説明

非対称電界イオンガイド装置

【課題】液滴がアナライザー内に進入するのを効果的に防止するイオンガイド装置を提供する。
【解決手段】異なるガイド電界中心軸を有する複数の区画を含む、質量分析計用電気力学的イオンガイド装置。ガイド電界のうちの少なくとも1つは、四重極成分と二重極成分とを有する非対称ガイド電界であってもよい。イオンガイド装置は、第一の電界の中心軸が入口開口部に面し、第二の電界の中心軸が出口開口部に面するように、ガイドチャンバー内に配設されている。該イオンガイド装置は、入口開口から出口開口まで見通すことの出来ないガイドチャンバーの効果的な利用を可能にし、入口開口からガイドチャンバー内に進入した望ましくない液滴が出口開口を通って出ないようにしている。好適な実施形態では、イオンガイド装置は長手方向に連結されて次第に狭くなる複数の区画を含み、各区画は幾何学的な中心軸の周りに対称的に配列された4枚の平板を含む。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は一般に質量分析法に関し、具体的には質量分析計での使用に適した電気力学的イオンガイドの構造に関する。
【背景技術】
【0002】
液相の化学物質を質量分析する場合、イオンを質量アナライザー内に誘導するために電気力学的なガイド構造がよく使用される。一般的な方法では、エレクトロスプレーイオン化法(ESI)または大気圧化学的イオン化法(APCI)のような大気圧下でイオン化する方法を使用して、電離チャンバー内で荷電した液滴を発生する。液滴は脱溶媒和され、チャンバー内への気体の流れを制限する孔を通って、真空チャンバー内に進入する。イオンを随伴する気体は真空の制約を脱し、拡大して衝撃構造を形成する。マッハディスクを通ってサイレントゾーン内にスキマーコーンを挿入し、スキマーコーンの先端の穴を通ってイオンが次の真空チャンバー内に移動できるようにすることにより、イオンと他の気体を衝撃構造のサイレントゾーンから除去することができる。第二の真空チャンバー内のイオンは電気力学的イオンガイド構造によって捕捉され、第二のチャンバーを通って誘導されるが、このチャンバーからは更に気体が排出される。イオンは次にコンダクタンス制限開口部を通って第三の真空チャンバーに入り、そして更に質量アナライザーに入る。従来の質量分析計および関連する電気力学的ガイド構造の詳細は、例えば下記特許文献1〜5で述べられている。
【0003】
従来の質量分析計は、電離チャンバーを通過して質量アナライザーに入る溶媒液滴によって発生させられる質量スペクトル内の大きなノイズスパイクという問題を抱えている。下記特許文献6においてBierは、大気圧電イオン化源に結合されたイオントラップ型質量分析計内で、脱溶媒和されていない荷電液滴または荷電粒子によるノイズを低減する方法について述べている。例えば約300Vの高い直流電圧を8重極ガイド装置またはレンズに印加し、捕捉されたイオンを分析している間に荷電粒子が検出器に入るのを防止する。
【特許文献1】米国特許第4,963,736号 明細書
【特許文献2】米国特許第5,179,278号 明細書
【特許文献3】米国特許第5,248,875号 明細書
【特許文献4】米国特許第5,847,386号 明細書
【特許文献5】米国特許第6,111,250号 明細書
【特許文献6】米国特許第5,750,993号 明細書
【発明の開示】
【発明が解決しようとする課題】
【0004】
Bierが述べた方法は、液滴がアナライザー内に進入するのを効果的に防止する上で最適なものとは言えないであろう。
【課題を解決するための手段】
【0005】
好適な実施形態において本発明は、対象となるイオンを形成する電離チャンバーと、前記電離チャンバーと連通する入口開口、および出口開口を有するガイドチャンバーと、前記入口開口から前記出口開口へイオンを誘導するために前記ガイドチャンバー内に配設された電気力学的イオンガイド装置と、前記ガイドチャンバーから前記出口開口を通って出るイオンを受け取るための、前記出口開口と連通する質量アナライザーと、前記質量アナライザーから送られたイオンを受け取るために前記質量アナライザーと連通したイオン検出器とを含む質量分析装置を提供する。イオンガイドは好適には、入口開口を通って移送されたイオンが第一の電界中心軸に実質的に沿って入口ガイド部に入射するようになされた、大略的に長手方向の第一の電界の中心軸を有する第一の電気力学的イオンガイド電界を発生する入口部ガイド部と、第一の電界中心軸から変位して、出口開口と実質的に直線的に並べられた大略的に長手方向の第二の電界の中心軸を有する第二の電気力学的イオンガイド電界を発生するための、入口部ガイド部と長手方向に連結された出口ガイド部とを有する。入口側および出口側の電界の軸を変位させることにより、液滴、フォトンその他の中性粒子によって発生させられるノイズを低減しながら、同時に対象となるイオンを電界の中心軸に沿って挿入することができる。ガイド電界の中心軸に沿って対象となるイオンを挿入するにより、ガイドの捕捉効率を最大にすることができる。
【0006】
本発明の上記の態様および利点は、添付の図面を参照して下記の詳細な説明を読むことにより、より良く理解されるであろう。
【発明を実施するための最良の形態】
【0007】
以下の説明において述べられる各要素または構造は、一体構造により形成されるかもしくはその一部として、または複数の別々の構造から形成することもできる。例えば入力阻止構造/壁と出力阻止構造/壁とは、1つの一体構造のハウジングの一部として構成することができる。1組の要素は、1つまたはそれ以上の要素を含むものと理解される。2個の連結された要素(例えばガイドセクションもしくは部分)は互いに隣接するか、または介在する要素によって分離してもよい。電圧源は、1個以上の電気的な結節点/リード線および/または所望の電圧を発生する他の電気部品(例えばインダクタ、コンデンサ、変圧器)を含むことができる。
【0008】
以下、本発明の実施形態を実施例によって説明するが、これらは本発明を制約するものではない。
図1は、本発明の好適な実施形態による質量分析計20の模式図である。質量分析計20は複数のチャンバーおよびそれに関連するポンプ、ガイド要素ならびに図1に示した分析要素を含む。電離(イオン化)チャンバー(源)22は、対象となるイオンを好適には大気圧下で発生するのに使用される。イオンは、エレクトロスプレーイオン化法(ESI)、大気圧化学イオン化法(APCI)または光イオン化法のような既知の方法により、液体または気体のサンプルから発生できる。電離チャンバー22は、真空チャンバー24内への気体の流れを制限する孔32を介して、入口側真空チャンバー24に連結されている。孔32は、各チャンバー22,24を連結する細長いチューブによって規定することができる。第一の真空ポンプ34は真空チャンバー24に流体的に結合されて、真空チャンバー24内の圧力を所望のレベル、好適には0.1Torr〜10Torrの範囲に維持する。
【0009】
