説明

非ソリトン光RZ伝送用の交互位相変調

【課題】非ソリトンRZ信号を有する光ファイバー伝送システムにおいて、隣接パルス間の非線形相互作用の影響を低減する。
【解決手段】1個のパルスの末尾と、隣接パルスの冒頭との位相差を、2π/3〜4π/3とする。新しいパルスを送信するたびに位相を逆転することによって、あるいはまた各パルスの内部で位相を変化させる。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、光ファイバー伝送システムに関し、より詳しくは、非ソリトンRZ信号を用いた伝送システムに関する。
【背景技術】
【0002】
それ自体広く知られているように、ビット値に対して、ビット時間の始めと終わりで振幅がゼロであるパルスにより「1」が符号化される伝送システムを、RZ伝送と呼ぶ。通常、RZ伝送の中では、他の伝送システムからソリトン信号による伝送システムを区別している。ソリトンパルス、またはソリトンは、ビット時間よりも時間幅が狭いRZパルスであり、パワー、スペクトル幅、時間幅の間で所定の関係を有し、このために、光ファイバーのいわゆる異常分散部分で一般に伝播される。このようなソリトンパルスのシングルモードファイバーにおけるエンベロープの変化は、非線形シュレーディンガー方程式によりモデル化することができる。伝播は、ファイバーの異常分散と、その非線形性との間の均衡に基づく。
【0003】
隣接ソリトンは、F.M.MitschkeおよびL.F.Mollenauerが「Optics Letters」第12巻第5号355−357ページに記載しているように、非線形に相互作用する。この相互作用は、変調のない時に、すなわち同位相のソリトンに対して、隣接ソリトン間の牽引力となって現れる。相互作用は、位相が反対の隣接ソリトン間では、反発力となって現れる。N.J.Smith他による「Optics Letters」第19巻第1号16−18ページは、この相互作用を、ソリトンによる光ファイバー通信システムの設計における主な制約として紹介している。
【0004】
FR−A−2754963号(内部リファレンス100229)は、こうした隣接ソリトン間の非線形相互作用を、クロックを伝送するために用いることを提案している。この文献は、ビット時間の0.20〜0.33%の幅の連続した一連のソリトンを伝送することを提案している。この範囲の下限は、ソリトンと、その2個の隣接ソリトンとの間の相互作用が、ゴードン−ハウスジッタの影響を補償し、一方で、上限は、伝送パルスがソリトンとして挙動するようにしている。この文献では、2個の隣接ソリトン間の牽引力または反発力を利用するために、同位相のソリトン、あるいは交互の位相を持つソリトンを伝送することを提案している。
【0005】
D.Le Guen他による「Narrow band 1.02 Tbit/s (51×20Gbit/s)soliton DWDM transmission over 1000km of standard fiber with 100km amplifier spans:100kmの増幅間隔を持つ標準ファイバから成る1000kmを超える狭帯域1.02 Tbit/s (51×20Gbit/s)ソリトンDWDM伝送」(OFC’99、PD4)は、信号が、時間および偏波において多重化される分散管理ソリトン信号の伝送実験を記載している。
【0006】
また、NRZシステムの伝送に対してデュオバイナリ変調を用いることが提案された。S.WalklinおよびJ.Conradiによる「On the relationship between chromatic dispersion and transmitter filter response in duobinary optical communication systems:デュオバイナリ光通信システムにおける波長分散と送信機フィルタの応答の関係について」(IEEE Photonics Technology Letters第9巻第7号、1997年、1005−1007ページ)は、このようなシステムにおける通過帯域の制約を記載している。この文献では、様々なタイプのデュオバイナリ変調について言及されている。考えられる一つの変調は、最大減光、すなわちVπで偏波されるマッハ・ツェンダー型の変調器のRF入力に三状態電気信号を与えることによって発生する。その結果、強度がゼロではない二つの状態の間で位相差がπである強度変調バイナリ光信号が発生する。このような完全なデュオバイナリ信号は、D.Penninckx他による「Effect of electrical filtering of duobinary signals on the chromatic dispersion transmission limitations:波長分散伝送の限界に関するデュオバイナリ信号の電気的フィルタリングの効果」(ECOC’98、537−538ページ)で示されているように、分散に強くない。
【先行技術文献】
【特許文献】
【0007】
【特許文献1】仏国特許出願公開第2754963号明細書
【非特許文献】
【0008】
