説明

養殖魚に寄生する外部寄生虫の駆除方法

【課題】本発明は養殖魚に寄生する外部寄生虫の駆除に好適な外部寄生虫の駆除方法を提供すること。
【解決手段】養殖場の近くに電解式オゾン発生装置を設置し、該電解式オゾン発生装置により原料水を電解して電解オゾン水を生成し、生成した電解オゾン水を電解オゾン水タンク内に貯蔵し、該電解オゾン水タンク内に養殖魚を投入し、養殖魚に寄生する外部寄生虫を駆除することを特徴とする養殖魚に寄生する外部寄生虫の駆除方法を提供することにある。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、養殖魚に寄生するエラムシ、ハダムシ等の外部寄生虫の駆除方法に関するものである。
【背景技術】
【0002】
近年、海産魚類の養殖技術が発達し、ハマチ、ブリ、ヒラメ、マダイ、フグ等の高級魚が養殖対象となっている。養殖場では、ウイルス、病原性細菌、外部寄生虫による疾病を予防することが、養殖期間の短縮、商品価値の向上から重要である。しかしながら、外部寄生虫の繁殖に適する水温となる5月〜8月(水温22℃〜27℃)には、しばしば養殖魚の大量死が発生する。死亡に至らない場合であっても、寄生虫が原因となって養殖魚の体力が減少し摂食が不良となり、商品価値が失われることになる。有機スズ系の防藻剤の使用が禁止された後、寄生虫の被害が増加しているのに対して、有効な駆除方法が開発されていないのが原因であると指摘されている。養魚用配合飼料に薬剤を混ぜ、経口投与する市販薬剤も普及しつつあるが、まだ一部の寄生虫に対する効果しか確認されていない。寄生虫の代表としては、体表面寄生のハダムシと魚鰓葉寄生のエラムシの2種があげられる。
養殖場の寄生虫の駆除方法としては以下の方法がこれまでに検討されている。
【0003】
(1)淡水浴法、濃塩水浴法
淡水浴法、濃塩水浴法とは、船槽等に用意した淡水または濃塩水中に魚を数分間浸漬処理することにより、寄生虫を浸透圧変化により弱らせて、魚体より脱落・死亡させるものである。この方法は処理水の塩濃度が海水と異なることにより魚の生体にも影響があり、処理を実施する養殖場まで用水を運搬しなければならないが、海水汚染の心配はないため、適切な方法といえる。
【0004】
(2)薬浴法
薬浴法は、過酸化ピロリン酸ナトリウム、過炭酸ナトリウム、過酸化リン酸二ナトリウム、ホルマリン、氷酢酸等の薬剤の作用を利用して、寄生虫を魚体より駆除しようとするものである。しかしながら、薬剤は、周辺海水を汚染するという問題がある。薬浴法としては、従来、次のような方法が行われている。
特許文献1には、フェルラ酸と乳酸により、ハダムシ等の寄生虫に感染した魚から寄生虫を駆虫しうることが開示されている。
特許文献2には、カカオ豆組成物を有効成分とする寄生虫抑制剤を投与することにより、海産養殖魚の寄生虫症を抑制及び予防する方法が開示されている。
特許文献3には、δ−アミノレブリン酸を飼料又は水槽に添加し、病原性微生物及び寄生虫に感染した魚類を治療する方法が開示されている。
特許文献4には、トラフグに寄生するえらむしの駆除剤及び駆除方法として、ベンゾイミダゾール系薬剤を有効成分として用いることが開示されている。
特許文献5には、魚類のスクーチカ症を、安定化二酸化塩素又は亜塩素酸塩、有機カルボン酸及び過酸化水素を用いて治療及び予防する方法が開示されている。スクーチカ繊毛虫は、魚体内に深く浸入するため、他の寄生虫病と異なり薬浴による駆虫は期待できない。従来、慣用的に使用されてきたホルマリンは、養殖魚に使用することが全面的に禁止された。
【0005】
(3)過酸化水素法
寄生虫の駆虫方法又は感染予防方法として、その他、次のような過酸化水素を用いる方法も用いられている。
