説明

非破壊検査方法および非破壊検査装置

【課題】非破壊検査の検査結果の信頼性を向上させる非破壊検査方法および非破壊検査装置を提供する。
【解決手段】非破壊検査装置100は、ガイド波センサ3をタンク10の周方向の一部に設置した構成である。タンク10上の第1の位置3aにガイド波センサ3を設置して1回目の測定をおこなった後、1回目の測定における測定領域とは異なる測定領域を含むようガイド波センサ3を位置3bに設置して2回目の測定をおこなう。それぞれの測定で得られた受信信号は、信号処理・解析部5で処理され、軸方向端部におけるガイド波の反射で生じるノイズ信号が識別されるとともに、タンク10の欠陥の有無が評価される。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、円筒形部材に発生する欠陥の有無を、ガイド波を用いて検査する非破壊検査方法および非破壊検査装置に関する。
【背景技術】
【0002】
従来、タンクや大口径配管などの円筒形状構造物(以下、「円筒形部材」という)の欠陥の有無を検査するため、超音波を用いた非破壊検査がおこなわれている。円筒形部材は、周囲の環境の影響を受けながら、時間の経過とともに内外面から腐食が進行し減肉する。円筒形部材の腐食が進行していくと、内容物の漏洩や破断にいたる事故の原因となる。このため、円筒形部材の管理者などが、定期的に非破壊検査や目視検査をすることで、事故を未然に防止し、タンクや配管の健全性を維持している。
【0003】
従来から実施されている超音波を用いた非破壊検査では、超音波厚さ計を用いるのが一般的であるが、この超音波厚さ計には、いくつかの課題がある。その課題の1つが、超音波厚さ計を用いた検査は、センサと被検体との接触面の厚さを一点一点測定する一点検査となるため、1回あたりの検査範囲が狭く、表面積の大きいタンク検査や大口径の配管検査には長時間を費やし、結果として検査コストが増大する点である。また、超音波厚さ計を用いた検査は、高所部位や、ピット内に設置された被検体の低所部位及び狭隘部位の測定など、人が立ち入ることが困難な個所の測定では、何らかの対応策を施すことになるため、検査の準備に時間を費やすことになり、結果として検査コストが増大するという課題もある。
【0004】
このような超音波厚さ計の問題点に対応するため、超音波の一種であるガイド波を利用した非破壊検査が提案されている。ガイド波は、配管や板などの境界面を有する物体中を伝播する超音波で、板の厚さや形状が変化する、すなわち、厚さ方向の断面積が変化する部位で反射する特性がある。このような特性を利用して、ガイド波は、配管や板状の部材の内外面を長距離区間一括して検査する際に用いられる。
【0005】
特許文献1に示すガイド波を用いた非破壊検査装置は、被検体である円筒形部材の周方向に複数個の超音波探触子を配置した探触子群を、被検体の軸方向に2つ並べて配置している。探触子群の周方向の長さは、被検体の全周よりも短くてよい。特許文献1の非破壊検査装置では、この2つの探触子群を、円筒形部材の表面に直接接触させてガイド波を伝播させている。特許文献1の非破壊検査装置では、探触子群を被検体の周方向の一部分に配置すればよいので、大口径配管や大型タンクのような周の長い構造物を検査する際に、超音波探触子の個数やセンサ器具を簡素化することができる。これにより、特許文献1の非破壊検査装置では、超音波探触子やセンサ器具の取扱いが容易になったり、検査にかかるコストを低く抑えたりすることができる。
【0006】
また、特許文献2に示すガイド波を用いた超音波検査装置および超音波検査方法は、ガイド波を送信する超音波センサの個数を選定し、送信で使用する超音波センサ群の駆動パターンをかえることによって、検査領域を広範囲に広げている。このため、特許文献2の超音波検査装置および超音波検査方法では、被検体全体を検査するまでの計測回数を低減することができ、結果として検査時間の短縮を図ることができる。
【先行技術文献】
【特許文献】
【0007】
【特許文献1】特開2009−109390号公報
【特許文献2】特開2011−021892号公報
【発明の概要】
【発明が解決しようとする課題】
【0008】
しかしながら、上述した従来技術においては、ガイド波の送受信時に発生するノイズの低減については検討されているが、ガイド波の反射によるノイズについては、十分な検討がなされていないという問題点が一例として挙げられる。ガイド波を用いた非破壊検査において、検査で用いられる単一モードのガイド波は、形状が変化している部位で一部反射するとともに、大部分は送信方向に単一モードのまま伝播していく。
【0009】
ここで、大口径配管やタンクのように端部(溶接したフランジも含む)がある円筒形部材では、端部においてガイド波の全反射が生じて、反射波は送信方向と逆向きに伝播する。このような全反射が生じると、単一モードのガイド波の一部にモード変換が生じる。モード変換したガイド波は、単一モードのガイド波と伝播速度が異なるため、ノイズ信号(擬似信号)として受信されてしまう。このノイズ信号によって、被検体の欠陥の有無や健全性評価に誤った判定をする可能性があり、検査結果の信頼性を低減させてしまう。
【0010】
そこで、本発明は、非破壊検査の検査結果の信頼性を向上させる非破壊検査方法および非破壊検査装置を提供することを課題とする。