ガイド真空チャンバー26は、スキマーコーン36内に規定された開口を介して、第一の真空チャンバー24に流体的に接続されている。スキマーコーンの開口の寸法は、好適には1mm〜2mmである。スキマーコーン36は、第一の真空チャンバー24内の先端からガイドチャンバー26内の出口側に向かって広がっている。第二の真空ポンプ38はガイドチャンバー26に流体的に接続されて、ガイドチャンバー26内の圧力を所望のレベル、好適には0.5mTorr〜20mTorrの範囲に維持する。ガイド真空チャンバー26は電気力学的イオンガイド構造(ガイド)40を取り囲み、スキマーコーン36の出口側から、ガイド真空チャンバー26の出口側の壁内に規定されたコンダクタンス規制出口開口44に向けて、対象となるイオンを選択的にガイド(案内)する。
【0010】
出口開口44は好適には、スキマーコーン36の入口開口によって規定される入口の方向からずらして形成され、入口開口と出口開口との間が見通せないように(入口開口からの視線が出口開口に至らないように)されている。ガイドチャンバー26の入口の軸と出口の軸とをずらすことにより、液滴、フォトンその他の中性のノイズ発生源が出口開口44を通ってガイドチャンバー26から出るのを防止できる。好適には、スキマーコーン36によって規定される入口の方向は、ガイド40の幾何学的中心軸からある角度に向けられる。一般に、スキマーコーン36によって規定される入口の方向は、ガイド40の幾何学的中心軸と一致するかまたは平行であってもよい。
【0011】
出口開口44は、ガイドチャンバー26を分析用真空チャンバー30に接続している。分析チャンバー30は、第一の質量アナライザー45、衝突セル46、第二の質量アナライザー47およびイオン検出器48をこの順序で含んでいてもよい。質量アナライザー45,47は、四重極マスフィルター、飛行時間(TOF)型、イオントラップ、フーリエ変換イオンサイクロトロン共鳴(FTICR)、またはその他の既知のタイプのアナライザー(分析装置)であってもよい。第一の質量アナライザー45は出口開口44に対向して、出口開口44を通過するイオンを受け取る。選択された質量分布を有するイオンは衝突セル46を通過することが出来、その時イオンは衝突誘起解離する。衝突セル46は、イオンガイド40のようなイオンガイドを含むことができる。衝突セル46から出るイオンは第二の質量アナライザー47に入る。イオン検出器48は、質量アナライザー47によって送られ、質量が選択されたイオンを受け取る。第三の真空ポンプ50は分析チャンバー30に流体的に結合されて、分析チャンバー30内の圧力を所望のレベル、好適には1μTorr〜100μTorrの範囲、例えば1μTorr〜10μTorrの範囲またはそれ以下に維持する。衝突セル46はもっと高い圧力、例えば0.5mTorr〜20mTorrの範囲に維持する。
【0012】
図2は、本発明の好適な実施形態によるガイド40の模式的な縦断面図である。ガイド40は長手方向に連結された複数の電極部分52を含む。部分52は、ガイド40の長手方向の幾何学的な中心軸54に沿って位置合わせされる。各電極部分52は、中心軸54の周囲に対称形に配設された複数の板状電極58を含んでいる。各部分52は、対称形に配設された4個以上の電極58を含んでいる。好適には、各部分52の電極の間に規定された内部空間の大きさは、スキマーコーン36に隣接する入口側ガイドセクション60から出口開口44に隣接する出口側ガイドセクション62に向かって、中心軸54に沿って単調に(例えば直線的に)減少する。電極間の距離を減少させると、ガイド電界の(一定の電圧に対する)強さが増加し、それがイオンの半径方向(横方向)の分布を低下させる。
【0013】
ガイド40によって発生させられた電気力学的ガイド電界の中心は、ガイド40の様々な長手方向のセクションに沿って、異なる横方向の位置を有する。入口側のガイド電界軸72と出口側のガイド電界軸66とは、中心軸54から変位している(ずれている)。ガイド40の内側の中央部内のガイド電界の中心は、中心軸54と一致することが好ましい。入口側の軸72と出口側の軸66とは好適には、与えられたガイド電圧セットに対して生じた横方向の変位(ずれ)を最大にするために、中心軸54から互いに反対側に変位している。一般にガイド40のような案内(ガイド)装置は、図示したよりも多くのガイドセクションを有することができる。例えば各部分52は、別々のガイド電界中心軸を有する別個のガイドセクションを規定することができる。
【0014】
出口開口44は好適には、スキマーコーン36に対向して配置されたチャンバー壁64内に規定された丸い開口である。出口開口44は、出口側ガイド電界軸66と横方向に位置合わせされている。出口側の軸66は、図1に示すように質量アナライザー45の入口と位置合わせされている。質量アナライザー45は、図2に示すように出口側の軸66の周囲に対称形に配列された複数のアナライザー電極67を含むことができる。アナライザー電極67は移送四重極を形成することができ、その中心軸66はガイド40の幾何学的な中心軸54から変位している。
【0015】
スキマーコーン36は入口側の軸73を規定する入口開口68を有する。入口側の軸73は好適には、中心軸54とゼロでない角度をなす。一般に入口側の軸73は、中心軸54と平行であるかまたは一致することができる。入口開口68は好適には、入口側のガイド電界軸72に沿った概略入口位置にイオンを送るように配置されている。ガイド電界の局所的な中心内にイオンを送るように入口開口68を配設することにより、ガイド40のイオン捕捉効率を最大にできる。ガイド電界の中心から離れた位置でガイド40内にイオンを注入すると、イオンを望ましくない周辺電界に曝すことになり、これはイオンに長手方向の反発力を及ぼす。長手方向の周辺成分は、ガイド電界の中へのイオンの運動を阻害し、その結果ガイドの捕捉効率を低下させるポテンシャル障壁として働く可能性がある。
【0016】
ガイド40は好適にはcmないし10cmのオーダー、例えば約6cmの長さを有し、内部の横方向の寸法はmmないしcmのオーダー、例えばガイド40の入口では約10mmであり、中間または出口では6mmである。ガイド40が衝突セルの一部として使用される場合は、イオンガイドの長さは好適には10cmのオーダー、例えば10cm〜20cmである。ガイド40の内部の寸法は好適にはmmないしcmのオーダー、例えば入口ガイドセクション60に沿って約10mmであり、出口ガイドセクション62に沿って4mm〜6mmである。スキマーコーン36によって規定された入口開口は、好適にはmmのオーダー、例えば約1mm〜2mmの寸法を有する。各部分52の長さは好適にはmmないしcmのオーダー、例えば1cm〜2cmである。隣接するガイドセクションの各電界中心軸の間の横方向の変位は、好適にはmmのオーダー、例えば約1mm〜2mmである。
【0017】
スキマーコーン36の中心軸と中心軸54との間の角度は、0°〜45°、好適には2°〜15°の範囲である。この角度は好適には、ガイド40の長さに対するガイド40の中央部での横方向の寸法の比のアークタンジェント(逆正接)と同程度である。例えばガイド40の長さが約6cmであり、その中央部での内部の横方向の寸法が約6mmであれば、スキマーコーンの角度は好適には1/10のアークタンジェント、すなわち約6°に等しい。この角度を大きくするとガイド40内のイオンが失われる可能性があり、この角度を小さくすると出口開口44を通過できる中性粒子が増加する可能性がある。