【非特許文献1】F.M.MitschkeおよびL.F.Mollenauer、「Optics Letters」第12巻第5号355−357ページ
【非特許文献2】N.J.Smith他、「Optics Letters」第19巻第1号16−18ページ
【非特許文献3】D.Le Guen他、「Narrow band 1.02 Tbit/s (51×20Gbit/s)soliton DWDM transmission over 1000km of standard fiber with 100km amplifier spans」(OFC’99、PD4)
【非特許文献4】S.WalklinおよびJ.Conradi、「On the relationship between chromatic dispersion and transmitter filter response in duobinary optical communication systems」(IEEE Photonics Technology Letters第9巻第7号、1997年、1005−1007ページ)
【非特許文献5】D.Penninckx他、「Effect of electrical filtering of duobinary signals on the chromatic dispersion transmission limitations」(ECOC’98、537−538ページ)
【発明の概要】
【発明が解決しようとする課題】
【0009】
本発明は、パルス間の相互作用によりRZ伝送システムにもたらされる制限の問題を目的とする。本発明は、相互作用の影響を制限するための簡単な解決方法を提案する。本発明は、RZ信号に適用され、特に非ソリトンRZ信号に適用される。
【課題を解決するための手段】
【0010】
本発明は、特に、1個のパルスの末尾と、次のパルスの冒頭との位相差が、2π/3〜4π/3である非ソリトンRZパルス列を提案する。
【0011】
実施形態では、各パルスが一定の位相を有する。
【0012】
別の実施形態では、位相が、1個のパルスの冒頭と、このパルスの末尾との間で変わる。この場合、パルスにおける位相変化は、正弦曲線または矩形とすることができる。
【0013】
好適には、パルス列が変調される。
【0014】
本発明はまた、パルスの送信と、新しいパルスの各々の位相の逆転とを含む、一定の位相を持つパルス列の伝送方法に関する。
【0015】
本発明はさらに、パルスの送信と、各パルスへの位相変調の適用とを含む、位相変調パルス列の伝送方法に関する。
【0016】
本発明はまた、1個のパルスの末尾と、その直後のパルスの冒頭との位相差が、2π/3〜4π/3である非ソリトンRZパルス列を提案する。
【0017】
実施形態では、各パルスが、一定の位相を有する。この場合、偶数次のパルスの位相と奇数次のパルスの位相との差が、2π/3〜4π/3であるのが有利である。
【0018】
本発明は、さらに、第一の位相を持つ周波数2分の1のパルス列の送信と、第二の位相を持つ周波数2分の1のパルス列の送信と、周波数2分の1の2個のパルス列のインターリーブとを含む、パルス列の伝送方法に関する。
【0019】
本発明の他の特徴および長所は、例としてのみ挙げられた、本発明の実施形態の以下の説明を読めば、明らかになるであろう。
【発明を実施するための形態】
【0020】
本発明は、非ソリトンRZパルス間の線形および非線形の相互作用の影響を低減するために、パルスの末尾と次のパルスの冒頭との間で位相を逆転することを提案する。
【0021】
以下の説明では、本発明は、様々な実施形態の中で記載されており、好適な場合には、1個のパルスの末尾と次のパルスとの間の位相差がπである。この値により、隣接パルス間の相互作用をできるだけ少なくすることができる。しかしながら、本発明は、この値に制限されるものではなく、位相差が2π/3と4π/3の間に含まれるときに適用される。
【0022】
第一の実施形態では、1個のパルスの末尾と次のパルスとの間の位相の逆転が、各RZパルスに、先行パルスの位相の逆位相を与えることによって得られる。この実施形態は、たとえば、上記のWalklinの文献に記載されている最大減光で偏波されるマッハ・ツェンダー型の変調器のような、デュオバイナリ変調として知られた装置による送信で実施することができる。このような場合、3状態電気信号は、2個につき1個の「1」の符号を逆転することによって送信されるビットシーケンスから得られる。この場合、パルス間の位相の逆転は、単なる位相時分割多重化ではない。何故なら、この逆転は、パルスの時間位置ではなく、単に受信パルスのシーケンスだけに依存するからである。換言すれば、パルスの位相は、たとえばタイムスロットのパリティの有無など、パルスが送信される瞬間に依存するのではなく、先行するパルスの位相に依存する。
【0023】
第二の実施形態では、パルスの冒頭の位相がパルスの末尾の位相とは逆になるように、各パルスが位相変調される。各パルスのこうした位相変調は、正弦曲線の位相変調であり、あるいは、矩形信号を持つ位相変調であることができる。前者の場合、位相は、π異なる値の間で連続変化する。第二の場合、位相は、好適にはパルスの中央付近で突然変化する。この実施形態でも、位相の逆転は、単なる位相の多重化ではない。