【課題を解決するための手段】
【0011】
このような課題を解決するために、本発明は、ガイド波センサを円筒形部材の周方向の一部に設置して、前記円筒形部材の軸方向端部に向かってガイド波を送信し、当該ガイド波の反射信号を用いて前記円筒形部材の欠陥の有無を検査する非破壊検査方法であって、前記円筒形部材に、前記ガイド波センサにより、前記ガイド波の送信および前記反射信号の受信をおこなう第1の測定工程と、前記第1の測定工程における測定領域とは異なる測定領域を含む位置から、前記ガイド波センサにより、前記ガイド波の送信および前記反射信号の受信をおこなう第2の測定工程と、前記第1の測定工程および前記第2の測定工程でそれぞれ受信した前記反射信号を用いて、前記軸方向端部における前記ガイド波の反射で生じるノイズ信号を識別する識別工程と、前記識別工程における識別結果と、前記第1の測定工程および前記第2の測定工程でそれぞれ受信した前記反射信号と、に基づいて、前記円筒形部材の欠陥を検出する検出工程と、を含むことを特徴とする。
【0012】
また、本発明は、円筒形部材の周方向の一部に設置され、前記円筒形部材の軸方向端部に対するガイド波の送信および当該ガイド波の反射信号の受信を、前記円筒形部材上の異なる範囲を測定領域として複数回おこなうガイド波センサと、前記ガイド波センサによって受信された前記測定領域が異なる複数の前記反射信号を用いて、前記軸方向端部における前記ガイド波の反射で生じるノイズ信号を識別する識別手段と、前記識別手段による識別結果と、前記ガイド波センサによって受信された前記測定領域が異なる複数の前記反射信号と、に基づいて、前記円筒形部材の欠陥を検出する検出手段と、を備えることを特徴とする。
【発明の効果】
【0013】
本発明にかかる非破壊検査方法および非破壊検査装置によれば、全反射によってモード変換したガイド波によるノイズ信号を判別することができ、非破壊検査の検査結果の信頼性を向上させることができる。
【図面の簡単な説明】
【0014】
【図1】実施の形態1にかかる非破壊検査装置の構成を示す説明図である。
【図2】非破壊検査装置を用いた検査の手順を示すフローチャートである。
【図3】ガイド波センサの軸方向への移動を説明する説明図である。
【図4】ガイド波センサを周方向に移動させて測定した測定波形の一例を示す図である。
【図5】ガイド波センサを周方向に移動させて測定した測定波形の一例を示す図である。
【図6】ガイド波センサを軸方向に移動させて測定した測定波形の一例を示す図である。
【図7】実施の形態2にかかる非破壊検査装置の構成を示す説明図である。
【図8】非破壊検査装置を用いた検査の手順を示すフローチャートである。
【発明を実施するための形態】
【0015】
以下に添付図面を参照して、この発明にかかる非破壊検査方法および非破壊検査装置の好適な実施の形態を詳細に説明する。
【0016】
(実施の形態1)
図1は、実施の形態1にかかる非破壊検査装置の構成を示す説明図である。図1およびこれ以降の説明では、非破壊検査装置100によって、被検体であるタンク10の欠陥の有無について検査する場合の例について示している。なお、図1においてタンク10の胴部分を図示し、鏡板は図示を省略している(後述する図3、7についても同様である)。また、これ以降の説明において、単に「周方向」または「軸方向」という場合、タンク10の周方向または軸方向を指すものとする。
また、非破壊検査装置100はガイド波センサ3をタンク10の胴部分の外周に設置するものとして説明するが、タンク10の胴部分の内周に設置してもよい。
【0017】
非破壊検査装置100は、ガイド波センサ3、信号送受信部4、信号処理・解析部5、制御部6、入力部7、出力部8によって構成されている。
【0018】
ガイド波センサ3は、複数個の超音波センサ端子(以下、「センサ端子」という)を等間隔に配列した第1ガイド波センサ群1および第2ガイド波センサ群2によって構成される。第1ガイド波センサ群1および第2ガイド波センサ群2は、同一の構成を有し、互いに平行に配列される。より詳細には、第1ガイド波センサ群1および第2ガイド波センサ群2は、それぞれ同じ個数のセンサ端子1a,1b,1c,1dおよび2a,2b,2c,2dが並列に接続され、信号ケーブル9で信号送受信部4に接続される。図1において、ガイド波センサ3は、被検体であるタンク10に設置された状態で図示されている。
【0019】
信号送受信部4は、信号発生器、増幅器、制御器、A/D変換器(いずれも図示なし)などによって構成される。信号発生器は、ガイド波センサ3に対して、被検体に対してガイド波を送信するための送信信号を発生させる。増幅器は、ガイド波センサ3からの受信信号を増幅する。制御器は、増幅器を制御する。A/D変換器は、アナログ信号であるガイド波の受信信号を、デジタル信号に変換する。
【0020】
信号処理・解析部5は、信号送受信部4から出力されたデジタル化されたガイド波センサ3の受信信号を演算処理して、測定受信波形として出力部8に画面表示させる。
【0021】
制御部6は、入力部7に対する指令入力などに基づいて、非破壊検査装置100の各部分を含む全体を制御する。また、制御部6は、測定結果や受信波形などの各種データを保存する記憶部(図示なし)を備えている。
【0022】