特許文献6には、従来の方法のような不利、困難を全く伴うことなく大量処理においても容易な操作で効率よく処理し、養殖魚に寄生する寄生虫を駆除する方法を提供しようとするものとして、海水系養殖場の養殖魚を生簀内の小規模な遊泳区画に収容し、適切な濃度に希釈した過酸化水素水溶液を投与する方法が開示されている。特許文献6には、好ましい範囲として過酸化水素水溶液濃度400〜1000ppm、処理時間3〜10分の範囲内で選択して実施することが推奨されている。しかしながら、過酸化水素水溶液の濃厚な薬液を搬送することは危険である。また、過酸化水素を常用すると、寄生虫の過酸化水素に対する耐性が増強してしまうと云われている。
特許文献7には、海水養殖場におけるトラフグのヘテロボツリウム(エラムシ)症の予防方法としても、過酸化水素濃度が400ppm以上で魚体に薬害を与えない濃度以下、処理時間が20分以上の条件下で魚体を処理して鰓に寄生している段階のヘテロボツリウムを駆除できることが開示されている。
特許文献8では、過酸化水素濃度が10〜600ppmになるように過酸化水素を添加し、前記濃度が維持された状態で、240〜370nmの紫外線を前記閉鎖水系の水面における照射強度が2〜30mW/cm2になるように3〜40分間照射して、養殖魚の寄生虫卵を殺滅する方法が開示されている。
また、特許文献9では、過酢酸を有効成分とし、過酸化水素を80ppmから2000ppmの濃度になるよう添加した後、アルカリで中和した処理液中で、養殖魚を浸漬処理することにより、広い温度域で養殖魚への傷害を与えることなく、養殖魚の寄生虫駆除が試みられている。
【0006】
(4)その他の方法
その他の方法としては、特許文献10、11には、イオン類を含有する水溶液に紫外線を光触媒体に照射して生じた活性酸素種を水中で拡散することにより、水に活性酸素種の機能を付与し、この水による酸化反応を利用した微生物の除菌、寄生虫の駆虫、原虫類の駆除を行うことのできる光触媒反応水生成装置が開示されている。但し、紫外線により寄生虫を死滅させるために、高出力が必要となり、養殖場での利用には不向きである。
特許文献12には、養殖魚の寄生虫症による斃死の発生を抑制するために、魚類の免疫を賦活化させる方法、特に魚類寄生虫症に対する免疫を賦活させる方法として、魚類用ワクチンが開示されているが、研究段階であり、未だ実用性に乏しい。
【0007】
(5)オゾン水による方法
非特許文献1には、酸化剤であるオゾンの魚類病原微生物に対する殺菌効果が記載されている。
非特許文献2には、オゾン水は、飼育用水、用具の処理にも適しており、濃度0.3−0.5ppmにおいて5−10分で効果がある。但し、飼育槽では、海水中の臭化物との反応による臭素酸の養殖魚への影響を避けるために、濃度を100分の1まで低減させる必要のあることが開示されている。
非特許文献3には、オゾン水では、0.3ppmで5分間の処理でセラトミキサ症、ミキソゾーマ属寄生虫感染症を防止できた実例が報告されている。
尚、海水の臭化物イオンが存在する場合、オゾンと反応し残留性、有害性のある臭素酸イオンを生成するため、これを予め除去することが好ましい。
しかるに、従来、前記オゾン水による方法においては、本発明で対象としている養殖魚に寄生する外部寄生虫の駆除方法として、特に、トラフグのような外皮の厚い魚類に寄生するエラムシ、ハダムシのような外部寄生虫の駆除に関しては、知られていなかった。
【0008】
オゾンガスを溶解したオゾン水は、米国FDA(食品医薬品局)では食品添加物リストに登載され、食品貯蔵、製造工程での殺菌剤として認可(2001年)が得られている。既に食品工場内の殺菌、食品そのものの殺菌に多くの実績がある。
オゾン水のメリットとしては、
(a)オゾン(OHラジカル経由)殺菌効果は細胞壁の酸化破壊であり無差別性のため耐性菌が存在しない。
(b)酸素に分解されるため有害な二次生成物がない。
(c)残留性がない。
残留性がないことはメリットでもあり、デメリットでもある。オゾンガスを溶液中に安定に保つことができれば、その応用、効果の拡大が期待できる。
また、人体に対するオゾン療法は長い歴史があり、有益な治療方法として注目されており、最近では、非特許文献4に記載されているように、家畜、ペットへの利用が進んでいる。血液中に注入されたオゾンは免疫系を賦活させることが最近の研究により解明されている。養殖魚に対しても、このような効果が発現する可能性がある。