【0018】
図3-Aは、4本の電極58a〜58dを含む四重極ガイド部52の一例を示す模式的横断面図と、電極58a〜58dの駆動に使用される1組の電圧源74,76の対応する図面である。電極58a〜58dの各々は、プリント回路基板上に規定された対応する導電性リード80の上に取り付けられている。電極58a〜58dの各々は好適にはI字型(H字型)をなし、電極の取り付け面が横方向の梁によって電極の案内面から分離されている。電極58a〜58dの取り付け領域と案内領域を分離することにより、電極58a〜58dの周囲の絶縁基板の汚染を抑制できる。電極58a〜58dの横断面を比較的狭くすることはまた、長手方向に隣接する部分52の電極間の容量性結合を低減することも可能にする。
【0019】
電極58a〜58dは、気体イオンをガイドするためのガイド空間72を取り囲む。第一の電極対58a、58bは、第一の横方向に沿ってガイド空間72の対向する両側面上に配設され、第二の電極対58c、58dは第一の横方向と直交する第二の横方向に沿ってガイド空間72の対向する両側面上に配設されている。第一の横方向は、出口側の軸44が中心軸54(図2に示す)から変位する方向である。電極58a〜58dは、4枚の板に対して等間隔で中心軸のまわりに対称的に配設された4枚の正方形の平板を含む。好適には、電極の異なる対の板の間の横方向の距離は、互いに等しい(x=y)。
【0020】
2つの電圧源74、76は電極58a、58bに接続され、電極58a、58bに高周波(RF)および/または直流電圧を印加する。電圧源74、76は以下に述べるように、複数の部分52にRFおよび/または直流電圧を印加するために使用される単一の電圧源71の構成要素と考えることができる。第一の高周波(交流)電圧源74は第一の電極対58a、58bに接続され、対称性を有し同相の第一の四重極高周波(RF)成分VRF1と位相のずれた二重極RF成分VRF3とを有する電圧を電極58aと電極58bとの間に印加する。第二のRF電圧源76は第二の電極対58c、58dに接続され、対称性を有し同相の第二の二重極RF成分VRF2を有する電圧を電極58cと電極58dとの間に印加する。好適には第一のRF電圧VRF1と第二のRF電圧VRF2とは同じ振動数と振幅とを有するが、互いに位相が180°ずれている。好適にはガイド40の全ての部分52に同一の電圧VRF1およびVRF2が印加される。電圧VRF1およびVRF2は、案内電界の対称形の四重極成分を発生する。
【0021】
二重極RF電圧VRF3は好適には、第一および第二のRF電圧VRF1およびVRF2と同じ振動数を有する。二重極RF電圧VRF3の振幅は好適には、第一のRF電圧VRF1の振幅に対する比ηが5%〜100%である。この比が、局所的なガイド電界の中心軸とガイド40の幾何学的な中心軸との間の変位を決定する。二重極RF電圧VRF3と第一のRF電圧VRF1との間の位相差は好適にはゼロである。二重極電圧VRF3は電極58a、58bと、一般にy軸に沿った対応する二重極電界との間のポテンシャルの差を定める。二重極電圧VRF3は、ガイド(閉じ込め)電界の中心軸をy軸に沿ってガイド空間72の幾何学的中心から変位させる。変位の方向は、二重極電圧VRF3の位相を四重極電圧VRF1に関して0とπとの間で変化させることにより、変えることができる。ガイド電界の中心軸から外れるイオンは、電界の中心軸に向けられた平均的な力を受ける。二重極電圧VRF3が存在しない場合は、ガイド電界の中心軸はガイド40の幾何学的な軸と一致することになる。
【0022】
好適には、ガイド40の異なる部分52には二重極電圧VRF3の異なる値が印加される。一般には、ガイド40の異なるセクションに異なる二重極電圧を印加することにより、ガイド電界の中心を異なるセクションに沿ってずらすことができる。特にガイド電界の入口側と出口側との中心をずらすことにより、そうでない場合にガイド40を通過する液滴によって生じるノイズを抑制することができる。好適な本実施形態においては、ガイド40の入口セクションに沿って第一の二重極電圧が印加され、ガイド40の中央セクションに沿っては二重極電圧は印加されず、ガイド40の出口セクションに沿っては逆位相の第二の二重極電圧が印加される。
【0023】
ガイド40に印加された四重極電圧VRF1およびVRF2は、好適にはゼロからピークまでの振幅が約50V〜500Vである。η=5%〜100%を考慮すると、対応する二重極電圧の振幅は2.5Vないし500Vの範囲である。比較的重いイオンを効果的にガイドするために必要な場合は、もっと高い電圧、例えばkVのオーダーの電圧を使用してもよい。印加されるRF電圧の振動数は、好適には数百キロHzないしMHzのオーダーである。例えばガイドされるイオンが電子を含む場合は、もっと高い周波数を使用することもできる。隣接する部分の間の直流電圧の差は、10分の1V/cmのオーダー、例えば0.5V/cmの部分間の電界に対応する。
【0024】
ガイド40のようなイオンガイドは、イオン衝突セルの一部として使用できる。質量が選択されたイオンは、適切な衝突エネルギーに加速し、圧力を高めた衝突セル内に収束することができる。衝突セル内でのエネルギーの高いイオンと気体分子との衝突により、イオンはもっと小さなイオンと中性フラグメントとに解離する。解離プロセスによって生じるイオンは、次に上で述べたように質量アナライザー内に注入することができる。衝突セルは多くの場合、電気力学的イオンガイド構造を気体コンダクタンス(伝導性)の低い外囲構造で取り囲み、入口および出口の穴を幾何学的な対称軸に沿って配置することにより構成される。イオンガイド構造は電界により生成イオンを構造の内部に閉じ込め、生成イオンは構造の端部から出る。
【0025】
ガイド40のようなイオンガイドはまた、質量分析の前に対象となるイオンを衝突によって減少させるイオントラップとしても使用できる。イオンを軽い気体に衝突させると、イオンから余剰運動エネルギーが奪われ、その結果イオンはトラップ電界の復元力が最小の領域内、すなわちトラップの中心に入る。イオンの運動温度を衝突で低下させることは、2次元的なガイド/トラップ電界の中心軸に沿ってイオンを蓄積させるのに利用できる。1個のイオンが経験する衝突の数は圧力の上昇と共に増加するが、圧力は平均自由行程に反比例する。圧力が20mTorrの気体の分子数密度は温度20℃で、7.0×1014個/cmとなる。従って、あるイオンの衝突断面積が100平方オングストロームであれば、そのイオンの平均自由行程は約1mmとなる。衝突による冷却は、イオンの軸方向の運動エネルギーだけでなく横方向の運動エネルギーも低下させる。そのためイオンはガイド電界の軸に沿って蓄積し、蓄積されたイオンの空間電荷力のためにゆっくりと軸方向に移動する。この制限は、イオンを軸に沿って移動させる軸方向の直流電界を追加することで無くす事ができる。軸方向の直流電界は、イオンガイド40の各部分52に減少する直流電位を印加し、隣接する部分52の間に直流電圧の差が存在するようにすることで形成できる。