たとえば、図1において、ガイド波センサ3を実線で示す位置(3a)に設置した場合、ガイド波センサ3から送信された指向性を有する送信波11a(ガイド波)は、タンク10の胴部分を軸方向に伝播して、タンク10のガイド波送信方向側(矢印15a)の軸方向端部13で反射する。図1においては、送信波11aが軸方向端部13で反射して、反射波16aとなっている。反射波16aは、ガイド波センサ3に受信され、非破壊検査装置100で処理された後、出力部8において測定波形として出力される。
【0023】
また、タンク10には、模擬欠陥12が付加されている。この模擬欠陥12を測定領域に含む位置(たとえば、図1において実線で示す位置(3b))にガイド波センサ3を設置した場合、ガイド波センサ3から送信された指向性を有する送信波11b(ガイド波)の大部分は、タンク10の胴部分を軸方向に伝播して(矢印15b)、軸方向端部13で反射する(反射波16b)。また、送信波11bの一部は、模擬欠陥12において反射して、欠陥反射波17bとしてガイド波センサ3側に伝播する。この欠陥反射波17bを測定波形上で識別することによって、タンク10の欠陥の有無や欠陥の位置を検査することができる。
【0024】
図2は、非破壊検査装置を用いた検査の手順を示すフローチャートである。非破壊検査装置100を用いたガイド波非破壊検査手順について、図2および図1を参照して説明する。図2のフローチャートにおいて、まず、検査担当者などが、被検体であるタンク10におけるガイド波センサ3の設置位置(すなわち、1回目の測定をおこなう位置)、および、次回の測定にあたってガイド波センサ3を移動させる移動方向を決定する(ステップS101)。
【0025】
ここで、ガイド波センサ3の移動方向は、ステップS101で設置位置が決定されたガイド波センサ3からの、ガイド波送信方向側にあるタンク10の軸方向端部13の形状状態で決定する。より詳細には、タンク10の軸方向端部13のうち、ガイド波センサ3から送信されたガイド波が到達する範囲(これは、ガイド波センサ3を、設置位置から軸方向に向かって平行移動させた部分にほぼ一致する)が、ガイド波センサ3の周方向長さよりも長い区間において同一の形状を有する場合、次回の測定は、ガイド波センサ3の設置位置を現在の設置位置から周方向に移動させておこなうものとする(ステップS102)。
【0026】
周方向に移動とは、たとえば、図1のガイド波センサ3を位置3aから位置3bへ移動(矢印21aで示す)させるものである。なお、このとき、移動後の位置3bで送信されたガイド波(送信波11b)が到達する軸方向端部13上の部分が、位置3aで送信されたガイド波の到達範囲と同一形状区間内になるように、移動位置を決定する。また、位置3aから位置3bへの移動の際、ガイド波センサ3は軸方向には移動していないため、位置3aと位置3bとにおいて、ガイド波センサ3から軸方向端部13までの距離は一致する。また、位置3aから位置3bへの移動の際、ガイド波センサ3が軸方向に若干移動している場合、後述するように位置3aから測定した波形の端部13信号と位置3bから測定した波形の端部13信号で距離補正する。
【0027】
一方、ステップS101において、タンク10の軸方向端部13のうち、ガイド波センサ3から送信されたガイド波が到達する範囲が、ガイド波センサ3の周方向長さよりも長い区間において同一の形状を有さない場合、すなわち、同一形状区間がガイド波センサ3の周方向長さ以下の場合、次回の測定は、ガイド波センサ3の設置位置を現在の設置位置から軸方向に移動させておこなうものとする(ステップS103)。ここで、軸方向端部13が同一の形状を有さない場合とは、軸方向端部13の一部にフランジが設けられている場合などである。
【0028】
図3は、ガイド波センサの軸方向への移動を説明する説明図である。図3において、非破壊検査装置100の構成は、図1と同様であるので、同じ符号を付し、詳細な説明を省略する。ガイド波センサ3を軸方向に移動するとは、たとえば、図3のガイド波センサ3を位置3cから位置3dへと移動(矢印22cで示す)させるものである。この場合、ガイド波センサ3は、周方向には移動していないため、軸方向端部13のうち、位置3cで送信されるガイド波(送信波11c)が到達する部分と、位置3dで送信されるガイド波(送信波11d、図示なし)が到達する部分とは一致する。
【0029】
図2の説明に戻り、検査担当者は、ステップS101で決定した設置位置にガイド波センサ3を設置する(ステップS104)。このとき、タンク10の軸方向および周方向に対するガイド波センサ3の向きに注意しながら、正確な位置に設置する。例えば、ガイド波センサ3は、吸盤、磁石(図示せず)により、タンク10の設置位置に固定される。また、以降のステップにおいて、ガイド波センサ3を移動して設置する際も、その都度、タンク10に対するガイド波センサ3の向きが変化しないようにする。
【0030】
つぎに、検査担当者は、信号ケーブル9を用いてガイド波センサ3を信号送受信部4に接続し、非破壊検査装置100を起動させ、1回目の測定を開始する(ステップS105)。具体的には、ガイド波センサ3でガイド波を発生させ、タンク10の軸方向端部13方向に送信する(矢印15a)。そして、軸方向端部13で反射した反射波16aをガイド波センサ3で受信する。