【0009】
オゾン水は、従来から放電型のオゾンガス発生器を用いて製造することが一般的であり、数ppmのオゾン水を容易に製造でき、浄水処理、食品洗浄分野で利用されている。しかしながら、放電型のオゾンガス発生器は、以下の理由により使用分野に制限であった。
(a)原料として乾燥空気を用いると、NOxが副生する。高濃度ガスを得るためには純酸素原料を用いなければならない。
(b)オゾンをいったんガスとして発生させ、その後、水に溶解させる2つの工程を必要とすること。
(c)後述する電解法に比較して濃度が低いため、溶解させることが困難である。
(d)発生電源が高電圧・高周波のため、小型化しにくい。
(e)放電によるオゾン水生成装置では、オゾンガス発生能力が安定するまで時間(数分間の待機時間)を要し、瞬時に一定濃度のオゾン水を調製することが困難である。
このため、放電型のオゾンガス発生器は、養殖場、特に海岸での利用に適さないことを示唆している。
【0010】
オゾン水の製法としては、上記の放電法の他に、電解法によるオゾン水の製法が知られており、この電解法は、放電法に比較して電力原単位は劣るが、高濃度のオゾンガス及び水が容易に得られる特徴により、電子部品洗浄などの特殊分野で汎用されている。原理的に直流低圧電源を用いるため、瞬時応答性、安全性に優れており、小型のオゾンガス、オゾン水発生器としての利用が期待されている。
オゾンガスを効率よく発生させるには、適切な触媒と電解質を選択することが不可欠である。電極材料として、白金などの貴金属、α−二酸化鉛、β−二酸化鉛、フルオロカーボンを含浸させたグラッシーカーボン、ダイヤモンドが知られている。電解質としては、硫酸、リン酸、フッ素基含有などの水溶液が利用されてきたが、取り扱いが不便であり広まってはいない。これに対して、非特許文献5に記載されているように、固体高分子電解質を隔膜として用い、原料水を原料とする水電解セルは、管理がしやすく、汎用されている。従来からの触媒である二酸化鉛を使用すると、12重量%以上の高濃度なオゾンガスが得られる。
【0011】
この種の固体高分子電解質を隔膜として用い、原料水を原料とする水電解セルにおいて、特許文献13では、導電性ダイヤモンドが機能水(オゾン含む)用電極として有用であることが開示されている。
また、特許文献14では、電極近傍の溶液に十分な流速を与えることで、ガス化する前にオゾン水として取り出す方法が開示されている。
特許文献15では、オゾンを溶解する電解水の噴霧装置、特に得られた電解水を霧状に噴霧する小型スプレー装置が提案されている。
特許文献16では、生成されるオゾン水を殺菌洗浄槽へ導入すると共に超音波作用とオゾン水の殺菌作用との組合せによって殺菌・脱臭を奏させる殺菌浄化装置を提供する。
更に、非特許文献6に記載されているように、近年、ナノバブル、マイクロバブルと呼ばれる微細気泡に関する基礎的研究や実用化の検討が行われている。最近の展開については、微細気泡の最新技術に記載されている。
特許文献17、18では、酸素などのガスを主体とするナノバブル、マイクロバブル化したオゾン含有気泡は、洗浄効果があることが開示されている。同技術では、かき体内のノロウィルスの不活化に効果のあることが報告された。
【0012】
更に、最近では、非特許文献2に記載されているように、塩化物イオンを電解酸化して得られる電解機能水を養魚分野で利用する検討も進んでいる。濃度1ppm、1分間で、魚類病原微生物を死滅でき、また、飼育用具に対しても0.5ppmで10−30分の処理により消毒できることが報告されている。しかしながら、この方法では、本発明で対象としている養殖魚に寄生する外部寄生虫の駆除方法として、特に、トラフグのような外皮の厚い魚類に寄生するエラムシ、ハダムシのような外部寄生虫の駆除に関しては不明であり、これまでに報告されていない。
【先行技術文献】
【特許文献】
【0013】
【特許文献1】特開2006−77000号公報
【特許文献2】特開2006−61107号公報