【0026】
最後の部分52に適切な直流電圧を印加することにより、イオンが出口開口44を通過するのを一時的に防止するイオンゲートとしてイオンガイド40を使用できるようになる。正のイオンの場合、最後の部分52に印加される直流電圧はイオンが通過できないほど十分に高くされる。直流電圧の適切な値は停止すべきイオンの質量に依存するが、数ボルトないし数十ボルトの範囲である。他の部分52に印加される軸方向の直流電圧はイオンが反射されて入口部分52に戻るのを防止する。イオンはガイド40内に蓄積し、次に最後の部分52に印加された直流電圧を突然下げることにより、出口開口44を通って解放される。質量分析が行われている間にイオンを蓄積することは、連続スキャン型ではない質量アナライザーの場合に特に有用である。典型的には、イオントラップ型質量アナライザーにおいて、イオンは周期的に質量アナライザーを満たすようにゲートを開いて質量アナライザーに導入される。質量分析の間は、アナライザー内のイオンは放出され、一方入ってくるイオンは廃棄され失われる。ガイド40をイオンゲートとして使用することにより、質量分析の期間中に入ってくるイオンを蓄積して保存し、その後そのイオンを質量アナライザー内に放出することが可能になる。質量分析の期間中にイオンをガイド40内に蓄積することにより、サンプルイオンのうちの質量分析に利用される部分を増加させ、それにより質量アナライザーの感度を高くすることができる。
【0027】
ガイド40は、電極58a〜58dを4枚の平面状回路基板の対応するリード線80に半田付けすることで作られる。組み立ての間、電極58a〜58dの相対的な向きを固定しておくために固定具で保持することができる。プリント回路基板への取り付けは、表面実装型プリント配線アセンブリの製作に一般に使用される半田リフロー技術で行える。基板を互いに固定して、一般に筒状の構造を形成できる。電極58a〜58dは、Cu、NiメッキしたCu、その他の導電性材料で構成できる。
【0028】
図3-Bは、本発明の一実施形態による四重極ガイド電界を発生するために適した変圧器の構成を示す。変圧器90は外部から駆動される一次インダクタ90’と、一次インダクタ90’に誘導的に結合された二次インダクタとを有する。二次インダクタ90”の第一のリード線は一般に第一の電極対58a、58bに接続され、二次インダクタ90”の第二のリード線は一般に第二の電極対58c、58dに接続される。電極対58a、58bに印加される第一のRF電圧VRF1は、電極対58c、58dに印加される第二のRF電圧VRF2に対して180°位相がずれている。
【0029】
図3-Cは、本発明の一実施形態による四重極成分と二重極成分とを有するガイド電界を発生するのに適した変圧器の構成を示す。上記のように、二次インダクタ90”の第二のリード線は一般に第二の電極対58c、58dに接続され、電極対58c、58dに第二のRF電圧VRF2を印加する。二次インダクタ90”の第一のリード線は第二の変圧器92の二次インダクタ92”のセンタータップに接続されている。二次インダクタ92”のセンタータップは、二次インダクタ92”の2本のリード線を二次インダクタ90”の第一のリード線と同位相で駆動し、電極対58a、58bに第一のRF電圧VRF1を印加する。二次インダクタ92”の2本のリード線はそれぞれ電極58a、58bに接続されている。電極58a、58bと二次インダクタ90”の第一のリード線との間の(二次インダクタ92”のセンタータップを介した)結合は、電極58a、58bに印加されるRF電圧の同位相の四重極成分VRF1を発生する。二次インダクタ92”と外部から駆動される一次インダクタ92’との間の誘導性結合は、電極58a、58bに印加されるRF電圧の位相がずれた二重極成分VRF3を発生する。一般に変圧器のセンタータップを使用する代わりに、インダクタおよびコンデンサを含む回路のような様々な回路を使用して、四重極成分と二重極成分とを有するRF電圧を対向する電極対に印加することができる。
【0030】
図4-Aは本発明の別の実施形態によるイオンガイド140の縦断面図である。イオンガイド140は長手方向に連結された幾何学的に同一の形状を有する複数の部分152を含んでいる。各部分152は、ガイド140に沿って同じ横断面を有するガイド空間172を取り囲んでいる。各部分152は、入口ガイドセクション160と出口ガイドセクション162との2つのガイドセクションを規定している。入口ガイドセクション160内のイオンガイド電界の中心軸154は、ガイド140の幾何学的中心の長手方向対称軸と一致する。出口ガイドセクション162内のイオンガイド電界の中心軸166は、幾何学的中心軸からずれている。入口側電界の中心軸154は、入口側チャンバー壁136内に規定された入口開口168を通ってガイド140に入るイオンを受け取る位置にある。入口開口168は入口側電界の中心軸154と位置あわせされている。出口側電界の中心軸166は出口側チャンバー壁164内に規定された出口開口144と位置合わせされている。
【0031】
図4-Bおよび図4-Cは、本発明の別の実施形態によるイオンガイド240の、それぞれ長手方向の図および横断方向の図である。イオンガイド240は、各々四重極構成に配列された4本の円形(例えば円筒状)のロッドからなる入口側ガイドセクション260と出口側ガイドセクション262とを含んでいる。2つのガイドセクションのロッドは、互いに端を突き合わせた状態に配列されている。入口側ガイドセクション260に沿った電界の中心軸255はガイド240の幾何学的中心軸からずれており、出口側ガイドセクション262に沿った電界の中心軸266はガイド240の幾何学的中心軸と一致する。
【0032】
図4-Dは、本発明の別の実施形態によるイオンガイド340の長手方向の図である。イオンガイド340は、入口側ガイドセクション360と、出口側ガイドセクション362と、前記ガイドセクション260および262の間に配設された中間ガイドセクション361とを備えている。3つのガイドセクションの対応する各ロッドは、互いに端を突き合わせた状態に配列されている。電界の中心軸354,355および366は全てガイド340の幾何学的な中心軸からずれている。
【0033】
一般に、丸ロッドを使ったガイド構造を使用して二重極成分を有するガイド電界を発生することができるが、本発明のイオンガイド構造においては、分割された平板を使用したガイド構造が好適である。平板を使用したガイド構造は、比較的一様な二重極電界を発生することが可能であり、それはガイド電界の非一様性によって失われるイオンの数を低減することを可能にする。二重極成分を持たないガイド構造(例えば幾何学的中心軸と一致するガイド電界の中心軸を有する四重極構造)の場合、丸棒および平板の構成は比較的一様な対称形の電界を発生するであろう。
【0034】
本発明の様々な実施形態をより良く理解するために有用ないくつかの理論的な問題を以下説明するが、これは本発明を制約するものではない。
電気力学的ガイド電界
円筒座標系(r、z)内の時間に依存する電界に対して、電気力学的ポテンシャルの正準形式は次式のように示される。
【0035】
【数1】