【0031】
測定にあたり、検査担当者は、非破壊検査装置100の専用プログラムを立ち上げて、測定条件パラメータを入力部7を介して入力する。基本的な測定条件パラメータは、あらかじめ非破壊検査装置100内に記憶させておき、自動的に設定させるようにしてもよい。この場合、測定条件パラメータを、後から変更できるようにしておくことが好ましい。測定条件としては、たとえば、測定周波数、測定ゲイン、送信波形、印加電圧、ノイズカットフィルタ、トリガ信号のタイミングなどが挙げられる。
【0032】
ガイド波センサ3で反射波16aを受信すると、信号送受信部4は、それぞれのセンサ端子1a〜2dで受信した信号を増幅およびA/D変換する。さらに、信号処理・解析部5で受信した信号を合成し、合成データに演算処理をして、検査情報として測定波形を生成する(ステップS106)。測定波形は、制御部6によって出力部8上に表示出力される。
【0033】
図4の各グラフは、ガイド波センサを周方向に移動させた場合の測定波形の一例を示す図である。図4において、横軸は時間または距離を、縦軸は相対エコー高さを示している。それぞれの測定波形31〜34は、測定周波数が40kHzのバースト波形のガイド波をタンク10に伝播させ、軸方向端部13方向に送信したときの反射信号を示している。測定波形31は、図1の位置3aで測定した測定波形であり、測定波形32は、測定波形31の一部を拡大したものである。また、測定波形33は、測定波形31の全体を、縦軸のスケールを変更する(図4において、測定波形32は測定波形31の縦軸方向の表示レンジを1/10としたものとして拡大して図示している。)ことによって拡大したものである。なお、ガイド波センサ3からの距離が短い範囲、即ち、時間軸が短い範囲は不感帯領域であり、探傷検査の対象からは除外する。
【0034】
測定波形31〜33では、軸方向端部13からの端部信号Z3が明確に検出されている。また、測定波形31を拡大した測定波形32,33には、端部信号Z3の手前の領域(図1における領域14)に信号Y3が検出されている。この信号Y3は、単一モードの送信波11a(図1参照)が、軸方向端部13で全反射したときに、一部がモード変換して生じたノイズ信号Y3(擬似端部信号)である。しかしながら、測定波形31〜33のみを参照しても、ノイズ信号Y3が欠陥からの有意な信号であるかどうか、反射によって生じた疑似端部信号であるのかを評価するのは困難である。
【0035】
図2の説明に戻り、つづいて、2回目の測定をおこなうため、検査担当者は、ガイド波センサ3をステップS101で決定した方向へと移動させて設置する(ステップS107)。このとき、ステップS104と同様に、タンク10の軸方向および周方向に対するガイド波センサ3の向きに注意しながら、正確な位置に設置する。そして、移動後の位置において、ステップS105と同様に2回目の測定を開始する(ステップS108)。ステップS108においても、ステップS105における測定条件と同一の条件下で測定をおこなうことが望ましい。
【0036】
そして、ステップS106と同様に、非破壊検査装置100は、それぞれのセンサ端子1a,1b,1c,1dおよび2a,2b,2c,2dで受信した信号を信号送受信部4で増幅およびA/D変換する。さらに、信号処理・解析部5で受信した信号を合成し、合成データに演算処理をして、検査情報として測定波形を生成する(ステップS109)。測定波形は、制御部6によって出力部8上に表示出力される。
【0037】
図4の測定波形34は、図1の位置3bで計測した測定波形である。なお、測定波形34の縦軸スケールは、測定波形33と一致させている。上述したように、位置3bにおけるガイド波センサ3の測定領域は、模擬欠陥12を測定領域に含んでいる。このため、ガイド波センサ3から送信された送信波11bは、模擬欠陥12(図1参照)と、軸方向端部13とで反射する(欠陥反射波17bおよび端部反射波16b)。欠陥反射波17bおよび端部反射波16bは、ガイド波センサ3で受信され、それぞれ欠陥信号X3、端部信号Z3として検出される。
【0038】
一方、測定波形34においても、端部信号Z3の手前の領域14(図1参照)に、モード変換で生じたノイズ信号Y3が検出されている。しかしながら、測定波形34のみを参照しても、ノイズ信号Y3が欠陥からの有意な信号であるかどうか、反射によって生じた疑似端部信号であるのかを評価するのは困難である。
【0039】
図2の説明に戻り、つぎに、非破壊検査装置100は信号処理・解析部5によって、ステップS106で生成された測定波形33およびステップS109で生成された測定波形34を比較するため、補正処理および演算処理をおこなう(ステップS110)。そして、この処理後の測定波形を用いて、測定結果を評価する(ステップS111)。
【0040】
ステップS110において、補正処理をおこなうのは、測定時におけるガイド波センサ3の設置状況でガイド波信号の送受信の感度が異なることや、移動前後におけるガイド波センサ3の設置位置と軸方向端部13までの距離がわずかに異なることなどを補正するためである。具体的には、たとえば、測定波形33,34のどちらか一方から軸方向端部13の位置とエコー高さを求め、他方の測定波形における軸方向端部13の位置とエコー高さを補正して、比較可能な波形情報に加工する。