【特許文献3】特開2001−316255号公報
【特許文献4】特開2002−220308号公報
【特許文献5】特開2008−44862号公報
【特許文献6】特公平7−51028号公報
【特許文献7】特開平6−46708号公報
【特許文献8】特開2009−50215号公報
【特許文献9】特開2000−128702号公報
【特許文献10】特開2008−142647号公報
【特許文献11】国際公開第2007/043592号パンフレット
【特許文献12】特開2008−148607号公報
【特許文献13】特開平9−268395号公報
【特許文献14】特開平08−134677号公報
【特許文献15】特開2006−346203号公報
【特許文献16】特開2004−357521号公報
【特許文献17】特開2005−246293号公報
【特許文献18】特開2009−226386号公報
【非特許文献】
【0014】
【非特許文献1】吉水守、オゾン年鑑、p401−409、1993−1994年度版
【非特許文献2】魚類病原微生物に対する殺菌、工業用水、523、p13−26、平成14年
【非特許文献3】さけます資源管理センター技術情報p169、2003
【非特許文献4】日本医療オゾン研究会、増刊1号、1996
【非特許文献5】J. Electrochem. Soc., 132, 367,1985
【非特許文献6】微細気泡の最新技術、NTS社、2006
【発明の概要】
【発明が解決しようとする課題】
【0015】
従来、前記のように、寄生虫の駆除方法としてさまざまな検討がなされてきたが、いずれの方法においても、十分に解決されたとはいえない。養殖魚の駆除方法としては、
(a)寄生虫、特にハダムシ、エラムシの駆除が短時間に行えること
(b)調製保管の手間がかからずオンサイトにより、作業が安全に行えること
(c)そのまま処理水を海に廃棄できること
(d)養殖魚の生態に影響を与えないで駆除効果を発揮すること
が好ましい。漁業者が実施し得る実効ある現業的方法が提供することが重要である。
【0016】
本発明は、前述した従来方法の問題点を解消し、養殖魚に寄生するエラムシ、ハダムシ等の外部寄生虫を効果的に駆除することのできる駆除方法を提供することを目的とするものである。
【課題を解決するための手段】
【0017】
本発明における第1の課題解決手段は、上記目的を達成する為、養殖場の近くに電解式オゾン発生装置を設置し、該電解式オゾン発生装置により原料水を電解して電解オゾン水を生成し、生成した電解オゾン水を電解オゾン水タンク内に貯蔵し、該電解オゾン水タンク内に養殖魚を投入し、養殖魚に寄生する外部寄生虫を駆除することにある。
【0018】
本発明における第2の課題解決手段は、駆除する外部寄生虫がエラムシまたハダムシであることにある。
【0019】
本発明における第3の課題解決手段は、電解式オゾン発生装置に用いる電極として、導電性ダイヤモンド電極を用いたことにある。
【0020】
本発明における第4の課題解決手段は、電解オゾン水タンク内における電解オゾン水の温度を20〜28℃とし、電解オゾン水の濃度を0.1〜10ppmとし、処理時間を1〜10分の範囲とすることにある。
【0021】
本発明における第5の課題解決手段は、電解式オゾン発生装置に供給する原料水の塩化物イオンを3mM以下にすることにある。
【0022】
本発明における第6の課題解決手段は、電解式オゾン発生装置を船上または港の近くの養殖場に設置するとともに、前記電解式オゾン発生装置により生成した電解オゾン水を、養殖区画から隔離された別の区画に設けた電解オゾン水タンク内に供給し、該区画内に養殖魚を投入し、養殖魚に寄生する外部寄生虫を駆除することにある。
【0023】
本発明における第7の課題解決手段は、前記電解オゾン水タンク内に電解式過酸化水素発生装置により生成した電解過酸化水素水を投入し、前記電解オゾン水と前記電解過酸化水素水との混合水を用いて、養殖魚に寄生する外部寄生虫を駆除することにある。
【0024】
本発明における第8の課題解決手段は、養殖魚として、トラフグ等の外皮の厚い魚類の養殖魚を用いたことにある。