【0036】
ここでΠ(t)=cos(Ωt)は駆動周波数Ωを有する電界の時間的な変化を表し、Φ(r、z)およびU(r、z)はそれぞれ、電界の動的および静的な空間的変化を表し、AおよびBは正規化された定数である。空間項はN次のルジャンドル多項式Pcos(θ)に関連づけられている。回転対称である電界では、ポテンシャルは角度ψから独立である。多項式の各項は、ここでは円筒座標(r、z)、および境界条件を固定するために必要な任意の距離の関数として表される。交流および直流成分の両方を有する四重極電界がマスフィルターとして使用できるので、四重極電界が特に関心の対象となる。交流成分しか持たない四重極電界はイオンを横方向に集束するが軸方向には集束しないので、このタイプの電界はイオンガイド装置として使用されてきた。これにより、イオンが交流電界によって影響されない軸方向に沿って移動することが可能になる。
【0037】
純粋な四重極電界におけるポテンシャル場の一般形式は下記のようになる。
【0038】
【数2】

【0039】
ポテンシャル場は下記のラプラス方程式を満足しなければならない。
【0040】
【数3】

【0041】
すると下記の関係が得られる。
【0042】
【数4】

【0043】
純粋な四重極電界は、対称軸の回りに対称形に配置されて無限遠まで延びる4つの双曲面から形成することができる。その結果、式(4)におけるパラメータの間の関係λ=−σおよびγ=0が得られる。電気力学的な電圧のゼロからピークまでの振幅は周波数Ωを有するVであり、Uは各電極対に印加された直流ポテンシャルである。各電極の組に印加された全ポテンシャルVは下記のようになる。
【0044】
【数5】

【0045】
理想的な四重極ポテンシャルV電界内でのイオンの運動方程式の一般形式は、以下のベクトル方程式から得られる。
【0046】
【数6】

【0047】
ここで位置のベクトルは、

【0048】
であり、mはイオンの質量でありeはイオンの電荷である。4本の電極の対称軸はz軸であり、対向する電極対はx軸およびy軸に沿って向けられるものとする。式4の制約を式2に適用した場合(λ=−1、σ=1)のイオンの運動方程式は、運動をそれぞれ独立したxおよびy成分に分離することを可能にする。
【0049】
【数7】

【0050】
式(7)((7a)、(7b))を式(6)に代入した場合のこれらの方程式の正準形式は次のようになる。
【0051】
【数8】

【0052】
これは周知のマシュー方程式であり、ここで無次元パラメータζとqは次のように与えられる。
【0053】
【数9】

【0054】
ここでΨ=λまたはσであり、u=xまたはyである。この二次微分方程式はマシュー方程式である。この方程式の安定した解はパラメータqによって特徴付けられる、このパラメータの値は安定領域内でのイオンの動作点を規定する。式(9)((9a)、(9b))の一般解は以下のようになる。イオン運動の永続的な周波数ωはβの値から求められる。
【0055】
【数10】

【0056】
βの値は(q)空間内の作動点の関数であり、周知の連分数から計算できる。
1組の電極の間に追加の交流ポテンシャルV(ゼロ−ピーク)を印加すると、新しいポテンシャル場が形成される。y軸方向に向けられた電極セットにVを印加すると、ポテンシャル場内に二重極成分を含む新しいポテンシャルが生じる。印加されたポテンシャルは下記のようになる。
【0057】
【数11】

【0058】
y軸に沿った2本の電極の間のポテンシャル場は次のようになる。
【0059】
【数12】

【0060】
ここでyは対称軸から電極表面までの距離であり、下記の条件を満たす。
【0061】
【数13】

【0062】
二重極電圧は四重極電界VQyに関して+φだけ位相がずれる。N=0,1,2、・・でありVDy=VDy(φ=0)(−1)として、位相をφ=Nπの値に制限すると、ポテンシャル場VTYによって軸方向においてイオンに作用する瞬間的な電界は次式で与えられる。
【0063】
【数14】

【0064】
イオンの運動方程式は次のようになる。
【0065】
【数15】

【0066】
ζ=Ωt/2を代入すると、式(16)が得られる。
【0067】
【数16】

【0068】
式(16)を式(15)に代入して2ζ=Ωtとすれば、軸方向でのイオン運動の基本方程式は以下のようになる。
【0069】
【数17】

【0070】
次式のように定義し、
【0071】
【数18】

【0072】
式(18a)および式(18b)を式(17)に代入することにより、マシュー方程式に類似の方程式が次のように得られる。
【0073】
【数19】

【0074】
以下のように定義してu=(qy+quD)およびdu/dζ=qy/dζを式(18)に代入すると、以下の形式のマシュー方程式が得られる。
【0075】
【数20】

【0076】
イオンの軸方向の変位は以下のように2つの項の和であることが見出される。
【0077】
【数21】

【0078】
第一の項は式(10)における通常の時間依存の振動解、u(ζ)を表し、第二の項は二重極によるイオン運動の軸方向の変位を表す追加のオフセット値である。
【0079】
【数22】

【0080】
質量分析の間、ガイド電界の交流電圧を質量の関数として増加させることが一般的である。V=ηVacである特殊な場合には、式(22)は下記のようになり、
【0081】
【数23】