【0041】
図4の測定波形35は、測定波形33,34に対して、補正処理および演算処理(ここでは差分処理)をおこなったものである。測定波形35では、測定波形33,34でそれぞれ検出されていたノイズ信号Y3が相殺されて消えている。これは、ノイズ信号Y3は、軸方向端部13における反射でモード変換された信号に起因しており、この信号は同一の測定条件下においては伝播速度が一定であるので、軸方向端部13に対して同じ位置または同じ距離で検出されるためである。これにより、ノイズ信号Y3は、軸方向端部13における反射に起因する擬似端部信号であると識別することができる。
【0042】
一方、測定波形34で検出されていた欠陥信号X3は、そのまま反射信号として残っているので、欠陥からの有意な信号であると評価できる。すなわち、測定波形からタンク10の欠陥の有無や位置を検出することができる。
【0043】
このような処理によって、測定波形から反射によって生じたノイズ信号を除去し、タンク10の健全性を正確に評価することができる。今回の検査範囲全体の測定が終了するまでは(ステップS112:Noの実線で示すループ)、検査担当者などは、ステップS107に戻り、以降の処理をくり返す。なお、測定の途中で移動方向を変更する必要がある場合は、ステップS101に戻り(ステップS112:Noの破線で示すループ)、以降の処理をくり返す。そして、今回の検査範囲全体の測定が終了すると(ステップS112:Yes)、本フローチャートによる処理を終了する。
【0044】
以上のような手順によって、非破壊検査装置100は、被検体であるタンク10の健全性を検査する。非破壊検査装置100は、複数回の測定によって得られた測定波形を比較することによって、全反射に起因するノイズ信号を識別し、タンク10の欠陥を検出することができる。ここで、測定波形への処理について、さらに詳細に説明する。
【0045】
図5の各グラフは、ガイド波センサを周方向に移動させて測定した測定波形の一例を示す図である。図5において、横軸は時間または距離を、縦軸は相対エコー高さを示している。図5の測定波形41は、軸方向端部からの距離が異なる欠陥#1、欠陥#2、欠陥#3がある被検体を測定した測定波形である。より詳細には、ガイド波センサ3を被検体の周方向に移動させ、3か所の異なる設置位置で測定して得られた測定波形を、それぞれ測定波形42〜44として示している。
【0046】
測定波形42では、被検体の軸方向端部からの端部信号K、欠陥#1からの反射信号S1、および、軸方向端部でモード変換されたノイズ信号N1(擬似端部信号)が検出されている。測定波形42においては、欠陥からの反射信号S1とノイズ信号N1とが異なる位置で検出されているため、この2つの信号は識別することができる。
測定波形43では、端部信号K、欠陥#2からの反射信号S2、および、軸方向端部でモード変換されたノイズ信号N2(擬似端部信号)が検出されている。測定波形43においては、欠陥からの反射信号S2とノイズ信号N2とが同じ位置で検出されているため、この2つの信号は識別することができない。
測定波形44では、端部信号K、欠陥#3からの反射信号S3、および、軸方向端部でモード変換されたノイズ信号N3(擬似端部信号)が検出されている。測定波形44においては、欠陥からの反射信号S3とノイズ信号N3とが異なる位置で検出されているため、この2つの信号は識別することができる。
【0047】
被検体の欠陥の有無を評価する際、測定波形43のように欠陥からの反射信号とノイズ信号(擬似端部信号)とが重なってしまった場合は、この2つの信号を識別する必要がある。また、測定波形42〜44のいずれにおいても、2つの信号が欠陥からの反射信号であるのか、ノイズ信号であるのかを、単独の測定波形から評価することは困難である。
【0048】
このため、これら複数回の測定波形に対して、図2のステップS110と同様の演算処理をおこなう。測定波形45は、測定波形42〜44に対して、図2のステップS110と同様の演算処理をおこなった測定波形である。
より詳細には、測定波形46は、測定波形42と測定波形43とを差分処理した波形である。測定波形47は、測定波形42と測定波形44とを差分処理した波形である。測定波形48は、測定波形43と測定波形44とを差分処理した波形である。
【0049】
測定波形46〜48においては、いずれもノイズ信号N1〜N3(擬似端部信号)は相殺されて消えている。また、測定波形46においては、欠陥#1からの反射信号S1と欠陥#2からの反射信号S2とを識別することができる。測定波形47においては、欠陥#1からの反射信号S1と欠陥#3からの反射信号S3とを識別することができる。測定波形48においては、欠陥#2からの反射信号S2と欠陥#3からの反射信号S3とを識別することができる。さらに、測定波形46〜48をそれぞれ比較することによって、欠陥の位置や範囲を検出することができる。
【0050】
(ガイド波センサ3を軸方向に移動する場合)
ここまでの説明では、ガイド波センサ3を周方向に移動させる場合(図1のステップS102の場合)について詳細に説明したが、以下では、ガイド波センサ3を軸方向に移動させる場合(図1のステップS103の場合)について、図6および図3を参照して説明する。
【0051】