【発明の効果】
【0025】
本発明により、次のような効果が確認された。
(a)電解オゾン水は、寄生虫、特にハダムシ、エラムシの駆除が短時間に行える。
(b)電解オゾン水は、電気エネルギーと水からオンサイトで合成できるので、薬剤の調製保管の手間がかからず作業が安全に行うことができる。
(c)電解オゾン水は、安全な酸素に迅速に分解するので、そのまま処理水を海に廃棄できる。
(d)電解オゾン水は、養殖魚の生態に影響を与えないで駆除効果を発揮する。
即ち、本発明によると、電解オゾン水を用いた簡便な方法により養殖魚に寄生するエラムシ、ハダムシ等の外部寄生虫を効果的に駆除することができる。
【図面の簡単な説明】
【0026】
【図1】本発明の一実施態様を示す図。
【図2】本発明の他の実施態様を示す図。
【図3】本発明に使用する電解式オゾン発生装置の一例を示す図。
【発明を実施するための形態】
【0027】
以下、本発明の実施の態様を図1に基づいて説明する。
図1は、本発明による、養殖魚に寄生するエラムシまたハダムシ等の外部寄生虫の駆除方法の一実施態様を示したものであり、1は、電解式オゾン発生装置、2は、電解式オゾン発生装置の直流電源、3は、電解式オゾン発生装置に原料水を供給する原料水タンク、4は、電解式オゾン発生装置1により生成したオゾン水を貯蔵する電解オゾン水タンクである。原料水を原料水タンク3より電解式オゾン発生装置1に供給し、直流電源2に電量を流すと、供給された原料水は電解式オゾン発生装置1内で電解され、オゾンガスが生成される。このオゾンガスは、原料水に溶解させて所定濃度の電解オゾン水を生成し、生成した所定濃度の電解オゾン水を電解オゾン水タンク4内に供給し、貯蔵する。
しかる後、電解式オゾン水タンク4内に養殖魚を投入し、所定時間維持すると、電解式オゾン水タンク4内において養殖魚に寄生する外部寄生虫が駆除される。養殖魚としては、トラフグ等の外皮の厚い魚類の養殖魚が最適であり、駆除する外部寄生虫としては、エラムシ、ハダムシである。
本発明による駆除方法を実施する場所としては、沿岸に設置された養殖区画近傍で、該区画から隔離された別の区画において行われる。即ち、電解式オゾン発生装置1、直流電源2、原料水タンク3及び電解オゾン水タンク4は、いずれも養殖場の近くに設置される。
【0028】
電解式オゾン発生装置1に使用する陽極としては、導電ダイヤモンド電極が好ましい。白金や二酸化鉛電極に比較して、オゾン発生効率が高く、停止時に放置しても活性が維持されるため、汎用性に優れているからである。
【0029】
電解式オゾン水タンク4内における駆除は、該タンク4内のオゾン水の温度は20〜28℃、オゾン水濃度は、0.1〜10ppm、処理時間は、1〜10分の範囲とするが好ましい。オゾン水の温度については、オゾン水を電解式オゾン発生装置1に再循環するか、新たに原料水を供給して、オゾンを合成してオゾン水濃度を一定に保つことが好ましい。冷却装置を設置して、水温を一定に保つことが好ましい。オゾン水の温度がこの範囲であれば、養殖魚の活動が活発であり、エラ呼吸を十分に行い、エラへのオゾン水供給が促進される。これ以上の温度では、溶解酸素濃度が低下するため、養殖魚にとって危険である。オゾン水濃度はこの範囲において薬効が期待できる。これ以上では養殖魚自体への悪影響が生じる恐れがある。また、オゾンガスの発生量が増加し、作業上支障が大きくなる。オゾン水の処理時間として、これ以下では効果が期待できず、これ以上にすると、養殖魚への悪影響が懸念される。
【0030】
また、電解式オゾン発生装置1に供給する原料水は、オゾン効率を高くするために、塩化物イオン濃度が3mM以下とすることが好ましい。駆除において海水混入があることが想定されるので、電解式オゾン発生装置1に供給する原料水に塩化物イオンを添加する場合、その量は微量であることが好ましい。これ以上に塩化物イオンが存在すると、オゾン発生効率が低下し、代わって次亜塩素酸イオンが生成する。
【0031】