【0082】
従って次のようになる。
【0083】
【数24】

【0084】
二重極が適切な位相を与えられ、ガイド電界の一定の割合ηとして存在するとき、イオンの運動は軸方向において一定の量だけ一様に変位させられることが、式(24)から理解される。変位の大きさと向きは、質量/電荷比およびイオン電荷の極性に依存しない。この変位は、二重極の割合ηと、イオンガイド構造の幾何学的寸法とのみに依存する。変位の方向は、二重極の位相を0からπまで変化させることにより変えることができる。
【0085】
以下に示す結果が本発明の特定の実施の特性を示すが、これは本発明を制限するものではない。
結果
図5-A〜図5-Lは、いくつかのイオンガイド構成に対するイオンの軌跡のシミュレーションを示す。このシミュレーションは、アイダホ州Idaho FallsのIdaho National Engineering and Environmental Laboratoryが販売するSIMIONソフトウェアを使用して行った。シミュレーションで使用したパラメータの値は、イオンの質量/電荷比が800Daで、RFイオンガイド電圧が400V(ゼロ−ピーク)、イオンガイドの長さが60mm、内径が5mm、ガイド周波数が1.05MHz、圧力が平均自由行程で1mmに相当する値、スキマーコーンの穴を通過する初期イオンエネルギーが1eV、4枚のイオンガイド板全ての共通直流オフセットが−5V、隣接部分の間の電圧差が−0.5V、出口レンズが−15V、そしてストッププレートが−20Vである(該当する場合)。他のパラメータの値(例えば二重極電圧比)を、それぞれの図を参照して以下説明する。
【0086】
図5-Aは、図2および図3に示されたような6分割イオンガイド構造であって、二重極電圧発生装置VRF3を持たず平均自由行程が1mmであるものに入る単一のイオンに対して計算した軌跡を示す。図5-Aから、二重極電圧が印加されない場合は、イオンの軌跡は一般にガイドの幾何学的な対称軸に従い、変位させられた出口開口を通ってガイドチャンバーから出るのではないことがわかる。図5-Aはまた、イオンがガイドを通過するときにイオンの横方向の振動の振幅が次第に減少することを示す。
【0087】
図5-Bは、図5-Aに示された構造に入る単一のイオンに対して計算した軌跡を示す。最初の2つの部分は二重極成分を有し、次の2つの部分は二重極成分を持たず、最後の2つの部分は前記2つの部分の二重極成分に対して180°位相がずれた二重極成分を有する。二重極比はη=100%であり、平均自由行程は1mmである。図5-Cは図5-Bのイオンガイドに入る多数のイオンの軌跡を、入射位置、初期角度、およびRFガイド電界の位相に対する開始時間を変えながら計算したものである。
【0088】
図5-Dは、図5-Aに似た構造に入る単一のイオンについて計算した軌跡であり、第一のガイドセクションの後に続く全てのガイド部に対して二重極発生装置VRF3が存在し(VRF3=VRF1およびη=100%)、平均自由行程は1mmである。第一のガイド部には二重極電圧が印加されない。図からわかるように、イオンの軌跡は第一のガイド部の後でガイドの幾何学的な軸から外れ、イオンは電界の中心軸と直線的に並べられた出口開口を通って出る。
【0089】
図5-Eは、二重極発生装置VRF3を持たない図5-Dの構造に入射するイオンの分布に対して計算した軌跡を示す。イオンはスキマーの穴全体に広がって分布し、構造の軸に関して6°という小さな角度の広がりを有していた。イオンはばらばらのRF位相で構造に入射した。図5-Fは図5-Eの構造に入るイオンの分布に対する軌跡を示すが、この場合は二重極発生装置VRF3が存在する(VRF3=VRF1)。図5-Gは図5-Fのガイド構造内の気体圧力を平均自由行程10mm相当に下げた影響を示す。イオンの多くは出口のコンダクタンス開口に到達する前にガイドプレートと衝突して失われてしまうが、これは衝突による冷却が不十分であり、また二重極電界によってイオンが電極に向かって大きく変位させられるためである。
【0090】
図5-Hは、図5-Dに示されたものと類似する構造に入るイオンの分布に対して計算した軌跡を示すが、入射角がゼロの場合である(すなわち入口開口が厳密に幾何学的な中心軸に沿う方向を向く)。平均自由行程は1mmである。図5-Iは図4-Aに示されたものと類似するガイド電界軸分布を有し、ガイド電極の間の間隔が次第に狭くなるように構成された衝突セルに入るイオンの分布に対して計算された軌跡を示す。図5-Iの中央の2つの部分は二重極電界を発生しない。図5-Jは、イオンゲートとして採用された図5-Aに示されたようなガイドに対して計算された軌跡を示す。入口側および出口側のガイド部の位相を反転することにより、ゲートは閉じられる。位相を反転すると、入射イオンを復元電界の中心ではなく、障壁として作用する周辺電界に曝すことになる。二重極電圧は印加されず、平均自由行程は4mmである。
【0091】
図5-Kは、平板状電極で平均自由行程が4mmの場合のイオンのグループに対して二重極電界成分が引き起こす変位の計算値を示す。図5-Lは連続的な円筒形ロッド形電極で平均自由行程が4mmの場合のイオンのグループに対して二重極電界成分が引き起こす変位の計算値を示す。図5-Kと図5-Lとを比較すると、平板状電極よりも丸いロッド形電極の構成の方が変位は小さくなること、また丸いロッド形電極では多くのイオンが電極に衝突して失われることがわかる。これらの効果は、丸いロッド形電極において理想的な二重極から大幅にずれることによる。このずれは、中心からの変位が大きくなると共に増大する。
【0092】
図6-Aおよび図6-Bはそれぞれ、二重極電界に垂直な2つの等ポテンシャル面を、平板状電極および丸いロッド形電極についてそれぞれ計算したものである。図からわかるとおり、平板状電極は比較的一様な二重極電界を発生する。
上記の実施形態は本発明の範囲から逸脱することなく様々な仕方で変更できることが、当業者であれば理解できるであろう。本発明の範囲は以下に述べる特許請求の範囲および法律的にそれらに相当するものによって定められるものである。
【図面の簡単な説明】
【0093】
【図1】本発明の好適な実施形態による質量分析装置の模式図である。
【図2】本発明の好適な実施形態による、3つのガイドセクションを規定する次第に狭くなる複数の部分を含む電気力学的イオンガイドの長手方向の模式図である。
【図3−A】図2のイオンガイドの各部のうちの1つの横断方向の模式図である。
【図3−B】本発明の一実施形態による対称性を有する四重極ガイド電界を発生するのに適した変圧器の構成を示す。
【図3−C】本発明の一実施形態による対称形の四重極成分と非対称形の二重極成分とを有するガイド電界を発生するのに適した変圧器の構成を示す。
【図4−A】本発明の一実施形態による、2つのガイドセクションを規定する幾何学的に同一の複数の部分を含むイオンガイドの長手方向の模式図である。
【図4−B】本発明の一実施形態による、分割された平行ロッドを備えたイオンガイドの、それぞれ模式的な長手方向の図である。
【図4−C】本発明の一実施形態による、分割された平行ロッドを備えたイオンガイドの、それぞれ模式的な横断方向の図である。
【図4−D】本発明の一実施形態による、分割された傾斜ロッドを含むイオンガイド装置の模式的長手方向の図である。
【図5−A】本発明による、ある条件下でのイオンガイドを通過するイオンに対する計算された軌跡の例を示す。
【図5−B】本発明による、ある条件下でのイオンガイドを通過するイオンに対する計算された軌跡の例を示す。
【図5−C】本発明による、ある条件下でのイオンガイドを通過するイオンに対する計算された軌跡の例を示す。
【図5−D】本発明による、ある条件下でのイオンガイドを通過するイオンに対する計算された軌跡の例を示す。
【図5−E】本発明による、ある条件下でのイオンガイドを通過するイオンに対する計算された軌跡の例を示す。
【図5−F】本発明による、ある条件下でのイオンガイドを通過するイオンに対する計算された軌跡の例を示す。
【図5−G】本発明による、ある条件下でのイオンガイドを通過するイオンに対する計算された軌跡の例を示す。
【図5−H】本発明による、ある条件下でのイオンガイドを通過するイオンに対する計算された軌跡の例を示す。
【図5−I】本発明による、ある条件下でのイオンガイドを通過するイオンに対する計算された軌跡の例を示す。
【図5−J】本発明による、ある条件下でのイオンガイドを通過するイオンに対する計算された軌跡の例を示す。
【図5−K】本発明による、ある条件下でのイオンガイドを通過するイオンに対する計算された軌跡の例を示す。
【図5−L】本発明による、ある条件下でのイオンガイドを通過するイオンに対する計算された軌跡の例を示す。
【図6−A】本発明による、平板状の電極形状について計算された電気双極子電界を示す。
【図6−B】本発明による、丸棒状の電極について計算された電気双極子電界を示す。