【0024】
第三の実施形態では、インターリーブされた2個のパルス列からRZ信号を生成する。第一列のパルスは、第二列のパルスの共通位相とは逆である同一位相を有する。この第三の実施形態は、連続する2個のパルス間の位相を逆転するが、必ずしもゼロによって分離される2個のパルス間ではない。この観点から、第三の実施形態は、第一および第二の実施形態ほど有利ではない。だが、パルス間の非線形相互作用は、パルス間の時間的な間隔によっても決まる。この観点から、ゼロによって分離された2個のパルス間の相互作用は、すぐに隣接する2個のパルス間の相互作用、すなわち隣接する時間スロットにおける相互作用ほど、伝送上、障害にならない。
【0025】
第四の実施形態では、パルスの末尾と次のパルスとの間の位相の逆転は、第一の実施形態と同様に得られる。しかしながら、3状態電気信号は、ビットシーケンスにおける位置に応じて「1」の符号を逆転することにより、送信されるビットシーケンスから得られる。この場合、第三の実施形態と同様に、「1」は、前の「1」の位相ではなく時間的な位置によって決められる位相を示す。
【0026】
本発明は、あらゆる実施形態において、RZパルス間の線形または非線形の相互作用を低減することができる。線形の相互作用、すなわち分散による隣接パルス間の相互作用の場合、本発明は、2個の隣接パルス間の干渉が打ち消されるようにする。本発明は、相関的に、伝送システムにおいて、伝送距離を延長することができ、あるいは距離が等しい場合は伝送システムの諸特性を改善することができる。本発明は、特に、一般には3または4Mmを越える、海底伝送システムのような長距離伝送システムの場合に有利である。事実、このようなシステムにおける伝播距離は、線形および非線形効果の蓄積、特に隣接パルス間の相互作用の蓄積を促進する。
【0027】
上記の説明では、非ソリトンRZパルスに対して本発明を記載した。非ソリトン光信号とは、ビット時間に比べて時間幅(FWHM)が広く、すなわちビット時間よりも約30〜40%大きく、パワー、スペクトル幅、時間幅の間で所定の関係がなく(実際には、非ソリトンパルスに対するパワーは、「ソリトン」伝播式によって与えられるパワーよりも小さい)、伝播中の分散と非線形性との間で均衡がないといった、一つまたは複数の特徴を有する信号を意味する。
【0028】
本発明と、FR−A−2754963号で提案された解決法との相違点は、パルスがソリトンパルスではないことにある。本発明による位相の逆転により、隣接パルス間で相互作用が減少する。さらに、本発明は、「1」のビット列であるクロックには適用されず、変調信号に適用される。本発明の他の効果は、隣接パルス間の偶発的干渉が打ち消されるようにすることにあり、これによって、受信時のパルスの偶発的グループ化を避ける。

【特許請求の範囲】
【請求項1】
1個のパルスの末尾と、次のパルスの冒頭との位相差が、2π/3〜4π/3であることを特徴とする非ソリトンRZパルス列。
【請求項2】
各パルスが一定の位相を有することを特徴とする請求項1に記載のパルス列。
【請求項3】
位相が、1個のパルスの冒頭と、このパルスの末尾との間で変わることを特徴とする請求項1に記載のパルス列。
【請求項4】
パルスにおける位相変化が正弦曲線であることを特徴とする請求項3に記載のパルス列。
【請求項5】
パルスにおける位相変化が矩形であることを特徴とする請求項4に記載のパルス列。
【請求項6】
変調されることを特徴とする請求項1から5のいずれか一項に記載のパルス列。
【請求項7】
1個のパルスの末尾と、その直後のパルスの冒頭との位相差が、2π/3〜4π/3であることを特徴とする非ソリトンRZパルス列。
【請求項8】
各パルスが一定の位相を有することを特徴とする請求項7に記載のパルス列。
【請求項9】
偶数次のパルスの位相と奇数次のパルスの位相との差が、2π/3〜4π/3であることを特徴とする請求項8に記載のパルス列。
【請求項10】
パルスの送信と、1個のパルスから新しい各パルスへの位相の逆転とを含む、請求項2に記載のパルス列の伝送方法。
【請求項11】
パルスの送信と、各パルスへの位相変調の適用とを含む、請求項3、4、5のいずれか一項に記載のパルス列の伝送方法。
【請求項12】
第一の位相を持つ周波数2分の1のパルス列の送信と、第二の位相を持つ周波数2分の1のパルス列の送信と、周波数2分の1の2個のパルス列のインターリーブとを含む、請求項7、8、9のいずれか一項に記載のパルス列の伝送方法。

【公開番号】特開2011−234402(P2011−234402A)
【公開日】平成23年11月17日(2011.11.17)
【国際特許分類】
【外国語出願】
【出願番号】特願2011−147112(P2011−147112)
【出願日】平成23年7月1日(2011.7.1)
【分割の表示】特願2001−548951(P2001−548951)の分割
【原出願日】平成12年12月26日(2000.12.26)
【出願人】(391030332)アルカテル−ルーセント (1,149)
【Fターム(参考)】