更に、電解式オゾン発生装置1の近くに電解式過酸化水素発生装置を設置し、前記電解オゾン水タンク4内に電解式過酸化水素発生装置により生成した電解過酸化水素水を投入し、前記電解オゾン水と前記電解過酸化水素水との混合水を用いて、外皮の厚い魚類の養殖魚に寄生する外部寄生虫を駆除すると、効果的な駆除を行うことができる。上記のように電解オゾン水と電解過酸化水素水との混合水を用いると、これらの物質および促進酸化により生成する活性酸素種が寄生虫の表面が酸化され、正常な生命活動が阻害され、寄生部位からの脱落、駆除が誘発されるものと考えられる。オゾンと過酸化水素の混合水を用いると、促進酸化処理により活性酸素が生成しやすい。このときの濃度比オゾン:過酸化水素は、1:0.1〜1:10の範囲が好ましい。過酸化水素がこれより少ないと、促進酸化処理効果が期待できない。またこれより多いとオゾンの分解が速くなり、過酸化水素の効果しか得られない。
【0032】
図2は、本発明による、養殖魚に寄生するエラムシまたハダムシ等の外部寄生虫の駆除方法の他の実施態様を示したものであり、沿岸から離れた海上養殖場に養殖用生簀5を設け、船6の船上に電解式オゾン発生装置1を設け、船上もしくは船6の近くの海上に電解式オゾン水タンク4を設けたものである。
養殖生簀5から隔離された別の区画に電解式オゾン水タンク4を設け、このタンク4内にオゾン水を注入し、養殖生簀中の魚を該区画に移槽し、処理した後、魚を元の生簀中5に放流する。処理区画としては、オゾン水を合成、運搬に使用した容器でもよい。オゾン水からのオゾンガスの放出を防止するために、蓋を有する区画、容器であることが好ましい。海水と分離区画された区画の水量は、魚数と重量に依存するが、1〜10m3程度である。上記駆除方法は、何回か繰り返すことが効果的である。
オゾン水は、船上にて、あるいはまた漁港において、原料水を満たした容器から原料水を電解セルに送り、オゾン水を合成する。
【0033】
本発明に使用する電解式オゾン発生装置の一例について詳述する。
(1)電解式オゾン発生装置
陽極7、陰極8、電解質溶液からなる1室セル、イオン交換膜9を含む電解式オゾン発生装置が用いられる。電解式オゾン発生セルの一例を図3に示した。
電極間距離は0.1mm〜50mmが好ましい。これより近いと接触により短絡が発生しやすく、これより遠いとセル電圧の増加を招く。電極間距離は0.1mmから2mm程度がより好適である。各室には、電解液の供給口と排出口、生成ガスの排出口が設けられている。合成した電解オゾン水は、極室内に保存することも可能であるが、別途の容器に保存することが好ましい。タンク材質は電解水により侵されない材料を選択する。特に問題がなければPE樹脂などでよい。
【0034】
(2)電極反応
電解セルでの陽極反応は、原料である水を供給し、電解することにより
2H2O=O2+4H++4e-
の酸素発生が進行するが、触媒、電解条件によって、
3H2O=O3+6H++6e-
のオゾンが生成し、これを溶解したオゾン水が合成できる。
【0035】
(3)陽極材料
陽極7の陽極基材としてはチタン、ニオブなどの弁金属、その合金、シリコンに限定される。触媒としては、白金、ダイヤモンド、二酸化鉛が利用可能である。
ダイヤモンドはドーピングにより電気伝導性の制御も可能であることから、電極材料として有望とされている。ダイヤモンド電極は水の分解反応に対しては不活性であり、酸化反応では酸素以外にオゾン、過酸化水素の生成が報告されている。触媒は陽極の一部に存在すればよく、前記基材の一部が露出していても支障ない。代表的な熱フィラメントCVD法について以下に説明する。炭素源となるメタンCH4など炭化水素ガス、或いはアルコールなどの有機物を用い、CVDチャンバー内に水素ガスと共に送り込み、還元雰囲気に保ちながら、フィラメントを熱し、炭素ラジカルが生成する温度1800−2400℃にする。このときダイヤモンドが析出する温度(750−950℃)領域に電極基材を設置する。水素に対する炭化水素ガス濃度は0.1−10vol%、圧力は20hPa〜1013hPa(1気圧)である。