図6の各グラフは、ガイド波センサを軸方向に移動させて測定した測定波形の一例を示す図である。図6において、横軸は時間または距離を、縦軸は相対エコー高さを示している。それぞれの測定波形61,62は、測定周波数が40kHzのバースト波形のガイド波をタンク10に伝播させ、軸方向端部13方向に送信(図3の矢印15c,15d)したときの反射信号を示している。
【0052】
測定波形61は、図3のガイド波センサ3を位置3cに設置して計測した測定波形である。測定波形61では、軸方向端部13からの端部信号Z6および摸擬欠陥12からの欠陥信号X6が検出されている。また、測定波形61には、端部信号Z6の手前の領域(図5における領域14に対応する部分)に信号Y6が検出されている。この信号Y6は、単一モードの送信波11c(図5参照)が、軸方向端部13で全反射(反射波16a、図5参照)するときに、一部がモード変換して生じたノイズ信号Y6(擬似端部信号)である。しかしながら、測定波形61だけでは、ノイズ信号Y3が欠陥からの有意な信号であるかどうか、反射によって生じた疑似端部信号であるのかを評価するのは困難である。
【0053】
このため、ガイド波センサ3を軸方向に移動して(図5の矢印22c)、ガイド波センサ3を位置3dに設置して測定した結果得られたのが測定波形62である。測定波形62では、測定波形61と同様に、端部信号Z6、欠陥信号X6、ノイズ信号Y6が検出されている。なお、図6において、測定波形61と測定波形62との比較を容易にするため、測定波形61と測定波形62との横軸上における端部信号Z6の位置が一致するように示している。
【0054】
測定波形62において、端部信号Z6を基準とした欠陥信号X6の位置(端部信号Z6から欠陥信号X6までの距離)は、ガイド波センサ3の移動前(測定波形61)と同一となっている。一方、端部信号Z6を基準としたノイズ信号Y6の位置(端部信号Z6からノイズ信号Y6までの距離)は、センサの移動前後で異なっている。このことから、欠陥信号X6は、タンク10に存在する模擬欠陥12による反射波であり、ノイズ信号Y6は、モード変換によって生じた疑似端部信号であると識別することができる。
【0055】
さらに、測定波形61および測定波形62を比較するため、補正処理および演算処理をおこない(図2のステップS110参照)、測定結果を評価する(ステップS111)。補正処理をおこなうのは、測定時のガイド波センサ3の設置の状況でガイド波信号の送受信の感度が異なることや、移動前後におけるガイド波センサ3の設置位置とタンク上端部までの距離が異なることを補正するためである。補正処理の具体的な方法については、図2における説明と同様である。
【0056】
図6の測定波形63は、測定波形61,62に対して、補正処理および演算処理(ここでは加算処理)をおこなったものである。測定波形63において、測定波形61,62でそれぞれ検出されていたノイズ信号Y6(擬似の端部信号)は、軸方向端部13からの距離がそれぞれ異なるために処理前の測定波形と同じレベルとなっている。一方、欠陥信号X6については、軸方向端部13からの距離が同じため、信号レベルが増加して強調されて表示される。これにより、測定波形からノイズ信号Y6と欠陥信号X6とを識別することができる。
【0057】
以上説明したように、非破壊検査装置100によれば、全反射によるモード変換によって生じるノイズ信号を識別して、精度の高い非破壊検査をおこなうことができる。また、非破壊検査100によれば、ノイズ信号と欠陥からの欠陥信号が重複していても、ノイズ信号と欠陥信号とを分離することができるため、欠陥の見落としを防止することができ、検査結果の信頼性をより向上させることができる。
【0058】
また、非破壊検査装置100によれば、ノイズ信号と欠陥信号を識別することができるので、ノイズ信号を欠陥信号と誤認することに起因する追加検査や詳細点検の実施回数を削減することができ、検査にかかるコストや労力を低減することができる。
【0059】
(実施の形態2)
図7は、実施の形態2にかかる非破壊検査装置の構成を示す説明図である。図7において、実施の形態1にかかる非破壊検査装置100と同様の構成の箇所は、図1と同じ番号を付し、詳細な説明を省略する。図7において、実施の形態2にかかる非破壊検査装置700は、ガイド波センサ3、信号送受信部4、信号処理・解析部5、制御部6、入力部7、出力部8によって構成されている。これらの構成部の基本的な機能および動作は、実施の形態1と同様である。ここでは、ガイド波センサ3は、8個のセンサ端子(センサ端子1a,1b,1c,1d,2a,2b,2c,2d)によって構成されている。
【0060】
一方、非破壊検査装置700は、複数回の測定において、ガイド波センサ3のセンサ端子1a〜1d,2a〜2dのうち、駆動させるセンサ端子を変更する。これにより、ガイド波センサ3の位置を移動させることなく、周方向に移動させるのと同等の測定結果を得られる。
【0061】
図8は、非破壊検査装置を用いた検査の手順を示すフローチャートである。図8のフローチャートにおいて、まず、検査担当者などによって、被検体であるタンク10にガイド波センサ3を設置する(ステップS201)。このとき、タンク10の軸方向および周方向に対するガイド波センサ3の向きに注意しながら、正確な位置に設置する。検査担当者は、信号ケーブル9を用いてガイド波センサ3を信号送受信部4に接続し、非破壊検査装置700を起動させる。