【特許請求の範囲】
【請求項1】
対象となるイオンを形成する電離チャンバーと、
前記電離チャンバーと連通した入口開口、および出口開口を有し、前記出口開口の中心軸が前記入口開口の中心軸から変位しているガイドチャンバーと、
イオンを前記入口開口から前記出口開口に向かって案内するための、前記ガイドチャンバー内に配置された電気力学的イオンガイドと、
前記出口開口を通過して前記ガイドチャンバーから出るイオンを受け取るための、前記出口開口と連通した質量アナライザーと、
前記質量アナライザーと連通して、前記質量アナライザーから送られたイオンを受け取るイオン検出器とを含み、
前記電気力学的イオンガイドが、
第一の大略的に長手方向の電界の中心軸を有する第一の電気力学的イオンガイド電界を発生する入口側ガイドセクションであって、前記入口開口を通過したイオンが前記第一の電界の中心軸にほぼ沿って当該入口側ガイドセクションに入るように配設された入口側ガイドセクションと、
前記第一の電界の中心軸から変位しており前記出口開口とほぼ位置合わせされた第二の大略的に長手方向の電界の中心軸を有する第二の電気力学的イオンガイド電界を発生するための、前記入口側ガイドセクションと長手方向に連結した出口側ガイドセクションとを有する質量分析装置。
【請求項2】
前記入口側ガイドセクションが長手方向の幾何学的な中心軸のまわりに対称的に配設された複数の第一の四重極電極を含み、
前記出口側ガイドセクションが幾何学的な中心軸のまわりに対称的に配設された複数の第二の四重極電極を含む、請求項1記載の装置。
【請求項3】
前記第一の電界の軸が幾何学的な中心軸と実質的に一致する、請求項2記載の装置。
【請求項4】
前記第一のガイド電界は四重極成分を有し、
前記第二のガイド電界は四重極成分と二重極成分とを有する非対称なガイド電界である、請求項1記載の装置。
【請求項5】
前記第一のガイド電界が対称性を有する四重極電界である、請求項4記載の装置。
【請求項6】
第一の四重極電圧セットを前記入口側ガイドセクションに印加して前記第一のガイド電界を発生するために前記入口ガイドセクションに結合された第一の電圧源であって、前記第一のガイド電界が対称性を有する四重極電界である第一の電圧源と、
第二の電圧セットを前記出口側ガイドセクションに印加するために前記出口ガイドセクションに結合された第二の電圧源とを更に含み、
前記第二の電圧セットが、
前記第二のガイド電界の対称性を有する四重極電界成分を発生する四重極成分と、
前記第二のガイド電界の二重極電界成分を発生する二重極成分とを有する、請求項1記載の装置。
【請求項7】
前記入口側ガイドセクションおよび前記出口側ガイドセクションの少なくとも1つの少なくとも一方に駆動直流電圧を印加して長手方向のイオン駆動電界を発生するために、前記入口側ガイドセクションおよび前記出口側ガイドセクションの少なくとも一方に結合された駆動直流電圧源を更に含む、請求項1記載の装置。
【請求項8】
前記質量アナライザーが、前記ガイドチャンバーの前記出口開口と実質的に直線的に並べられたアナライザーの中心軸のまわりに対称的に配設された複数のアナライザー電極を含み、
前記出口側ガイドセクションが、前記出口開口と直線的に並べられていない幾何学的中心軸のまわりに対称的に配設された複数の出口側ガイド電極を含む、請求項1記載の装置。
【請求項9】
第一の大略的に長手方向の電界中心軸を有する第一の電気力学的イオンガイド電界を発生するための第一のガイドセクションと、
前記第一の電界の中心軸から変位した第二の大略的に長手方向の電界の中心軸を有する第二の電気力学的イオンガイド電界を発生するための第二のガイドセクションであって、前期第一のガイドセクションと長手方向に連結した第二のガイドセクションとを含む電気力学的イオンガイド。
【請求項10】
前記第一のガイドセクションが長手方向の幾何学的中心軸のまわりに対称的に配設された複数の第一の電極を含み、
前記第二のガイドセクションが幾何学的中心軸のまわりに対称的に配設された複数の第二の電極を含む、請求項9記載のイオンガイド。
【請求項11】
前記第一の電界の軸が幾何学的な中心軸と実質的に一致している、請求項10記載のイオンガイド。
【請求項12】
前記第一のガイド電界が四重極成分を有し、
前記第二のガイド電界が四重極成分と二重極成分とを有する非対称なガイド電界である、請求項9記載のイオンガイド。
【請求項13】
前記第一のガイド電界が対称性を有する四重極電界である、請求項12記載のイオンガイド。
【請求項14】
第一の四重極電圧セットを前記第一のガイドセクションに印加して前記第一のガイド電界を発生するために前記第一のガイドセクションに結合された第一の電圧源であって、前記第一のガイド電界が対称性を有する四重極電界である第一の電圧源と、
第二の電圧セットを前記第二のガイドセクションに印加するために前記第二のガイドセクションに結合された第二の電圧源とを更に含み、
前記第二の電圧セットが、
前記第二のガイド電界の対称性を有する四重極電界成分を発生するための四重極成分と、
前記第二のガイド電界の二重極電界成分を発生するための二重極成分とを有する、請求項9記載のイオンガイド。
【請求項15】
前記第一のガイドセクションおよび前記第二のガイドセクションの少なくとも一方の少なくとも一部に駆動直流電圧を印加して、長手方向のイオン駆動電界を発生するために、前記第一のガイドセクションおよび前記第二のガイドセクションの少なくとも一方に結合された駆動直流電圧源を更に含む、請求項9記載のイオンガイド。
【請求項16】
イオンを質量アナライザーに案内する方法であって、
第一のガイド電界の第一の電界の中心軸に実質的に沿って入口開口を通過してガイドチャンバー内にイオンを注入することと、
前記ガイドチャンバー内に配設された大略的に長手形状を有するマルチ電極構成のイオンガイドを通過して、前記ガイドチャンバーの前記入口開口から前記出口開口に向かってイオンを案内することとを含み、
前記イオンガイドは前記入口開口に近接した入口領域、および前記入口領域と反対側の出口領域を有し、前記イオンガイドは前記入口領域に沿う第一のガイド電界と前記出口領域に沿う第二のガイド電界とを発生し、この第二のガイド電界は前記第一の電界中心軸から変位している第二の電界中心軸を有し、前記第二の電界中心は前記出口開口と直線的に並べられている方法。
【特許請求の範囲】
【請求項1】
対象となるイオンを形成する電離チャンバーと、
前記電離チャンバーと連通した入口開口、および出口開口を有し、前記出口開口の中心軸が前記入口開口の中心軸から変化しているガイドチャンバーと、
イオンを前記入口開口から前記出口開口に向かって案内するための、前記ガイドチャンバー内に配置された電気力学的イオンガイドと、
前記出口開口を通過して前記ガイドチャンバーから出るイオンを受け取るための、前記出口開口と連通した質量アナライザーと、
前記質量アナライザーと連通して、前記質量アナライザーから送られたイオンを受け取るイオン検出器とを含み、
前記電気力学的イオンガイドが、
第一の大略的長手方向の電界の中心軸を有する第一の電気力学的イオンガイド電界を発生する入口側ガイドセクションであって、長手方向の幾何学的な中心軸のまわりに対称的に配設された第一の複数の電極を備え、前記入口開口を通過したイオンが前記第一の電界の中心軸にほぼ沿って当該入口側ガイドセクションに入るように配設された入口側ガイドセクションと、