ダイヤモンドが良好な導電性を得るために、原子価の異なる元素を微量添加することは不可欠である。ホウ素BやリンPの好ましい含有率は1〜100000ppmであり、更に好ましくは100〜10000ppmである。原料化合物にはトリメチルボロン(CH33Bを用いるが、毒性の少ない酸化ホウ素B23、5酸化2燐P25などの利用も好ましい。電極基材の形状としては、板のみならず、粒子、繊維、板、穴明き板、棒などが可能である。
【0036】
(4)陰極材料
陰極8の陰極反応は主に水素発生であり、水素に対して脆化しない電極触媒が好ましく、白金族金属、ニッケル、ステンレス、チタン、ジルコニウム、金、銀、カーボン、ダイヤモンドなどが好ましい。陰極8の陰極基材としてはステンレス、ジルコニウム、カーボン、ニッケル、チタンなどに限定される。本発明の装置では、いずれもオゾンや過酸化物の溶解した水と接触する配置となるため、酸化耐性に優れたものが好ましい。
【0037】
(5)膜材料
電極反応で生成した活性な物質を安定に保つために中性隔膜やイオン交換膜が利用可能である。膜はフッ素樹脂系、炭化水素樹脂系のいずれでも良いが、オゾンや過酸化物耐食性の面で前者が好ましい。図3は、イオン交換膜9を用いた例であり、イオン交換膜9は、陽極7、陰極8で生成した物質が反対の電極で消費されるのを防止するとともに、液の電導度の低い場合でも電解を速やかに進行させる機能を有するため、伝導性の乏しい原料水などを原料として利用する場合には必須となる。材質としては、フッ素樹脂系、ポリイミド樹脂系が好ましい。
【0038】
(6)原料水と電解条件
水道水、井戸水などが利用可能な原料水である。また、金属イオンを多く含む原料水では、陰極表面に水酸化物或いは、炭酸化物が沈殿し反応が阻害される恐れがある。また陽極表面にはシリカなどの酸化物が析出する。これを防ぐために、逆電流を適当な時間(1分から1時間)ごとに与えることにより、陰極では酸性化し、陽極ではアルカリ化するため、発生ガス及び供給水の流動により加速され、析出物の脱離反応が容易に進行する。
電流密度が大きいほど、オゾンの電流効率が増加するが、発熱による分解も促進されるため、適切な範囲としては0.05−5A/cm2とすることが好ましい。温度は低いほど電極におけるオゾンの電流効率が増加するため、また、溶解度も増加するため、好ましいが、セル電圧の増加要因でもあるため、溶液の温度は5℃〜30℃が好ましい。オゾン効率を高くするために、塩化物イオン濃度が3mM以下とすることが好ましい。
【0039】
オゾンと過酸化水素の混合水を用いると、促進酸化処理により活性酸素が生成しやすい。目的によっては、混合して使用することが推奨される。このときの濃度比(O3:H22)は、1:0.1〜1:10の範囲が好ましい。過酸化水素は電解により合成することも可能である。
【実施例】
【0040】
次に本発明の実施例を説明するが、本発明はこれらに限定されるものではない。
【0041】
[実施例1]
陽極7として導電性ダイヤモンドを形成したニオブ製の板状穴あき電極(5cm×20cm)を用いた。イオン交換膜9として、デュポン製Nafion膜(デュポンの登録商標)をはさみ、陰極8として、白金0.2ミクロンをめっきにより形成させたチタン製の板状電極(5cm×20cm)を用いた。これらの電極−膜接合体を20枚装着した陽極室、陰極室の2室を有する電解セルを構築した。全体の電極投影面積は0.2m2であった。電解セルの各室には気体、液体の流路を設けた。原料水を原料として、電解室の下部から毎分500Lにて供給した。電流を25A/dm2となるように流し、温度を出口にて25℃に制御した。合成したオゾン水濃度は2ppmであった。その一部を分水して以下の試験を行った。寄生虫の生死確認は、まず肉眼で動きの有無を確認、顕微鏡にて同様の詳細確認、さらに必要に応じて海水中にもどしての復活の有無により行った。
体長15cmのトラフグの鰓より切除されたエラムシ(ヘテロボツリウムオカモトイ、本体4−5mm長さ)は、有機質の保護皮膜に覆われた状態で、オゾン水に接触すると白濁し、1分間の処理後、死滅することを確認した。