【0062】
つぎに、検査担当者は、測定に使用するガイド波センサ3のセンサ端子1a〜1d,2a〜2dの個数を指定する(ステップS202)。個数の指定は、たとえば、検査担当者が入力部7に個数を入力することによっておこなう。これにより、ガイド波センサ3のうち、ガイド波を送信する領域の幅が決定され、信号送受信部4の切替器は、入力された個数だけのセンサ端子1a〜1d,2a〜2dを駆動させる。2回の測定をおこなう場合、1回目の測定は、ガイド波センサ3の一方の端(たとえば、左端)から順に入力された個数だけのセンサ端子を駆動させておこなう。また、2回目のガイド波センサ3の他方の端(たとえば、右端)から順に入力された個数だけのセンサ端子を駆動させておこなう。
【0063】
具体的には、たとえば、測定に使用するセンサ端子の数を4とした場合、ガイド波センサ3の左端側に位置するセンサ端子1a,1b,2a,2bを1組として、第1回目の測定をおこなう。また、ガイド波センサ3の左端側に位置するセンサ端子1c,1d,2c,2dを1組として、第2回目の測定をおこなう。これにより、ガイド波センサ3と比較して周方向の幅が半分のガイド波センサを、周方向に移動させて測定したのと同等の測定結果が得られる。
【0064】
なお、2回の測定に用いるセンサ端子が重複していてもよい。たとえば、測定に用いるセンサ端子の数を6として、1回目の測定をセンサ端子1a,1b,1c,2a,2b,2cでおこない、2回目の測定をセンサ端子1b,1c,1d,2b,2c,2dでおこなうようにしてもよい。
【0065】
そして、非破壊検査装置700は、1回目の測定をおこなう(ステップS203)。具体的には、検査担当者が非破壊検査装置700の入力部7から測定の指令を入力すると(指定個数は、たとえば4個とする)、非破壊検査装置700の制御部6が信号処理・解析部5や信号送受信部4に指令を出して、指定された数のセンサ端子(この例の場合、センサ端子1a,1b,2a,2b)から、測定周波数がたとえば40kHzのバースト波形のガイド波を伝播させる(送信波11e)。このガイド波は、タンク10の軸方向端部13方向に送信され(矢印15e)、軸方向端部13において反射し、反射波16eとしてセンサ端子によって受信される。また、タンク10に模擬欠陥12がある場合は、送信波11eは模擬欠陥12で反射して、欠陥からの欠陥反射波17eとして受信される。
【0066】
ガイド波センサ3で反射波16e、17eを受信すると、非破壊検査装置700は、センサ端子1a,1b,2a,2bで受信した反射信号を信号送受信部4で増幅およびA/D変換する。さらに、信号処理・解析部5で受信した信号を合成し、合成データに演算処理をして、検査情報として測定波形を生成する(ステップS204)。測定波形は、制御部6によって出力部8上に表示出力される。
【0067】
つづいて、非破壊検査装置700は、駆動するセンサ端子を切り替えて(ステップS205)、2回目の測定をおこなう(ステップS206)。2回目の測定においても、1回目の測定と同様に、指定された数のセンサ端子(この例の場合、センサ端子1c,1d,2c,2d)から、軸方向端部13方向(矢印15f)にガイド波を伝播させ(送信波11f)、軸方向端部13において反射した反射波16fをセンサ端子によって受信する。
【0068】
ガイド波センサ3で反射波16fを受信すると、1回目の測定と同様に、非破壊検査装置700は、受信した反射信号を信号送受信部4で増幅およびA/D変換する。さらに、信号処理・解析部5で受信した信号を合成し、合成データに演算処理をして、検査情報として測定波形を生成する(ステップS207)。測定波形は、制御部6によって出力部8上に表示出力される。
【0069】
この2回の測定の結果、図4の測定波形33,34のような、ガイド波センサ3を周方向に移動したような測定波形が得られる。すなわち、図7においてガイド波センサ3を、位置3eから位置3fへと移動させて測定したのと同等の測定結果を得られる。非破壊検査装置700は、ステップS207で生成された測定波形を比較するため、補正処理および演算処理をおこなう(ステップS208)。そして、この処理後の測定波形を用いて、測定結果を評価する(ステップS209)。ステップS208およびS209における具体的な処理は、図2のステップS110およびS111と同様である。これらの処理により、タンク10に欠陥がある場合の欠陥信号や、疑似端部信号の識別が可能となる。
【0070】
検査対象範囲の測定が終了するまでは(ステップS210:Noのループ)、検査担当者によってガイド波センサ3を移動させ(ステップS211)、ステップS201に戻り、以降の処理をくり返す。そして、検査対象範囲の測定が終了すると(ステップS210:Yes)、本フローチャートによる処理を終了する。
【0071】
以上、説明したように、実施の形態2にかかる非破壊検査装置700では、ガイド波センサ3の位置を移動させることなく、周方向に移動させるのと同等の測定結果を得られる。これにより、非破壊検査装置700によれば、検査時におけるガイド波センサ3の移動回数を少なくすることができ、検査にかかる労力やコストを低減することができる。
【0072】