前記第一の電界の中心軸から変位しており前記出口開口とほぼ位置合わせされた第二の大略的に長手方向の電界の中心軸を有する第二の電気力学的イオンガイド電界を発生するための、前記入口側ガイドセクションと長手方向に連結した出口側ガイドセクションであって、前記幾何学的な中心軸のまわりに対称的に配設された第二の複数の電極を備えた出口側ガイドセクションとを有する質量分析装置。
【請求項2】
記第一の複数の電極が、四重極電極であり
記第二の複数の電極が、四重極電極である、請求項1記載の装置。
【請求項3】
前記第一の電界の軸が幾何学的な中心軸と実質的に一致する、請求項2記載の装置。
【請求項4】
前記第一のガイド電界は四重極成分を有し、
前記第二のガイド電界は四重極成分と二重極成分とを有する非対称なガイド電界である、請求項1記載の装置。
【請求項5】
前記第一のガイド電界が対称性を有する四重極電界である、請求項4記載の装置。
【請求項6】
第一の四重極電圧セットを前記入口側ガイドセクションに印加して前記第一のガイド電界を発生するために前記入口ガイドセクションに結合された第一の電圧源であって、前記第一のガイド電界が対称性を有する四重極電界である第一の電圧源と、
第二の電圧セットを前記出口側ガイドセクションに印加するために前記出口ガイドセクションに結合された第二の電圧源とを更に含み、
前記第二の電圧セットが、
前記第二のガイド電界の対称性を有する四重極電界成分を発生する四重極成分と、
前記第二のガイド電界の二重極電界成分を発生する二重極成分とを有する、請求項1記載の装置。
【請求項7】
前記入口側ガイドセクションおよび前記出口側ガイドセクションの少なくとも1つの少なくとも一方に駆動直流電圧を印加して長手方向のイオン駆動電界を発生するために、前記入口側ガイドセクションおよび前記出口側ガイドセクションの少なくとも一方に結合された駆動直流電圧源を更に含む、請求項1記載の装置。
【請求項8】
前記質量アナライザーが、前記ガイドチャンバーの前記出口開口と実質的に直線的に並べられたアナライザーの中心軸のまわりに対称的に配設された複数のアナライザー電極を含み、
前記幾何学的中心軸が、前記出口開口と実質的に直線的に並べられていない、請求項1記載の装置。
【請求項9】
第一の大略的に長手方向の電界中心軸を有する第一の電気力学的イオンガイド電界を発生するための第一のガイドセクションであって、長手方向の幾何学的な中心軸のまわりに対称的に配設された第一のガイドセクションと、
前記第一の電界の中心軸から変位した第二の大略的に長手方向の電界の中心軸を有する第二の電気力学的イオンガイド電界を発生するための第二のガイドセクションであって、前第一のガイドセクションと長手方向に連結し、前記幾何学的な中心軸のまわりに対称的に配設された第二のガイドセクションとを含む電気力学的イオンガイド。
【請求項10】
前記第一のガイドセクションが前記幾何学的中心軸のまわりに対称的に配設された複数の第一の四重極電極を含み、
前記第二のガイドセクションが前記幾何学的中心軸のまわりに対称的に配設された複数の第二の四重極電極を含む、請求項9記載のイオンガイド。
【請求項11】
前記第一の電界の軸が幾何学的な中心軸と実質的に一致している、請求項10記載のイオンガイド。
【請求項12】
前記第一のガイド電界が四重極成分を有し、
前記第二のガイド電界が四重極成分と二重極成分とを有する非対称なガイド電界である、請求項9記載のイオンガイド。
【請求項13】
前記第一のガイド電界が対称性を有する四重極電界である、請求項12記載のイオンガイド。
【請求項14】
第一の四重極電圧セットを前記第一のガイドセクションに印加して前記第一のガイド電界を発生するために前記第一のガイドセクションに結合された第一の電圧源であって、前記第一のガイド電界が対称性を有する四重極電界である第一の電圧源と、
第二の電圧セットを前記第二のガイドセクションに印加するために前記第二のガイドセクションに結合された第二の電圧源とを更に含み、
前記第二の電圧セットが
前記第二のガイド電界の対称性を有する四重極電界成分を発生するための四重極成分と、
前記第二のガイド電界の二重極電界成分を発生するための二重極成分とを有する第二の電圧源とを更に含む、請求項9記載のイオンガイド。
【請求項15】
前記第一のガイドセクションおよび前記第二のガイドセクションの少なくとも一方の少なくとも一部に駆動直流電圧を印加して、長手方向のイオン駆動電界を発生するために、前記第一のガイドセクションおよび前記第二のガイドセクションの少なくとも一方に結合された駆動直流電圧源を更に含む、請求項9記載のイオンガイド。
【請求項16】
イオンを質量アナライザーに案内する方法であって、
第一のガイド電界の第一の電界の中心軸に実質的に沿って入口開口を通過してガイドチャンバー内にイオンを注入することと、
前記ガイドチャンバー内に配設された大略的に長手形状を有するマルチ電極構成のイオンガイドを通過して、前記ガイドチャンバーの前記入口開口から前記出口開口に向かってイオンを案内することを含み、
前記イオンガイドは前記入口開口に近接した入口領域、および前記入口領域と反対側の出口領域を有し、前記入口領域と前記出口領域とは、長手方向の幾何学的な中心軸のまわりに対称的に配設されており、前記イオンガイドは前記入口領域に沿う第一のガイド電界と前記出口領域に沿う第二のガイド電界とを発生し、第二のガイド電界は前記第一の電界中心軸から変位している第二の電界中心軸を有し、前記第二の電界中心は前記出口開口と直線的に並べられている方法。

【図1】
image rotate

【図2】
image rotate

【図3−A】
image rotate

【図3−B】
image rotate

【図3−C】
image rotate

【図4−A】
image rotate

【図4−B】
image rotate

【図4−C】
image rotate

【図4−D】
image rotate

【図5−A】
image rotate

【図5−B】
image rotate

【図5−C】
image rotate

【図5−D】
image rotate

【図5−E】
image rotate

【図5−F】
image rotate

【図5−G】
image rotate

【図5−H】
image rotate

【図5−I】
image rotate

【図5−J】
image rotate

【図5−K】
image rotate

【図5−L】
image rotate

【図6−A】
image rotate

【図6−B】
image rotate


【公表番号】特表2006−525643(P2006−525643A)
【公表日】平成18年11月9日(2006.11.9)
【国際特許分類】
【出願番号】特願2006−509842(P2006−509842)
【出願日】平成16年4月9日(2004.4.9)
【国際出願番号】PCT/US2004/010930
【国際公開番号】WO2004/100209
【国際公開日】平成16年11月18日(2004.11.18)
【出願人】(599060928)バリアン・インコーポレイテッド (81)
【Fターム(参考)】