鰓部位に寄生した状態のエラムシおよび鰓肉片を同オゾン水で処理したところ、薬効が10分後に確認された。
エラムシが寄生したフグを、同オゾン水中に1分間入れた後海水にもどした。体力が回復し、食餌の摂取状態も良好であった。その後解剖し、エラムシの有無を確認したが、生存するエラムシは検出できなかった。
【0042】
[比較例1]
比較例として、過酸化水素水(600ppm)でも実施したところ、切除したエラムシは5分後に死滅した。エラムシおよび鰓肉片に対しては、20分でも死滅できなかった。エラムシが寄生したフグは体力が回復しなかった。解剖したところ、エラムシの生存が確認された。
上記の実施例においては、トラフグ等の外皮の厚い養殖魚について記載したが、本発明は、これらに限定されることなく、その他の養殖魚にも適用することができる。また、外部寄生虫としては、エラムシ、ハダムシ以外の外部寄生虫にも適用することができる。
【産業上の利用可能性】
【0043】
本発明は、養殖場において、養殖魚に寄生するエラムシ、ハダムシ等の外部寄生虫による疾病を予防する方法として、幅広く利用することができ、養殖期間の短縮、商品価値の向上分野において利用することができるものである。
【符号の説明】
【0044】
1:電解式オゾン発生装置
2:直流電源
3:原料水タンク
4:電解オゾン水タンク
5:養殖生簀
6:船
7:陽極
8:陰極
9:イオン交換膜

【特許請求の範囲】
【請求項1】
養殖場の近くに電解式オゾン発生装置を設置し、該電解式オゾン発生装置により原料水を電解して電解オゾン水を生成し、生成した電解オゾン水を電解オゾン水タンク内に貯蔵し、該電解オゾン水タンク内に養殖魚を投入し、養殖魚に寄生する外部寄生虫を駆除することを特徴とする養殖魚に寄生する外部寄生虫の駆除方法。
【請求項2】
駆除する外部寄生虫がエラムシまたハダムシであることを特徴とする請求項1に記載の養殖魚に寄生する外部寄生虫の駆除方法。
【請求項3】
電解式オゾン発生装置に用いる電極として、導電性ダイヤモンド電極を用いたことを特徴とする請求項1に記載の養殖魚に寄生する外部寄生虫の駆除方法。
【請求項4】
電解オゾン水タンク内における電解オゾン水の温度を20〜28℃とし、電解オゾン水の濃度を0.1〜10ppmとし、処理時間を1〜10分の範囲とすることを特徴とする請求項1に記載の養殖魚に寄生する外部寄生虫の駆除方法。
【請求項5】
電解式オゾン発生装置に供給する原料水の塩化物イオンを3mM以下にしたことを特徴とする請求項1に記載の養殖魚に寄生する外部寄生虫の駆除方法。
【請求項6】
電解式オゾン発生装置を船上または港の近くの養殖場に設置するとともに、前記電解式オゾン発生装置により生成した電解オゾン水を、養殖区画から隔離された別の区画に設けた電解オゾン水タンク内に供給し、該区画内に養殖魚を投入し、養殖魚に寄生する外部寄生虫を駆除することを特徴とする請求項1に記載の養殖魚に寄生する外部寄生虫の駆除方法。
【請求項7】
前記電解オゾン水タンク内に電解式過酸化水素発生装置により生成した電解過酸化水素水を投入し、前記電解オゾン水と前記電解過酸化水素水との混合水を用いて、養殖魚に寄生する外部寄生虫を駆除することを特徴とする請求項1に記載の養殖魚に寄生する外部寄生虫の駆除方法。
【請求項8】
養殖魚として、トラフグ等の外皮の厚い魚類の養殖魚を用いたことを特徴とする請求項1〜7のいずれか1項に記載の養殖魚に寄生する外部寄生虫の駆除方法。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate


【公開番号】特開2011−229405(P2011−229405A)
【公開日】平成23年11月17日(2011.11.17)
【国際特許分類】
【出願番号】特願2010−99920(P2010−99920)
【出願日】平成22年4月23日(2010.4.23)
【出願人】(390014579)ペルメレック電極株式会社 (62)
【Fターム(参考)】