また、非破壊検査装置700によれば、実施の形態1にかかる非破壊検査装置100と同様に、全反射によるモード変換によって生じるノイズ信号を識別して、精度の高い非破壊検査をおこなうことができる。また、非破壊検査装置700によれば、ノイズ信号と欠陥からの欠陥信号が重複していても、ノイズ信号と欠陥信号とを分離することができるため、欠陥の見落としを防止することができ、検査結果の信頼性をより向上させることができる。
【0073】
また、非破壊検査装置700によれば、ノイズ信号と欠陥信号を識別することができるので、ノイズ信号を欠陥信号と誤認することに起因する追加検査や詳細点検の実施回数を削減することができ、検査にかかるコストや労力を低減することができる。
【産業上の利用可能性】
【0074】
本発明にかかる非破壊検査方法および非破壊検査装置は、端部を有する円筒形部材を検査する際に有効であり、特に、大口径配管やタンクなどの欠陥の有無を検査する際に有効である。
【符号の説明】
【0075】
1 第1のガイド波センサ群
1a〜1d センサ端子(超音波端子)
2 第2のガイド波センサ群
2a〜2d センサ端子(超音波端子)
3 ガイド波センサ
4 信号送受信部
5 信号処理・解析部
6 制御部
7 入力部
8 出力部
9 信号ケーブル
10 タンク(円筒形部材)
12 欠陥
13 軸方向端部

【特許請求の範囲】
【請求項1】
ガイド波センサを円筒形部材の周方向の一部に設置して、前記円筒形部材の軸方向端部に向かってガイド波を送信し、当該ガイド波の反射信号を用いて前記円筒形部材の欠陥の有無を検査する非破壊検査方法であって、
前記円筒形部材に、前記ガイド波センサにより、前記ガイド波の送信および前記反射信号の受信をおこなう第1の測定工程と、
前記第1の測定工程における測定領域とは異なる測定領域を含む位置から、前記ガイド波センサにより、前記ガイド波の送信および前記反射信号の受信をおこなう第2の測定工程と、
前記第1の測定工程および前記第2の測定工程でそれぞれ受信した前記反射信号を用いて、前記軸方向端部における前記ガイド波の反射で生じるノイズ信号を識別する識別工程と、
前記識別工程における識別結果と、前記第1の測定工程および前記第2の測定工程でそれぞれ受信した前記反射信号と、に基づいて、前記円筒形部材の欠陥を検出する検出工程と、
を含むことを特徴とする非破壊検査方法。
【請求項2】
前記ガイド波センサは、前記円筒形部材の周方向に所定の長さを有しており、前記第1の測定工程における前記ガイド波センサの設置位置から前記ガイド波センサをずらして前記第2の測定工程を行う場合において、
前記第2の測定工程は、前記軸方向端部のうち前記第1の測定工程における前記測定領域を含む部分が、前記ガイド波センサの周方向長さより長い同一形状区間を有するとき、今回の測定における測定領域が前記同一形状区間内に含まれるように、前記ガイド波センサを前記第1の測定工程での設置位置から前記周方向に移動させておこなうことを特徴とする請求項1に記載の非破壊検査方法。
【請求項3】
前記ガイド波センサは、前記円筒形部材の周方向に所定の長さを有しており、前記第1の測定工程における前記ガイド波センサの設置位置から前記ガイド波センサをずらして前記第2の測定工程を行う場合において、
前記第2の測定工程は、前記軸方向端部のうち前記第1の測定工程における前記測定領域を含む部分が、前記ガイド波センサの周方向長さより長い同一形状区間を有さないとき、今回の測定における測定領域が前記第1の測定工程における前記測定領域と一致するよう、前記ガイド波センサを前記第1の測定工程での設置位置から前記円筒形部材の軸方向に移動させておこなうことを特徴とする請求項1に記載の非破壊検査方法。
【請求項4】
前記ガイド波センサは、複数個の超音波端子を前記円筒形部材の周方向に配列したものであり、
前記第1の測定工程は、前記配列の一端から順に所定個数の前記超音波端子を用いておこない、
前記第2の測定工程は、前記配列の他の一端から順に前記第1の測定工程と同数の前記超音波端子を用いておこなうことを特徴とする請求項1に記載の非破壊検査方法。
【請求項5】
円筒形部材の周方向の一部に設置され、前記円筒形部材の軸方向端部に対するガイド波の送信および当該ガイド波の反射信号の受信を、前記円筒形部材上の異なる範囲を測定領域として複数回おこなうガイド波センサと、
前記ガイド波センサによって受信された前記測定領域が異なる複数の前記反射信号を用いて、前記軸方向端部における前記ガイド波の反射で生じるノイズ信号を識別する識別手段と、
前記識別手段による識別結果と、前記ガイド波センサによって受信された前記測定領域が異なる複数の前記反射信号と、に基づいて、前記円筒形部材の欠陥を検出する検出手段と、
を備えることを特徴とする非破壊検査装置。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate


【公開番号】特開2013−2822(P2013−2822A)
【公開日】平成25年1月7日(2013.1.7)
【国際特許分類】
【出願番号】特願2011−130826(P2011−130826)
【出願日】平成23年6月13日(2011.6.13)
【出願人】(507250427)日立GEニュークリア・エナジー株式会社 (858)
【Fターム(参考)】