項5のいずれか1項において、前記モータは、一部または全体が車輪内に配置されて前記モータと車輪用軸受を含むインホイールモータ駆動装置を構成する電気自動車。
【請求項7】
請求項6において、前記インホイールモータ駆動装置は、前記モータの回転を減速して車輪に伝える減速を含む電気自動車。
【請求項8】
請求項6または請求項7において、インバータ装置と前記インホイールモータ駆動装置とでインホイールモータユニットを構成し、前記インバータ装置は、前記モータコントール部、およびこのモータコントール部により制御されて前記モータに駆動電流を流すパワー回路部を含み、前記モータコントール部に前記荷重対応回生ブレーキ制限手段を設けた電気自動車。


【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate

【図11】
image rotate


【公開番号】特開2013−110875(P2013−110875A)
【公開日】平成25年6月6日(2013.6.6)
【国際特許分類】
【出願番号】特願2011−254570(P2011−254570)
【出願日】平成23年11月22日(2011.11.22)
【出願人】(000102692)NTN株式会社 (9,006)
【Fターム(参考)】